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Abstract -The design of integrated high-frequency continuous-time fil- 

ters has made considerable progress in the past few years. As the signal 
frequencies increase the design of the integrator circuits used in most of 
these filters becomes more critical. To give direction to the circuit design 
minimum specifications for the gain and phase of the integrator circuits 
would be helpful. In this paper a practical method of finding these 
integrator specifications from the filter specifications is developed. An 
example of application of the method to a sixth-order chebyshev band-pass 
filter is given and the result is verified by computer simulation. 

I. INTRODUCTION 

During the past few years there have been a number of 
publications on fully integrated continuous-time filters operating 
at high frequencies [1]-[8]. Except for [8] the basic building block 
of these filters is the integrator. The gyrator resonance circuits 
used in [ 5 ]  and [6] can be considered as a pair of cross-coupled 
integrators. 

An important problem in high-frequency filtering is the accu- 
rate realization of the specified poles and/or zeros of the filter. 
The quality factor Q of poles and zeros is highly sensitive to the 
phase of the integrators at the pole and zero frequencies. There- 
fore, the circuit designer should have accurate specifications for 
the gain and phase of integrator circuits. 

In this paper a method to find the integrator specifications 
from filter specifications is developed from an analysis of the 
influence of nonideal integrators on the positions of poles and 
zeros of a filter. In Section I1 a simple model for the behavior of 
practical integrators is formulated. In Section I11 it is shown that 
the influence of nonideal integrators on the filter transfer func- 
tion is independent of the filter topology. In Section IV the 
integrator model is used to study the influence of the non-ideal 
integrator on biquad transfer functions. In Section V the theory 
is applied to an example. Conclusions are given in Section VI. 

11. THE INTEGRATOR MODEL 
For the analysis of the effect of nonideal integrators on filter 

transfer functions we need a model of the nonideal integrator. In 
Fig. 1 the magnitude and phase of an ideal integrator H,d(s) and 
a practical (nonideal) integrator Hn,(s) are shown. 

The ideal integrator in Fig. 1 has the following transfer func- 
tion: 

"0 H , , ( s )  =-. 
S 

For angular frequencies up to 0.2* wp2 the transfer function 
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Fig. 1. Gain and phase of an ideal integrator and a non-ideal integrator 

H,(s) of the practical integrator can be approximated by 

A" 
Hnl(s) = (1 + STl)(l + S T 2 )  ' 

Time constant T~ = T,,~ belongs to the dominant pole pl. The 
dc-gain is equal to A,. The unity gain frequency wo is well 
approximated by w0 = A o / ~ l  if 1 / ~ ~  <c a, -=c 1/~*. Time con- 
stant T~ is used to approximate the phase shift due to the 
parasitic poles and zeros which are usually at frequencies much 
higher than the signal frequencies processed by the filter. There- 
fore, in our analysis  ST^( << 1 will hold and we can write (2) as 

(3) 

Model (3) is used in Section IV because it is mathematically 
easier to handle than model (2) [lo]. To find an appropriate value 
for T~ we use the quality factor of an integrator which is easily 
defined if we write its transfer function (s = j w )  as follows: 

Then the quality factor of the integrator can be defined as [l l] :  

For the integrator models (2) and (3) the reciprocal of the quality 
factor ( T ~  >> T ~ )  can be written as 

1 - W2T17* 1 

Qint(m> - " ( 7 1  + 7 2 )  "71 
U T 2 .  ( 6) =-- 1 ~- 

To model a practical integrator we first calculate T~ from the 
dominant pole frequency. Next the quality factor Q i n , ( u 0 )  is 
found from the phase at the unity-gain frequency wo using (5). 
Finally, T~ is calculated from Qi,,,(wo) and T~ using (6). This 
approximation by model (3) will be useful up to = 0.2 * wp2 (Fig. 
1). Usually this frequency range covers the signal frequencies 
where the performance of the filter employing the integrators is 
critical. 
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111. THE INDEPENDENCE OF THE EFFECT OF NOMDEAL 
INTEGRATORS OF THE FILTER TOPOLOGY 

In this section it will be shown that the effect of nonideal 
integrators on the transfer function of a filter is independent of 
the filter topology in which the integrators are used. 

