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Abstract. MANTIS is a lightweight tweakable block cipher recently
published at CRYPTO 2016. In addition to the full 14-round version,
MANTIS7, the designers also propose an aggressive 10-round version,
MANTIS5. The security claim for MANTIS5 is resistance against “prac-
tical attacks”, defined as related-tweak attacks with data complexity 2d

less than 230 chosen plaintexts (or 240 known plaintexts), and computa-
tional complexity at most 2126−d.

We present a key-recovery attack against MANTIS5 with 228 chosen
plaintexts and a computational complexity of about 238 block cipher
calls, which violates this claim. Our attack is based on a family of dif-
ferential characteristics and exploits several properties of the lightweight
round function and tweakey schedule. To verify the validity of the attack,
we also provide a practical implementation which recovers the full key
in about 1 core hour using 230 chosen plaintexts.
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1 Introduction

MANTIS is a tweakable block cipher recently published at CRYPTO 2016 by
Beierle et al. [2]. The designers’ goal is to optimize this versatile building block
for low-latency implementations. To this end, they use the same α-reflective
structure as PRINCE by Borghoff et al. [3], but combine it with the round function
of Midori by Banik et al. [1]. According to their analysis [2], this improves both
the latency and the security compared to the original PRINCE, since Midori’s
variant of ShiftRows leads to a higher bound on the minimum number of active
S-boxes. The tweak is incorporated using an adapted version of the TWEAKEY
framework by Jean et al. [4].

The full version MANTIS7 has 14 rounds, but the authors also give a re-
duced security claim for the 10-round version, MANTIS5. They claim security
against practical attacks, which they define as related-tweak attacks with data
complexity 2d less than 230 chosen plaintexts (or 240 known plaintexts), and com-
putational complexity at most 2126−d block cipher calls, similar to the PRINCE
challenge. We present a key-recovery attack against MANTIS5 with 228 chosen
plaintexts and a computational complexity of about 238 block cipher calls, which
violates this claim.



Our attack exploits the lightweight near-MDS mixing layer and certain differ-
ential properties of the involutive S-box, both inherited from Midori. These prop-
erties make it relatively easy to find a differential characteristic with the claimed
optimal probability in the related-tweak setting. Using the same properties, this
differential characteristic can then be expanded to a family of characteristics
with a corresponding initial structure that makes efficient use of the low data
complexity limit of only 230 chosen plaintexts. Furthermore, the choice to keep
the original Midori order of linear operations (first permute, then mix) makes the
PRINCE-like middle rounds differentially less effective than the ordering used by
PRINCE (first mix, then permute). Midori’s order preserves a Superbox structure
over 4 S-box layers in the middle rounds, instead of 2.

We verified the validity of the attack in a practical implementation. The
implementation revealed an additional differential property of the Midori S-box
that complicates some steps of the attack due to differentially equivalent keys.
An adapted version of the attack recovers the full key in about 1 core hour using
230 chosen plaintexts.

Outline. In section 2, we provide a brief description of the tweakable block
cipher MANTIS and some of its cryptographic properties. In section 3, we intro-
duce a family of differential characteristics and a corresponding initial structure
of messages for MANTIS5 that lead to a good filter after 9 rounds. In section 4, we
use this initial structure and filter to mount a key recovery attack on MANTIS5.
Finally, we discuss the results of a practical implementation of the attack.

2 Description of MANTIS

2.1 The Tweakable Block Cipher

MANTIS is a tweakable block cipher published at CRYPTO 2016 by Beierle et al. [2].
The designers propose several variants MANTISr that differ only in the number
of rounds. All variants operate on a 64-bit message block M = M0‖M1‖ · · · ‖M15

and work with a 64-bit tweak T = T0‖T1‖ · · · ‖T15 and (64 + 64)-bit key K =
(k0, k1). All 64-bit values are mapped to 4× 4 states S of 4-bit cells Sj :

S =

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

.

