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ABSTRACT
This paper investigates the practical issues in applying net-
work tomography to monitor failures. We outline an ap-
proach for selecting paths to monitor, detecting and confirm-
ing the existence of a failure, correlating multiple indepen-
dent observations into a single failure event, and applying
existing binary networking tomography algorithms to iden-
tify failures. We evaluate the ability of network tomography
algorithms to correctly detect and identify failures in a con-
trolled environment on the VINI testbed.

Categories and Subject Descriptors: C.2.3 [Network Op-
erations]: Network monitoring C.2.3 [Network Operations]:
Network management C.2.5 [Local and Wide-Area Net-
work]: Internet

General Terms: Experimentation, Management, Measure-
ment, Reliability

Keywords: Network tomography, fault detection

1. INTRODUCTION
Dynamic network conditions, such as traffic shifts, device

failures, and router misconfigurations, can degrade the per-
formance of end-to-end paths. To maintain high availability,
operators must quickly detect, diagnose, and correct faults
that cause these degradations. Network diagnosis involves
both detecting that a network fault has occurred and iden-
tifying the location of the fault. Active monitoring services
such as Keynote [11] and RIPE TTM [16] can detect some
failures, but these systems do not identify the location of net-
work faults, and they do not aim for fast detection. Due to
the shortcomings of existing systems, operators have trouble
detecting faults before their customers do. Even though net-
work devices raise alarms and traps for certain types of fail-
ures, operators still typically resort to active measurement
techniques to manually reason about the possible causes of
performance problems (e.g., running pings and traceroutes
from various vantage points).

Various previous work has relied on “binary network to-
mography” [5,6,12] for determining the location of network
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Figure 1: Topology with two probed paths p1 and p2.

faults. Network tomography correlates active measurements
across multiple paths to determine the location of failures [4]
by correlating probes from all monitors to all destinations at
the time the failure was observed. Binary tomography algo-
rithms assume that the network topology before the time of
a failure is known and attributes the failure to the smallest
set of links that explain all failed paths. Figure 1 presents
an example scenario with two monitors, m1 and m2, and
one destination, t. If both paths p1 and p2 fail, then the al-
gorithm would infer that link L2 or L3 has failed; if only
p1 fails, it would pinpoint the failure of L1 as the most
likely cause. Unfortunately, most existing tomography stud-
ies make at least one assumption that is not valid in the gen-
eral Internet setting, such as (1) the ability to send multicast
probes [3], (2) control over all hosts that receive measure-
ment probes [3, 5, 7, 12, 14], or (3) the lack of any network
dynamics in the presence of failures [14].

This paper studies the effectiveness of network tomogra-
phy on the VINI testbed. VINI is a controlled environment,
where the assumptions above do not hold. We first devise
a method for correlating active measurements into related
observations for the same network failure event (Section 2).
Using this method, we evaluate existing network tomogra-
phy approaches by emulating the Abilene network topology
on the VINI testbed and injecting controlled link failures into
the testbed on each link in the topology (Section 3). We then
study the extent to which an implementation of an existing
network tomography algorithm, NetDiagnoser [5] correctly
identifies the location of each failure (Section 4).

2. APPROACH
This section describes our approach for applying tomog-

raphy algorithms on a live network. Our goal is to identify
faults that occur within a target network. Monitors are hosts
located inside or outside the target network that periodically
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send ping probes and traceroutes to destinations, which can
be any host or router on the Internet. To cover as many in-
terfaces in the target network as possible, the destinations
should be widely distributed. We assume that a central co-
ordinator collects measurements from all monitors as input
to the network tomography algorithm.

We represent the target network as the set of interfaces
within that network. Interfaces can be directly measured us-
ing traceroutes. This choice avoids unnecessary errors that
may be introduced in alias resolution (i.e., mapping inter-
faces to routers).

Detection Topology Snapshots

Path Selection

Identification

Correlation

Possible failed
paths

Groups of
failed paths

Paths to probe

Topology

Hypothesis about
set of 

failed links

Online

Offline

Figure 2: Applying network tomography in practice.

Figure 2 presents our approach for applying tomography
on a live network, which comprises five operations:

Offline path selection. Based on a snapshot of the topology
among all paths, the coordinator computes offline the set of
paths that each monitor must probe to completely cover the
target network for locating a failure. We use the path selec-
tion algorithm proposed by Nguyen and Thiran [13] using
a combination of monitors and destinations for which some
subpath crosses the target network.

Periodic topology snapshots. Monitors periodically col-
lect traceroutes to all destinations and send path changes
to a coordinator that maintains a “snapshot” of the network
topology. This snapshot provides an input topology for the
tomography algorithms that we apply in the identification
phase described below. We select the last stable snapshot
before the failure as input for the algorithm.