Let the following normalized filter transfer function be speci- 
fied: 

a,Sm + a,-,sm-l + . . . + a,S + a0 

b,S" + b,-,S"-' + . . . + b,S + bo 
S 

H( S )  = S = - .  ' 
WO 

( 7) 
The specified H ( S )  can be realized by many filter topologies. In 
these topologies ideal integrators Hld (S) = 1 / S  are intercon- 
nected in different ways via multiplication of signals by constants 
K,, K,; . e, KN and summation of signals, to form a network [9]. 
The constants are functions of the filter coefficients a, and 4 :  
Kh=Kh(~o,~l,...,~,,bo,bl,...,b,), h = 1 , 2 ; . . , N .  

( 8) 
The form of the functions and the number of constants N is 
topology dependent, causing for example the difference in sensi- 
tivity between filter topologies. 

If the numerator and the denominator of (7) are divided by the 
highest power of S and the ideal integrator given by (1) is 
inserted with unity-gain frequency wo we obtain the following 
expression for the case m Q n (the case m > n is not essentially 
different): 

TABLE I 
COEFFICIENTS OF BIQUAD TRANSFER FUNCTIONS 

Function U -  U1 U ,  b, bn 

Low pass 0 0 KO; O P / Q p  % 
Band pass 0 H B Q p / Q p  0 Q P / Q P  8; 
High pass K 0 0 Q P / Q P  f$ 

Notch K 0 K @  Q p / Q p  

Allpass K - KCIP/Qp KO; " /eP  Q; 

most simple approach because complex pole and zero pairs can 
not be described with transfer functions with a degree lower than 
two. High order filters can be considered as a cascade of first- 
and second-order blocks enabling the analysis of the effect of 
nonideal integrators on the filter transfer function to be broken 
up into smaller problems. As a consequence of the argument in 
Section I11 the results will be valid independently of the actual 
topology used to realize the filter transfer function H ( S ) .  

A general normalized biquad transfer function with complex 
poles and zeros is given by 

N (  S )  a,S2 + a,S + ao S 
Hh( S )  = __ = s=-.  ( 1 1 )  

D ( S )  S * + b , S + b O  ' WO 

a , , H ~ ~ - m ( s ) + a , - , H : , - " + l ( s ) +  ' . '  +u,H:,- ' (s)+aoH:,(s)  
b n + b n - , H i d ( S ) +  . . .  +b,H;-'(s)+b,H;(s) H ( s )  = 

Note that in (9) identical integrators are assumed. 
If different filter topologies realize H ( s )  (9) with ideal integra- 

tors Hid(s) they must produce the same set of filter coefficients 
a, and b, each through the inverse of its own set of functions (8). 
We can take any one of these filter topologies or networks and 
replace H , d ( ~ )  with a nonideal integrator H,(s )  modeled by ( 3 )  
having unity-gain frequency w, without changing the network 
structure nor the constants K, ,  K , ;  . ., K,. Then the replace- 
ment results in a modified transfer function given by 

There are five types of biquad transfer functions: low pass, band 
pass, high pass, notch or band reject, and all pass. The coeffi- 
cients a, and b/ of (11) for these transfer functions are given in 
Table I. 

In Table I Q2 = w,/wo and Q, = wp/wO are normalized fre- 
quencies. K and H,  are gain constants. 

In the following analysis the ideal integrators Hid(S) are 
replaced by nonideal integrators H,, , (S)  as described by (3) 

a,H, : -" ' ( s )+a,_ ,H~-"+' (s )+ . .. + u , H ~ l - ' ( s ) + a o H ~ ~ ( s )  
H'( s) = 

b, + b, , H ,  ( S )  + . . . + b, I (  s ) + bo H z  ( s ) 

Because the network structure and the constants K , ,  K,, ' . . , K ,  
remain unchanged and Hid(s) and H,(s )  have the same unity 
gain frequency the difference between H ( s )  and H'(s) is only 
due to the nonideal behavior of H,(s)  compared to Hid(s). We 
have to design our integrator circuits (which will always be 
non-ideal) in such a way that the difference between H'(s) and 
the specified transfer function H ( s )  is kept within acceptable 
limits. 

