
Siggraph 2007 course notes

Practical Least-Squares for Computer Graphics

Fred Pighin

Industrial Light and Magic

J.P. Lewis

Stanford University

Abstract. The course presents an overview of the least-squares technique and its

variants. A wide range of problems in computer graphics can be solved using the least-

squares technique (LS). Many graphics problems can be seen as finding the best set

of parameters for a model given some data. For instance, a surface can be determined

using data and smoothness penalties, a trajectory can be predicted using previous in-

formation, joint angles can be determined from end effector positions, etc. All these

problems and many others can be formulated as minimizing the sum of squares of the

residuals between some features in the model and the data.

Despite this apparent versatility, solving problems in the least-squares sense can pro-

duce poor results. This occurs when the nature of the problem error does not match the

assumptions of the least-squares method. The course explains these assumptions and

show how to circumvent some of them to apply LS to a wider range of problem.

The focus of the course is to provide a practical understanding of the techniques. Each

technique will be explained using the simple example of fitting a line through data, and

then illustrated through its use in one or more computer graphics papers.

Prerequisites. The attendee is expected to have had an introductory course to com-

puter graphics and some basic knowledge in linear algebra at the level of OpenGL

transforms.

Updates and Slides. The latest version of these notes and the associated slides are

located at http://graphics.stanford.edu/∼jplewis/lscourse. Please down-

load the version from that directory – it may have fixes and other improvements.

1

http://graphics.stanford.edu/~jplewis/lscourse

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 2

Contents

1 Introduction 5

1.1 Motivation . 5

1.2 History . 5

1.3 Outline . 6

1.4 Notations . 7

2 Ordinary least-squares 8

2.1 Linear regression . 8

2.2 Geometry of ordinary least-squares and the normal equation 10

2.3 Ordinary least-squares and system of equations 12

2.4 Examples . 13

2.4.1 Example: mesh reconstruction and optimization 13

2.4.2 Example: computation of harmonic maps 14

3 Least-squares and optimality 16

3.1 The Gauss-Markov theorem . 16

3.1.1 Assumptions . 17

3.1.2 Conclusion . 17

3.2 What can go wrong? . 18

3.3 Other estimators . 19

3.3.1 Maximum likelihood estimate 19

3.3.2 Maximum a posteriori . 20

3.4 Measuring goodness of fit . 21

4 Least-squares with generalized errors 23

4.1 Weighted least-squares . 23

4.2 Total least-squares . 24

5 Robust least squares 27

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 3

5.1 Redescending estimators . 27

5.2 Iteratively reweighted least-squares 30

5.3 RANSAC . 31

5.4 Least Median of Squares, Forward Search 32

5.4.1 Example: detecting kinematic constraints in motion data . . . 33

6 Constrained Least Squares 34

6.1 Lagrange Multipliers . 34

6.1.1 Example: closest point on a sphere. 35

6.1.2 Example: inverse kinematics 36

6.1.3 Other Applications . 38

6.2 Convex Weights . 38

6.3 Inequality constraints . 38

6.3.1 Example: illuminant estimation 39

7 Regularized least-squares 40

7.1 Truncated SVD . 41

7.1.1 Example: skin weights computation from examples 42

7.2 Damped least-squares and Tikhonov regularization 44

7.2.1 Example: inverse kinematics. 45

7.2.2 Example: surface correspondences. 45

7.2.3 Example: image registration. 46

7.3 Quadratic constraints . 47

8 Non-linear least squares 48

8.1 Characterization and uniqueness of a solution 48

8.2 Iterative descent algorithms . 49

8.3 Steepest descent . 49

8.4 Newton’s method . 50

8.5 Gauss-Newton method . 50

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 4

8.6 Levenberg-Marquardt . 51

9 Conclusion 53

A The Singular Value Decomposition 57

B Errata 59

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 5

1 Introduction

1.1 Motivation

The course presents an overview of the least-squares technique and its variants. A wide

range of problems in computer graphics can be solved using the least-squares technique

(LS). Many graphics problems can be seen as finding the best set of parameters for a

model given some data. For instance, a surface can be determined using data and

smoothness penalties, a trajectory can be predicted using previous information, joint

angles can be determined from end effector positions, etc. All these problems and many

others can be formulated as minimizing the sum of squares of the residuals between

some features in the model and the data.

Despite this apparent versatility, solving in the least-squares sense sometime produce

unwanted or disappointing results. This is often due to a misunderstanding of the as-

sumption underlying LS. These assumptions are stated in the Gauss-Markov theorem.

The course will explain these assumptions and show how to circumvent some of them

to apply LS to a wider range of problems. For instance, outliers within the data can

severely bias a least-squares estimate but robust techniques, such as least-median-of-

squares, can give more reliable results while still minimizing a least-squares criterion.

We will show that better results can often be obtained by slightly modifying the error

function. We will also discuss the techniques used to minimize these errors and their

computational cost.

The goal of these notes is to provide a practical understanding of LS techniques. Rather

than limiting ourselves to mathematical descriptions, we provide mathematical justifi-

cations but also describe their practical domain of application and properties with ex-

amples specifically drawn from the computer graphics literature. We will show and

justify the choice of technique appropriate for each class of problem.

These notes are not meant to be complete or precise presentation of the least-squares

techniques. For mathematical references on least-squares technique and linear alge-

bra, we recommend the book by Trefethen and Bau [35] as well as the one by Ake

Björck [2].

Finally, in choosing the papers to illustrate the various techniques, our goal was to

touch as many fields as possible (animation, modeling, image processing, etc). We

could not within these notes do justice to all related papers.

1.2 History

The least-squares method was first invented and developed by three of the foremost

mathematicians of the eighteenth and nineteenth centuries: Johann Carl Friedrich Gauss

(1777 - 1855), Adrien Marie Legendre (1752 - 1833), and Pierre Simon Laplace (1749

- 1827).

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 6

The technique was first applied to predict the motion of comets. In 1801 an Italian

astronomer, Giuseppe Piazzi, discovered an asteroid and tracked its movement for a

period of 40 days. A number of scientists attempted to predict its subsequent movement

based on this data. Of these, only Gauss’ least-squares based calculation was precise

enough to allow another astronomer to re-locate the asteroid later in the year. Gauss’s

basic least-squares approach had already been worked out in 1795 at the age of 18. He

did not publish the least-squares method until 1809 however, in his book on celestial

mechanics.

The French Adrien Marie Legendre independently developed the same method in 1805

and published it in 1806. Legendre and Gauss both claimed priority and engaged in a

bitter dispute. Neither Gauss nor Legendre gave any proof of the technique, although

Gauss did state that least-squares is preferred if errors are distributed “normally” (i.e.,

with a Gaussian distribution). Laplace first provided a proof in terms of minimizing

the expectation of the error in 1812. In 1829 Gauss produced an early version of the

Gauss-Markov theorem. The theorem says that the best linear unbiased estimator is the

least-squares estimate (this statement will be explained below).

In the mid to late 1800’s, Francis Galton used the technique to study the heritability of

size. His work laid down the foundation of correlation and regression analysis.

1.3 Outline

Following this introduction, we have broken these notes into several sections.

In Section 2, we introduce the linear least-squares technique using linear regression.

We also discuss the basic algebra and geometry associated with least-squares. In

Section 3, we discuss the optimality of ordinary least-squares technique using esti-

mation theory and statistics. Then Sections 4 to 8 describe the variants of the linear

least-squares technique. First, in Section 4, we study different ways to adapt ordi-

nary least-squares to more general error distributions. Then, in Section 5, we cover

techniques that are robust to samples with large errors (i.e. outliers). Following, we

describe several techniques for constraining the solution to some subset. In Section 4,

we present various techniques for handling ill-conditioned problems. Finally, we finish

this overview by describing some of the most common technique for solving non-linear

least-squares problems in Section 8.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 7

1.4 Notations

In these notes we have used the following notations:

ai, j scalars

b vectors

A matrices

f̃ approximation of f

x̂ estimate of x

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 8

Figure 1: A one-dimensional regression. The observations are displayed as a 2-

dimensional scatter plot.

2 Ordinary least-squares

2.1 Linear regression

There are many ways to justify and explain the concept of the linear least-squares

solution. We’ll start from one of the simplest problems, that of one-dimensional line

fitting, and later move on to more general situations.

The 1-dimensional case. Imagine we are trying to find a relationship between two

variables a and b (e.g. the temperature and pressure of a gas). We assume that there

exists a linear relationship between the two such that:

b = xa.

That is to say we would like to predict the value of b given a value of a (perhaps because

it is much easier to measure a than b). Since there is a notion of dependency between

a and b, a is called the independent variable and b the dependent variable. Also, since

the previous relationship might not be exact for all pairs of values, we prefer to write:

b̂ = xa,

where b̂ (pronounced “b hat”) is the prediction of b given a. It is a prediction in the

sense that b̂ is a view of b that depends on the (linear) model “xa” that we defined.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 9

Now given a set of observations {ai,bi} (e.g. measurements of temperature and pres-

sure of a gas in a lab), we can estimate a linear relationship between the variables a and

b. One way to look for this relationship is to require that our linear model matches (as

best as possible) the observations. To do this, it seems natural to wish that the discrep-

ancy, or residual, between the model and the data be as small as possible. The questions

is then: how do we measure this discrepancy? The least-squares criteria measures the

discrepancy by adding the squared residual at each observation, i.e.:

e =
n

∑
i=1

(bi − b̂i)
2 =

n

∑
i=1

(bi − xai)
2,

where n is the number of observations and bi − xai is the residual for observation i.

