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Abstract

The problem of oceanographic state estimation, by means of an ocean general circulation model (GCM) and a multitude of observations, is

described and contrasted with the meteorological process of data assimilation. In practice, all such methods reduce, on the computer, to forms

of least-squares. The global oceanographic problem is at the present time focussed primarily on smoothing, rather than forecasting, and the data

types are unlike meteorological ones. As formulated in the consortium Estimating the Circulation and Climate of the Ocean (ECCO), an automatic

differentiation tool is used to calculate the so-called adjoint code of the GCM, and the method of Lagrange multipliers used to render the problem

one of unconstrained least-squares minimization. Major problems today lie less with the numerical algorithms (least-squares problems can be

solved by many means) than with the issues of data and model error. Results of ongoing calculations covering the period of the World Ocean

Circulation Experiment, and including among other data, satellite altimetry from TOPEX/POSEIDON, Jason-1, ERS-1/2, ENVISAT, and GFO,

a global array of profiling floats from the Argo program, and satellite gravity data from the GRACE mission, suggest that the solutions are now

useful for scientific purposes. Both methodology and applications are developing in a number of different directions.

c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In physical oceanography, the problem of combining obser-

vations with numerical models differs in a number of significant

ways from its practice in the atmospheric sciences. It is these

differences that lead us to use the terminology “state estima-

tion” to distinguish the oceanographers’ problems and methods

from those employed under the label “data assimilation” in nu-

merical weather prediction. “Data assimilation” is an apt term,

and were it not for its prior use in the meteorological forecast

community, it would be the terminology of choice. But meteo-

rologists, faced with the goal of daily weather forecasting, have

developed sophisticated techniques directed at their own par-

ticular problems, along with an opaque terminology not eas-

ily penetrable by outsiders. Because much of oceanography has

goals distinct from forecasting, the direct application of meteo-

rological methods is often not appropriate.
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This paper is primarily based upon experience with calculat-

ing the oceanic state within an academic consortium “Estimat-

ing the Circulation and Climate of the Oceans” (ECCO). The

consortium was established in 1998 to exploit the new global

data sets that became available during the World Ocean Circu-

lation Experiment (WOCE) as well as the much more skillful

ocean general circulation models that had also been developed.

In general terms, anyone faced with trying to calculate

a system state by combining a physical model with a

set of observations has an estimation problem. Estimation

theory is a large subject with a wide range of methods

available. Among the techniques used are maximum likelihood,

minimum variance, and Bayesian ones. In a somewhat different

context, these are all methods for solution of “inverse

problems”, although there has been a tendency by some authors

to define inverse problems as referring only to steady-state

situations. (For a more general point of view, see [6].) In

the geophysical sciences, inverse methods were introduced by

Backus and Gilbert [3] (see especially [37]) for situations in

which the parameters sought represented a static earth.

Much of the theory underlying meteorological data

assimilation, as in the original inverse theory of Backus and

0167-2789/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
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Gilbert [3], formulates the problems in terms of continuous time

and space. The combination of continuous, infinite domain,

fields with finite, discrete observations leads to an interesting

set of mathematical issues in functional analysis (see [37,48,

5,6]). Oceanographers, coming later to this problem, enter it

at a time when computational resources are widespread and

far more powerful than they were in the early days of the

meteorological problem. Thus, the point of view taken within

the ECCO Consortium is, both for practical and pedagogical

reasons, that the problems are discrete and finite, ab initio, and

that in practice, they can all be regarded as versions of classical

non-linear least-squares.

The fundamental justifying assumption is that an ade-

quate discretization of the fluid dynamical and thermodynam-

ical equations governing the fluid flow is available. “Ade-

quate” means that with sufficient grid refinement or increase in

the number of basis functions, one could not distinguish the nu-

merical solution from that of the underlying continuous formu-

lation that generated it. Whether the discretization exists when

required is a separate problem—the assumption here is that it

could, and if important enough, will eventually exist. Alterna-

tively, one is simply asserting that a finite dimensional discrete

scheme, no matter how large that dimension might prove to be

in practice, can always be found that is sufficient for the pur-

pose at hand. Is there a physically meaningful system that is

not in principle susceptible to rendering in finite dimensions?

