
Practical Gauss-Newton Optimisation for Deep Learning

Aleksandar Botev 1 Hippolyt Ritter 1 David Barber 1 2

Abstract

We present an efficient block-diagonal approxi-

mation to the Gauss-Newton matrix for feedfor-

ward neural networks. Our resulting algorithm

is competitive against state-of-the-art first-order

optimisation methods, with sometimes signifi-

cant improvement in optimisation performance.

Unlike first-order methods, for which hyperpa-

rameter tuning of the optimisation parameters is

often a laborious process, our approach can pro-

vide good performance even when used with de-

fault settings. A side result of our work is that for

piecewise linear transfer functions, the network

objective function can have no differentiable lo-

cal maxima, which may partially explain why

such transfer functions facilitate effective optimi-

sation.

1. Introduction

First-order optimisation methods are the current workhorse

for training neural networks. They are easy to implement

with modern automatic differentiation frameworks, scale

to large models and datasets and can handle noisy gradi-

ents such as encountered in the typical mini-batch setting

(Polyak, 1964; Nesterov, 1983; Kingma & Ba, 2014; Duchi

et al., 2011; Zeiler, 2012). However, a suitable initial learn-

ing rate and decay schedule need to be selected in order for

them to converge both rapidly and towards a good local

minimum. In practice, this usually means many separate

runs of training with different settings of those hyperparam-

eters, requiring access to either ample compute resources

or plenty of time. Furthermore, pure stochastic gradient

descent often struggles to escape ‘valleys’ in the error sur-

face with largely varying magnitudes of curvature, as the

first derivative does not capture this information (Dauphin

et al., 2014; Martens & Sutskever, 2011). Modern alter-

natives, such as ADAM (Kingma & Ba, 2014), combine

1University College London, London, United Kingdom 2Alan
Turing Institute, London, United Kingdom. Correspondence to:
Aleksandar Botev <a.botev@cs.ucl.ac.uk>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

the gradients at the current setting of the parameters with

various heuristic estimates of the curvature from previous

gradients.

Second-order methods, on the other hand, perform updates

of the form δ = H−1g, where H is the Hessian or some ap-

proximation thereof and g is the gradient of the error func-

tion. Using curvature information enables such methods to

make more progress per step than techniques relying solely

on the gradient. Unfortunately, for modern neural net-

works, explicit calculation and storage of the Hessian ma-

trix is infeasible. Nevertheless, it is possible to efficiently

calculate Hessian-vector products Hg by use of extended

Automatic Differentiation (Schraudolph, 2002; Pearlmut-

ter, 1994); the linear system g = Hv can then be solved

for v, e.g. by using conjugate gradients (Martens, 2010;

Martens & Sutskever, 2011). Whilst this can be effective,

the number of iterations required makes this process un-

competitive against simpler first-order methods (Sutskever

et al., 2013).

In this work, we make the following contributions:

– We develop a recursive block-diagonal approxima-

tion of the Hessian, where each block corresponds to the

weights in a single feedforward layer. These blocks are

Kronecker factored and can be efficiently computed and in-

verted in a single backward pass.

– As a corollary of our recursive calculation of the Hes-

sian, we note that for networks with piecewise linear trans-

fer functions the error surface has no differentiable strict

local maxima.

– We discuss the relation of our method to KFAC

(Martens & Grosse, 2015), a block-diagonal approxima-

tion to the Fisher matrix. KFAC is less generally appli-

cable since it requires the network to define a probabilistic

model on its output. Furthermore, for non-exponential fam-

ily models, the Gauss-Newton and Fisher approaches are in

general different.

– On three standard benchmarks we demonstrate that

(without tuning) second-order methods perform compet-

itively, even against well-tuned state-of-the-art first-order

methods.

Practical Gauss-Newton Optimisation for Deep Learning

2. Properties of the Hessian

As a basis for our approximations to the Gauss-Newton ma-

trix, we first describe how the diagonal Hessian blocks of

feedforward networks can be recursively calculated. Full

derivations are given in the supplementary material.

2.1. Feedforward Neural Networks

A feedforward neural network takes an input vector a0 = x
and produces an output vector hL on the final (Lth) layer

of the network:

hλ = Wλaλ−1; aλ = fλ(hλ) 1 ≤ λ < L (1)

where hλ is the pre-activation in layer λ and aλ are

the activation values; Wλ is the matrix of weights and

fλ the elementwise transfer function1. We define a loss

E(hL, y) between the output hL and a desired training

output y (for example squared loss (hL − y)2) which

is a function of all parameters of the network θ =
[

vec (W1)
T
, vec (W2)

T
, . . . , vec (WL)

T
]T

. For a training

dataset with empirical distribution p(x, y), the total er-

ror function is then defined as the expected loss Ē(θ) =
E [E]p(x,y). For simplicity we denote by E(θ) the loss for

a generic single datapoint (x, y).