The cipher’s structure is similar to PRINCE, with r forward rounds Ri and r
backward rounds R2r+1−i = R−1i , separated by an involutive, unkeyed middle
layer S◦M◦S. The 64-bit subkey k1 is used as round key for the outer forward and
backward rounds, while the other 64-bit subkey k0 and the derived k′0 = (k0 ≫
1) + (k0 � 63) serve as whitening keys. The tweak T is added together with
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Fig. 1: PRINCE-like structure of MANTISr, illustrated for MANTIS5.

k1 in every round according to the TWEAKEY construction, with a simple cell
permutation h as a tweak schedule. The construction is illustrated in Figure 1.

2.2 The Round Functions Ri and R−1
i

The round function Ri is very closely related to that of Midori [1]. It updates
the 4× 4 state of 4-bit cells by means of the sequences of transformations

Ri = MixColumns ◦ PermuteCells ◦ AddTweakeyi ◦ AddConstanti ◦ SubCells,
R−1i = SubCells ◦ AddConstanti ◦ AddTweakeyi ◦ PermuteCells−1 ◦MixColumns,

as illustrated in Figure 2. In the following, we briefly describe the individual
operations. For a more detailed description of the MANTIS family, we refer to
the design paper [2].

Ri

S P M

Ci hi(T ) k1

R−1
i

SP−1M

Cihi(T )k1+α

Fig. 2: The MANTIS round functions Ri and R−1i .

SubCells (S). The involutive 4-bit S-box S given in Figure 3 is applied to each
cell of the state. For our attack, we are primarily interested in the differential
behaviour of S, which is illustrated in Figure 5a.

AddTweakeyi (A) and AddConstanti (C). Several round-dependent values
are added to the state: The round constant Ci, the subkey k1 (for Ri) or k1 +α
(for R−1i ), and the round tweakey hi(T ). The tweakey update function h simply
permutes the order of cells using the permutation h, specified in Figure 4a.
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Fig. 3: The MANTIS S-box S, borrowed from Midori [1].
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(a) The tweak update function h.
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(b) The state transformation P.

Fig. 4: The MANTIS permutations h and P.

PermuteCells (P). The cells of the state are permuted by P, specified in Fig-
ure 4b.

MixColumns (M). Each column of the state is multiplied with the following
involutive near-MDS matrix M over F24 , whose truncated differential behaviour
per column is illustrated in Figure 5b:

M =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .
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Fig. 5: Differential distribution tables (DDT) of the MANTIS round operations.
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3 Differential Characteristic

3.1 Bounds and Security Claim

The designers of MANTIS analyze the security of the cipher against differential
cryptanalysis by modelling the differential behaviour (truncated to state cells) as
a mixed-integer linear program [2]. They analyzed the minimum number of active
S-boxes for different round numbers, both in a fixed-tweak and a related-tweak
setting. The design document provides lower bounds for full and round-reduced
MANTIS.

For MANTIS5, the minimum number of active S-boxes in the related-tweak
setting is 34 (for the full MANTIS7: 50), and the maximum differential probability
of the S-box is 2−2. The designers conclude that “no related tweak linear or
differential distinguisher based on a characteristics is possible for MANTIS5” [2].
In particular, they claim that MANTIS5 is secure against “practical attacks”, here
defined as related-tweak attacks with data complexity 2d at most 230 chosen
plaintexts (or 240 known plaintexts), and computational complexity at most
2126−d.

3.2 A Family of Differential Characteristics

Our attack is based on a truncated differential characteristic for the related-
tweak setting that meets this lower bound of 34 active S-boxes. The truncated
characteristic is illustrated in Figure 6. Instead of considering only a single fixed
input difference and differential characteristic, we will cluster several related dif-
ferential characteristics following the same truncated differential characteristic,
thus obtaining a much better probability.

An Optimal Differential Characteristic. To analyze the probability, we
first construct a differential characteristic that matches the claimed optimal dif-
ferential probability of 2−34·2 = 2−68. Consider the differential distribution table
of SubCells, given in Figure 5a. Observe that SubCells is an involution, so the
table is symmetric. There is one input/output difference, a, such that all transi-
tions from or to difference a have the maximum probability of 1

4 . Furthermore,
these possible transitions include a 7→ a. Since MixColumns only has binary co-
efficients, all transitions that match the branch number of 4 for MixColumns
(1→ 3, 2→ 2, 3→ 1) are valid when all active cells have a fixed difference of a.