Detection and confirmation. To detect failures along paths,
monitors periodically probe each destination in their set, de-
termined from offline path selection. Each monitor issues
both periodic traceroutes and active probes. When a monitor
detects a lost probe along a path, it confirms the existence of
a failure by sending three additional probes. After confirm-

ing a failure, it sends a report to the coordinator that some
path (i.e., collection of interfaces) has failed.

Correlation. Tomography takes as input a set of indepen-
dently observed path failures that are presumed to be at-
tributable to a single failure event. To produce this input,
we must first correlate independent observations of failed
paths from the monitors into collections of related failures.

We first group consecutive failure notifications along a
single path. We then correlate independent path failures that
occur close together in time. To do so, we sort failure reports
based on the start time of each failure. Then, we traverse this
list comparing every pair of consecutive paths to group mul-
tiple path failures into a “correlated event”. If two paths p1

and p2 have failed at times t1 and t2, respectively we group
them into the same event if t2 − t1 ≤ 10 seconds. After the
coordinator experiences a time interval longer than ten sec-
onds with no new failure reports, it builds the reachability
matrix using this set. In this paper, we perform this correla-
tion offline; in practice, however, a central coordinator might
be able to perform this correlation online.

Identification. When the monitors confirm the existence of
a failure, the coordinator correlates failure notifications is-
sued by all monitors and applies the NetDiagnoser binary
network tomography algorithm [5] to identify the location
of the failure. This process takes as input the topology be-
fore the failure and the set of failed paths and produces a set
of possible locations of the network fault (i.e., which links
and nodes may have failed). In this paper, we perform iden-
tification offline.

3. EXPERIMENT SETUP
This section describes the experimental setup for evalu-

ating the approach in Section 2 in a controlled environment
on the VINI testbed [1]. VINI allows experimenters to per-
form realistic experiments and run real routing and network
monitoring software in a distributed environment, while still
retaining control over the time, duration, location, and na-
ture of network failures. For our controlled experiments, we
replicate the Abilene topology in the VINI testbed. We then
send probes across the testbed that correspond to the same
set of paths that the monitor selection algorithm selects for
diagnosing failures on the actual Abilene testbed.

Topology. We configure VINI to emulate the Abilene net-
work as closely as possible. Because Abilene points-of-
presence (PoPs) no longer host PlanetLab nodes, we se-
lected PlanetLab nodes that are both stable and geographi-
cally close the Abilene PoPs. We select nodes at universities
connected to Abilene to ensure that our experiment only tra-
verses Abilene and its access networks, not the commercial
Internet. Each node in the VINI experiment runs the Quagga
open-source software router [15] and forwards packets over
tunnels that emulate the respective Abilene links. To ensure
that paths through the emulated network closely mimic those
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in the actual Abilene topology, the VINI nodes run OSPF
using the same OSPF adjacencies and link weights as the
actual Abilene routers.

Paths to probe. To ensure that the controlled measurements
on VINI reflect those that would be observed in an actual
Internet scenario, we first collect path measurements from
PlanetLab. We applied measurements from 242 PlanetLab
nodes to 241 destinations yielding 58,322 paths across the
real Abilene network. Then, we determine, for each path in
the PlanetLab dataset, the Abilene routers where the path
enters and exits the network (i.e., the ingress and egress
router). Then, we map each of these paths to the correspond-
ing ingress and egress routers in Abilene, so that we can keep
all measurements on VINI, where we have the ability to in-
ject network faults. Ultimately, each router has a list of desti-
nations that contains many duplicate entries for each egress,
where each entry corresponds to some wide-area path that
traverses that ingress-egress router pair.

We perform diagnosis for two different sets of paths: com-
plete and reduced. Complete refers to running the detection
phase using the complete set of paths from 242 PlanetLab
node to 241 destinations (other PlanetLab nodes). Reduced
refers to only probing the paths obtained from path selec-
tion. This set contains 15 paths. Reducing the number of
paths that each monitor must probe also allows each mon-
itor to probe each path more frequently; in other words, it
reduces the cycle time. In the case of the complete mea-
surements, the maximum cycle time is 3.83 seconds and the
average is 3.45 seconds. In contrast, for the reduced set of
paths, the maximum and average cycle times are 0.68 sec-
onds and 0.45 seconds, respectively.

Failure emulation. We create link failures in VINI by in-
stalling a Click packet filter element in front of the interface
of each end of the link for which we are creating the failure.
This action causes all packets to be dropped for any path that
traverses the failed link. In a real network, routers may re-
route around some types of prolonged failures, but there are
also many classes of failures for which re-routing will not
occur (e.g., configuration errors and other types of failures
that do not result in the loss of “hello” packets but may still
prevent packets from being forwarded). To determine how
long these types of prolonged failures must last to allow the
system to detect them, we slow Quagga’s OSPF timers down
so that routers do not re-route around long failures.