2.2. The Hessian

A central quantity of interest in this work is the parameter

Hessian, H , which has elements:

[H]ij =
∂2

∂θi∂θj
E(θ) (2)

The expected parameter Hessian is similarly given by the

expectation of this equation. To emphasise the distinction

between the expected Hessian and the Hessian for a sin-

gle datapoint (x, y), we also refer to the single datapoint

Hessian as the sample Hessian.

2.2.1. BLOCK DIAGONAL HESSIAN

The full Hessian, even of a moderately sized neural net-

work, is computationally intractable due to the large num-

ber of parameters. Nevertheless, as we will show, blocks

of the sample Hessian can be computed efficiently. Each

block corresponds to the second derivative with respect

to the parameters Wλ of a single layer λ. We focus on

these blocks since the Hessian is in practice typically block-

diagonal dominant (Martens & Grosse, 2015).

The gradient of the error function with respect to the

weights of layer λ can be computed by recursively applying

1The usual bias bλ in the equation for hλ is absorbed into Wλ

by appending a unit term to every aλ−1.

the chain rule:2

∂E

∂Wλ
a,b

=
∑

i

∂hλ
i

∂Wλ
a,b

∂E

∂hλ
i

= aλ−1
b

∂E

∂hλ
a

(3)

Differentiating again we find that the sample Hessian for

layer λ is:

[Hλ](a,b),(c,d) ≡
∂2E

∂Wλ
a,b∂W

λ
c,d

(4)

= aλ−1
b aλ−1

d [Hλ]a,c (5)

where we define the pre-activation Hessian for layer λ as:

[Hλ]a,b =
∂2E

∂hλ
a∂h

λ
b

(6)

We can re-express (5) in matrix form for the sample Hes-

sian of Wλ:

Hλ =
∂2E

∂vec (Wλ)∂vec (Wλ)
=

(

aλ−1a
T

λ−1

)

⊗Hλ (7)

where ⊗ denotes the Kronecker product3.

2.2.2. BLOCK HESSIAN RECURSION

In order to calculate the sample Hessian, we need to eval-

uate the pre-activation Hessian first. This can be computed

recursively as (see Appendix A):

Hλ = BλW
T

λ+1Hλ+1Wλ+1Bλ +Dλ (8)

where we define the diagonal matrices:

Bλ = diag (f ′

λ(hλ)) (9)

Dλ = diag

(

f ′′

λ (hλ)
∂E

∂aλ

)

(10)

and f ′

λ and f ′′

λ are the first and second derivatives of fλ
respectively.

The recursion is initialised with HL, which depends on the

objective function E(θ) and is easily calculated analyti-

cally for the usual objectives4. Then we can simply apply

the recursion (8) and compute the pre-activation Hessian

for each layer using a single backward pass through the

network. A similar observation is given in (Schaul et al.,

2013), but restricted to the diagonal entries of the Hessian

2Generally we use a Greek letter to indicate a layer and a Ro-
man letter to denote an element within a layer. We use either sub-
or super-scripts wherever most notationally convenient and com-
pact.

3Using the notation {·}i,j as the i, j matrix block, the Kro-
necker Product is defined as {A⊗B}i,j = aijB.

4For example for squared loss (y−hL)
2/2, the pre-activation

Hessian is simply the identity matrix HL = I .

Practical Gauss-Newton Optimisation for Deep Learning

0 10 20 30 40
0

20

40

4

6

8

10

12

14

16

(a)

0

10

20

30

400 10 20 30 40

4

6

8

10

12

(b)

0

10

20

30

40

0

10

20

30

40

7

7.5

8

8.5

(c)

Figure 1. Two layer network with ReLU and square loss. (a) The objective function E as we vary W1(x, y) along two randomly chosen

direction matrices U and V , giving W1(x, y) = xU + yV , (x, y) ∈ R
2. (b) E as a function of two randomly chosen directions within

W2. (c) E for varying jointly W1 = xU , W2 = yV . The surfaces contain no smooth local maxima.

rather than the more general block-diagonal case. Given

the pre-activation Hessian, the Hessian of the parameters

for a layer is given by (7). For more than a single dat-

apoint, the recursion is applied per datapoint and the pa-

rameter Hessian is given by the average of the individual

sample Hessians.

2.2.3. NO DIFFERENTIABLE LOCAL MAXIMA

In recent years piecewise linear transfer functions, such as

the ReLU functionf(x) = max(x, 0), have become popu-

lar5. Since the second derivative f ′′ of a piecewise linear

function is zero everywhere, the matrices Dλ in (8) will be

zero (away from non-differentiable points).

