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To the memory of Otto Meyer

Alles ist einfacher, als man denken kann,
zugleich verschränkter, als zu begreifen ist.

Goethe, Maximen

Everything is simpler than can be imagined,
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Preface to the Fifth Edition

A small jubilee! This book started 30 years ago with the first German edition, with no

idea that it could become a success story. Its content became younger with every

edition, a fact which is not true concerning the author. In fact, I am sure that the latter

cannot be a serious wish. No question: decades of experience are for the benefit of

the book.

A new topic is now included: Chapter 20 about quality assurance. Part of it could be

found before in chapter 19 but now the subject is presented much broadly and

independent of ‘Analytical HPLC’. Two chapters in the appendix were updated and

expanded by Bruno E. Lendi, namely the ones about the instrument test (now chapter

25) and troubleshooting (now chapter 26). Some new sections were created: 1.7,

comparison of HPLC with capillary electrophoresis; 2.11, how to obtain peak

capacity; 8.7, vanDeemter curves and other coherences; 11.3, hydrophilic interaction

chromatography; 17.2, method transfer; 18.4, comprehensive two-dimensional

HPLC; 23.3, fast separations at 1000 bar; 23.5, HPLC with superheated water.

In addition, many details were improved and numerous references added.

Jump into the HPLC adventure! It can be a pleasure if you know the craft and its

theoretical background.

St. Gallen, July 2009 Veronika R. Meyer
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Important and Useful Equations for HPLC

This is a synopsis. The equations are explained in Chapters 2 and 8.

Retention factor:

k ¼ tR�t0

t0

Separation factor, a value:

a ¼ k2

k1

Resolution:

R ¼ 2
tR2�tR1

w1 þw2

¼ 1:18
tR2�tR1

w1=21 þw1=22

Number of theoretical plates:

N ¼ 16

�
tR

w

�2

¼ 5:54

�
tR

w1=2

�2

¼ 2p
�
hP � tR
AP

�2

N � 1

dp

Height of a theoretical plate:

H ¼ Lc

N
Asymmetry, tailing:

T ¼ b0:1

a0:1
or T ¼ w0:05

2f

Practical High-Performance Liquid Chromatography, Fifth edition Veronika R. Meyer
� 2010 John Wiley & Sons, Ltd

1



Linear flow velocity of the mobile phase:

u ¼ Lc

t0

Porosity of the column packing:

« ¼ Vcolumn�Vpacking material

Vcolumn

Linear flow velocity of the mobile phase if «¼ 0.65 (chemically bonded stationary

phase):

uðmm=sÞ ¼ 4F

d2
cp«

¼ 33
Fðml=minÞ
d2
c ðmm2Þ

Breakthrough time if «¼ 0.65:

t0ðsÞ ¼ 0:03
d2
c ðmm2ÞLcðmmÞ
Fðml=minÞ

Reduced height of a theoretical plate:

h ¼ H

dp
¼ L

Ndp

Reduced flow velocity of the mobile phase:

v ¼ u � dp
Dm

¼ 1:3� 10�2 dpðmmÞFðml=minÞ
«Dmðcm2=minÞd2

c ðmm2Þ

Reduced flow velocity in normal phase (hexane, analyte with low molar mass, i.e.

Dm� 2.5� 10�3 cm2/min) if «¼ 0.8:

vNP ¼ 6:4
dpðmmÞFðml=minÞ

d2
c ðmm2Þ

Reduced flow velocity in reversed phase (water/acetonitrile, analyte with low molar

mass, i.e. Dm� 6� 10�4 cm2/min) if «¼ 0.65:

vRP ¼ 33
dpðmmÞFðml=minÞ

d2
c ðmm2Þ
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Note: Optimum velocity at approx. v¼ 3; then h¼ 3 with excellent column packing

(analyte with low molar mass, good mass transfer properties).

Reduced flow resistance:

F ¼ Dpd2
pd

2
cp

4LchF
¼ 4:7

DpðbarÞd2
p ðmm2Þd2

c ðmm2Þ
LcðmmÞhðmPasÞFðml=minÞ

Note: F¼ 1000 for properly packed and not clogged columns with particulate

stationary phase.