We are assuming, without proof, that the answer is “no”. (The

expression “physically meaningful” is intended to exclude ana-

logues of the pathological functions used by mathematicians as

counter-examples to physical intuition. A simple representative

is the curve of unbounded variation, sin(1/t), |t | → 0, which

probably does not occur anywhere in nature.)

There is another aspect to this problem. All atmospheric

and oceanic circulation models contain semi-empirically deter-

mined sub-gridscale processes. An example is the invocation

of biharmonic friction operators, ∇4, to mimic small-scale tur-

bulent dissipation. Many of the problems involved in solving

inverse problems in continuous formulations are generated by

these high derivatives e.g., the singular behavior of an analytical

Green function—see [5]. What is unclear is whether the purely

discrete form of the biharmonic operator is any less convincing

as a representation of what is basically an unknown process?

If the discrete rendering of this and other terms is regarded

as adequate, all issues of convergence, continuity, differentia-

bility, and existence, essentially disappear. From a pedagogical

point of view, many of the most important estimation methods

(Kalman filters, adjoints, etc.) can be reduced to the practice

of conventional least-squares [54,55]. That is, we have delib-

erately removed the most intriguing mathematical issues from

the problem—in the interest both of practical utility, and as a

way of making the methodologies accessible to scientists in-

terested in phenomenology rather than mathematics. (Analo-

gous reductions are widespread in practical problems. A partic-

ularly well-known one is Levinson’s [26] conversion of Norbert

Wiener’s mathematically challenging filter theory—based on

spectral factorization by Wiener–Hopf methods—to the least-

squares form widely exploited in exploration geophysics.)

The data sets employed by oceanographers differ consider-

ably from those employed by meteorologists. As discussed be-

low, these differences do not create any fundamental obstacles,

but require changes in the details of representation.

2. The goal

Meteorological data assimilation has been driven by the

compelling need to forecast the weather. The dominant problem

in oceanography at the present time is quite different—

it is to understand how the system works. Observing

the ocean is technically far more difficult than observing

the atmosphere—fundamentally because of its opacity to

electromagnetic radiation. Thus, until comparatively recently,

oceanographers of necessity had to treat the ocean as an

unchanging, essentially static, system. With the data sets

that have accumulated since approximately the beginning of

WOCE, about 1992, marked by the launch of the high precision

altimetric mission TOPEX/POSEIDON, it becomes possible

to contemplate calculating the time-evolving ocean state—to

begin the process of answering the questions of whether, how,

and by how much and why, the ocean circulation changes?

In the terminology of control theory, the meteorological

problem has been primarily one of filtering and prediction

(extrapolation); the oceanographic one is primarily one of

“smoothing” (interpolation). Both of these emphases can

ultimately be expected to change and overlap, but they describe

the present situation. Note in particular that ocean models

are major components of climate models. Such models are

run out into the indefinite future, and without any general

understanding of ocean model errors, it is almost impossible to

interpret the result. State estimation as practiced here becomes

in part a serious attempt to understand which elements of

ocean models are likely skillful, and capable of integration with

bounded errors for finite times.

The ECCO consortium thus has undertaken the smoothing

problem of using a stored data set over a finite time interval,

for the purpose of making best estimates of the oceanic state

during that time in such a way that the final estimate would

be dynamically and kinematically self-consistent, accompanied

by an understanding of the structure of residual data/model

misfits. Solution of the smoothing problem makes the result

differ fundamentally from what is sometimes called, in

the meteorological literature “reanalysis” (e.g., [22]). Such

calculations maintain a fixed numerical model configuration

over a finite time interval, but produce an analysis at

time, ta , using data only for t ≤ ta , in an approximate

“filtering” calculation. The omission of data in the formal

future, t > ta , means that the system state estimate can undergo

jumps, implying implicit non-physical sources, and rendering

very difficult the physical interpretation of the time-evolving

state. Methods have been employed (e.g., [7]) to smooth out

the discontinuities over finite times, but still leaving artificial

imbalances in the solution. Reanalyses done sequentially in the

forward direction alone can leave important global imbalances:

for example [47], the Kalnay et al. [22] estimates do not

conserve freshwater or enthalpy. Such artifacts were deemed
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unsuitable for ECCO purposes, and are one reason that

conventional meteorological practice is not obviously suitable

for the oceanographic problem.