It follows that if HL is Positive Semi-Definite (PSD),

which is the case for the most commonly used loss func-

tions, the pre-activation matrices are PSD for every layer.

A corollary is that if we fix all of the parameters of the net-

work except for Wλ the objective function is locally con-

vex with respect to Wλ wherever it is twice differentiable.

Hence, there can be no local maxima or saddle points of

the objective with respect to the parameters within a layer6.

Note that this does not imply that the objective is convex

everywhere with respect to Wλ as the surface will con-

tain ridges along which it is not differentiable, correspond-

ing to boundary points where the transfer function changes

regimes, see Figure 1(c).

As the trace of the full Hessian H is the sum of the traces of

the diagonal blocks, it must be non-negative and thus it is

not possible for all eigenvalues to be simultaneously neg-

ative. This implies that for feedforward neural networks

5Note that, for piecewise linear f , E is not necessarily piece-
wise linear in θ.

6This excludes any pathological regions where the objective
function has zero curvature.

with piecewise linear transfer functions there can be no

differentiable local maxima - that is, outside of patholog-

ical constant regions, all maxima (with respect to the full

parameter set θ) must lie at the boundary points of the non-

linear activations and be ‘sharp’, see Figure 1. Addition-

ally, for transfer functions with zero gradient f ′ = 0, Hλ

will have lower rank than Hλ+1, reducing the curvature in-

formation propagating from the output layer back up the

network. This suggests that it is advantageous to use piece-

wise linear transfer functions with non-zero gradients, such

as max(0.1x, x).

We state and prove these results more formally in Ap-

pendix E.

3. Approximate Gauss-Newton Method

Besides being intractable for large neural networks, the

Hessian is not guaranteed to be PSD. A Newton update

H−1g could therefore lead to an increase in the error. A

common PSD approximation to the Hessian is the Gauss-

Newton (GN) matrix. For an error E(hL(θ)), the sample

Hessian is given by:

∂2E

∂θi∂θj
=

∑

k

∂E

∂hL
k

∂2hL
k

∂θi∂θj
+
∑

k,l

∂hL
k

∂θi

∂2E

∂hL
k ∂h

L
l

∂hL
l

∂θj
(11)

Assuming that HL is PSD, the GN method forms a PSD

approximation by neglecting the first term in (11). This

can be written in matrix notation as:

G ≡ JhL

θ

T

HLJ
hL

θ (12)

where JhL

θ is the Jacobian of the network outputs with re-

spect to the parameters. The expected GN matrix is the

average of (12) over the datapoints:

Ḡ ≡ E

[

JhL

θ

T

HLJ
hL

θ

]

p(x,y)
(13)

Practical Gauss-Newton Optimisation for Deep Learning

Whilst (13) shows how to calculate the GN matrix exactly,

in practice we cannot feasibly store the matrix in this raw

form. To proceed, similar to the Hessian, we will make a

block diagonal approximation. As we will show, as for the

Hessian itself, even a block diagonal approximation is com-

putationally infeasible, and additional approximations are

required. Before embarking on this sequence of approxi-

mations, we first show that the GN matrix can be expressed

as the expectation of a Khatri-Rao product, i.e. blocks of

Kronecker products, corresponding to the weights of each

layer. We will subsequently approximate the expectation of

the Kronecker products as the product of the expectations

of the factors, making the blocks efficiently invertible.

3.1. The GN Matrix as a Khatri-Rao Product

Using the definition of Ḡ in (13) and the chain rule, we can

write the block of the matrix corresponding to the parame-

ters in layers λ and β as:

Ḡλ,β = E

[

Jhλ

Wλ

T

JhL

hλ

T

HLJ
hL

hβ
J
hβ

Wβ

]

(14)

where [JhL

hλ
]i,k ≡

∂hL
k

∂hλ
i

. Defining Gλ,β as the pre-activation

GN matrix between the λ and β layers’ pre-activation vec-

tors:

Gλ,β = JhL

hλ

T

HLJ
hL

hβ
(15)

and using the fact that Jhλ

Wλ
= aT

λ−1 ⊗ I we obtain

Ḡλ,β = E

[(

aλ−1a
T

β−1

)

⊗ Gλ,β

]

(16)

We can therefore write the GN matrix as the expectation of

the Khatri-Rao product:

Ḡ = E [Q ⋆ G] (17)

where the blocks of G are the pre-activation GN matrices

Gλ,β as defined in (16), and the blocks of Q are:

Qλ,β ≡ aλ−1a
T

β−1 (18)