By the argument above it is intuitively shown that H ' ( s )  is 
found from the specified filter transfer function H ( S )  indepen- 
dent& of the filter topology. So we can conclude that the effect of 
nonideal integrators can be analyzed independently of the filter 
topology. This result will be used in the next section to simplify 
the analysis. 

IV. INFLUENCE OF NONIDEAL INTEGRATORS ON BIQUAD 
TRANSFER FUNCTIONS 

In this section the influence of nonideal integrators on first- 
and second-order transfer functions will be analyzed. It is the 

having the same unity-gain frequency 3, = 1:  

1 - S T ,  
Hni( S )  = Ao-. 

1 + ST, 

In (12) the time constants T, and 
respect to wo: 

of (3) are normalized with 

A0 
TI = T,W~ = A o  and = r2wo = -7,. 

71 

The replacement results in a modified transfer function H i ( S ) :  

N'( S )  a$S2 + aiS + ah 
H , ' ( S )  =I= ( 1 4 )  D ( S )  S 2 + b ; S + b ;  ' 

The modified coefficients a;  and b,' are given in Appendix A. 
They are derived under the assumption that Qo is well approxi- 
mated by 8, = Ao/T ,  (Section 11). 

The influence of nonideal integrators on any type of biquad 
transfer function can be analyzed by substitution of the coeffi- 
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cients from Table I into (Al)-(A5) in Appendix A. The case of 
the first-order transfer function is treated in Appendix A. 

All biquad transfer functions have the same denominator poly- 
nomial D ( S ) .  For the coefficients bj' we find 

1 0  

T: QpTi 

QP 

-+P + 0; 

1 - 2 r, + 0;TZ' 
0 bh = bh= 
YY 

1 - 2 r, + 0;TZ' 
QP 

Bandpass: N ( S )  = HB(QP/Qp)S 

l+- 
Qint ( Q p )  

Magnitude at dc: 

IHh(J0) I = U ; / &  > 0. (23) 
All pass: N ( S ) = K ( S 2 + ( Q Z / Q z ) S + 0 Z ' )  with e , = - Q ,  

and 0,=0, 
K' = a; 3 K ( 24) 

Using Table I we can calculate the biquad parameters 0; and Q; 
for nonideal integrators from bh and bi and simplify the result 
using the fact that for most known integrator designs TI >> 1 and 
T, << 1. Using ( 6 )  and (13) the result can be expressed in the 
quality factor Qin,(0) of the integrator: 

0; =& = QP 

At a frequency 3 =  (1+a)0 ,  the ratio of lD'(j0)l and l D ( j 0 ) l  
becomes equal to 

Using (18) we find from (19) for 0 = 0,: 

Equations (18) and (20) are important from a practical point of 
view because Qin,(O,) is simply related to the phase of the 
integrator at s2, by (5). The biquad transfer functions in Table I 
have different numerators N ( S ) .  They will be treated briefly 
below. 

Low pass: N ( S )  = K 0 ;  

Qint ( 3:) 

a;=Jq+i12,. (26) 
High puss: N ( S )  = K S 2  

K' is given by (24). 

I Hh( JO) I = uh/bh > 0. ( 27) 
Notch: N(  S )  = K (  S' + a-?) 

According to (25) Qi becomes equal to 
K' and 0; are given by (24) and (26). 

Q; -- 0.5 * e,,,( Q ? ) .  ( 28) 
Magnitude at GZ: 

(29) 
From (21) to (29) we can find for low-pass, band-pass, and 
high-pass biquads: 

( 30) 
I 4 ( J Q )  I I D ' ( j 0 )  I 
l K ( J Q ) l  =IDol. 