Dp � 1

d2
p

Total analysis time:

ttal ¼ Lcdp

vDm

ð1þ klastÞ

Total solvent consumption:

Vtal ¼ 1

4
Lcd

2
cp«ð1þ klastÞ

Vtal � d2
c

Peak volume:

Vpeak ¼ d2
cpLc«ðkþ 1Þffiffiffiffi

N
p

AP peak area

a0.1 width of the leading half of the peak at 10% of height

b0.1 width of the trailing half of the peak at 10% of height

dc inner diameter of the column

Dm diffusion coefficient of the analyte in the mobile phase

dp particle diameter of the stationary phase

F flow rate of the mobile phase

f distance between peak front and peak maximum at 0.05 h

hP peak height

klast retention factor of the last peak

Lc column length

tR retention time

Important and Useful Equations for HPLC 3



t0 breakthrough time

V volume

w peak width

w1/2 peak width at half height

w0.05 peak width at 0.05 h

h viscosity of the mobile phase

Dp pressure drop
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1 Introduction

1.1 HPLC: A POWERFUL SEPARATION METHOD

Apowerful separationmethodmust be able to resolvemixtures with a large number of

similar analytes. Figure 1.1 shows an example. Eight benzodiazepines can be

separated within 70 seconds.

Such a chromatogram provides directly both qualitative and quantitative informa-

tion: each compound in the mixture has its own elution time (the point at which the

signal appears on the screen) under a given set of conditions; and both the area and

height of each signal are proportional to the amount of the corresponding substance.

This example shows that high-performance liquid chromatography (HPLC) is very

efficient, i.e. it yields excellent separations in a short time. The ‘inventors’ of modern

chromatography, Martin and Synge,1 were aware as far back as 1941 that, in theory,

the stationary phase requires very small particles and hence a high pressure is

essential for forcing the mobile phase through the column. As a result, HPLC was

sometimes referred to as high-pressure liquid chromatography.

1.2 A FIRST HPLC EXPERIMENT

Although this beginner’s experiment described here is simple, it is recommended that

you ask an experienced chromatographer for assistance.

It ismost convenient if a HPLC systemwith two solvent reservoirs can be used. Use

water and acetonitrile; both solvents need to be filtered (filter withG1mm pores) and

degassed. Flush the system with pure acetonitrile, then connect a so-called reversed-

phase column (octadecyl ODS or C18, but an octyl or C8 column can be used as well)

1 A.J.P. Martin and R.L.M. Synge, Biochem. J., 35, 1358 (1941).

Practical High-Performance Liquid Chromatography, Fifth edition Veronika R. Meyer
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with the correct direction of flow (if indicated) and flush it for ca. 10min with

acetonitrile. The flow rate depends on the column diameter: 1–2mlmin�1 for 4.6mm

columns, 0.5–1mlmin�1 for 3mm and 0.3–0.5mlmin�1 for 2mm columns. Then

switch towater–acetonitrile 8 : 2 and flush again for 10–20min. TheUVdetector is set

to 272 nm (although 254 nm will work too). Prepare a coffee (a ‘real’ one, not

decaffeinated), take a small sample before you add milk, sugar or sweetener and filter

it (G1mm). Alternatively you can use tea (again, without additives) or a soft drink

with caffeine (preferably without sugar); these beverages must be filtered, too. Inject

10ml of the sample. A chromatogram similar to the one shown in Figure 1.2 will

Figure 1.1 HPLC separation of benzodiazepines (T. Welsch, G. Mayr and
N. Lammers, Chromatography, InCom Sonderband, D€usseldorf, 1997, p. 357).
Conditions: samples: 40ng each; column: 3 cm� 4.6mm i.d.; stationary phase:
ChromSphere UOP C18, 1.5mm (nonporous); mobile phase: 3.5mlmin�1

water–acetonitrile (85 : 15); temperature: 35 �C; UV detector 254nm. Peaks:
1¼bromazepam; 2¼nitrazepam; 3¼ clonazepam; 4¼oxazepam; 5¼flunitra-
zepam; 6¼hydroxydiazepam (temazepam); 7¼desmethyldiazepam (nordaze-
pam); 8¼diazepam (valium).
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appear. The caffeine signal is usually the last large peak. If it is too high, inject less

sample and vice versa; the attenuation of the detector can also be adjusted. It is

recommended to choose a sample volumewhich gives a caffeine peak not higher than

one absorption unit as displayed on the detector. If the peak is eluted late, e.g. later

than 10min, the amount of acetonitrile in the mobile phase must be increased (try

water–acetonitrile 6 : 4). If it is eluted too early and with poor resolution to the peak

cluster at the beginning, decrease the acetonitrile content (e.g. 9 : 1).