Some fundamental assumptions were made, ones that side-

step the underlying mathematical problems:

(1) The ocean state could be usefully represented by

the particular GCM of Marshall et al. [32], if run at

adequate resolution. This model is an approximate numerical

representation of the full non-linear Navier–Stokes and

thermodynamical equations on a sphere. There is no proof of

the numerical convergence of any known GCM in the limit of

arbitrarily fine resolution. (Griffies [18] provides an overview

of ocean modelling.)

(2) Oceanic observation errors, control elements, and model

state variables are sufficiently close to Gaussian to justify use of

a minimum variance estimator (essentially that the probability

densities are unimodal). Although there are fragmentary tests of

the probability densities of oceanic and atmospheric variables,

there is no general description or theory.

(3) It is possible to use oceanographic data of arbitrary type.

As will see in the next sections, the data types used in practice

vary greatly.

Neither assumptions (1) nor (2) are rigorously correct, but

they provide both a starting point and a focus for constant

vigilance.

Adopting the notation of [54,55], the algebraic expression of

the problem is as follows. Let x(t) be the model state vector

at discrete time t . Although an unnecessary assumption, in

practice, all of our data at time t are linearly related to the state

vector as,

E(t)x(t) + n(t) = y(t),

where n(t) is a stochastic noise vector such that,

〈n(t)〉 = 0, 〈n(t)n(t ′)T〉 = δt t ′R(t).

The GCM is represented as,

x(t) = L(x(t − 1t), B(t − 1t)q(t − 1t),Γ (t − 1t)

× u(t − 1t), t − 1t), (1)

where L is a non-linear operator (a FORTRAN code), q(t) are

known sources/sinks/boundary conditions. u(t) is the unknown

control vector with moments,

〈u(t)〉 = 0, 〈u(t)u(t ′)T〉 = δt t ′Q(t).

If 〈u(t)〉 6= 0, the known form would be included in q(t). The

matrices B,Γ are available to distribute the forcing and control

vectors over the state vector in a flexible way (see [54]).

The state vector, x(t), contains just enough information

about the flow to march the model one time step into the future,

given externally prescribed boundary conditions and sources

or sinks. In the present case, it includes three components of

velocity, surface elevation, temperature, and salinity at each

grid point. The control vector contains any model variables

subject to adjustment, here initial conditions on temperature

and salinity, time-dependent corrections to the externally

prescribed meteorological forcing, as well as parameters such

as mixing coefficients. An important point, commonly only

implicitly acknowledged, is that the u(t) also include the

model error. Little is known of model error and an important

unsolved mathematical problem concerns its representation as

a function of time and space. In practice, structures that are

incorrectly rendered by a model are treated as data error with

little understanding of the consequences. Initial conditions are

represented as x̃(0) = x0, such that 〈(x0 −x(0))(x0 −x(0))T〉 =

P(0). (Tildes represent estimates. x(t) is the hypothetical true

value.) That is, there is an uncertain initial condition. (From

here, we assume 1t = 1.)

Adopting the point of view that we are solving a least-

squares problem, we seek to minimize the objective function,

J =

t f
∑

t=1

[y(t) − E(t)x(t)]TR(t)−1[y(t) − E(t)x(t)]

+ [x0 − x(0)]TP(0)−1[x0 − x(0)]

+

t f −1
∑

t=0

u(t)TQ(t)−1u(t), (2)

subject to Eq. (1). The second term in J specifically calls out

the initial condition uncertainty, but it could equally well be

included in the first or last terms. The state and control vectors

in Eq. (2) and below could be written with tildes, but these are

omitted here as there is little possibility of confusion. Under

the Gaussian assumption, implying a linear dynamical model,

a solution would coincide with the minimum variance estimate

and would simultaneously be a maximum likelihood solution—

assuming the error covariance matrices R, Q, P are properly

specified. As written, however, because the R, Q, P are poorly

known, this problem is best regarded as one of constrained

least-squares (curve fitting). One approach to solving it would

be to use a sequential method, such as an extended Kalman

filter, followed by e.g., an extended form of the RTS smoother

[40]. Within ECCO, such an approach in approximate form has

been undertaken by Fukumori et al. [13].