We fail each of the 13 links in Abilene covered by our
measurements for durations of 5, 10, 30, 50, and 80 sec-
onds. Running this experiment takes two hours and three
minutes. We store and timestamp the results of all probes
and the confirmation process at each monitor; all monitors
are NTP-synchronized to within 10 milliseconds. At the
end of each experiment, we copy these logs to a centralized
server and run the identification phase offline.

Figure 3: Distribution of detection time for link failures.

4. RESULTS
We now evaluate the approach that we proposed in Sec-

tion 2. We first evaluate the ability of our approach to detect
failures by injecting failures on the emulated Abilene topol-
ogy that we run on the VINI testbed (Section 4.1). We then
evaluate its ability to identify the location of these failures
(Section 4.2). We evaluate the extent to which the approach
can detect and identify failures both using the complete set
of paths from monitors to destinations and the reduced set of
paths from offline path selection.

4.1 Detection
We say that a failure is detected if the confirmation pro-

cess reports it. The complete set covers all 13 failed links
and detects almost all link failures we inject that last longer
than 5 seconds. The reduced set of paths also detects all link
failures, albeit with a considerably smaller number of paths
than the complete set: 15 paths, as opposed to 58,322.

Figure 3 shows the distribution of detection delays for
each failure type. The detection time corresponds to the
time between the confirmation of the failure and the time
we injected the failure. Most failures take between 3 and 5
seconds to detect. Given that the cycle time when probing
with the complete set of paths is 3.45 seconds as opposed to
just 0.45 seconds with the reduced set, it may seem coun-
terintuitive that, for about 80% of all link failures, the de-
tection delay when probing with the complete set of paths is
about the same as that when we probe with the reduced set
of paths. This similarity arises because many paths in the
complete set may probe the same link or links in the Abilene
topology within a single “cycle”. Thus, even though it may
take longer to probe the complete set of paths, any given link
in the topology may be probed multiple times (and, hence,
more frequently) in a single cycle.

4.2 Identification
In this section, we evaluate the extent to which the tomog-

raphy algorithms can successfully identify the location of
failures within the Abilene topology. We first evaluate the
accuracy of the identification algorithms for various failure
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lengths, and for various failures in the topology. Then, we
evaluate the time taken to run identification.

Accuracy. detection algorithms. We apply an existing bi-
nary network tomography algorithm, NetDiagnoser [5], to
the set of probes collected from the set of monitored paths
as determined from offline monitor selection, as described in
Section 2. We determine whether this approach can success-
fully identify the location of the failures we inject into the
emulated Abilene topology on the VINI testbed. Unfortu-
nately, even in a controlled setting like VINI, emulated net-
work links are in fact paths through the wide-area Internet,
which may introduce transient faults that we did not inject.

Complete Reduced

lost probes 6,000 2,927
confirmed failures 1,953 1,855
correlated failures 69 58

Table 1: Number of lost probes vs. number of failures.

Table 1 shows the effectiveness of failure confirmation
and correlation for reducing the number of alarms that do
not correspond to failures. It presents, the total number of
probes lost, the number of failures reported after confirma-
tion, and the number of failures that exist after we correlate
confirmed path failures into related failure events. Confirma-
tion removes approximately more than two-thirds of spuri-
ous failures for the complete set of paths and about one-third
of spurious failures for the reduced set of paths. The corre-
lation mechanism then groups the confirmed failures from
different monitors together.

The number of failures we detected after applying corre-
lation in each case (69 for the complete set of paths and 58
for the reduced set of paths, some of which are false alarms)
is much closer to the 65 failures that we actually injected
(13 link failures for five different failure durations). Table 2
shows that probing with only the reduced set of paths results
in considerably fewer false alarms. False alarms are faults
that are reported but that we did not inject; given that the ex-
periments run on an operational network, some of the false
alarms we report might correspond to other failures that we
did not inject, which might explain the higher number of
false alarms for the longer failures. Probing using the re-
duced set of paths detects all injected failures that last ten
seconds or longer, with no false alarms, except for the case
of 80-second failures (which may be failures in the underly-
ing infrastructure).

Table 2 shows that we cannot typically identify link fail-
ures that last for shorter than 5 seconds. If a failure is too
short, reachability along respective paths may recover be-
fore the complete set of monitors can measure the failed link
from a collection of paths. Thus, the failure must last long
enough to allow for probing the failed interface, confirming
the failure, and grouping the path with other paths that have

Failures Failure duration (seconds)
5 10 30 50 80

Complete
identified 4 12 13 13 13
false alarms 0 0 3 1 10

Reduced
identified 3 13 13 13 13
false alarms 0 0 0 0 3

Table 2: Identification of single link failures.

observed the same failure. Figure 3 shows that confirming a
failure typically requires between 3 and 5 seconds. It takes
another 5 seconds to correlate the the path failures into a sin-
gle event, and correlation can sometimes take as long as 20
seconds even when using just the reduced set of paths.