Thus we are looking for the value of x that minimizes the summed squared residuals,

e. This problem is often specified by the minimum of the error function:

min
a

n

∑
i=1

(bi − xai)
2,

or the value of x that minimizes

argmin
x

n

∑
i=1

(bi − xai)
2.

Using the following notations:

b =







b1

...

bn






and a =







a1

...

an






,

we can rewrite the error function using linear algebra as:

e = (b− xa)t(b− xa) = ‖b− xa‖2
2,

where the subscript 2 refers to the Euclidian or 2-norm ‖v‖2 =
√

∑i v2
i .

Figure 1 illustrates the concept of a one-dimensional linear regression. The result of

the regression is a line in the a−b plane that goes through the origin.

The multi-dimensional case. Let us now imagine the slightly more complicated case

where b depends on m independent variables {a j}. In a similar way, we would like to

find a linear relationship between b and the {a j} such that:

b̂ = x1a1 + . . . + xmam.

or

b̂ =
m

∑
j=1

x ja j.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 10

As previously, if we dispose from set of observations {bi,{ai, j}} we can look for the

linear relationship that minimizes the sum of squared residuals:

e =
n

∑
i=1

(bi − b̂i)
2 =

n

∑
i=1

(bi −
m

∑
j=1

x jai, j)
2.

We can rewrite this using matrix notation as:

e = ‖b−
m

∑
j=1

a jx j‖2
2 = ‖b−Ax‖2

2.

In the first step we replace the outer sum by the squared norm of the vector b −
∑m

j=1 a jx j, where the vector a j has for coordinates ai, j. The second step replaces the

inner sum by a matrix multiplication where A is the matrix whose column vectors are

{a j}.

2.2 Geometry of ordinary least-squares and the normal equation

As discussed in the previous section, we are looking for the least squares solution; in

other words we are looking for the value of x that minimizes

e(x) = ‖b−Ax‖2
2.

From algebra we recall that a minimum occurs when the first derivative is zero and the

second derivative is positive (which is a mathematical way of saying that the function

should “look like” a convex bowl at the minima). An analogous statement holds in

the multidimensional case, where the first derivative of a function f (x) is the gradient,

∇ f (x), a row vector, and the second derivative, the Hessian, is a matrix that we will

denote as H f (x).

A simple statement of a multidimensional minimum, at x, is then

∇ f (x) = 0 and H f (x) is positive semidefinite.

To discuss this, let us find the second order derivative of the error function:

e(x) = ‖b−Ax‖2
2 = (b−Ax)T (b−Ax) = xT AT Ax−xT AT b−bT Ax+ bT b.

Differentiating1 with respect to x gives

∇e(x) = 2AT Ax−2AT b.

1We here use the matrix differentiation formulas: d
d p

(Mp) = M, d
dp (pTMp) = pT (MT + M), and

d
dp (pT q) = d

dp (qT p) = qT .

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 11

And differentiating once more gives

He(x) = 2AT A.

Let us examine the second property first. For a matrix M to be positive semi-definite

the product xT Mx needs to be non-negative for all x. By construction the product

xT AT Ax involving the matrix M = AT A is always non-negative. To see this notice that

xT AT Ax = (Ax)2 and this is just ‖Ax‖2
2, which is a length, which is non-negative by

definition.

The first condition above yields the equation

AT Ax = AT b.

This is the normal equation. Much of what can be done at this stage depends on the

properties of the matrix AT A. If AT A is invertible (or non-singular) then the normal

equation gives a single solution. If however it is not invertible then there is a subspace

of solutions. A square matrix is invertible if it has full rank, in other words its column

and row vectors form linearly independent systems of vectors. For a square matrix like

AT A, we have the following relationships:

rank (AT A) = rank (A) ≤ min(n,m).

In case of a regression, n is the number of independent variables and m is the number

of observations. For AT A to have full rank (i.e. rank (AT A) = n), requires having a

number of independent (in the linear sense) observations that is greater or equal than

the number of independent variables. This just tells us that we need at least as many

observations as there are variables describing the observed system or, from a different

perspective, that we need at least as many constraints as there are degrees of freedom

in the model.

Let us examine these two scenarios in more detail.

AT A is non-singular. In this case the least-squares solution is unique and is x =
(AT A)−1AT b (the matrix (AT A)−1AT is called a pseudo-inverse of A).

As we noted before the solution x are the coordinates of b in the column space of

A. In the original basis the coordinates of this vector are A(AT A)−1AT b. The matrix

P = A(AT A)−1AT is important. There are two notable things about this matrix, first

it is symmetric (i.e. PT = P), second it is idempotent (i.e. PP = P). In linear algebra

idempotent matrices represent projection operators, and when the matrix is also sym-

metric it represents an orthogonal projection. Given our previous discussion, it is clear

that P represents nothing other than the orthogonal projector onto the column space of

A. Another way to see this is to notice that the projection Pb (= Ax) is orthogonal to

the residual r = b−Pb for all x.

Figure 2 illustrates this least-squares geometry. The least-squares projector P decom-

poses b into two orthogonal vectors Pb and b−Pb.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 12

Figure 2: The least-squares geometry. The least-squares solution is the coordinates of

the projection of b on to the range of A. The residual r = b−Pb is always orthogonal

to the projection.

A reverse argument can be made to provide a geometric justification for the least-

squares solution. We can start from constraining the residual to be orthogonal to

range(A) and end up with the normal equation:

r orthogonal to range(A)
⇔ aT

i r = 0, for all i

⇔ AT r = 0

⇔ AT (b−Ax) = 0

⇔ AT Ax = AT b

AT A is singular. If AT A is singular then there exists a “null space” of vectors z for

which AT Az = 0 (also called the kernel of AT A). This means that for a solution x, x+ z

is also a solution since AT A(x + z) = AT Ax + AT Az = AT Ax = b. We will see later

that it is possible to add constraints to in order to get a unique solution.

2.3 Ordinary least-squares and system of equations

Solving linear system of equations and the ordinary least-squares method are closely

related techniques. It is also important to remember that they are different.

Following our notations, a linear system of equations can be represented as:

Ax = b,

where A (an m× n matrix) and b (an m-dimensional vector) are given and x (an n-

dimensional vector) is the unknown vector. By writing Ax = b, we specify x as being

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 13

the coordinates of b in the system defined by the column vectors of A. To see this

notice that we can rewrite it as:

Ax =







a1,1 . . . a1,m
...

...

an,1 . . . an,m






x =







a1,1
...

an,1






x1 + . . .+







a1,m
...

an,m






xm =

m

∑
j=1

a jx j = b,

where the ai are the column vectors of the matrix A. Another way to express this is

to say that the vector Ax belongs to range(A), where range(A) is the vector space

spanned by the colum vectors of the matrix A.

In the case where A is square and has full rank then A is invertible and its columns

form a basis of ℜm. In this case, the decomposition of b onto the column space of A is

unique and is A−1b. By solving the system, we just performed a change of basis.

If however A is not square or singular, we need a criteria to define how b gets decom-

posed (or projected) onto the column space of A. If we use the least-squares criteria,

minx ‖b−Ax‖2
2, then indeed we are solving a least-squares problem. However, one

could use a different criteria (e.g. minx ‖b−Ax‖1) that would require a different tech-

nique.

2.4 Examples

2.4.1 Example: mesh reconstruction and optimization

Least-squares problems with quadratic constraint arise in the field of mesh reconstruc-

tion (i.e. construction of a mesh from a set of samples) and mesh optimization (i.e.

improving a mesh for a better distribution of its vertices).

The Least-squares meshes technique [34] reconstructs a mesh based on a sparse set of

control points and a given planar mesh. The smoothness of the reconstructed mesh at

a vertex vi is enforced by the condition:

divi = ∑
(i, j)∈E

v j,

where di is the valence of vertex i and E is the set of edges. We can aggregate these

conditions using a matrix representation. Let us call x, y, and z the vectors representing

the coordinates of all vertices, and define the matrix L = (Li, j) such that:

Li, j =







1 if i = j

− 1
di

if (i, j) ∈ E

0 otherwise.

then the smoothness constraints can be written as:

Lx = 0, Ly = 0, Lz = 0.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 14

(a) (b)

Figure 3: Harmonic map computation. The mesh (b) is mapped onto a 2-d patch (b)

using a least-squares computation (borrowed from [9]

.

The control vertices impose another set of constraints on the resulting mesh. If C is the

set of indices of the constrained vertices and, for s ∈ C, v′s = (x′s,y
′
s,z

′
s) is the desired

position of vertex vs = (xs,ys,zs) then the the x-coordinate of the vertices solution is:

min
x

‖Lx‖2 + ∑
s∈C

(xs − x′s)
2

The y and z coordinates are found similarly. The above problem is a linear least-squares

problem. It is sparse and its matrix has full rank.

The goal of the Laplacian mesh optimization [29] technique is to improve or optimize

the quality of a mesh by relocating its vertices. This can be formulated in a way that is

very similar to the previous problem. Additional terms can be introduced for instance

to limit the motion in directions perpendicular to the mesh. Also sharp features can be

preserved by reducing the weight of the Laplacian constraint of high curvature vertices.