The right-hand side of (30) is given by (19) and (20). For the 
notch and all-pass biquads also changes of the numerator have to 
be taken into account, using (19) with 3 =  (1 + /3)3,, QZ and Qi. 
We can conclude that with use of model (3) for nonideal integra- 
tors simple and practically useful expressions for the effect of 
nonideal integrators on the magnitude of second-order transfer 
functions can be derived. The effect on phase can also be studied 
using the general equations of Appendix A. In the expressions 
the quality factor of the integrator which is related to the phase 
of the integrator by (5) is the key parameter, making the expres- 
sions particularly useful for practical calculations. The theory in 
this section can be used to find integrator specifications from a 
desired filter response. In the next section an example will be 
given. 

V. APPLICATION TO A SIXTH-ORDER CHEBYSHEV 
BAND-PASS FILTER 

In this section it is demonstrated how the results of the 
previous section can be used to find integrator specifications 
from the filter specifications. Assume we have the following 
normalized transfer function of a sixth-order Chebyshev band- 
pass filter with 0.5-dB ripple: 
KS3 

(Sz +0.05627S+0.8154)(S2 +0.1253S+1)(S2 +0.069023+1.226) 
H ( S )  = 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989 1127 

TABLE I1 
BIQUAD PARAMETERS ( j = 1,2,3) 

H b l ( S )  3.1793 16.04 0.9030 
H b 2 ( S )  1.4279 7.98 1.oooO 
H b 3 ( S )  2.5920 16.04 1.1072 

TABLE 111 
RESULTS FOR Q,nt(QD,) FROM (32) -60 - / 

/ 

integrator (35) 

0 ideal 

-to . . . - 573.5 
-to." -285.3 
- to . . ' - 573.5 

541.4. . . 00 

269.4. . . to 
541.4. . . W 

phase 

[des1 

-89.89 
-90 

-90.10 

0.9030 1.0 1.1072 
Fig. 2. Integrator phase specification for the sixth-order Chebyahev band- 

pass filter. 

We want to find integrator specifications if the deviation from 
the ideal response may not exceed 0.5 dB over the passband. We 
can treat H ( S )  as a cascade of three band-pass biquads 
H,,l ( S )  * Hh2 ( S )  * Hb3( S ) .  The parameters of the biquads are 
given in Table 11. We will use (17)-(20). Because band-pass 
biquads satisfy (30) we can use (20) to find that the response 
deviation of + O S  dB at the pole frequency of a single biquad 
results in 

This equation gives two minimum Q-factors (considering abso- 
lute values) for each biquad. The interpretation of the result is 
given in Table 111. Using (5) we find that the phase of the 
integrator over the passband must be between -89.89' and 
- 90.10". A useful phase specification is shown in Fig. 2. 

The quality factor of the integrator is given by (6) and (13): 

(33)  

We can solve for TI and T,  at frequencies fl,, = 0.9030 and 
QP3 = 1.1072 considering the maximum allowable phase error as 
shown in Fig. 2. We then find 

T,=113.4 and T2=8.769*10-'. (34) 

These are minimum specifications. Larger T, and smaller T2 
result in better integrators. Let the actual unity gain frequency wo 
in our filter realization be 277 * 500 * lo3 rad/s. Then we find the 

~ ~~ ~~~ ~ ~~~ 1~~ ~ ~~~ ~~~ ~ ~~~~~~ ~~~~~ ~~~ 

0.2 0.3 0.5 1 .o 
f [MHz] 

Fig. 3. Magnitude response of bandpass filter with ideal integrators and with 
integrators specified by ( 3 5 ) .  

1 0  

mag Idel 
0 0  

-1 0 

-2 0 

-3 0 

-4 0 

440 

t 
500 

Fig. 4. Detail of passband response from Fig. 3. 

following integrator specifications from (34) using (13): 
dc-guin: 113.4 
Dominunt pole: 

1 
f P l  = ~ = 4409 Hz. 