Since all non-trivial MixColumns transitions of the truncated differential char-
acteristic in Figure 6 match its branch number, setting all active cells to a re-
sults in a valid differential characteristic with the claimed optimal probability of
2−34·2 = 2−68.

Clustering Differential Characteristics. We will now relax some of these
constraints, and also consider characteristics with cell differences other than
a in selected sections of the characteristic. Interesting candidates include all
differences that can be mapped from and to a by SubCells, that is, {5, a, d, f}.
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Fig. 6: Family of differential characteristics for MANTIS5.
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Rounds 9 and 2. First, consider Round 9. The SubCells layer at the end of
Round 8 has 2 active S-boxes, at positions S6 and S10. Assume we allow all
possible output differences {5, a, d, f} for the two S-boxes, marked 5 in Figure 6.
Then, the characteristic will follow the same truncated differential, with the
same probability of 2−4·2 to transition to the all-a state at the end of Round 9,
as long as both S-boxes map to the same difference. The probability for this is
2−2, instead of the original 2−4 of the all-a differential characteristic.

A similar observation applies for the two S-boxes S3 and S12 of Round 2,
marked 4 in Figure 6. However, as we want to relax also the input differences
to Round 2, we will consider only output differences {a, f}. These have the
additional advantage of allowing transitions with probability 2−2 not only to a,
but each to both a and f, so this relaxation can be used in multiple consecutive
rounds. The probability for Round 2 improves from 2−8 to 2−2·2 ·2−1 ·2−2 = 2−7.

Inner Part. Second, consider the inner part. Similar as for Round 9, we can
allow all 4 output differences for the first SubCells operation of the inner part,
as long as both S-boxes map to the same difference, marked 6 in Figure 6. This
seems to improve the probability for the inner part from 2−4 · 2−4 to 2−2 · 2−4.
However, note that there is no tweakey addition between the two SubCells layers
of the inner part, so the probabilities for the S-box transitions are certainly
not independent. Since there is also no PermuteCells operation, we can simply
compute the exact Superbox transition probability for the entire second column
of the state. This reveals that the probability for the inner part is in fact 2−4.

Initialization and Round 1. Like Round 2, we relax some of the differences of
Round 1 to {a, f}. The estimated probability for Round 2 will remain valid
for the output cells cells of Round 1 ( 1 , 2 , ). Again, MixColumns adds several
constraints for the output differences of the SubCells layer of Round 1.

Finally, we relax the input differences. In addition to {a, f}, we also allow
{5, d} in order to generate more message pairs, while retaining a reasonable
differential probability. For message cells S10 and S14, marked in Figure 6,
we need to compensate the AddTweakey operation of the initialization part by
considering input differences ∆ such that ∆ + a ∈ {a, f, 5, d}, or equivalently,
∆ ∈ {0, 5, f, 7}. The probability for the SubCells layer of Round 1, assuming
uniformly distributed input differences, is then

2−3·2︸ ︷︷ ︸
→
→
→

·
(

1

4
· 2−3 +

3

4
· 2−4

)
︸ ︷︷ ︸

, → 1 , 1

·
(

1

8
· 2−5 +

7

8
· 2−6

)
︸ ︷︷ ︸

, , → 2 , 2 , 2

≈ 2−15.51.

Consequently, the overall probability of the family of characteristics up to Round 9
(or more precisely, up to AddTweakey of Round 10) is at least about

2−15.51−7−4−4−2−2−4−2 = 2−40.51.
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Round 10. If a pair followed the family of characteristics up to Round 9, the
output of the AddTweakey operation of Round 10 will have several properties
that can be used as a filter for key recovery.

– Cells S1, S4, S11, S13, S15 have zero difference, which will also be immediately
visible in the ciphertexts (though not useful for key recovery).