2.4.2 Example: computation of harmonic maps

The technique of harmonic maps has found applications in computer graphics such as

texture-mapping [19], remeshing [9] and surface mapping [38]. It is used to compute

mapping between 3-dimensional meshes and 2-dimensional patches.

By definition an harmonic map φ : M → N between two manifolds M and N is the

minimum of the energy function:

E(φ) =
∫

M
e(φ)dM,

where e(φ) is the energy density of the map φ at a point. In computer graphics E(φ) is

discretized as:

Ẽ(φ) =
1

2
∑

(i, j)∈Edges

ki, j‖φ(vi)−φ(v j)‖2,

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 15

where vi and v j are two vertices on a edge and the {ki, j} are spring constants defined

in [9] as:

ki, j = (L2
i,k1

+ L2
j,k1

−L2
i, j)/Ai, j,k1

+(L2
i,k2

+ L2
j,k2

−L2
i, j)/Ai, j,k2

where the symbols L and A are used for edge length and triangle area respectively and

(i, j,k1) and (i, j,k2) are the triangles that share the edge (i, j). Minimizing Ẽ(φ) with

a set of boundary conditions is solved as a linear least-squares problem.

Figure 3 illustrates an harmonic map computed with this technique. Note that the open

base of the 3-d mesh was mapped onto the boundary of the 2-d polygons and used as

constraints.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 16

3 Least-squares and optimality

Generally speaking, the goal of the least-squares technique is to estimate an unknown

quantity given some data. In the case of the linear least-squares, it is assumed that the

relationship between the unknown and the data is linear and that we measure error/loss

by summing the squares of the error for each data point. So, in using least-squares, we

are playing the following guessing game: given some data that we could gather, what is

the value of the unknown quantity that we want to know? But before starting to guess,

it would be useful to know how much we can rely on our guessing procedure. This

can be learned from probability and estimation theory. In what follows, we formalize

these notions with a theoretical detour to gain an understanding of the properties of the

least-squares guess.

In the context of estimation theory, the least-squares technique is called an estima-

tor. An estimator is a function, X̂ , that takes measured/sampled data, b, as input and

produces an estimate of the parameters, X̂(b). Estimators are designed to exhibit opti-

mality. Simply put, an estimator is optimal if it extracts all available information in the

sampled data.

From a probabilistic point of view, both the data and the parameters are random vari-

ables. This can reflect two different things. If the problem involves measured data, then

it reflects that our knowledge of these quantities is uncertain (e.g. noise in the measure-

ments). However, quite often in computer graphics, the data is known precisely. In such

context, the data is not a set of observations but rather a set of constraints that we want

to fit our model to. The variance on the data can then be interpreted as how tight we

want each constraint to be. In this case, the use of probabilities might seem inappropri-

ate. Without getting into a philosophical discussion, we will take the bayesian stance

of using probabilities as coherence constraints on a given assumption (linearity).

More specifically for least-squares, we make the assumption that the error at each data

point, ei, is a random variable. Recall that:

ei = bi −ai,1x1 − . . .−ai,nxn

or equivalently using a matrix notation:

E = b−Ax

with A = (ai, j).

3.1 The Gauss-Markov theorem

The main properties of the least-squares estimate, X̂LSE , are described in the Gauss-

Markov theorem. We first state the theorem and then discuss its assumptions and con-

clusion.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 17

If {bi}m and {x j}n are two sets of random variables such that

ei = bi −ai,1x1 − . . .−ai,nxn

and

A1: {ai, j} are not random variables,

A2: E(ei) = 0, for all i,

A3: var(ei) = σ2, for all i, and

A4: cov(ei,e j) = 0, for all i and j,

then the least-squares estimator,

X̂LSE(b1, . . . ,bm) = argmin
x

∑
i

e2
i ,

is the best unbiased linear estimator.

3.1.1 Assumptions

Assumption A1 states that the independent variables are deterministic. In particular no

error is made while measuring them.

Assumption A2, A3, and A4 describe the statistical properties of the errors. Each error

has a zero mean (A2) and all the errors have the same variance (A3). Moreover, the

errors are assumed uncorrelated (A4) (i.e. there is no linear dependency between any

two errors). Hypothesis A2 implies that the linear model is correct up to some unknown

parameters since E(E) = E(b−Ax) = 0

3.1.2 Conclusion

Let us examine what it means to be the best unbiased linear estimator. Form a trivial

point of view it means that the estimator is the best in the category of unbiased linear

estimators. Let us examine first what an unbiased estimator is and then how goodness

is measured.

Unbiased estimators. X̂LSE is linear in the sense that is is a linear function of B.

X̂LSE is also unbiased which means that its expected value is equal to the true value

of E(X̂LSE(B)) = X . In other words, if we could do multiple experiments, we would

notice that the distribution of E(X̂LSE(B)) is centered at the true value of X . This is a

good property for an estimator since a biased estimator would seem to make systematic

error, but it is not the only criteria. We should not be only concerned about the center

of the distribution of the estimator but also about its spread or variance. If the estimator

exhibit a lot of variance, it might give the correct answer on average (or in the limit) but

provide an arbitrary bad estimate for a given set of observation. Unbiasedness does not

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 18

guarantee that the estimate must be close to the true value of the parameter. In fact, an

unbiased estimator can provide arbitrarily bad estimates. [23] presents some sobering

examples of unbiased estimators.

Comparing estimators. According to the Gauss-Markov estimate X̂LSE is the best

unbiased linear estimator. A good estimator is one that is efficient. In term of statistic,

for a general (not necessarily unbiased) estimator the comparison is based on the mean

squares criteria, E((X̂ −X)(X̂ −X)T). For unbiased estimator, it can be shown that it

is equivalent to minimum variance. So to recap, among all the linear estimator of X ,

X̂LSE(B), is the estimator that has the lowest variance. This variance is equal to:

var(X̂LSE) = σ2(AT A)−1.

In other words it means that as a random variable, the estimate is on average equal to

its true value and the estimator is one that has the least spread/variance.

3.2 What can go wrong?

Each of the assumption in the Gauss-Markov theorem carries the seed . In what follows

we examine each assumption in turn.

• A1 is in general unrealistic: if we treat dependent variables as random, it does

not make much sense to treat independent variables differently. In the case of a

linear regression, it means that errors are only taken into account along one of

the dimension.

• A2 requires that the linear assumption be correct up to some unknown param-

eters. It is quite possible that the dependency between b and x is actually non-

linear. In this case fitting a linear model could give unexpected results.

• A3 requires that the error or the importance of each data sample be the same.

This is often not the case for practical applications where the accuracy of the

sensor might vary as a function or space and or time, or where

• A4 requires that the errors on the data be uncorrelated. This is not always the

case. Need an example.

To summarize, the three main breaking points of Gauss-Markov theorem and the or-

dinary least squares technique are the presence of errors in the dependent variables,

non-identically distributed samples, and non-linearity. In the rest of this note, we

Errors in the dependent variables. The total least-squares technique (section 4) is

meant to handle errors in all (dependent and independent) variables.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 19

Non-identically distributed errors. The case of non-identically distributed errors

can be handled in different ways. For small errors, weighted least-squares , total-least

squares, and generalized total-squares allow the specification of increasing general data

errors (section 4). For large errors, it might be best to leave out some of the data out of

the estimation. These data samples are called outliers and the technique are qualified as

robust (section 5. Another alternative is to make the model itself robust to errors using

regularization (section 7). Regularization penalizes models to prevent overfitting.

Non-linearity. If the samples data does not fit a linear model (section 8), using a non-

linear model might be the only sensible approach. A least-squares criteria can always

be used to fit the model but the techniques are widely different from the linear case.

Although, there are many techniques that can address the shortcomings of ordinary

least-squares, they often involve higher computational cost and sometime elusive solu-

tions (e.g. non-linear least squares).

3.3 Other estimators

To shine further light on the theoretical roots of the least-squares estimate, we delve

deeper in estimation theory to explore two general classes of estimator: the maximum

likelihood and the maximum a posteriori.

3.3.1 Maximum likelihood estimate

If we assume a particular value for our parameter X , we can measure the probability

of observing some data, B, using the probability distribution fB|X
2. However, the data

vector B is the measured value not the parameters X . What we need is to find the

probability density for X that is most likely to have produced the data. This inverse

problem can be solved by reversing the role of the parameter and the data using the

likelihood function, L, defined such that:

LX |B = fB|X .

It is important to keep in mind that these two functions are defined on different domains.

fB|X is defined on the domain of the data (with the parameters fixed) whereas LX |B is

defined in the domain of the parameters (with the data fixed). The maximum likelihood

estimator is the value of the parameter that maximizes the likelihood function:

X̂MLE(b) = max
x

LX |B(x)

Note also that the identification of the likelihood of the parameters with the probability

of the data given the parameters is purely based on intuition and has no formal mathe-

matical basis. In particular the likelihood is a function of the parameter not a probability

2The sign ”|” denotes a conditional probability. fB|X is the probability density of B given X . Here we are

interested in which way the knowing X informs us on B.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 20

distribution over it. It remains that maximum likelihood estimators are more general

than least-squares estimators and have good mathematical properties.

Going back to our least-squares topic, we can show that if the errors on the data follow

independent and identically distributed gaussian distributions then the least-squares

estimate is the maximum likelihood estimate. To briefly derive this result, assume that

the error Ei follows:

fEi
(ei) =

1

σ
√

(2π)
exp

(−e2
i

2σ2

)

LX |B(x) = fB|X (b1, . . . ,bn) = ∏
i

1√
2πσ2

exp

(−(bi − xai)
2

2σ2

)

Since log is a non-decreasing function, minimizing log(LX |B) is the same as minimizing

LX |B.

log(LX |B(x)) = ∑
i

−(bi − xai)
2

2σ2
+ const.