The caffeine peak can be integrated, thus a quantitative determination of your

beverage is possible. Prepare several calibration solutions of caffeine inmobile phase,

e.g. in the range0.1–1.0mgml�1, and inject them.Forquantitativeanalysis, peakareas

can be used as well as peak heights. The calibration graph should be linear and run

through the origin. The caffeine content of the beverage can vary within a large range

and thevalueof0.53mgml�1, as shown in thefigure, only represents the author’s taste.

After you have finished this work, flush the column again with pure acetonitrile.

Figure 1.2 HPLC separation of coffee. Conditions: column, 15 cm� 2mm i.d.;
stationary phase, YMC 120 ODS-AQ, 3mm; mobile phase, 0.3mlmin�1 water–
acetonitrile (8:2); UV detector 272nm.
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1.3 LIQUID CHROMATOGRAPHIC SEPARATION MODES

Adsorption Chromatography

The principle of adsorption chromatography (normal-phase chromatography) is

known from classical column and thin-layer chromatography. A relatively polar

material with a high specific surface area is used as the stationary phase, silica being

the most popular, but alumina and magnesium oxide are also often used. The mobile

phase is relatively nonpolar (heptane to tetrahydrofuran). The different extents to

which the various types of molecules in the mixture are adsorbed on the stationary

phase provide the separation effect. A nonpolar solvent such as hexane elutes more

slowly than a medium-polar solvent such as ether.

Rule of thumb: polar compounds are eluted later than nonpolar compounds.

Note: polar means water-soluble, hydrophilic; nonpolar is synonymous with fat-

soluble, lipophilic.

Reversed-Phase Chromatography

The reverse of the above applies:

(a) The stationary phase is very nonpolar.

(b) The mobile phase is relatively polar (water to tetrahydrofuran).

(c) A polar solvent such as water elutes more slowly than a less polar solvent such as

acetonitrile.

Rule of thumb: nonpolar compounds are eluted later than polar compounds.

Chromatography with Chemically Bonded Phases

The stationary phase is covalently bonded to its support by chemical reaction. A large

number of stationary phases can be produced by careful choice of suitable reaction

partners. The reversed-phase method described above is the most important special

case of chemically bonded-phase chromatography.

Ion-Exchange Chromatography

The stationary phase contains ionic groups (e.g. NR3
þ or SO3

�) which interact with
the ionic groups of the sample molecules. The method is suitable for separating, e.g.

amino acids, ionic metabolic products and organic ions.

Ion-Pair Chromatography

Ion-pair chromatography may also be used for the separation of ionic compounds and

overcomes certain problems inherent in the ion-exchange method. Ionic sample
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molecules are ‘masked’ by a suitable counter ion. The main advantages are, firstly,

that the widely available reversed-phase system can be used, so no ion exchanger is

needed, and, secondly, acids, bases and neutral products can be analysed

simultaneously.

Ion Chromatography

Ion chromatography was developed as a means of separating the ions of strong acids

and bases (e.g. Cl�, NO3
�, Naþ , Kþ ). It is a special case of ion-exchange

chromatography but the equipment used is different.

Size-Exclusion Chromatography

This mode can be subdivided into gel permeation chromatography (with organic

solvents) and gel filtration chromatography (with aqueous solutions).

Size-exclusion chromatography separates molecules by size, i.e. according to

molecular mass. The largest molecules are eluted first and the smallest molecules last.

This is the best method to choose when a mixture contains compounds with a

molecular mass difference of at least 10%.

Affinity Chromatography

In this case, highly specific biochemical interactions provide the means of separation.

The stationary phase contains specific groups of molecules which can only adsorb the

sample if certain steric and charge-related conditions are satisfied (cf. interaction

between antigens and antibodies). Affinity chromatography can be used to isolate

proteins (enzymes as well as structural proteins), lipids, etc., from complex mixtures

without involving any great expenditure.

1.4 THE HPLC INSTRUMENT

An HPLC instrument can be a set of individual modules or elements, but it can be

designed as a single apparatus aswell. Themodule concept ismore flexible in the case

of the failure of a single component; moreover, the individual parts need not be from

the same manufacturer. If you do not like to do minor repairs by yourself you will

prefer a compact instrument. This, however, does not need less bench space than a

modular set.