Here we proceed to reduce the problem from constrained

to unconstrained least-squares by introducing vector Lagrange

multipliers, µ(t) augmenting the objective function,

J ′ = J − 2

t f
∑

t=1

µ(t)T[x(t) − L(x(t − 1), B(t − 1t)

× q(t − 1),Γ (t − 1)u(t − 1), t − 1)]. (3)

Minimizing J can be regarded as a regularizing requirement.

Explicit normal equations can be written, which with nonlinear

L, will be a set of nonlinear simultaneous equations, generally

well-conditioned:

1

2

∂ J ′

∂u(t)
= Q(t)−1u(t) +

(

∂L(x(t), Bq(t), Γu(t))

∂u(t)

)T

× µ(t + 1) = 0, 0 ≤ t ≤ t f − 1 (4)

1

2

∂ J ′

∂µ(t)
= x(t) − L[x(t − 1), Bq(t − 1), Γu(t − 1)]

= 0, 1 ≤ t ≤ t f (5)
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1

2

∂ J ′

∂x(0)
= P(0)−1[x(0) − x0]

+

(

∂L(x(0), Bq(0), Γu(0))

∂x(0)

)T

µ(1) = 0, (6)

1

2

∂ J ′

∂x(t)
= E(t)TR(t)−1[E(t)x(t) − y(t)] − µ(t)

+

(

∂L(x(t), Bq(t), Γu(t))

∂x(t)

)T

× µ(t + 1) = 0, 1 ≤ t ≤ t f − 1 (7)

1

2

∂ J ′

∂x(t f )
= E(t f )

TR(t f )
−1[E(t f )x(t f ) − y(t f )] − µ(t f )

= 0. (8)

The use of Lagrange multipliers has become known as the

“adjoint method”, and, opaquely, as “4DVAR”, in meteorology.

The special case in control theory of a terminal constraint

problem (see e.g., [53]) is widely known as the “Pontryagin

Principle”. In the interests of making clear to the widest

possible community what is going on, we will call it the

“method of Lagrange multipliers”, MLM, which has meaning

to anyone who has encountered classical mechanics, the

calculus of variations, or constrained least-squares.1

Conceptually, the oceanic problem is perhaps best regarded

as a form of control problem—one seeks to find those controls

(typically the wind, freshwater, and heat exchanges with the

atmosphere) that drive the ocean (actually the model) through

a trajectory within error bars of all of the observations. The

problem is somewhat more complex than a standard discrete

control problem in that the estimated initial conditions, and

often internal parameters of the model, are subject to change as

part of the computation. In analogy with the classical problem

of robotic control, a robot arm is required to pass within

observational error of a series of known positions, velocities,

accelerations, etc. on its way to a terminal state. But the

numerical description of the robotic arm (the model) is believed

to contain inaccuracies that are to be removed as data are

employed. Similarly, the starting conditions for the robotic arm

1 A useful way to gain some insight into these equations is to make the
connection to classical mechanics and differential geometry. Adjoint operators
can be defined independent of any optimization problem (e.g., [34,24]) and are
intimately connected to the theory of Green functions; for matrix operators;
they are just the transpose. Consider too (e.g., [51]) that the partial differential
operators appearing in Eqs. (4)–(8), before transposition, define a tangent linear
operator (or model) δL acting on a tangent bundle, T M , and mapping control
vector perturbations, i.e. elements of the tangent space Tx(0)(M) at (x(0)) into
the tangent space of the model state Tx(t)(M) at time t via the model Jacobian.
Their transposes, as they appear in Eqs. (4)–(8), act on the corresponding
cotangent bundle, T ∗M . They define a mapping from the cotangent space
T ∗

x(t)
(M) into T ∗

x(0)
(M). (This description applies to the special case where

the control vector consists of the initial conditions only. The concept is readily
extended to time varying boundary controls with a bit more algebra.) The spaces
T ∗

x are dual spaces to Tx , and their elements are called “co-vectors” (note that
the gradient is, strictly speaking, a co-vector rather than a vector). It can readily
be shown that the transpose δ∗L is the adjoint operator of the tangent linear
operator, and thus Eq. (7) defines an adjoint model operating on co-vectors
along x(t), and which are often called “adjoint variables”. Following along this
route leads into differential geometric optimal control theory, a subject we will
not pursue here.

are believed erroneous in part as well and are to be re-estimated.