3.2. Approximating the GN Diagonal Blocks

For simplicity, from here on we denote by Gλ the diagonal

blocks of the sample GN matrix with respect to the weights

of layer λ (dropping the duplicate index). Similarly, we

drop the index for the diagonal blocks Qλ and Gλ of the

corresponding matrices in (17), giving more compactly:

Gλ = Qλ ⊗ Gλ (19)

The diagonal blocks of the expected GN Ḡλ are then given

by E [Gλ]. Computing this requires evaluating a block di-

agonal matrix for each datapoint and accumulating the re-

sult. However, since the expectation of a Kronecker prod-

uct is not necessarily Kronecker factored, one would need

to explicitly store the whole matrix Ḡλ to perform this ac-

cumulation. With D being the dimensionality of a layer,

this matrix would have O(D4) elements. For D of the or-

der of 1000, it would require several terabytes of memory

to store Ḡλ. As this is prohibitively large, we seek an ap-

proximation for the diagonal blocks that is both efficient to

compute and store. The approach we take is the factorised

approximation:

E [Gλ] ≈ E [Qλ]⊗ E [Gλ] (20)

Under this factorisation, the updates for each layer can be

computed efficiently by solving a Kronecker product form

linear system – see the supplementary material. The first

factor E [Qλ] is simply the uncentered covariance of the

activations:

E [Qλ] =
1

N
Aλ−1A

T

λ−1 (21)

where the nth column of the d×n matrix Aλ−1 is the set of

activations of layer λ−1 for datapoint n. The second factor

E [Gλ], can be computed efficiently, as described below.

3.3. The Pre-Activation Recursion

Analogously to the block diagonal pre-activation Hessian

recursion (8), a similar recursion can be derived for the pre-

activation GN matrix diagonal blocks:

Gλ = BλW
T

λ+1Gλ+1Wλ+1Bλ (22)

where the recursion is initialised with the Hessian of the

output HL.

This highlights the close relationship between the pre-

activation Hessian recursion and the pre-activation GN re-

cursion. Inspecting (8) and (22) we notice that the only

difference in the recursion stems from terms containing the

diagonal matrices Dλ. From (7) and (16) it follows that in

the case of piecewise linear transfer functions, the diagonal

blocks of the Hessian are equal to the diagonal blocks of

the GN matrix7.

Whilst this shows how to calculate the sample pre-

activation GN blocks efficiently, from (20) we require the

calculation of the expected blocks E [Gλ]. In principle, the

recursion could be applied for every data point. However,

this is impractical in terms of the computation time and a

vectorised implementation would impose infeasible mem-

ory requirements. Below, we show that when the number of

outputs is small, it is in fact possible to efficiently compute

the exact expected pre-activation GN matrix diagonals. For

the case of a large number of outputs, we describe a further

approximation to E [Gλ] in Section 3.5.

7This holds only at points where the derivative exists.

Practical Gauss-Newton Optimisation for Deep Learning

3.4. Exact Low Rank Calculation of E [Gλ]

Many problems in classification and regression deal with a

relatively small number of outputs. This implies that the

rank K of the output layer GN matrix GL is low. We use

the square root representation:

Gλ =

K
∑

k=1

Ck
λC

k
λ

T

(23)

From (22) we then obtain the recursion:

Ck
λ = BλW

T

λ+1C
k
λ+1 (24)

This allows us to calculate the expectation as:

E [Gλ] = E

[

∑

k

Ck
λC

k
λ

T

]

=
1

N

∑

k

C̃k
λ

(

C̃k
λ

)T

(25)

where we stack the column vectors Ck
λ for each datapoint

into a matrix C̃λ
k , analogous to (21). Since we need to store

only the vectors Ck
λ per datapoint, this reduces the memory

requirement to K × D × N ; for small K this is a com-

putationally viable option. We call this method Kronecker

Factored Low Rank (KFLR).

3.5. Recursive Approximation of E [Gλ]

For higher dimensional outputs, e.g. in autoencoders,

rather than backpropagating a sample pre-activation GN

matrix for every datapoint, we propose to simply pass

the expected matrix through the network. This yields the

nested expectation approximation of (22):

E [Gλ] ≈ E

[

BλW
T

λ+1 E [Gλ+1]Wλ+1Bλ

]

(26)

The recursion is initialised with the exact value E [GL]. The

method will be referred to as Kronecker Factored Recursive

Approximation (KFRA).

4. Related Work

Despite the prevalence of first-order methods for neu-

ral network optimisation, there has been considerable re-

cent interest in developing practical second-order methods,

which we briefly outline below.