An HPLC instrument has at least the elements which are shown in Figure 1.3:

solvent reservoir, transfer linewith frit, high-pressure pump, sample injection device,

column, detector, and data acquisition, usually together with data evaluation.

Although the column is the most important part, it is usually the smallest one. For
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temperature-controlled separations it is enclosed in a thermostat. It is quite common

to work with more than one solvent, thus a mixer and controller are needed. If the

data acquisition is done by a computer it can also be used for the control of the

whole system.

1.5 SAFETY IN THE HPLC LABORATORY

Three health risks are inherent in HPLC, these being caused by:

(a) Toxic solvents,

(b) Pulmonary irritation from the stationary phase, and

(c) Dangers resulting from the use of high pressures.

Short- and long-term risks of exposure to solvents and vapours are generally known

but too little attention is paid to them. It is good working practice to provide all feed

and waste containers with perforated plastic lids, the hole being just large enough to

take a PTFE tube for filling or emptying purposes, so that no toxic vapours can escape

into the laboratory environment and no impurities can contaminate the highly pure

solvent. A good ventilation system should be provided in the solvent handling areas.

Figure 1.3 Schematic diagramof anHPLCunit. 1¼Solvent reservoir; 2¼ transfer
line with frit; 3¼pump (with manometer); 4¼ sample injection; 5¼ column (with
thermostat); 6¼detector; 7¼waste; 8¼data acquisition.
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The fact that particles of 5mm and less, as used in HPLC, may pass into the lungs

(they are not retained by the bronchial tubes but pass straight through) is less well

known and the potential long-term risk to health has not yet been adequately

researched. Amorphous silica, as used for stationary phases, is not hazardous2 but

inhalation should be avoided anyway. As a safety precaution, any operation involving

possible escape of stationary phase dust (opening phials, weighing etc.) must be

carried out in a fume cupboard.

The high-pressure pump does not present too much of a risk. In contrast to gases,

liquids are almost incompressible (approximately 1 vol% per 100 bar). Hence, liquids

store very little energy, even under high-pressure conditions. A jet of liquid may leak

from a faulty fitting but there is no danger of explosion. However, this liquid may

cause serious physical damage to the body. A column under pressure which is open at

the bottom for emptying purposes must not be interfered with in any way. The

description of an accident resulting from this type of action is strongly recommended

for reading.3

1.6 COMPARISON BETWEEN HIGH-PERFORMANCE LIQUID
CHROMATOGRAPHY AND GAS CHROMATOGRAPHY

Like HPLC, gas chromatography4 (GC) is also a high-performance method, the most

important difference between the two being that GC can only cope with substances

that are volatile or can be evaporated intact at elevated temperatures or from which

volatile derivatives can be reliably obtained. Only about 20% of known organic

compounds can be analysed by gas chromatography without prior treatment. For

liquid chromatography, the sample must be dissolved in a solvent and, apart from

cross-linked, high-molecular-mass substances, all organic and ionic inorganic pro-

ducts satisfy this condition.

The characteristics of the two methods are compared in Table 1.1. In comparison

with gas chromatography there are three important differences:

(a) The diffusion coefficient of the sample in the mobile phase is much smaller in

HPLC than in GC. (This is a drawback because the diffusion coefficient is the

most important factor which determines the speed of chromatographic analysis.)

(b) The viscosity of the mobile phase is higher in HPLC than in GC. (This is a

drawback because high viscosity results in small diffusion coefficients and in high

flow resistance of the mobile phase.)

2 C.J. Johnston et al. Toxicol. Sci., 56, 405 (2000).
3 G. Guiochon, J. Chromatogr., 189, 108 (1980).
4 H.M. McNair, J.M. Miller and F.A. Settle, Basic Gas Chromatography, Wiley-Interscience, New York,

2009.
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(c) The compressibility of the mobile phase under pressure is negligibly small in

HPLC whereas it is not in GC. (This is an advantage because as a result the flow

velocity of the mobile phase is constant over the whole length of the column.

Therefore optimum chromatographic conditions exist everywhere if the flow

velocity is chosen correctly. Moreover, incompressibility means that a liquid

under high pressure is not dangerous.)