The goal is to deduce as best possible what the state of the

robotic arm was over the duration of observation and what

the actual controls were, while simultaneously improving the

estimates of the model and of the initial conditions. A useful

general survey of many aspects of control theory, written for

the physics community, can be found in [4].

If L were a linear operator, one might contemplate simply

solving the normal equations by Gaussian elimination or other

algorithm. If non-linear, a variety of search/descent algorithms

are available. The main issue for the oceanographic problem

is one of dimension. In the existing ECCO configuration (July

2005), with the model written at one-degree spatial resolution

and 23 vertical layers, the state vector, x(t) is a 5.3 million

dimension vector of three components of velocity, temperature

and salinity and seasurface elevation (u, v, w, T, S, η). The

model is time-stepped every hour for 13 years (1992–2004)

producing a total state vector of 6.1 × 1011 elements. The

control vector, u(t), has 310 elements over 13 years, and the

data dimension is 2.1×109 million elements, also over 13 years.

Data numbers are dominated by the 6-hourly meteorological

forcing—but they are adjusted only at two-day intervals to

provide partial smoothing over atmospheric synoptic scales,

and to reduce the size of the control vector. (To restart the

optimization requires a numerical state vector at time t , of about

21 million values, including tendency terms.) Thus the number

of equations (albeit they are sparse) is much too large to be

solved directly even with a linear model. In a sequential system

such as the Kalman filter plus smoother, one is faced with the

computation and storage of covariance matrices square of the

dimension of [x(t), u(t)]. It is for this reason that Fukumori

et al. [13] and others have resorted to a series of approximations

to the filter/smoother equations so as to reduce the effective

state and control vector dimensions.

The MLM method, if a solution can be found, does not

require the use of covariance matrices for the state vector—

rather it is a whole domain method in which no averaging of

interim solutions takes place—in the present context, that is

its great attraction. Consider how an iterative solution might

work: Set, initially, u(t) = 0, as the first guess at the controls.

Integrate Eq. (5) forward in time to produce a first estimate

of x(t). Then integrate Eq. (7) backwards in time to produce

a first estimate of µ(t). To do these calculations, the partial

derivatives,

(

∂L(x(t), Bq(t),Γu(t))

∂u(t)

)T

,

(

∂L(x(t), Bq(t),Γu(t))

∂x(t)

)T

, (9)

must be known. But these define the partial derivatives of J, J ′

with respect to the problem parameters. Thus we are in a posi-

tion to invoke a quasi-Newton method to reduce the value of J .

One then modifies the problem parameters, integrates forward

and backward again (an iteration) and re-evaluates the deriva-

tives along the way. This iterative procedure was apparently first

laid out in an oceanographic context by Thacker and Long [49]
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and has been used many times since then. The favored descent

algorithm is that of Gilbert and Lemaréchal [16].

3. Making it work

There are a number of major issues. In some ways, the most

interesting is the problem of finding the partial derivatives (9).

The transposed partial derivatives define the “adjoint model”. In

the discrete formulation we are using, L is defined by a

computer code (hundreds of thousands of lines of FORTRAN)

and there is no analytical expression available. Our approach

has been to define the adjoint of the FORTRAN-coded model.

What has made this a practical possibility is the existence of

automatic (or algorithmic) differentiation (AD) tools (e.g., [39,

17]), beginning with software such as ADIFOR. But the most

important advance was that of Giering and Kaminski [15] who,

taking account of the special structures of oceanic GCMs,

provided a semi-automatic AD tool for generating code for

the tangent linear model (so-called forward mode—the non-

transposed partial derivatives in Eq. (9)) and the adjoint model

(the so-called reverse mode) corresponding to the transposed

partial derivatives. In its present configuration, the particular

AD tool used is called TAF—Transformation of Algorithms

in FORTRAN. The tools can generate higher-order derivative

code, e.g., for the Hessians. The latter are of use in assessing

posterior uncertainties; Hessian eigenvalues determine the

principal curvature structures of the objective function, with

large curvatures indicating small posterior uncertainties in the

control estimates (e.g. [50]). AD is a powerful tool even in

conventional sequential methods such as the Kalman filter,

because for non-linear systems one requires the state transition

matrix, that is, the tangent linear model, and which is obtainable

in this fashion.