Martens (2010) and Martens & Sutskever (2011) exploited

the fact that full Gauss-Newton matrix-vector products can

be computed efficiently using a form of automatic differ-

entiation. This was used to approximately solve the linear

system Ḡδ = ∇f using conjugate gradients to find the pa-

rameter update δ. Despite making good progress on a per-

iteration basis, having to run a conjugate gradient descent

optimisation at every iteration proved too slow to compete

with well-tuned first-order methods.

The closest related work to that presented here is the KFAC

method (Martens & Grosse, 2015), in which the Fisher ma-

trix is used as the curvature matrix. This is based on the

output y of the network defining a conditional distribution

pθ(y|x) on the observation y, with a loss defined as the KL-

divergence between the empirical distribution p(y|x) and

the network output distribution. The network weights are

chosen to minimise the KL-divergence between the condi-

tional output distribution and the data distribution. For ex-

ample, defining the network output as the mean of a fixed

variance Gaussian or a Bernoulli/Categorical distribution

yields the common squared error and cross-entropy objec-

tives respectively.

Analogously to our work, Martens & Grosse (2015) de-

velop a block-diagonal approximation to the Fisher ma-

trix. The Fisher matrix is another PSD approximation to

the Hessian that is used in natural gradient descent (Amari,

1998). In general, the Fisher and GN matrices are differ-

ent. However, for the case of pθ(y|x) defining an expo-

nential family distribution, the Fisher and GN matrices are

equivalent, see Appendix C.3. As in our work, Martens

& Grosse (2015) use a factorised approximation of the

form (20). However, they subsequently approximate the

expected Fisher blocks by drawing Monte Carlo samples

of the gradients from the conditional distribution defined

by the neural network. As a result, KFAC is always an ap-

proximation to the GN pre-activation matrix, whereas our

method can provide an exact calculation of E [G] in the low

rank setting. See also Appendix C.4 for differences be-

tween our KFRA approximation and KFAC.

More generally, our method does not require any proba-

bilistic model interpretation and is therefore more widely

applicable than KFAC.

5. Experiments

We performed experiments8 training deep autoencoders on

three standard grey-scale image datasets and classifying

hand-written digits as odd or even. The datasets are:

MNIST consists of 60, 000 28×28 images of hand-written

digits. We used only the first 50, 000 images for train-

ing (since the remaining 10, 000 are usually used for

validation).

CURVES contains 20, 000 training images of size 28×28
pixels of simulated hand-drawn curves, created by

choosing three random points in the 28 × 28 pixel

plane (see the supplementary material of (Hinton &

Salakhutdinov, 2006) for details).

8Experiments were run on a workstation with a Titan Xp GPU
and an Intel Xeon CPU E5-2620 v4 @ 2.10GHz.

Practical Gauss-Newton Optimisation for Deep Learning

FACES is an augmented version of the Olivetti faces

dataset (Samaria & Harter, 1994) with 10 different im-

ages of 40 people. We follow (Hinton & Salakhutdi-

nov, 2006) in creating a training set of 103, 500 im-

ages by choosing 414 random pairs of rotation angles

(−90 to 90 degrees) and scaling factors (1.4 to 1.8) for

each of the 250 images for the first 25 people and then

subsampling to 25× 25 pixels.

We tested the performance of second-order against first-

order methods and compared the quality of the different

GN approximations. In all experiments we report only the

training error, as we are interested in the performance of

the optimiser rather than how the models generalise.

When using second-order methods, it is important in prac-

tice to adjust the unmodified update δ in order to dampen

potentially over-confident updates. One of our central in-

terests is to compare our approach against KFAC. We there-

fore followed (Martens & Grosse, 2015) as closely as pos-

sible, introducing damping in an analogous way. Details

on the implementation are in Appendix B. We emphasise

that throughout all experiments we used the default damp-

ing parameter settings, with no tweaking required to obtain

acceptable performance9.

Additionally, as a form of momentum for the second-order

methods, we compared the use of a moving average with a

factor of 0.9 on the curvature matrices Gλ and Qλ to only

estimating them from the current minibatch. We did not

find any benefit in using momentum on the updates them-

selves; on the contrary this made the optimisation unstable

and required clipping the updates. We therefore do not in-

clude momentum on the updates in our results.

All of the autoencoder architectures are inspired by (Hinton

& Salakhutdinov, 2006). The layer sizes are D-1000-500-

250-30-250-500-1000-D, where D is the dimensionality of

the input. The grey-scale values are interpreted as the mean

parameter of a Bernoulli distribution and the loss is the bi-

nary cross-entropy on CURVES and MNIST, and square

error on FACES.