This last equations shows that maximizing the likelihood is equivalent to minimizing

the sum of squares ∑i(bi − xai)
2. Note that requiring that the errors follow the same

gaussian distribution, N(0,σ2), is stronger requirement than assumptions A2-4. We can

extend this result to the case where the errors follow different gaussian distributions.

With, Ei, following N(0,σi), the MLE estimate is the minimum of :

∑
i

(bi − xai)
2

σ2
i

This is a weighted least-squares problem where the weights are the inverse of the vari-

ance of the errors.

A similar approach can be taken for arbitrary error distributions. However, depending

on the distribution, the maximum likelihood estimate might not exist nor be unique.

3.3.2 Maximum a posteriori

Using the maximum likelihood estimate, we do not make any assumption on the param-

eter X . If we do know something about the distribution of X , we cannot take advantage

of it. The maximum a posteriori (or MAP) criteria addresses this shortcoming by treat-

ing X as a random variable. In this case, we have two sources of information for our

parameter, a prior distribution, gB, that tells us what are the likely values of the pa-

rameters before considering any data, and, fB|X , that tells us the probabilty if the data

given the parameters. Following Bayes rule, we can derive a posterior density for the

parameter:
fB|X (x)gX(x)

Pr(b)

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 21

The maximum a posterior estimate is then defined as the value of the parameter that

maximizes the posterior distribution:

X̂MAP(b) = max
x

fB|X (x)gX(x)

Pr(b)
= max

x
fB|X (x)gX(x)

The denominator of the posterior distribution does not depend on X and therefore plays

no role in the optimization. Observe that the MAP estimate of X coincides with the ML

estimate when the prior gX is uniform (that is, a constant function).

3.4 Measuring goodness of fit

After fitting a linear model to some sample data, one might wonder how well one did.

Goodness of fit can be measured by the sum of squared residuals. Unfortunately this

metric is not invariant with respect to the measurement units used to describe the data

and as such is not good for model comparison. What we really need is a relative mea-

sure for evaluating the fit. To begin recall that the geometry of least-squares guarantee

that the residual and the solution are orthogonal:

x̂T r = 0,

from which we derive

bT b = (Ax̂)T Ax̂+ rT r+ 2x̂T r = (Ax̂)T Ax̂+ rT r

This equation can be used to define the coefficient of determination

R2 =
(Ax̂)T Ax̂

bT b
= 1− rT r

bT b

In other words, R2 is the proportion of the squares variations in the data that can be

explained by the regression hyperplane. Clearly, R2 ∈ [0,1] and the large R2 is the

better the fit. Geometrically, R2 is the square of the cosine between the two vectors b

and Ax̂.

One of the issue with the R2 is that it is sensitive to the addition of a constant. The

Centered R2 removes this sensitivity:

Centered R2 = 1− rT r

bT b−nb̄
2

where ¯VB = ∑n
i=1 bi.

The two criteria presented so far suffer from yet another problem, they are both non-

decreasing function of the number of parameters. This means that using these criteria

a more complex model would be prefered. The criteria R̄2 corrects this problem:

R̄2 = 1− rrr/(n−m)

(bT b−mb̄
2
)/(n−1)

= R2 − m−1

n−m
(1−R2)

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 22

R̄2 is the Centered R2 with a penalty term that depends on model complexity. As m,

the number of parameters (i.e. complexity of the model) increases, the scalar m−1
n−m

increases but 1−R2 decreases. Thus, R̄2 need not be increasing with the number of

parameters.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 23

4 Least-squares with generalized errors

As we have reviewed in the previous section, the Gauss-Markov theorem under rather

strict hypothesis: the error on the data samples have to be centered, have the same

variance, and be uncorrelated. This section presents how to adapt the ordinary least

squares algorithm when the errors follow more complex distributions.

Although these methods are more general than ordinary least-squares, keep in mind

that they require that the error distribution is known. If we have no knowledge of these

distributions, the best guess is the least-squares estimate. Much of the remainder of

these course notes covers methods for dealing with alternate error distributions.

4.1 Weighted least-squares

The weighted least-squares method extend the least-squares procedure to the case

where the data samples have different variance. In other words some samples have

more error or less influence than others. Assuming that var(ei) = σ2
i , if this is assump-

tion is the only departure from the Gauss-Markov theorem assumption the best linear

unbiased estimate for the parameters is:

argmin
x

n

∑
i=1

(bi −∑m
j=1 x jai, j)

2

σ2
i

.

If we call W = Var(e)−1 = diag(1

σ 2
1

, . . . , 1
σ 2

n
), we can rewrite the previous formula in

matrix form as

argmin
x

(W(b−Ax))T (W(b−Ax)),

from which we can derive the modified normal equation:

AT WT WAx = AT WT Wb,

and the weighted least-squares estimate:

x̂W LSE = (AT WT WA)−1AT WT Wb.

One of the difficulties with the previous method is to estimate the variance in the errors.

We can use the sample variance using repeated measurements. However if the data is

deterministic, this is irrelevant. Still even in this case, we might want to weight the

different samples. The weights can be chosen arbitrarily to reflect the importance of

each sample. For instance, we could weight the sample according to a sampling density

to counter-act the effect of sample clusters. Another technique is to use the square

residuals as weights.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 24

4.2 Total least-squares

Line fitting

For 1D lines one typically uses the one-dimensional y=f(x) parameterization. Fitting

a line using this representation is easy, but it only works well when the line slope is

shallow (Figure 4). When the slope is steep the error used in the fit is not between the

data point and the closest point on the line (as would be desired), rather it is between

the data point and and the point on the line that is vertically above or below it.

In total least squares the fit is measured as the sum squared distance between the data

and their closest points on the line. This approach generalizes to fitting hyperplanes.

Total least squares is one example where an initial least squares formulation of the

problem results in an eigenvalue problem rather than the usual linear system.

The standard line representation is y = ax + c. Rewrite this as 1 · y − a · x = c, or

(1,−a)T (y,x) = c; call this

aT x = c

(a hyperplane).

Now minimize the squared distances from the points

xk to the line

min∑(c−aT xk)
2

subject to ‖a‖ = 1.

aT x− c is the distance to the line (aT x + c might look more familiar, it would be the

distance if we had used the hyperplane equation aT x+c = 0.) Note that a and c can be

scaled without changing the plane, so scale so that the normal vector a has length 1 to

eliminate this freedom.

argmina,c ∑(c−aT xk)
2 + λ (aT a−1)

= ∑aT xkxT
k a−2∑caT xk +∑c2 + λ (aT a−1)

= aT (∑xkxT
k)a−2caT ∑xk +∑c2 + λ (aT a−1)

calling X ≡ ∑xkxT
k and x̂ ≡ ∑xk then

= aT Xa−2caT x̂+ Nc2 + λ (aT a−1)

d

da
= 0 = 2Xa−2cx̂+ 2λ a

d

dc
= 0 = 2aT x̂+ 2Nc = 0 ⇒ c = aT x̂/N

substitute c 2Xa−2(aT x̂)x̂/N + 2λ a = 0

= Xa− x̂(aT x̂)/N + λ a = 0

= Xa− x̂(x̂T a)/N + λ a = 0

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 25

= (X− 1

N
x̂x̂T)a+ λ a = 0

which is an eigenvalue problem, and the minimum eigenvalue minimizes the original

problem, with the corresponding eigenvector being the desired coefficient (normal)

vector a.

Total least squares are more commonly used in computer vision than computer graph-

ics, but they are mentioned for example in [1] (which in turn references M. Pauly’s

2003 thesis).

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 26

Figure 4: Fitting a y = ax line by minimizing the squared errors between y and ax

makes sense when the line slope is shallow (top), but not when the slope is large (bot-

tom left). In both cases it is preferable to minimize the actual distance between the

points and the line (bottom right) rather than measuring only the y component of the

error. This is accomplished by total least squares.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 27

Figure 5: A high kurtosis density (heavy line) has both more data close to the mean,

and more outliers, than a Gaussian distribution (light line).

5 Robust least squares

As described earlier in this course, least squares assumes that the errors in the data have

a Gaussian distribution. This is the case, sometimes. For example, the sum of a number

of separate error terms, regardless of their individual distributions, rapidly approaches

a Gaussian.

The Gaussian assumption is incorrect in many other cases. These distributions can be

divided according to their kurtosis. Figure 5 illustrates this concept. A higher kurtosis

density (heavy line) has both more data close to the mean, and more outliers, than a

Gaussian distribution of identical variance. The distribution of differences between

adjacent image pixels is one example of a high kurtosis distribution: most differences

are small, but there are a significant number of large differences at occlusions.

The least squares estimate can be degraded arbitrarily by even a single outlying point

(Figure. 6). Intuitively, note that because least squares is minimizing the sum of the

squared error, the largest errors dominate the result. Noise from a heavy tailed distribu-

tion can thus be expected to cause degraded fits if Gaussian noise is assumed, because

there are more outliers than would be expected under the Gaussian distribution.

Robust methods address this problem, in essence, by attempting to identify and ignore

or de-weight these outlying points.