The availability of the adjoint model greatly reduces the

computational load of the minimization iterations (see [31,

19]). The GCM that is used in ECCO was constructed from

the beginning with its use with an AD tool in mind, as part

of the ATOC (1999) [1] acoustic tomography project. Certain

FORTRAN77 and 90 structures remain problematic in TAF, but

are avoidable. AD tools permit the adjoint code to be updated

and maintained in a practical way in the presence of continuing

vigorous development and improvement of the parent non-

linear model. (One can, as has been done, manually code the

analytical form of the adjoint partial differential equations. See

[49,30,42]. The adjoint code then differs from the adjoint of

the forward code. The difference may be immaterial for some

applications, but the maintenance of a hand-coded adjoint for a

model undergoing development can be a major task.)

The fundamental ECCO principle, borne out in practice,

is that adequate numerical methods exist for reducing the

misfit between a model and data: numerical methods can

be found that solve the least-squares problem. That there

are challenging numerical and storage problems goes without

saying, but the principle that least-squares “works” is not in

doubt. (Much of the literature in this subject, done using

synthetic “data”, really reduces to the uninteresting conclusion

that least-squares solutions can be obtained.)

We postulate that numerical means are available for finding

the stationary point(s) of Eq. (3), be it by direct solution of the

normal equations, by deterministic or stochastic search, or by

pure, skillful guess. Such a solution will have a physical validity

directly dependent upon the weight matrices Q(t), R(t), P(0)

appearing in J . The latter are conventionally supposed to be

the error covariances of the data (because in the linear limit,

the least-squares solution would be the maximum likelihood

or minimum variance solutions as well—ones which have

a ready physical interpretation). Part of Q(t) represents the

covariances of the control vector, describing e.g., the extent

to which the prior windfield is subject to modification during

the calculation. (Q(t) also formally includes model errors.) The

solution, however it is obtained, can be no better than the choice

of these matrices.

The number of elements summed in the combined,

[y(t) − E(t)x(t)]TR(t)−1[y(t) − E(t)x(t)],

(x0 − x(0))TP(0)−1(x0 − x(0)), u(t)TQ(t)−1u(t),

is approximately 2.1 × 109 as of this writing. Every one of

these terms requires a weight! Although of minor interest

to mathematicians, the choice of the weights dominates the

current effort. At this stage, we have a problem primarily of

oceanography and meteorology rather than one of mathematics.

Fig. 6 provides a summary of the different data types now being

fit.

With some minor exceptions, the only estimates of

R(t), Q(t), P(0) refer to the diagonal values alone—that is,

almost nothing is known quantitatively (or more precisely,

usefully) of error covariances in the observed fields or in the

controls.2 Obtaining useful, truly independent, estimates of

the non-diagonal elements of these matrices is an important,

ongoing, but barely underway, effort (this problem is one

primarily of oceanography and meteorology, not of state

estimation, per se). An interim practice is to use, where

regarded as reasonable, smoothing requirements on some fields,

which are equivalent to specifying off-diagonal covariances.

Currently, however, even the diagonal elements represent a

great deal of subjective judgement and interpretation of the vast

oceanographic and meteorologic literature referring to all of

the observations used. A number of papers [11,38,47] begin to

describe the estimated data errors.

As noted above, because the relationship of the weight

matrices to the true error covariances remains uncertain, the

solutions described below should be regarded as least-squares

solutions, rather than as maximum likelihood or minimum

variance ones—much of the judgement as to acceptability lies

with aesthetics, rather than with rigorous statistics.

4. Sample results

A few papers have appeared (e.g., [27,21,9,28]) exploiting

the adjoint model interpretation as the sensitivity of the

2 Because the control vector includes adjustments to the meteorological
fields, and which can be regarded as in part “observed”, the distinction between
state vector and controls and what is observed, is largely arbitrary.
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Fig. 1. Upper panel shows the seasurface elevation as inferred from 10 days of altimetric data during July 1997. Lower panel shows the estimate made from the

model constrained both to the upper panel (with data used daily) and to many other data types. Main visual signal is the large El Niño event that occurred during

this time.

objective function J to perturbations in data and parameters.