5.1. Comparison to First-Order Methods

We investigated the performance of both KFRA and KFAC

compared to popular first-order methods. Four of the

most prevalent gradient-based optimisers were considered

– Stochastic Gradient Descent, Nesterov Accelerated Gra-

dient, Momentum and ADAM (Kingma & Ba, 2014). A

common practice when using first-order methods is to de-

crease the learning rate throughout the training procedure.

For this reason we included an extra parameter T – the de-

9Our damping parameters could be compared to the exponen-
tial decay parameters β1 and β2 in ADAM, which are typically
left at their recommended default values.

cay period – to each of the methods, halving the learning

rate every T iterations. To find the best first-order method,

we ran a grid search over these two hyperarameters10.

Each first-order method was run for 40, 000 parameter up-

dates for MNIST and CURVES and 160, 000 updates for

FACES. This resulted in a total of 35 experiments and

1.4/5.6 million updates for each dataset per method. In

contrast, the second-order methods did not require ad-

justment of any hyperparameters and were run for only

5, 000/20, 000 updates, as they converged much faster11.

For the first-order methods we found ADAM to outperform

the others across the board and we consequently compared

the second-order methods against ADAM only.

Figure 2 shows the performance of the different optimisers

on all three datasets. We present progress both per parame-

ter update, to demonstrate that the second-order optimisers

effectively use the available curvature information, and per

GPU wall clock time, as this is relevant when training a net-

work in practice. For ADAM, we display the performance

using the default learning rate 10−3 as well as the top per-

forming combination of learning rate and decay period. To

illustrate the sensitivity of ADAM to these hyperparameter

settings (and how much can therefore be gained by param-

eter tuning) we also plot the average performance resulting

from using the top 10 and top 20 settings.

Even after significantly tuning the ADAM learning rate and

decay period, the second-order optimisers outperformed

ADAM out-of-the-box across all three datasets. In particu-

lar on the challenging FACES dataset, the optimisation was

not only much faster when using second-order methods,

but also more stable. On this dataset, ADAM appears to

be highly sensitive to the learning rate and in fact diverged

when run with the default learning rate of 10−3. In contrast

to ADAM, the second-order optimisers did not get trapped

in plateaus in which the error does not change significantly.

In comparison to KFAC, KFRA showed a noticeable speed-

up in the optimisation both per-iteration and when measur-

ing the wall clock time. Their computational cost for each

update is equivalent in practice, which we discuss in detail

in Appendix C.4. Thus, to validate that the advantage of

KFRA over KFAC stems from the quality of its updates, we

compared the alignment of the updates of each method with

the exact Gauss-Newton update (using the slower Hessian-

free approach; see Appendix F.2 for the figures). We found

that KFRA tends to be more closely aligned with the exact

Gauss-Newton update, which provides a possible explana-

10We varied the learning rate from 2−6 to 2−13 at ev-
ery power of 2 and chose the decay period as one of
{100%, 50%, 25%, 12.5%, 6.25%} of the number of updates.

11For fair comparison, all of the methods were implemented
using Theano (Theano Development Team, 2016) and Lasagne
(Dieleman et al., 2015).

Practical Gauss-Newton Optimisation for Deep Learning

(a) CURVES (b) FACES (c) MNIST

Figure 2. Comparison of the objective function being optimised by KFRA, KFAC and ADAM on CURVES, FACES and MNIST. GPU

benchmarks are in the first row, progress per update in the second. The dashed line indicates the use of momentum on the curvature

matrix for the second-order methods. Errors are averaged using a sliding window of ten.

tion for its better performance.

5.2. Non-Exponential Family Model

To compare our approximate Gauss-Newton method and

KFAC in a setting where the Fisher and Gauss-Newton ma-

trix are not equivalent, we designed an experiment in which

the model distribution over y is not in the exponential fam-

ily. The model is a mixture of two binary classifiers12:

p(y|hL) = σ(hL
1)σ(h

L
2)

yσ(−hL
2)

1−y+

(1− σ(hL
1))σ(h

L
3)

yσ(−hL
3)

1−y
(27)

We used the same architecture as for the encoding layers of

the autoencoders – D-1000-500-250-30-1, where D = 784
is the size of the input. The task of the experiment was to

classify MNIST digits as even or odd. Our choice was mo-

tivated by recent interest in neural network mixture models

(Eigen et al., 2013; Zen & Senior, 2014; van den Oord &

Schrauwen, 2014; Shazeer et al., 2017); our mixture model

is also appropriate for testing the performance of KFLR.

Training was run for 40, 000 updates for ADAM with a

grid search as in Section 5.1, and for 5, 000 updates for the

second-order methods. The results are shown in Figure 3.