– Cell S14 (marked ) has difference a (2-bit filter).
– Cells S0, S5, S10 (marked 6 ) will have the same difference (8-bit filter), as

will cells S2, S7, S8 (marked 7 ) after compensating for the tweak difference
(8-bit filter).

– Cells S6 and S12 (marked 8 , 9 ) will have differences {a, f, 5, d}, and addi-
tionally, due to the properties of MixColumns, cells S3 and S9 (marked =)
will have the same difference, which is the sum of the differences of S6, S12

(12-bit filter).

Overall, the family of characteristics provides a 30-bit filter with probability
2−40.51.

3.3 Initial Structure

We now want to generate enough message pairs to expect at least one valid pair,
while staying well below the data complexity limit of 230 chosen plaintexts. Ob-
viously, the characteristic’s probability is not good enough for a straightforward
solution with 229 suitable pairs. However, we can use the set {a, f, d, 5} of valid
differences for each cell to our advantage.

We repeat the following for two random base plaintext-tweak pairs. For each
of the two plaintext-tweak pairs, we query two sets of derived plaintext-tweak
pairs: one for the base tweak, and one for the modified tweak with a difference of
a in two cells, as specified by the truncated differential characteristic in Figure 6.
The first set for the base tweak contains the following 88 modified messages. Each
of the 8 active cells ( , ) varies over 8 values: the base plaintext plus differences
{0, a, f, 5, d, 8, 7, 2}. The second set for the modified tweak contains the same 88

messages. In total, the number of chosen plaintext-tweak pairs we query is

2 · 2 · 88 = 226.

Thus, we could repeat this up to 24 = 16 times and still stay below the data
complexity limit.

To see how many suitable pairs we can generate from these queries, note that
for each value of a cell in the first set, there are exactly 4 (out of 8) values for
this cell in the second set that give a valid difference {a, f, d, 5} ( ) or {0, 5, 7, f}
( ), as illustrated in Figure 7. Here, we exploited that a+ 5 = f, where all these
three values are suitable for our family of characteristics. Thus, the number of
pairs we get is

2 · 88 · 48 = 241,

and the expected number of valid pairs is at least

241 · 2−40.51 = 20.49 ≈ 1.40 .
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Fig. 7: Initial structure with 8 · 4 pairs from 2 · 8 queries per cell.

By repeating this up to 24 times, we can increase the expected number of valid
pairs up to

24.49 ≈ 22.47 .

We evaluated the initial structure practically for 1024 random keys, and found
that the average number of valid pairs is significantly higher than the estimated
22.47, around 26.28 ≈ 78.

4 Key Recovery

We can now use the family of characteristics and initial structure from section 3
to recover the two 64-bit secret keys k0 and k1. In the following, we will use 4
repetitions r = 1, . . . , 4 of the initial structure. Thus, we need to query 4 · 226 =
228 chosen plaintexts with chosen tweaks in order to generate the 4 · 241 = 243

plaintext pairs. This is well below the complexity limit of 230 chosen plaintexts
for MANTIS5.

4.1 Pre-Filtering Ciphertexts for Wrong Pairs

Before starting with the key guessing, we can filter for pairs which definitely
do not follow the family of characteristics given in Figure 6. The necessary
conditions for valid ciphertext pairs are that 5 cells (S1, S4, S11, S13, S15) have a
zero difference (marked ), while the difference in cell S14 is in {a, f, d, 5} after
removing the last tweak addition (marked ). The reason for the restriction of
the differences in cell S14 lies in the tweak addition in this cell before the last
S-box application.

If we assume that plaintext pairs which do not follow our family of char-
acteristics produce a randomly distributed difference pattern for corresponding
ciphertext pairs, these conditions are fulfilled with a probability of 2−22. Hence,
we reduce the set of 241 pairs per repetition r from the initial structure to a set
Ir of about 241−22 = 219 pairs. Each set Ir is still expected to contain 20.49 > 1
valid pairs that follow the family of characteristics of Figure 6.