We will focus instead on some examples of the results, as yet

unpublished, of the most recent optimization effort in ECCO

(for an overview, see [20]). The main points to be made here

are that the numerical system “works” with real data, and that

there is much more to be done.

The results shown here are the product of hundreds

of iterations of the combined forward and adjoint models

over the duration of the data sets. A truly quantitative

statement concerning the optimization pathway is impossible

as the current configuration builds upon some years of

calculation with earlier, shorter data durations, different model

configurations (e.g., changed resolution and sub-components

such as mixed-layer models), new data types (e.g., the

Argo floats), changed weights in J , modifications to the line-

search algorithm, changes in machine architecture, etc. Earlier

results have been described at length by Stammer et al. [43–

45], Köhl et al. [23] among others. The calculations strain the

largest available high performance computers.

Fig. 1 is intended to show the extent to which an early

solution (which is still evolving) over the interval 1992–2004

is capable of reproducing one of the major constraining data

sets—in this case the seasurface height anomaly (relative

to a long-term mean) during July 1997. (An animation is

available at http://ocean.mit.edu/king/mpegs/12iter125.mpeg.)

The TOPEX/POSEIDON and related altimetric missions

provide remarkably accurate measurements of the absolute

global ocean surface elevation every 10 days (absolute
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Fig. 2. Misfit of the time mean over 13 years of the constrained model to the time-average altimetric seasurface height in an early stage of iteration. An ideal

solution would be everywhere of order 1. Here there are strong regional misfits whose explanation is in part misweighted data, model error, and failure thus far to

have achieved complete convergence.

accuracies in the range of 2–3 cm; see [58,12]). The misfit

terms in J corresponding to the time-mean seasurface height

(or mean dynamic topography, MDT) over the 13-year model

run are displayed in Fig. 2. Ideally, all these values would be

order 1 with outliers consistent with a χ2 distribution. There

is a reasonable fit over the bulk of the open ocean. Serious

misfits persist in coastal regions generally, in much of the

Southern Ocean, and in some regions of strong variability.

The scientific issue is now whether these misfits represent

(A) a mis-weighting of the data; (B) model (representation)

error; or (C) simply that the iterative minimization has not

had time to reduce these terms, or all of these things. As

noted above, the issue of data weighting takes one into the

intricacies of the underlying observations and their errors. In

this particular case, calculation of the data errors involves

the determination of Earth gravity (providing the reference

gravitational surface called the “geoid”; see [58]), the myriad

error terms in altimetric determination of seasurface topography

(see e.g., [8]), and the expected temporal variability as a

function of position and duration in the ocean [38]. Model

error quantification involves determining the extent to which

a 1◦ horizontal resolution, 23 vertical-layer model would be

expected to reproduce the mean seasurface topography—were

it perfectly known. (MDT estimates are expected to improve as

the GRACE gravity-measuring satellite mission accumulates a

longer record.)
A representative misfit to an entirely different data type

is shown in Fig. 3. These data are obtained by so-called

Argo floats (see [41]) drifting freely in the ocean, and which

periodically profile temperature and salinity on a vertical ascent

to the seasurface where the data are transmitted ashore by

satellites. Similar questions apply here as to the altimetry—are

the data being properly weighted, and is the model being forced

toward structures which are physically impossible for it?
Numerous other applications related to ECCO have

appeared. Examples include [2,14], which are regional

estimates, the latter using open boundary conditions and high

resolution. Stammer [46] and Ferreira et al. [10] discuss

estimation of internal eddy-stress and mixing parameters as part

of the optimization. Many others will be forthcoming.
A reviewer has inquired about system “validation”. In

general (see [36]) no system can ever be validated or

“verified”. Within the system itself, there is a very powerful

test of the model against the data, as there is no guarantee that
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Fig. 3. Misfit over 13 years to the so-called ARGO temperature data, vertically averaged. (These data do not become available until about halfway through the

calculation and are dominated in numbers by the last two years, 2003, and 2004.) Again, a nominal value of one would denote an acceptable solution.

the model can reproduce the observations within error (that is,

there may be no solution). The solutions discussed here appear

to be close to consistency with the data, but the optimization

calculations are still incomplete. The present system has been

tested against a certain amount of “withheld” data (what is

sometimes meant by “validation”, and which is related to cross-

validation and split-sampling; see Fig. 6). As expected, there

are similarities and differences, but a determination of whether

the differences imply system failure has no readily available

answer.