5.1 Redescending estimators

In the standard least squares approach, the square of the error is (obviously) what is

being minimized. One class of robust estimators replace the error function with some-

thing other than the square.

First, consider estimating the mean of some data using least squares: The mean esti-

mate is

argmin
x̄

1

N
(∑xk − x̄)2

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 28

Figure 6: Even a single outlying point (red point) can destroy a least squares estimate.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 29

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: The redescending estimator function log
(

1 + 1
2

(

x
σ

)2
)

(red) versus the stan-

dard quadratic error y = x2 (blue).

The x̄ that minimizes this is found by setting the derivative to zero,

2

N
(∑xk − x̄) = 0

From this, it can be seen that any single xk linearly effects the estimate.

Next, consider using the first power (the absolute value) rather than the square: The

mean estimate is

argmin
x̄

1

N
|∑xk − x̄|1

Here, after taking the derivative, any particular xk only affects the estimate by a constant

amount.

Redescending estimators take this one step further. In these functions, the derivative

goes to zero with increasing error (although the error itself continues to rise). Thus,

large errors are completely ignored.

An example of such an estimator, discussed in [3] (see Figure 7), is

log

(

1 +
1

2

(x

σ

)2
)

with derivative
2x

2σ2 + x2

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 30

Figure 8: A simple approach to robust least squares fitting is to first do an ordinary

least squares fit, then identify the k data points with the largest residuals, omit these,

perform the fit on the remaining data.

5.2 Iteratively reweighted least-squares

In concept the goal of robust least squares fitting is to identify outlying points and

discard them. One simple way to approach this is to first fit the data using ordinary

least squares, then identify the k points with the largest residuals, discard these, and fit

the remaining data (Figure 8. This approach has been called trimmed least squares.

A drawback of this approach is that it requires manual tuning of the number of expected

outliers, k. It also assumes that the data can be neatly divided into good data and outliers

– which may or may not be the case.

Iteratively Reweighted Least Squares (IRLS) addresses this by minimizing

‖b−Ax‖p

where ‖‖p is the “lp” norm, i.e.,

‖x‖p =
(

∑x
p
k)

)1/p

The usual least squares minimizes ‖‖p for p = 2. As noted above, minimizing the

squared errors causes the largest errors to be fit at the expense of disregarding small

errors. This is the wrong approach. if the largest errors are due to outliers. Reducing p

reduces this emphasis of the largest errors; with p = 1 all errors are treated equally (so

the sum of the absolute values of the errors is what is minimized).

The key to doing this is to note that an error |e|p can be restated as

|e|p = |e|p−2e2

Then, interpret the |e|p−2 factor as a weight, and minimize e2 using weighted least

squares.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 31

The residuals ek are not known of course. IRLS approaches this by an iterative scheme

in which the residuals are found from a fit using the existing weights, and these resid-

uals then form the weights for the next iteration:

W = I

iterate for i = 1 . . .

ei = W(b−Axi)

W = diag(|ei|p−2/2)

solve xk+1 = argmin‖W(b−Axk)‖2

Note that the division by two in e
p−2
i /2 is because in solving ‖W(b − Axk)‖2 the

weights W are squared.

This algorithm converges for 1 < p < 3, although it requires many iterations as p ap-

proaches 1.

IRLS is used in [25] in a texture synthesis context order to robustly compare pixel

values between corresponding regions of the reference texture and the texture being

synthesized.

5.3 RANSAC

RANSAC [12] is a simple and general procedure for fitting models to data that has

clearly separated outliers. The acronym stands for RANdom SAmple Consensus. Al-

though RANSAC itself is not directly connected to least squares, it forms the bases for

procedures such as Least Median of Squares (described below).

The starting point for RANSAC is the idea that it is possible to select a smaller subset

of k samples from the N data points that contains no outliers. Of course there is no

automatic way to know which data points are outliers – if this were not the case, this

information could be used to just remove the outliers from the data.

Instead RANSAC iterates the following steps:

1. randomly select k points

2. fit the model to these points

3. evaluate the quality of this fit on the remaining points

The subset that has the best fit the remaining data is retained – it is assumed that this

subset contains no outliers. Finally, the model is re-fit to all the data that are “suffi-

ciently close” to the model initially fit from the k points.

Instead RANSAC repeatedly makes a random selection of the k points, fits the model

to these data, and then evaluates the fit on the remaining data. The subset that has

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 32

the best fit the remaining data is retained – it is assumed that this subset contains no

outliers. Finally, the model is re-fit to all the data that are “sufficiently close” to the

model initially fit from the k points.

The previous paragraph describes the general RANSAC strategy. To give a more spe-

cific example, consider the case of fitting a line to data with 50% outliers. In this case,

in choosing a single point, there is a 50% chance of choosing a “good” point rather

than an outlier. A single point is not sufficient to fit a line, so instead pick k = 2. There

is a 25% chance of selecting a subset of 2 points that contains no outliers. A line is fit

to each of a number of randomly chosen subsets of two points. If the subset contains

two good points, then it will be the case that the resulting line lies close to all the re-

maining good data, whereas if the subset contains one or two outliers, then very few

other points will like close to the line. Thus, the RANSAC fitting procedure can easily

identify a set of good data. If a sufficient number of subsets are evaluated, one of them

will contain good data with high probability – see a description of RANSAC for more

details [14] (or you can easily work out the probabilities).

5.4 Least Median of Squares, Forward Search

Least Median of Squares (sometimes abbreviated LMedS) is a RANSAC-like scheme

in which the median error is used to evaluate RANSAC step 3, the fit of the remaining

points to the model.

The median is a well known example of a robust estimator: it can produce a reasonable
estimate in data corrupted by nearly 50% outliers. For example, consider the following
data,

0.3 0.2 99 99 0.5 0.8 99

Here the valid values are 0.3, 0.2, etc., and 99 is an outlier. The sorted set of values is

0.2 0.3 0.5 0.8 99 99 99

and the median value is 0.8 – which is clearly not representative of the mean value

of the inlying data, but at least it is an inlying data sample. In the robust statistics

terminology, the median is said to have a breakdown point of 50%. The breakdown

point is the maximum percentage of data points to which an arbitrarily large error can

be added without causing the estimator to change arbitrarily.

Figure 9 shows an example of data fit with LMedS and ordinary least squares.

Forward Search is another variation on these ideas. In this procedure, a subset of

inlying points is first identified (e.g., using RANSAC, or perhaps manually), and then

this set is grown by iterating the following steps:

1. add the data point with the lowest residual to the currently fit model

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 33

Figure 9: Successful application of Least Median of Squares fitting: The LMedS line

(blue) lies close to the model line (black) from which the inliers were generated. The

ordinary least squares fit (red line) is influenced by the two outliers.

2. re-fit the model to the new set of points.

The iteration is terminated when the lowest residual is larger than some threshold re-

flecting an outlier.

Forward search is used to achieve surface fitting to noisy data, while avoiding smooth-

ing of edges, in a Siggraph 2005 paper [13]. In this paper, Fleishman et al. realized

that points on the other side of a crease can be regarded as outliers. They are thus able

to apply forward search to grow the set of points up to but not across creases, thus

producing smoothed but crease-preserving models from noisy scan data.

5.4.1 Example: detecting kinematic constraints in motion data

Robustness issues often arise when processing recorded data like motion capture data.

In [6] full-body motion capture data is analyzed to detect kinematic constraints such

as foot plant contacts. For a given joint, the technique assumes that between frames i

and i+1 a rigid motion Di occurred. Instantaneous constraints are defined as the set of

points remaining stationary under a transformation Di. With Di = (Ri|ti), a point p is

stationary if and only if:

(R− I)p = −t.

Note that the previous equation has a solution only if the translation t does not have

a component along the axis of r. The existence of stationary points can be hidden by

noise in the data. A test can be designed using the residual ‖(R−I)p− t‖ (to determine

the existence of a solution) and the singular values of R− I (to determine the number

of dimensions of the constraint). Both tests must be robust to noisy data to avoid

selecting incorrect frames. “Inlier” frames are detected using a least-median of squares

approach.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 34

6 Constrained Least Squares

6.1 Lagrange Multipliers

Lagrange multipliers are a general approach to adding equality constraints for many

types of equations, not just linear systems formulated using least squares. Lagrange

multipliers have been used to add constraints to linear systems to solve problems such

as inverse kinematics, camera control, and constraint problems in physical simulation.

We will describe an inverse kinematics solution below.

A example of an equality constraint is: find the minimum value of x2 + y2 subject to

x being constrained to the equality x = 1. In this simple case Lagrange multipliers are

not needed – the solution can be found by substituting the value of x for the variable in

the equation, resulting in an equation in the one variable y whose solution is easy. This

approach might be termed “substitute and simplify”.

Lagrange multipliers are helpful in more complicated situations where the “substitute

and simplify” approach cannot be easily applied. In the case of linear systems, the

Lagrange multiplier approach often leads to a block matrix system, which we will see

below.

First, let’s work through a Lagrange multiplier example for a non-matrix case: find the

maximum value of f (x,y) = x subject to x,y lying on the unit circle, i.e., x2 + y2 = 1.

This function is a linear “ramp” increasing in the x direction, and the point of maximum

x on the unit circle will clearly turn out to be x = 1,y = 0.

The steps involved in using Lagrange multipliers are:

1. Identify the constraint, x2 + y2 = 1 in this case.

2. Reformulate the constraint as “something = 0”. In the example, x2 + y2 = 1

becomes x2 + y2 −1 = 0.