Speed. We evaluate the identification delay of each link fail-
ure by determining the time the coordinator receives the first
notification of a failed path related to that failure until it com-
pletes running the NetDiagnoser algorithm. On average, the
time to identify a failure is around 20 seconds using the re-
duced set of paths and 30 seconds using the complete set of
paths. This time includes three components: the time to con-
firm the failure (detection delay), the time to correlate mea-
surements from multiple monitors (correlation delay), and
the time to run the tomography algorithm. As shown in Fig-
ure 3, detection time typically ranges from 3 to 5 seconds.
Correlating failures into distinct failure events (as described
in Section 2) can take as long as ten seconds after the probes
observe a complete set of related failures. Using only re-
duced set of paths reduces correlation time by as much as a
factor of three. The average time for running NetDiagnoser
with the complete set of paths is 17.69 seconds; using the
reduced set of paths reduces this time to 10.2 seconds.

5. RELATED WORK

Network tomography. There has been a large body of work
on statistical methods for fault identification [6,8,10,12,17]
and on network tomography (Castro et al. [4] present a de-
tailed survey on network tomography techniques).

We leverage previous work in “binary network tomogra-
phy”, which uses tomography to detect and locate failures.
Duffield [6] first proposed binary tomography to detect the
failed link at a tree topology with one monitor and multi-
ple targets. More recently, NetDiagnoser [5] and Kompella
et al. [12] extended binary tomography to a scenario with
multiple monitors and destinations. These works evaluated
their algorithms in simulation and with trace-based analysis.
Some previous work has attempted to deploy and measure
the performance of tomography techniques in operational
networks [2, 7, 12, 14]. None of the experimental studies of
tomography evaluate the extent to which practical challenges
limit accuracy of fault detection.

Active monitoring and path selection. Previous work has
proposed two approaches for reducing detection time: com-
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bining active and passive measurements [18] and reducing
the set of monitored paths [13] (the approach in this paper).

Hubble [9] combines monitoring of BGP feeds and probes
to a selected set of prefixes to monitor the wide-area Inter-
net for reachability faliures. Hubble can detect reachability
problems within about 15 minutes. Given that we focus on
a single ISP, we use different techniques to select a small
set of paths at a faster rate, which allows our approach to
detect shorter reachability problems. Additionally, Hubble’s
inferences have not been verified against any ground truth,
whereas we evaluate the limits of our techniques in a con-
trolled environment.

6. DISCUSSION & RESEARCH AGENDA

Unfortunately, a gap remains between research in network
tomography and practical systems for scalable network mon-
itoring. Our evaluation highlights tradeoffs and challenges
for making tomography practical, which we discuss below.

Fast detection vs. scalability: Quickly detecting failures
using active monitoring requires frequently probing paths.
Conventional network tomography algorithms assume the
ability to probe all paths frequently, but in real networks,
the set of paths may be large, which introduces a tradeoff
between measurement overhead and detection time. Our
evaluation shows that reducing the total number of paths
probed can help reduce failure detection time (recall from
Figure 3 that the reduced set of paths results in shorter de-
tection times for about 20% of paths) while still maintaining
accurate identification (similar detection rates with a much
lower false positive rate than with the complete set of paths).
In our future work, we are investigating whether other corre-
lation algorithms could result in faster overall detection time.

Lack of a consistent view: Most conventional network to-
mography algorithms assume that if a particular link fails,
then all paths that traverse that link will observe the fail-
ure. In practice, it is difficult to ensure that probes from
different monitors will traverse the same failed link at sim-
ilar (let alone synchronized) points in time. Our results in
Section 4 show that it is more difficult to accurately identify
shorter failures because not all monitors observe the failure;
similarly, longer failures can result in false alarms if other
factors (e.g., unrelated failures, re-routing) create an incon-
sistent view of the topology when a link fails. In a real net-
work, transient packet loss may introduce false alarms or
result in inaccurate localization. Network dynamics may
also introduce false alarms because routing protocols may
re-route around a failure, changing the underlying network
topology (as well as the fate of probe packets). In fact, these
factors may make it difficult to ever obtain a consistent view
of the network topology during a failure scenario; in our on-
going work, we are examining these effects in more detail
and determining whether a version of network tomography
that operates on data streams, rather than snapshots, might
further reduce detection time.
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