Complexity and Optimizations. A naive implementation of generating and
pre-filtering pairs costs 4 · 241 state xor operations. However, instead of enumer-
ating all valid pairs and then filtering for matches on 5 cells, it is much more effi-
cient to reverse the process and only generate the relevant pairs as follows. Store
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each plaintext-tweak-ciphertext of Set 1 in a data structure of 220 partitions,
partitioned according to the value of the 5 pre-filter cells S1, S4, S11, S13, S15.
The expected size of each partition is about 25. Then, for each plaintext-tweak-
ciphertext of Set 2, iterate only over the 25 candidates in the correct partition,
and check whether the input difference is valid and the difference of output cell
S14 is valid. The set Ir of remaining filtered pairs is the same, but the compu-
tational complexity is reduced to less than 230 state xor operations.

4.2 Recovery of 44-bit k′0 + k1

The first step of the attack is the partial recovery of 44 bits of the final whitening
key k′0 + k1. We want to check our key guesses against the differential pattern
we get before the last application of MixColumns in Round 10 for our filtered
ciphertext pairs. The probability that a 44-bit key guess leads to this pattern
before the application of MixColumns is 2−30:

– Column 1: Here, only cell S12 has a difference at the input of MixColumns,
while the others have none. The requirements that lead to this pattern are
that a key guess on the ciphertext cells S0, S5, S10 ( 6 ) leads to an equal
difference after an S-box application, which happens with a probability of
2−8 per ciphertext pair and key guess.

– Column 2: This column is inactive. The only condition we have to fulfill
here is that the difference introduced in cell S14 ( ) of the ciphertext is
canceled by the tweak addition that happens before the S-box application
of the last round (right after the last application of PermuteCells). Since our
filtering ensures that only ciphertext pairs with differences {a, f, d, 5} in cell
S14 ( ) after the last SubCells are considered, this happens with a probability
of 2−2.

– Column 3: For this column, cells S2 ( 8 ) and S6 ( 9 ) must have a difference
{a, f, d, 5}, while cells S10, S14 have zero difference ( ). The necessary con-
ditions for this to happen are that a key guess on cells S3, S6, S9, S12 of the
ciphertext pair leads to an input difference {a, f, d, 5} on cells S6, S12 ( 8 ,
9 ) before the last SubCells (2−2 per cell), and that the differences in S3, S9

(=) each equal the difference between S6 and S12 (2−4 per cell). The overall
probability for this is 2−12 per ciphertext pair and key guess.

– Column 4: For this column, the same reasoning as for column 1 applies,
now for ciphertext and key cells S2, S7, S8 ( 7 ) after compensating for the
last tweak addition. Again, the probability is 2−8.

If we now decrypt one ciphertext pair i ∈ Ir backwards for one SubCells layer
under 211·4 = 244 key guesses, 244−30 = 214 key guesses remain which satisfy
all these conditions for this ciphertext pair i. We expect the correct key guess
to satisfy the conditions for at least one of the ciphertext pairs i ∈ Ir, which
follows the family of characteristics in Figure 6. Thus, we repeat the procedure
for all 219 pairs and consider the union of all resulting potential key candidates.
We expect at most 214 · 219 = 233 candidates for the right key guess, which
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effectively reduces our keyspace by 2−11. So, repeating the attack a total of 4
times with fresh initial structures is sufficient to recover the correct value of 44
bits of k′0 + k1.

Complexity and Optimizations. To get the possible key candidates per ci-
phertext pair, we need 2 · (216 · 4 + 2 · 212 · 3 + 24) ≈ 219.13 S-box look-ups, which
corresponds roughly to 211.54 MANTIS5 encryptions (based on the total number
of 16 · 12 S-boxes in MANTIS5). In total, we have to generate key candidates for
4 · 219 pairs, corresponding to a total of about 232.54 MANTIS5 encryptions.

In a straightforward implementation, we get 4 lists, each containing 233 key
candidates, which dominates our memory requirements. We need to find matches
between the 4 lists, which adds a computational complexity of roughly 233 op-
erations, depending on the implementation.