3. Multiply the “something” by λ . So λ (x2 + y2 −1).

4. Add this to the original equation. In the example,

x + λ (x2 + y2 −1)

5. Lastly, try to find the maximum or minimum of this new equation by the standard

calculus approach of setting the derivative with respect to the variables to zero,

and solving. The λ is one of these variables.

d

dx

[

x + λ (x2 + y2 −1)
]

= 1 + 2λ x = 0

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 35

d

dy

[

x + λ (x2 + y2 −1)
]

= 2λ y = 0

d

dλ

[

x + λ (x2 + y2 −1)
]

= (x2 + y2 −1) = 0

If possible, solve for λ and substitute into the other equation(s). In this case,

from the first equation, solve for λ =−1/2x. Then substitute this into the second

equation, obtaining y/x = 0. Considering this and the third equation then, the

solution is evidently x = 1,y = 0.

This technique might seem a bit weird at first – what is this new variable “λ ”? Because

of this it may be easiest to first practice using it and see that it works, and then work on

the intuition behind it.

The intuition behind it is not that hard, either. Consider minimizing f (x,y) constrained

by g(x,y) = 0. The proposed solution can only move perpendicular to the gradient of

g, otherwise it is violating the constraint. A minimum along the path g(x,y) = 0 is

found at a place where moving along g locally will not change f . This means that the

gradient of f is locally parallel to the gradient of g, and so is a linear multiple of it,

which is expressed by the Lagrange multiplier setup

∇ f (x,y)+ λ ∇g(x,y) = 0

6.1.1 Example: closest point on a sphere.

As a slightly more relevant example, let’s take the problem of finding the point on a

sphere that is closest to a given point. We could imagine this sort of problem coming

up in a graphics context (though of course the solution to this particular problem can be

seen immediately without going through the math). The sphere will be at the origin and

unit size for simplicity, though the technique works the same for an arbitrary placement

and size.

The constraint that a point p is on a unit-sized sphere can be written pT p = 1. The

point p on the unit sphere that is closest to a given point q can then be written using a

Lagrange multiplier as

(p−q)T (p−q)+ λ (pT p−1)

or

pT p−2pT q+ qT q+ λ (pT p−1)

Now, first take the derivative with respect to p and set to zero, and then solve for p:

d

dp
= 2p−2q+ 2λ p = 0

p(1 + λ) = q

p =
1

1 + λ
q

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 36

Next take the derivative with respect to λ , recovering the constraint equation pT p = 1,

and substitute this expression for p into this:

qT q

(1 + λ)2
= 1

√

qT q = 1 + λ

λ =
√

qT q−1

Lastly, substitute this expression for λ back into the expression for p:

p =
1

√

qT q
q =

q

‖q‖

In other words, the solution is to just take the vector to q and normalize its length (as

we already knew in this case).

6.1.2 Example: inverse kinematics

We will use inverse kinematics as an example of using the Lagrange multiplier tech-

nique in a least squares and graphics context.

Define p as the 2d position of an end-effector, controlled by the mouse. Define q as

a “state” vector, such as the vector of n joint angles of a limb. Then p is a nonlinear

function of q,

p = f (q)

In inverse kinematics, we want to find q given a new position of p. This is usually

underconstrained since the number n of joint angles (usually 3 for each joint) is greater

than the number of known values – the two (x,y) components of the mouse location.

The problem is also complicated because f () is nonlinear.

In several papers Gleicher and Witkin used the idea of solving this by first locally

linearizing by taking the derivative with respect to time [15, 16]:

dp

dt
=

d f

dq

dq

dt

Let’s denote J ≡ d f
dq , so

ṗ = Jq̇

where ṗ denotes the derivative of the mouse position (or end effector) with respect to

time, and similarly for q̇.

Now the system is linear, but still underconstrained – the mouse has two degrees of

freedom, but the skeleton typically has more. This can be fixed by adding an additional

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 37

goal. Gleicher suggested that the change in state be as small as possible, thus the

squared difference of the change in each joint angle from zero

‖q̇‖2 =
n

∑
i

(q̇i −0)2

is minimized. Minimizing this alone would result in no movement to the limb, so

instead constrain it so that the result of the joint angle change, Jq̇, matches the change

in the mouse position / end effector, ṗ. Combining these gives the goal

argmin
q

1

2
q̇T q̇+ λ (ṗ−Jq̇)

(The 1
2

is included to cancel the factor 2 that always appears when taking the deriva-

tive.)

Taking the derivatives with respect to all the variables q̇,λ ,

d
dq̇ = 0 = q̇−JT λ

d
dλ = 0 = ṗ−JT q̇

As mentioned earlier, simultaneous linear equations such as these can sometimes be

solved by first solving for one unknown such as the λ and substituting the resulting

expression into the other equation(s), as was done in the previous example in this sec-

tion. However, a numerical solution is also possible and does not require any further

algebra. The numerical solution uses a block matrix form,

[

J 0

I −JT

][

q̇

λ

]

=

[

ṗ

0

]

where (because this is a block matrix system) the variables themselves represent vec-

tor/matrix quantities rather than individual numbers (“scalars”). In our example, ṗ is a

2×1 column vector, q̇ is a n×1 vector, J is the 2×n matrix of derivatives, I is an n×n

identity matrix, and 0 denotes a zero vector of length n. Schematically, the dimensions

are
[

2×n 2×1

n×n n×2

][

n×1

2×1

]

=

[

2×1

n×1

]

A correct block matrix system can be symbolically manipulated as if the individual

components were ordinary scalars. You should try multiplying out the left hand side

of the block matrix equation above to see that it does represent the original pair of

equations.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 38

6.1.3 Other Applications

6.2 Convex Weights

In applications such as skinning and blendshapes it is desirable that the weights (for ex-

ample the skinning weights on the various joints) sum to one. With this constraint, the

weights are no longer independent degrees of freedom. One approach to this problem

would be to remove one degree of freedom.

In a skinning paper in Siggraph 2005, James and Twigg [24] took the alternate approach

of explicitly adding the sum-to-one constraint to the system:

[

A

1 . . .1

]

[x] =

[

b

1

]

(Some other techniques in this paper are discussed in Section 7).

6.3 Inequality constraints

It is also often desirable that weights (such as blendshape weights) be non-negative, in

addition to summing to one. Although the set of blendshape bases will be designed with

this in mind, negative weights can arise, for example, when attempting to fit marker

motion that lies outside the range of the blendshapes (this may result from either noise

in the marker motion, or from positions that are simply not part of the range of motion

achievable using the blendshapes). Chuang and Bregler discussed this problem in [8].

Unfortunately achieving inequality constraints such as non-negative weights cannot be

achieved with standard matrix tools such as the SVD. We will mention the type of

routine needed in this section.

The constraint of non-negative weights can be accomplished using non-negative least

squares (nnls). A routine for this purpose was described in [26], and C code is available

on the web (search for nnls.c). This routine was used in [24] to find non-negative

vertex-joint weights for skinning.

Quadratic programming solves least squares problems subject to both general inequal-

ity constraints

Cx ≤ d

and equality constraints

Ex = f

There are quite a few C/C++ quadratic programming libraries available on the web,

and Matlab’s optimization toolbox has includes QP.

In Bregler et al. ’s cartoon capture paper [4] quadratic programming was used to simul-

taneously cause weights to sum to one and to lie in the range [−0.5,1.5].

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 39

6.3.1 Example: illuminant estimation

The problem of illuminant estimation can be described as estimating the light from an

image of a scene. The gamut mapping solution of this problem consists in determining

a set of mappings that take the image data onto a gamut of reference colors under a

known light. Gamut Constrained illuminant estimation [11] is a variant that allows the

use of a set of plausible lights.

This is solved as a classification problem where each plausible light is represented by

its gamut and is tested again the image data. For a given light, the fit is evaluated for

each color sample by measuring how far it is from the illuminant’s gamut. Let’s call bk

a color sample, ai, j a color of gamut Gi, and CH(Gi) the convex hull of Gi. The error

for sample bk is

ei(bk) = ‖bk − ∑
ai, j∈CH(Gi)

x jai, j‖2.

Solving for

min
{x j}

∑
k

ei
k, with x j ≥ 0 for all j

gives a measure of fit between the data and the ith illuminant. Since, this measures

how well the image samples fit within the gamut, the unknown weights, {x j}, are

constrained to be non-negative.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 40

7 Regularized least-squares

Numerical techniques such as least-squares can be adversely affected by ill-conditioning.

Ill-conditioning manifests itself by an acute sensitivity to the data – a slight perturba-

tion in the data can produce a widely different solution to the problem. Ill-conditioning

is usually bad news since it is not possible to completely avoid noise or numerical

imprecision. Regularization refers to a set of techniques whose goal is to improve

conditioning.

For a linear-least squares problem, Ax = b, ill-conditioning (and inversely condition-

ing) can be measured using the condition number, κ(A), of the matrix A. κ(A) is

computed using:

κ(A) =
σmax

σmin

,

where σmax and σmin are respectively the largest and smallest singular value of A. If

κ(A) is large (e.g. κ(A) ≫ 1) then the problem is ill-conditioned.

Considering the SVD a linear system Ax = b can show how poor conditioning can

result in large changes to the solution when the problem changes only slightly. The

SVD representation is UDVT x = b (see appendix A). First pre-multiply the system by

UT , obtaining DVT x = UT b, and then define some new variables y≡VT x and c≡UT b.