For the CPU, both per iteration and wall clock time the

second-order methods were faster than ADAM; on the

GPU, however, ADAM was faster per wall clock time.

The value of the objective function at the final parame-

ter values was higher for second-order methods than for

12In this context σ(x) = (1 + exp(−x))−1.

ADAM. However, it is important to keep in mind that all

methods achieved a nearly perfect cross-entropy loss of

around 10−8. When so close to the minimum we expect

the gradients and curvature to be very small and potentially

dominated by noise introduced from the mini-batch sam-

pling. Additionally, since the second-order methods invert

the curvature, they are more prone to accumulating numer-

ical errors than first-order methods, which may explain this

behaviour close to a minimum.

Interestingly, KFAC performed almost identically to

KFLR, despite the fact that KFLR computes the exact pre-

activation Gauss-Newton matrix. This suggests that in the

low-dimensional output setting, the benefits from using the

exact low-rank calculation are diminished by the noise and

the rather coarse factorised Kronecker approximation.

6. Rank of the Empirical Curvature

The empirical success of second-order methods raises

questions about the curvature of the error function of a

neural network. As we show in Appendix D the Monte

Carlo Gauss-Newton matrix rank is upper bounded by the

rank of the last layer Hessian times the size of the mini-

batch. More generally, the rank is upper bounded by the

rank of HL times the size of the data set. As modern

neural networks commonly have millions of parameters,

the exact Gauss-Newton matrix is usually severely under-

determined. This implies that the curvature will be zero

in many directions. This phenomenon is particularly pro-

Practical Gauss-Newton Optimisation for Deep Learning

Figure 3. Comparative optimisation performance on an MNIST

binary mixture-classification model. We used momentum on the

curvature matrix for all methods, as it stabilises convergence.

nounced for the binary classifier in Section 5.2, where the

rank of the output layer Hessian is one.

We can draw a parallel between the curvature being zero

and standard techniques where the maximum likelihood

problem is under-determined for small data sets. This ex-

plains why damping is so important in such situations, and

its role goes beyond simply improving the numerical sta-

bility of the algorithm. Our results suggest that, whilst in

practice the Gauss-Newton matrix provides curvature only

in a limited parameter subspace, this still provides enough

information to allow for relatively large parameter updates

compared to gradient descent, see Figure 2.

7. Conclusion

We presented a derivation of the block-diagonal structure

of the Hessian matrix arising in feedforward neural net-

works. This leads directly to the interesting conclusion that

for networks with piecewise linear transfer functions and

convex loss the objective has no differentiable local max-

ima. Furthermore, with respect to the parameters of a sin-

gle layer, the objective has no differentiable saddle points.

This may provide some partial insight into the success of

such transfer functions in practice.

Since the Hessian is not guaranteed to be positive semi-

definite, two common alternative curvature measures are

the Fisher matrix and the Gauss-Newton matrix. Unfortu-

nately, both are computationally infeasible and, similar to

Martens & Grosse (2015), we therefore used a block di-

agonal approximation, followed by a factorised Kronecker

approximation. Despite parallels with the Fisher approach,

formally the two methods are different. Only in the spe-

cial case of exponential family models are the Fisher and

Gauss-Newton matrices equivalent; however, even for this

case, the subsequent approximations used in the Fisher ap-

proach (Martens & Grosse, 2015) differ from ours. Indeed,

we showed that for problems in which the network has a

small number of outputs no additional approximations are

required. Even on models where the Fisher and Gauss-

Newton matrices are equivalent, our experimental results

suggest that our KFRA approximation performs marginally

better than KFAC. As we demonstrated, this is possibly due

to the updates of KFRA being more closely aligned with

the exact Gauss-Newton updates than those of KFAC.

Over the past decade first-order methods have been pre-

dominant for Deep Learning. Second-order methods, such

as Gauss-Newton, have largely been dismissed because

of their seemingly prohibitive computational cost and po-

tential instability introduced by using mini-batches. Our

results on comparing both the Fisher and Gauss-Newton

approximate methods, in line with (Martens & Grosse,

2015), confirm that second-order methods can perform ad-

mirably against even well-tuned state-of-the-art first-order

approaches, while not requiring any hyperparameter tun-

ing.

In terms of wall clock time on a CPU, in our experiments,

the second-order approaches converged to the minimum

significantly more quickly than state-of-the-art first-order

methods. When training on a GPU (as is common in prac-

tice), we also found that second-order methods can perform

well, although the improvement over first-order methods

was more marginal. However, since second-order methods

are much faster per update, there is the potential to further

improve their practical utility by speeding up the most ex-

pensive computations, specifically solving linear systems

on parallel compute devices.