Note that it is not actually necessary to guess all 44 bit of the subkey at
once per ciphertext pair i ∈ Ir. Instead, we can split up the key guesses column-
wise into a 12-bit subkey for column 1 (with a set of valid subkey candidates

of expected size |C(r,i)0,5,10| = 24), a 4-bit subkey for column 2 (|C(r,i)14 | = 22), a

16-bit subkey for column 3 (|C(r,i)3,6,9,12| = 24), and a 12-bit subkey for column

4 (|C(r,i)2,7,8| = 24). The expected set of 214 full key candidates per pair i is then
the product set of these sub-candidates. We refer to this structured set of key
candidates from repetition r and pair i ∈ Ir as a bundle B(r,i), where

B(r,i) = C(r,i)0,5,10 × C
(r,i)
14 × C(r,i)3,6,9,12 × C

(r,i)
2,7,8.

Storing all bundles requires only about 4 · 219 · 10.25 < 225 MANTIS states. To
find the correct value of all 44 bits, we now need to compute

4⋂
r=1

⋃
i∈Ir
|Ir|≈219

C(r,i)0,5,10 × C
(r,i)
14 × C(r,i)3,6,9,12 × C

(r,i)
2,7,8.

The computational complexity of matching the bundles of key candidates is sim-
ilar to before if the list of bundles per repetition is indexed efficiently per subkey
candidate. Then, the bundles can be intersected subkey by subkey, starting with

the most restrictive subkey, C(r,i)3,6,9,12.

4.3 Recovery of 32-bit k0 + k1

With the help of the recovered 44 bits of k′0 +k1, we can filter our plaintext pairs
i ∈ Ir so that only the valid plaintext pairs following the family of characteristics
in Figure 6 remain. The probability that the right key identifies a wrong pair as
correct one is 2−30. Therefore, it is likely that only correct pairs (approximately
4) remain after filtering 4 ·219 pairs. We now use those 4 valid pairs to recover 32
bits of the initial whitening key k0+k1. We guess the key bits for all plaintext cells
with differences, S0, S5, S6, S7, S8, S10, S12, S14. Then we can compute forward
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through the SubCells layer of Round 1, and check if the resulting difference
pattern matches the family of characteristics. As shown in Figure 6, a wrong
key matches the pattern with a probability of 2−15.51. So, the probability that
a wrong key matches for all 4 correct pairs is 2−62.04. Therefore, we expect that
only the correct subkey out of the 232 possible candidates remains.

Complexity. We make a 32-bit key guess for each of 4 pairs, leading to a total
of 2 · 4 · 8 · 232 = 238 S-box look-ups. This corresponds to about 230.42 MANTIS5
encryptions.

4.4 Recovery of k0 and k1

Up to this point, we have recovered 32 bits of information about k0 + k1 and 44
bits of information about k′0 + k1 = (k0 ≫ 1) + (k0 � 63) + k1. This gives us
a system of 76 linearly independent linear equations for k0 and k1. To recover
the full key, we have to guess 52 remaining bits and identify the right key using
trial encryptions.

Instead of guessing all 52 bits, we can also use the SubCells layers of Rounds
2 and 3 (or 9 and 8) to first recover more bits of k1, based on the previously
recovered information. Similar to recovering k0 + k1, we can apply a guess-and-
determine approach to only the 4 valid pairs, for example:

(1) Recover S0 + S5 + S10 of k1: We target cell S12 at the beginning of Round
2 (transition 2 → 4 in Figure 6). From our previously recovered key bits,
we know the values of cells S0, S5, S10 at the beginning of Round 1 ( 2 ). Our
target cell is the sum of these known values, plus an unknown cell S0+S5+S10

of k1. Checking the correct S-box transition for all 4 valid pairs is expected
to eliminate all but the correct cell value (otherwise, we can additionally
check the transition 6 ← 5 in Round 9). This adds 1 linearly independent
equation to the system.