This gives the related system Dy = c. Here y is not the original solution, but it has the

same norm as the original solution because multiplication by the orthogonal matrix VT

does not change the norm. If the last singular value is a small value like 0.0001, the

last row of this related system will look like

0.0001d1 = c1

so a change c1 → c1 + ε in the last element of c will result in the last element of

the solution, d1, changing by an amount 10000ε . The actual solution x is obtained

from c by application of the orthogonal matrix V, so this large change is distributed

unpredictably among all the elements of the solution.

Example of ill-conditioned problem. Scattered data interpolation is a popular tech-

nique in computer graphics. Its goal is to approximate a smooth function given a lim-

ited set of (scattered) samples. For instance, in [7] and [36], it is used to model implicit

surfaces from sample points. In [30] and [32], it is used for interpolating a sparse

displacement field to animate or deform a facial model.

In all these examples, we are given a set of 3-dimensional point or data sites {pi} and

at each of these points, we know the values, {f(pi)}, of a function f we are trying to

approximate. Using radial basis functions we can compute an approximation, f̃ , such

that:

f̃ (p) =
n

∑
i=1

λiφ(‖p−pi‖),

where φ is a kernel function (for instance the thin-plate or biharmonic kernel φ(p) =
‖p‖2log(‖p‖)) (in the 2D case) and the λi are a set of weight vectors (they have as

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 41

many dimensions as the function f). The weights can be estimated by solving the

least-squares problem:

min
{λi}

n

∑
j=1

‖f(p j)− f̃(p j)‖2 = min
{λi}

n

∑
j=1

‖f(p j)−
n

∑
i=1

λiφ(‖p j −pi‖)‖2.

This yields the square linear system of equations:






φ(‖p1 −p1‖) . . . φ(‖p1 −pn‖)
...

...

φ(‖pn −p1‖) . . . φ(‖pn −pn‖)













λ1

...

λn






=







f(p1)
...

f(pn)







If we examine the matrix in the system above, we quickly realize that things can turn

sour if two data sites pi0 and pi1 are very close spatially since two rows of the matrix

are nearly the same and the matrix is then ill-conditioned or rank deficient. In the

limit adding an extra row in the matrix should not be problematic per say but if the

values f(pi0) and f(pi1) differ because of noise then finding a solution to the system

becomes difficult. On one hand we are looking for an approximation in a space of

smooth functions, on the other hand the data indicates that the function is not smooth.

This contradiction needs to be resolved. In particular, since the data is corrupted with

error, it is not necessary for the approximation to interpolate the data.

Since errors in the data can flood their solutions, ill-conditioned problems are bad news.

In what follows, we examine different regularization for improving least-squares prob-

lem conditioning.

The Gauss-Markov theorem (Section 3) tells us that the least-squares estimator is the

unbiased linear estimator with minimum variance. When A is ill-conditioned, this

variance is still large. The variance can be reduced if the estimator is allowed to be

biased. This is the approach taken by regularization techniques: accept some bias to

reduce the variance.

Note that all these techniques requires choosing regularization or damping parameters.

There are published techniques that can guide us in this choice. Many of them require

some knowledge or assumptions of the noise distribution. Often it may be best to

experiment with several approaches. In what follows we briefly mention some of these

techniques.

7.1 Truncated SVD

One simple way to improve conditioning is to lower the condition number of the matrix

by manipulating its Singular Value Decomposition. The SVD of A (see Appendix A)

is:

A = UDVT ,

where U and V are orthogonal matrices and D is the diagonal matrix of singular values

(D = diag(σ1. . . . ,σ2)). We can rewrite this equation using the columns vectors of U

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 42

and V (ui and vi respectively):

UDVT =



 u1 . . . un











σ1 . . . 0
...

. . .
...

0 . . . σn









 v1 . . . vn





T

From which we derive:

A =
n

∑
i=1

σiuiv
T
i .

In other words, the SVD allows the reconstruction of the matrix A as a weighted sum

of rank 1 matrices (uiv
T
i). If we assume that the singular values are sorted in non-

increasing order (i.e. σ1 ≥ . . . ≥ σn), we can truncate the reconstruction at index k and

approximate A by the matrix Ak:

A ≃
k

∑
i=1

σiuiv
T
i .

Ak is the best rank k approximation of the matrix A. In other words, Ak is the minimum

min
M

‖A−M‖F , with rank(M) = k,

where ‖.‖F denotes the Frobenius norm (‖M‖F =
√

∑i, j m2
i, j). The condition number

of Ak is κ(Ak) = σmax(A)

σk(A)
and since σk(A) ≥ σmax(A) then κ(Ak) ≤ κ(A), so using Ak

yields a better conditioned system.

Choosing the truncation value. Choosing the optimal value for k can be challeng-

ing. For instance, using the concept of the numerical rank of a matrix and techniques

from perturbation analysis [18] define a very complex criteria for k. A more simple

criteria [20] is to pick k such that it is the smallest integer such that:

‖b−Ax̂‖ =
n

∑
i=k+1

(UT b)2
i < n.

The number n in the above formula arise from the expectation of the Chi-squared dis-

tribution with n degrees of freedom. This distribution governs the sum of squared

residuals under a normal (i.e. Gaussian) error distribution assumption.

The truncated SVD technique is useful for addressing ill-conditioning but provides

little choice for controlling how the solution is determined. The techniques presented

next offer much more opportunities for tweaking.

7.1.1 Example: skin weights computation from examples

The goal of skinning is to deform a surface (e.g. a human body) according to the

motion of its skeleton. Traditionally, the skeleton is a collection of bones represented

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 43

NNLS TSVD

Figure 10: Example of regularization from James and Twigg [24]. Visualization of skin

weights on a camel model. On the right the weights were computed using truncated

SVD, on the left they were computed by solving a non-negative least-squares problem.

by (usually rigid) transformations, {Tb} and each vertex vi is associated with a set of

bones indexes Bi. The animated position of a vertex, vi(t), is computed by linearly

blending the influence of each bone:

vi(t) = ∑
b∈B

wi,bTb(t)vi,

where wi,b (called skin weight) is a scalar that tells how much influence bone b as on

vertex i. The skin weights are traditionnaly specified using a paint program. An alter-

native is to derive or learn the skin weights from a set of deformed meshes associated to

specific skeleton configuration. This is the approach taken by [27, 24]. To see how this

problem is set up, let us call vs
i the position of vertex i in example mesh s and similarly,

Ts
b, the transform associated with bone b in the configuration of mesh s. The problem

is to find weights, {wi,b} that are solutions of:

min
{wi,b}

∑
s

‖ ∑
b∈B

wi,bTs
bvi − vs

i‖2

For each vertex i, its skin weights, wi, are thus determined as the solution of a least-

squares problem, Aiwi = vi. Ill-conditioning can easily creep in this problem. In par-

ticular, it will be the case if we introduce , in the example set, meshes that are quite

different but are associated with similar skeleton poses. To remedy this problem, [24]

uses two strategies. The first strategy is to use a truncated SVD (with a singular value

threshold of 10−5‖Ai‖2
3). The second strategy is to impose a non-negative constraint

on each weight. Figure 10 provides a visualization of the weights estimated with these

two techniques.

3Note that for a matrix M, ‖M‖2 = maxx 6=0
‖Mx‖2
‖x‖2

= σmin

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 44

7.2 Damped least-squares and Tikhonov regularization

The basic idea behind damping is to add terms to the penalty function to avoid certain

solutions. For instance, because ill conditioning causes large values in the solution, we

might want to add a preference that the solution be small using a modified least-squares

criterion such as:

min
x

(‖b−Ax‖2 + λ‖x‖2),

where λ is a scalar.

This type of technique is called damped least-squares or Tikhonov regularization. It

use a penalty function of the general form:

min
x

(‖b−Ax‖2 + λ‖Lx‖2),

where L is a matrix that allows control over the damping. The minimization problem

yields the system of equations:

(AT A+ λ LT L)x = AT b.

For instance, if we choose λ = 1 and L = diag(l1, . . . , ln) to selectively damp each

parameter in the solution, the solution can computed using the SVD decomposition:

x̂ =
n

∑
i=1

σi

σ2
i + l2

i

uT
i bvi,

Another choice is to use a bi-diagonal matrix L that approximates the first derivative

operator:

L =







−1 1

. . .
. . .

−1 1







This formulation is sometime used in image processing for enforcing smoothness in

the solution by limiting the magnitude of the spatial derivatives (a Laplacian term can

also be used).

Choosing the damping parameters. Several techniques have been proposed for se-

lecting a damping parameter. Some of these assume that the variance of the noise is

known, such as the discrepancy principle [22]. Other techniques such as generalized

cross-validation [17] and L-curve [21] are applicable with less knowledge of the noise.