2 77T1 

High frequency pole: 
1 

f p r  = ~ = 57.02 MHz. 
2 7772 

560 
f [kHz] 

(35) 

In practice one must design the integrator circuits to match the 
gain and phase following from (35) using passive or active 
compensation or a Q-control loop [l], [4], [7] if necessary. 

If we insert the integrator with these specifications in for 
example a leapfrog topology we obtain a filter response shown in 
Figs. 3 and 4. Similar simulations for other topologies result in 
exactly the same transfer functions as was expected from the 
argument in Section 111. 

Fig. 3 shows that the stopband response of the filter with 
integrators as specified by (35) does not significantly differ from 
the ideal response. Fig. 4 shows that the difference in the pass- 
band is within the required 0.5 dB. These results were obtained 
by PSPICE simulation with integrator models consisting of de- 
pendent sources, resistors and capacitors, allowing full control of 
the parasitic effects being studied. 

In the calculation above it is assumed that the deviation of one 
of the biquads is not noticeable at the pole frequencies of the 
others. For bandpass biquads this can be checked with (19) and 
(30). Values of Q, are found in Table 11. Values of Q; can be 
calculated with (18) from (33) and (34). Substituting these values 
in (19) together with appropriate values of a one can verify that 
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the assumption made above indeed results in a very small error in 
this case. 

VI. CONCLUSIONS 

The influence of non-ideal integrators on a specified filter 
transfer function can be analyzed independently of the filter 
topology using only simple equations in which the quality factor 
of the integrator is the key parameter. Because the quality factor 
follows directly from the phase of the integrator as a function of 
frequency we obtain a practically useful formulation. The exam- 
ple of application demonstrates the possibility to find integrator 
specifications from the filter specifications. Especially for high 
frequency continuous-time filters where integrator design is criti- 
cal it is important to have accurate specifications for the integra- 
tor circuits to match. 

APPENDIX A 
The modified biquad coefficients in (14): 

U* - alT2 + UOT? 

1 - blT2 + boT,Z 
a; = 

b; = (‘44) 1 - blT2 + boT,Z 

1 bl 
T: Tl 
- + - + b o  

b6 = 
1 - b l q  + 4q2 

Case of a First-Order Section: 
With S = s/oo we write for a first-order section: 

a,S + a. 
S + bo 

H ( S )  =-. 

Replacing Hid(S) by H , ( S )  from (12) we obtain 
ais + a& 

S + bh ” ( S )  =-. 

Using the same conventions as for the biquad case we find 
1 

For Tl 3.> 1 and q -=z 1 we find small sensitivities of pole and 
zero frequencies and dc-gain with respect to Tl and T2. 
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High-Frequency and High- Q Tunable Active Filters 

YANNICK DEVILLE 

Abstruct -An investigation of the performance of classical second-order 
bandpass active filters shows that since they use low-gain elements, they 
can be divided into two classes at high frequencies low-selectivity stable 
filters and low-stability selective filters. This paper presents structures that 
realize a good compromise between both classes, so that high Q can be 
achieved with good stability. Verifications have been carried out with 
experimental S i  hybrid high-frequency filters and with computer simula- 
tions of GaAs microwave integrated filters. The center frequency of the 
GaAs filters is tuned with MESFET’s used as voltage-controlled resistors 
and can exceed 2 CHz. 

I. INTRODUCTION 
At low frequencies, continuous-time active filters can combine 

high selectivity and stability by using very high-gain operational 
amplifiers (op amps). However, the gain of high-frequency and 
microwave amplifiers is limited by stability considerations that 
are developed hereafter. We will show that second-order band- 
pass filters using finite-gain amplifiers, which are our main 
concern here, can be divided into two classes, according to their 
quality factor Q defined as the ratio of the center frequency to 
the 3-dB bandwidth: 

1) Class A :  filters that are stable (Q > 0) whatever their 
element values are, but that achieve low selectivity when 
the use limited values for the voltage gain K :  
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