Acknowledgements

We thank the reviewers for their valuable feedback and sug-

gestions. We also thank Raza Habib, Harshil Shah and

James Townsend for their feedback on earlier drafts of this

paper. Finally, we are grateful to James Martens for helpful

discussions on the implementation of KFAC.

Practical Gauss-Newton Optimisation for Deep Learning

References

Amari, S.-I. Natural Gradient Works Efficiently in Learn-

ing. Neural Computation, 10(2):251–276, 1998.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Gan-

guli, S., and Bengio, Y. Identifying and attacking the

saddle point problem in high-dimensional non-convex

optimization. In Advances in Neural Information Pro-

cessing Systems, pp. 2933–2941, 2014.

Dieleman, S., Schlüter, J., Raffel, C., Olson, E., Sønderby,

S. K., Nouri, D., et al. Lasagne: First Release, August

2015.

Duchi, J., Hazan, E., and Singer, Y. Adaptive Subgradient

Methods for Online Learning and Stochastic Optimiza-

tion. The Journal of Machine Learning Research, 12:

2121–2159, 2011.

Eigen, D., Ranzato, M., and Sutskever, I. Learning Fac-

tored Representations in a Deep Mixture of Experts.

arXiv preprint arXiv:1312.4314, 2013.

Gower, R. M. and Gower, A. L. Higher-Order Reverse

Automatic Differentiation with Emphasis on the Third-

Order. Mathematical Programming, 155(1-2):81–103,

2016.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the Di-

mensionality of Data with Neural Networks. Science,

313(5786):504–507, 2006.

Kingma, D. and Ba, J. Adam: A Method for Stochastic

Optimization. arXiv preprint arXiv:1412.6980, 2014.

Martens, J. Deep Learning via Hessian-Free Optimization.

In Proceedings of the 27th International Conference on

Machine Learning, pp. 735–742, 2010.

Martens, J. New Insights and Perspectives on the Natu-

ral Gradient Method. arXiv preprint arXiv:1412.1193,

2014.

Martens, J. and Grosse, R. B. Optimizing Neural Net-

works with Kronecker-factored Approximate Curvature.

In Proceedings of the 32nd International Conference on

Machine Learning, pp. 2408–2417, 2015.

Martens, J. and Sutskever, I. Learning Recurrent Neural

Networks with Hessian-Free Optimization. In Proceed-

ings of the 28th International Conference on Machine

Learning, pp. 1033–1040, 2011.

Nesterov, Y. A Method of Solving a Convex Programming

Problem with Convergence Rate O (1/k2). Soviet Math-

ematics Doklady, 27(2):372–376, 1983.

Pearlmutter, B. A. Fast Exact Multiplication by the Hes-

sian. Neural Computation, 6(1):147–160, 1994.

Polyak, B. T. Some Methods of Speeding up the Conver-

gence of Iteration Methods. USSR Computational Math-

ematics and Mathematical Physics, 4(5):1–17, 1964.

Samaria, F. S. and Harter, A. C. Parameterisation of a

Stochastic Model for Human Face Identification. In Pro-

ceedings of the Second IEEE Workshop on Applications

of Computer Vision, pp. 138–142. IEEE, 1994.

Schaul, T., Zhang, S., and LeCun, Y. No More Pesky

Learning Rates. In Proceedings of the 30th International

Conference on Machine Learning, pp. 343–351, 2013.

Schraudolph, N. N. Fast Curvature Matrix-Vector Products

for Second-Order Gradient Descent. Neural Computa-

tion, 14(7):1723–1738, 2002.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,

Q., Hinton, G., and Dean, J. Outrageously Large Neu-

ral Networks: The Sparsely-Gated Mixture-of-Experts

Layer. arXiv preprint arXiv:1701.06538, 2017.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On

the Importance of Initialization and Momentum in Deep

Learning. In Proceedings of the 30th International Con-

ference on Machine Learning, pp. 1139–1147, 2013.

Theano Development Team. Theano: A Python Frame-

work for Fast Computation of Mathematical Expres-

sions. arXiv preprint arXiv:1605.02688, 2016.

van den Oord, A. and Schrauwen, B. Factoring Variations

in Natural Images with Deep Gaussian Mixture Models.

In Advances in Neural Information Processing Systems,

pp. 3518–3526, 2014.

Zeiler, M. D. Adadelta: An Adaptive Learning Rate

Method. arXiv preprint arXiv:1212.5701, 2012.

Zen, H. and Senior, A. Deep Mixture Density Networks for

Acoustic Modeling in Statistical Parametric Speech Syn-

thesis. In IEEE International Conference on Acoustics,

Speech and Signal Processing, pp. 3844–3848. IEEE,

2014.