(2) Recover S6 + S12 of k1: We target cells S2, S6 at the beginning of Round 2
(transitions 1 → ). Each of the two is the sum of the same two unknown,
constant values (cell S3 and cell S9 after AddTweakey of Round 1), a known,
variable value, and a cell of k1 (S6 or S12, respectively). By checking the S-
box transitions and then eliminating the two unknown constants, we recover
the cell sum S6 + S12 of k1. This adds 1 linearly independent equation to
the system.

(3) Recover S2+S7+S8 of k1: We target cell S3 at the end of Round 9 (transition
7 ← 5 ). Similar to (1), the transition depends on a sum of k1 cells, S2 +S7 +
S8. From (1), we can derive the exact target difference in 5 , so the transition
probability is at most 2−2, and we expect only the one correct cell value to
remain. This adds 4 linearly independent equations to the system.

(4) Guess 1 bit: If we guess only 1 bit of k0 now (e.g., in cell S12), this will fully
determine the values of cells S2, S5, S6, S7, S8, S12 of k0 and k1.

(5) Recover S3 of k1: We target cells S6 and S10 at the beginning of Round 3
(transitions 4 → ). Due to the previous MixColumns operation, the internal
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difference between cells S6 and S10 is equal to the internal difference between
cells S3 and S12 after the previous AddTweakey operation, which is known
except for the addition of key cell S3 of k1. On the other hand, since we
require that both target cells belong to the same set of 4 possible values
for a valid transition, this cuts down the possible values for S3 of k1 to less
than half. After repeating for all 4 valid pairs and, if necessary, similarly for
the transition 5 → in Round 8, we expect only the correct candidate to
remain. This adds 4 linearly independent equations to the system.

(6) Recover S9 of k1: We target cells S2 and S6 at the end of Round 9 (tran-
sitions 8 → and 9 → ). The transition depends on the values of cells
S3, S6, S9, S12 before AddTweakey of Round 10, which are all known by now
except for the addition of key cell S9 of k1. Determining S9 adds another 4
linearly independent equations to the system.

Complexity. The guess-and-determine approach recovers 14 of the missing bits
of the original 64-bit keys k0 and k1. This reduces the remaining bits that need to
be guessed to 38. To complete the key, we have to compute 238 trial encryptions,
which dominates our attack complexity.

4.5 Practical Verification

We implemented the key recovery attack in C/C++ in order to verify the prob-
ability estimates and attack complexity. A first straightforward implementation
revealed some additional structural properties of MANTIS that negatively affect
the success probability of the attack. For this reason, we adapted some aspects
of the attack in order to obtain a good success probability in practice.

The first issue is that while the estimated number of about 1 to 10 valid pairs
per repetition appears to be a reasonable estimate on average, the variance is
relatively high. We observed several repetitions with no valid pairs, while other
repetitions produced a dozen or more pairs. This is a problem for the 44-bit key
recovery of subsection 4.2, which relies on finding at least 1 valid pair per repe-
tition. There are several options to compensate for this. If memory requirements
and higher runtime are not an issue, we can simply expand all bundles of key
candidates and count the number of occurrences of each candidate, which will
reveal the correct candidate with very high probability. A more practical alterna-
tive is to change the initial structures per repetition to contain more structures
for different plaintexts, but with fewer queries per structure, in order to decrease
the variance. For example, if we use 26 base plaintexts per repetition, but vary
only 7 instead of 8 cells, the resulting expected number of pairs per repetition
remains the same at 26 · 87 · 47 = 241, but the data complexity increases slightly
to 2 · 26 · 87 = 228, or 4 · 228 = 230 in total for all repetitions.

The second issue is that during the 32-bit key recovery of subsection 4.3,
we always find at least 28 possible key candidates instead of just 1, and 2 key
candidates for the 44-bit subkey. Both this and the previous issue are caused
by the same structural property of the MANTIS S-box. We filter our keys by
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checking whether the valid pairs follow the correct differential S-box transitions
in Round 1, that is, {a, f, d, 5} 7→ {a, f} for each cell. However, it turns out
that whenever a pair of cells (x, x′) follows one of these transitions, then so does
(x+ a, x′ + a). This means that for each cell k of the correct subkey, there is an
equivalent value k+a which also satisfies all the constraints of Round 1, leading
to a total of at least 28 candidates. This would also increase the complexity
of subsection 4.4 accordingly. Instead of the expensive brute-force approach of
subsection 4.4, we encoded the recovery of the remaining key information as a
Boolean satisfiability (SAT) problem.