5. Concluding discussion

A practical system exists for solving a very large, global-

scale, oceanographic least-squares problem using the method

of Lagrange multipliers. The methodology relies heavily on

automatic differentiation (AD) tools specially constructed for

use with oceanic general circulation models (GCMs). When

written in the finite, discrete form required by computers, most

of the interesting and challenging mathematical issues are side-

stepped. Many of the issues in practice are oceanographic rather

than mathematical, and focus on the error covariances of a

multiplicity of data types.

Where is this effort going? ECCO and related projects

are developing in several directions. Understanding of the

data errors and acquisition of new data types is ongoing,

and likely will never be completed; it is an asymptotic

process. AD tools (http://www-unix.mcs.anl.gov/OpenAD) are

under development in a number of places, directed at greater

efficiency, an open-source, and new computer languages; see

[35,52]. Model errors of certain types can be eliminated by

augmenting the control vector by uncertain model elements,

e.g., as Losch and Heimbach [28] did for bottom topography.

The quest for greater model resolution (see [33]) continues;

this too, is likely an asymptotic process, as is the search for

rules for parameterizing the indefinitely present sub-gridscale

motions. At bottom, of course, the purpose of all of this effort

is to understand the ocean and the practical implications of that

understanding. As one example of that use, Fig. 4 displays the

estimated mass, heat and salt fluxes in the North Atlantic across

26◦N as a function of time from the least-squares fit [56]. This

result is part of the continuing debate over whether the North

Atlantic circulation is undergoing some kind of important shift.

Another example of the application of the results is in picking
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Fig. 4. Zonal and vertical integrals across the constrained model at 26◦N in the North Atlantic as a function of time, showing (upper panel) the total meridional

mass flux (in Sverdrups—106 m3/s), the meridional heat flux in W (middle panel), and the salt flux (in kg/s) in the lowest panel. This solution is not the final one.

Fig. 5. Temperature field [14] showing nesting of an open boundary high resolution model into the global one. Open boundary properties, including flows, become

part of the control vector. The temperature ranges from 3.5 ◦C (blue) to 18 ◦C (red).

apart the heat and freshwater contributors to global sea level

rise [57].
Extension of the primarily fluid physical model used here is

being undertaken to include a more adequate ice dynamics and

thermodynamics model. Dutkiewicz et al. [9] have employed

the same AD tools, and the background physical state for

parallel study of oceanic biogeochemical cycles. Further

extension of the models and methods to the study of past

climate states is now getting underway.
Inadequate model resolution is likely to be a major

problem for the foreseeable future. Some fluid phenomena

in some regions (e.g., boundary jets, fronts, etc.) cannot be
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Fig. 6. Table 1, showing the main data sources, coverage, and some information about the originator. These were the main data types and coverage used as of July

2005. At the bottom, the table lists some of the withheld data (but which are intended ultimately for inclusion).

parameterized in any easy or known way, and the estimation of

their properties demands a model resolution that is impossible

on a global scale. To this end, developments are underway

permitting embedding of high resolution models into lower

resolution global estimates such as the one described here.

The major issue is that the sub-model boundaries must be

taken as “open”, so as to permit exchange of fluid and

information between the two models. Although there are

some mathematical questions about the posedness of such

approaches (e.g., [6]), no particular problems have been

encountered in practice [2,14] when the numerics are once

again viewed as least-squares problems in which regularization

is straightforward. The Gebbie et al. [14] embedded model is

depicted in Fig. 5. It has been argued (e.g., [25]) that the system

may become so chaotic that tangent linear gradients fail to be

useful. Real systems demonstrating a lack of useful numerical

differentiability would direct one toward Monte Carlo methods

(e.g. [29]), but no such situation has so far been met.
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