1.7 COMPARISON BETWEEN HIGH-PERFORMANCE LIQUID
CHROMATOGRAPHY AND CAPILLARY ELECTROPHORESIS

Capillary electrophoresis5 (also termed capillary zone electrophoresis, CZE) is suited

for electrically charged analytes and separates them, simply speaking, according to

their ratio of charge to size. In addition, the shape of themolecues is another parameter

which influences their speed, therefore the separation of isomers or of analytes with

identical specific charge is possible. Cations (positively charged molecules) move

faster than anions (negatively charged molecules) and appear earlier in the detector.

Small, multiply charged cations are the fastest species whereas small, multiply

charged anions are the slowest ones.

TABLE 1.1 Comparison of GC AND HPLC

Problem GC HPLC

Difficult separation Possible Possible

Speed Yes Yes

Automation Possible Possible

Adaptation of system to

separation problem

By change in stationary

phase

By change in stationary

and mobile phase

Application restricted by Lack of volatility, thermal

decomposition

Insolubility

Typical number of separation

plates

Per column Per metre

GC with packed columns 2000 1000

GCwith capillary columns 50 000 3000

Classical liquid

chromatography

100 200

HPLC 5000 50 000

5 P. Schmitt-Kopplin,CapillaryElectrophoresis, HumanaPress, Totowa, 2008; S.Wren,Chromatographia

Suppl., 54, S-15 (2001).
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The separation is performed at high voltage. An electric field of up to 30 kV is

applied between the ends of the separation capillary. As a consequence, the buffer

solution within the capillary moves towards the negatively charged cathode. The

capillaries have a length of 20–100 cm and an inner diameter of 50–250mm. In

contrast to HPLC they are not packed with a stationary phase in the chromatographic

sense but in some cases with a gel which allows the separation of the analytes by their

size (as in size-exclusion chromatography).

The separation performance can be of much higher order of magnitude than in

HPLC (up to 107 theoretical plates), making CE an extremely valuable method for

peptide mapping or DNA sequencing. However, small molecules such as amino acids

or inorganic ions can be separated aswell. The absolute sample amounts which can be

injected are low due to the small volume of the capillaries. A major drawback is the

lower repeatability (precision) compared to quantitative HPLC. Preparative separa-

tions are not possible.

Electrokinetic chromatography (see Section 23.6) is a hybrid of HPLC and CE. For

this technique the capillaries are packed with a stationary phase and the separation is

based on partition phenomena. The mobile phase acts as in CE; it consists of a buffer

solution and moves thanks to the applied electrical field.

1.8 UNITS FOR PRESSURE, LENGTH AND VISCOSITY

Pressure Units

The common pressure unit of HPLC is bar, but the SI unit is pascal (Pa): 1 Pa¼
1Nm�2. The atmosphere (atm or at, respectively) should no longer be used. The unit

psi (pounds per square inch) is American and is still in use. Note the difference

between psia¼ psi absolute and psig¼ psi gauge (manometer), the latter meaning psi

in excess of atmospheric pressure.

1 bar¼ 105 Pa¼ 105 kgm�1 s�2¼ 0.987 atm¼ 1.02 at¼ 14.5 lb in�2 (psi)

Conversion data:

1MPa¼ 10 bar (megapascal)

1 atm¼ 1.013 bar (physical atmosphere)

1 at¼ 0.981 bar (technical atmosphere, 1 kp cm�2)

1 psi¼ 0.0689 bar

Rule of thumb:

1000 psi� 70 bar, 100 bar¼ 1450 psi
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Length Units

English units are often used in HPLC to indicate tube or capillary diameters, the unit

being the inch (in or 00). Smaller units are not expressed in tenths but as 1/2, 1/4, 1/8, or

1/16 in, or multiples of these.

Outer diameters:

100 ¼ 25.40mm 1/200 ¼ 12.70mm 3/800 ¼ 9.525mm 1/400 ¼ 6.35mm

3/1600 ¼ 4.76mm 1/800 ¼ 3.175mm 1/1600 ¼ 1.59mm

Inner diameter of capillaries:

0.0400 ¼ 1.0mm 0.0200 ¼ 0.51mm 0.0100 ¼ 0.25mm 0.00700 ¼ 0.18mm

Viscosity Units

The SI unit of the dynamic viscosity is the pascal second: 1 Pa s¼ 1 kgm�1 s�1.

Solvents have viscosities around 1�10�3 Pa s¼ 1mPa s. The old unit was the cen-

tipoise (cP): 1mPa s¼ 1 cP.
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