The final adapted attack successfully recovered the full key for several tested
random challenges. A sample test run takes about 16 minutes to query 230 plain-
texts and generate the pre-filtered list of about 4 × 221 pairs (subsection 4.1).
Creating the bundles of key guesses takes 22 minutes and produces about 4×214.6

bundles in total, corresponding to about 232 key candidates per repetition if fully
enumerated (subsection 4.2). Intersecting these lists takes 18 minutes and pro-
duces more key candidates than expected, about 27. However, counting the fre-
quency of each of these candidates across repetitions clearly identifies the correct
44-bit final whitening subkey (except for 1 bit, due to differentially equivalent
keys as discussed above, which can be filtered by the SAT solver). In the sample
test run, this correct key identified 14 valid pairs, slightly less than the observed
average of roughly 25 pairs. The high number of valid pairs means that it is rel-
atively unlikely that one repetition contains no valid pairs, and that these cases
could also usually be easily fixed by reshuffling the random plaintexts between
repetitions. We also observed no false positives among the valid pairs, except
for several cases with differences {d, 5} in S0, S5, S6, S10, S12 after the SubCells
layer of Round 1 ( 1 , 2 ). We included these cases in the family of target charac-
teristics. For the initial whitening subkey recovery (subsection 4.3), as discussed
above, the recovered information is only about 32 − 9 bits due to differentially
equivalent subkeys, and takes about 3 minutes. Finally, the SAT solver takes
another 1.5 minutes to successfully recover the rest of the key (subsection 4.4).
Overall, the full correct key is recovered in about 1 hour on a single core, and
the process is trivially parallelizable.

5 Discussion and Conclusion

We recover the full 128-bit key for MANTIS5 with a computational complexity
of about 238 encryptions, memory requirements of about 225 MANTIS states,
and a data complexity of 228 chosen plaintexts with chosen tweaks. A practical
implementation recovered the correct key in about an hour based on 230 chosen
plaintexts. This violates the security claim for MANTIS5: The designers claim
resistance against attacks with computational complexity less than 2126−30 = 296

encryptions based on this data complexity.
We did not analyze the full-round MANTIS7 proposal. Many of the observa-

tions and methods for MANTIS5 also apply to MANTIS7, which certainly casts
some doubt on the design’s security margin. It is relatively easy to find a very
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similar optimal differential characteristic with probability 2−100 (compared to
2−68 for MANTIS5), and to apply the same observations for clustering charac-
teristics and improving the probability. However, a straightforward adaptation
of the full key recovery attack is made more difficult by several factors. For ex-
ample, it is hard to find characteristics for MANTIS7 which on the one hand
have a sufficiently low number of active S-boxes, and on the other hand have
enough active cells at the input and output to be useful for key recovery. Also,
due to the small state size, the probability must be relatively high to avoid false
positives among the seemingly valid pairs.

Our attack takes advantage of several very lightweight building blocks of
MANTIS, most of them inherited from the Midori block cipher. This includes the
involutive S-box with its high-probability differential fixed points a and f, the
lightweight near-MDS matrix with its binary coefficients, and the lightweight
tweakey schedule. Throughout the analysis, the symmetries of the PRINCE-like
design facilitate the repeated exploitation of these properties. Another major
issue is the interaction of the Midori-inspired round function with the PRINCE-
inspired inner rounds, which leads to a Superbox structure over 4 S-box layers
in the inner rounds. Considering all these properties, the security margin of
MANTIS may be too optimistic.

Acknowledgements. We thank the MANTIS designers for verifying a prelim-
inary version of our results and providing useful comments.
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