Generalized cross-validation defines the optimal damping parameter as the minimum

of a the function ‖Ax− b‖2/do f 2, where do f is the effective number of degrees of

freedom. The L-curve technique is based on plotting the norm of the solution, ‖x̂‖,

against the norm of the residual, ‖Ax− b‖. The parameter λ is then selected at the

point of maximum curvature. That corner corresponds to a change in behavior of the

system. Finally and more recently, [31] proposes a selection criteria based on minimiz-

ing an approximation of the error between the regularized solution and the (unknown)

true solution.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 45

7.2.1 Example: inverse kinematics.

Ill-conditioning arises naturally in problem like inverse kinematics where we are try to

specify the joint angles along a kinematic chain (e.g. an arm) using the target position

of an end effector (e.g. a hand). Following the notations of [5], if p is the position of

the target, q is the vector of joint angles, and J is the matrix of partial derivatives (
∂pi

∂q j
,

then applying the chain rule yields:

ṗ = Jq̇,

with ṗ and q̇ being respectively the derivatives of p and q with respect to time. The

previous equation is a linearized approximation of the true inverse problem, p = f (q).
It can be solved once at every frame, in such case the end effector only approximately

follows the target, or iteratively until the end effector is close enough to the target. The

least squares solution is:
ˆ̇qLSE = (JT J)−1JT q̇.

Unfortunately this problem is in general under underconstrained (e.g. specifying the

position of the hand does not constrain the elbow) and small changed in the target

position can result in large changes along the cinematic chain. To address this prob-

lem [37, 28] damp the system to penalize large angle variations in the error function

and minimize:

min
q̇

‖Jq̇− ṗ‖2 + λ‖q̇‖2.

7.2.2 Example: surface correspondences.

We saw that ill-conditioning arises in sparse data interpolation problems. [30] uses

sparse interpolation to derive a dense mapping between two meshes from a sparse set

of correspondences. First, the corrrespondances are interpolated using Radial Basis

Functions. The interpolated function is used to warp the source mesh toward the target

mesh. Finally the warped source mesh is cylindrically projected onto the target mesh.

Given a set of samples, {pi,di}, the interpolating warping function d̃ is expressed as:

d̃(p) =
n

∑
i=1

wiφi(‖p−pi‖),

where φi is an adaptive kernel of the form:

φi(h) =
√

h2 + s2
i .

The parameter si is used to tune the influence of the kernel to the density of the

sample data. It is chosen as the distance to the closest neighboring data site (i.e.

si = mini6= j ‖pi −p j‖).

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 46

Fitting the RBF model is then done by solving the minimization problem:

min
{wi}

n

∑
j=1

(‖d̃(p j)−d j‖2 + λ‖w j‖2)

= min
{wi}

n

∑
j=1

(‖
n

∑
i=1

wiφi(‖p j −pi‖)−d j‖2 + λ‖w j‖2)

The regularization parameter λ is estimated by minimizing the Generalized Cross-

Validation function:

GCV (λ) =
∑n

j=1 ‖d̃(p j)−d j‖2

(n− γ)2
,

where n is the number of correspondences and γ is the effective number of parameters

(γ = n−λ tr(A−1)). Since {wi} and λ depends on each other, the estimation proceeds

iteratively by alternatively estimating the two quantities.

7.2.3 Example: image registration.

Many image processing problems are ill-posed and need to be regularized. This can be

done by imposing a roughness penalty on the solution. For instance, in super-resolution

reconstruction [10] the goal is to produce high-resolution images from a set of lower

resolution images. The difficulty is to register the lower resolution images. This is

usually done assuming a linear motion. Let us assume, n low resolution images {yi}
that we would like to fuse into a high-res image x. If we represent the images as

column vectors sorted in lexicographic order then we can represent linear operators on

images as matrices operating on these vectors. In particular, we will assume that the

relationship between yi and x is linear:

yi = DiHiFix+ vi

where Fi is the geometric motion operator from x to yi, Hi is a blur matrix, Di is a

downsampling matrix (or decimator operator), and vi is a noise vector. The unknown

high-res image can be estimated as the solution of the least squares problem:

min
x

n

∑
i=1

‖yi −DiHiFix‖2 + λ‖Lx‖2

where the regularization matrix L is built by replication of the Laplacian kernel:

Lkernel =





1 1 1

1 −8 1

1 1 1





The regularization term enforces spatial smoothness since it penalizes solutions that

have large Laplacians.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 47

7.3 Quadratic constraints

The regularization methods introduced in the previous subsection are formulated by

adding a penalty term of the form λ‖Lx‖2. Another approach is to use a similar ex-

pression to define a bounded problem:

min
x

‖b−Ax‖2 subject to ‖Lx‖ ≤ γ,

where γ is a scalar defining a region of acceptable solutions.

The constraint ‖Lx‖ ≤ γ defines a feasible set among which we must choose the so-

lution. This problem is quite different from the penalty approach described in the

previous subsection. The quadratic expression defines a hard constraint whereas the

penalty does not.

From a mathematical point of view, this is an instance of a least-squares with quadratic

inequality constraint (LSQI) problem whose general form is:

min
x

‖b−Ax‖2 subject to ‖Lx−d‖ ≤ γ.

Clearly the problem only has a solution if minx‖Lx−d‖ ≤ γ . If the previous condition

holds, then there are two cases: either the solution xint = minx‖Ax− b‖ is within the

feasible set (i.e. ‖Lxint −d‖ ≤ γ and xint is the solution, or it is not and we have to look

for a solution at the boundary of the set:

min
x

‖b−Ax‖2 subject to ‖Lx−d‖ = γ.

This type of problem can be analyzed using Lagrange multipliers (see Section 6). The

resulting normal equation is:

(AT A+ λ LT L)x = AT b + λ Ltd,

where λ is the Lagrange multiplier determined by the constraint:

‖Lx−d‖ = γ

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 48

8 Non-linear least squares

So far, we have focused on problems of the form:

min
x

‖b−Ax‖2 = min
x ∑

k

(bk −aT
k x)2,

where A is a matrix with row vectors {ak}. From a model fitting perspective the lin-

ear least squares formulation assumes a linear model, x, and fits it to the data points

{(ak,bk)}. The linear assumption, albeit convenient, is often not practical and we often

found ourselves considering non-linear models. Let f be such non-linear model. Keep-

ing consistent with our notation, f is a non-linear function from ℜn to ℜ. Also call x a

vector of parameters and {(ak,bk)} a set of inputs and outputs such that f (ak,x) = bk

for all k. Fitting this non-linear model to the data can be formulated as:

min
x ∑

k

(bk − f (ak,x))2.

We can thus write the non-linear error function as E(x) = ∑k(bk − f (ak,x))2 and the

solution as x̂LSE = minxE(x). We will call the jth residual r j = b j − f (a j,x) and the

vector of residuals r = (r1, . . . ,rm).

Since we will be using derivatives, we can express the first and second order derivatives

of E as a function of the derivatives of r and in particular its Jacobian matrix, J =
[

dr j

dxi

]

.

Using the chain rule, derive:

∇E =
m

∑
j=1

r j∇r j,

= JT ∇r

HE =
m

∑
j=1

∇r j∇rT
j +

m

∑
j=1

r jHr j
,

= JT J +
m

∑
j=1

r jHr j

8.1 Characterization and uniqueness of a solution

In general a local minima, xmin of E is characterized by the two conditions:

∇E(xmin) = 0

hT HE(xmin)h ≥ 0, for all h ∈ N(xmin)

where HE is the Hessian matrix of E (e.g. HE = (∂E
∂xi∂x j

)) and N(xmin) an open neigh-

borhood of xmin . Looking at the second order Taylor series expansion of E at x gives

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 49

us some insights on these conditions:

E(xmin + h) ≈ E(xmin)+ ∇E(xmin)h+
1

2
hT HE(xmin)h

≈ E(xmin)+
1

2
hT HE(xmin)h

In other words, locally around xmin the function E looks like an inverted bowl centered

at xmin.

For smooth functions, these conditions define local minima. They also define a global

minimum if the function, E , is convex.

The first two algorithms we cover, steepest descent and Newton’s method, are not spe-

cific to least-squares problems but rather they can be applied to general minimization

problems. They are not often employed in practice, however, they are often used to

define or measure other algorithms.

8.2 Iterative descent algorithms

When the function f is non linear, in most cases we cannot solve directly for a solution.

Instead, most non-linear minimization technique are iterative and proceed by comput-

ing a sequence x0,x1, . . . ,xl such that f (x0) ≥ f (x1)≥ . . . ≥ f (xl). The idea is that the

algorithms progress toward the solution by doing a local search that bring them closer

at each iteration. At the end of each iteration, the conditions for a local minimum are

used as stopping criteria.

The local search is often done by selecting a descent direction h and choosing xk+1 =
xk +αh. A vector h is a descent direction if there is a scalar α such that f (xk +αh) <
f (xk). The descent directions can also be characterized by the condition: hT ∇ f (xk) <
0.

Non-linear least-squares algorithm are usually characterized by their convergence rate

which is a measure of how fast it converges toward the solution as a function of the

number of iterations. Also keep in mind that choosing a ”good” starting point, x0, that

is to say one that is close to the solution can significantly speed up finding a solution.

8.3 Steepest descent

The iteration of the steepest descent algorithm is based on following the direction of

steepest descent, − ∇E(xk)
‖∇E(xk)‖ , such that the iteration is:

xk+1 = xk −α∇E(xk),

where α is a scalar chosen so that E(xk+1) is as small as possible (finding such value is

in general far from trivial and is the object of line search algorithms. The convergence

rate of the steepest descent algorithm is linear and often very slow.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 50

Figure 11: Geometry of Newton’s method. The next step xk+1 is obtained by minimiz-

ing a quadratic approximation of the error function at xk.

8.4 Newton’s method

Newton’s method iterates by using a second order approximation of the error function,

Ẽ:

Ẽ(xk + h) = E(xk)+ ∇E(xk)h+
1

2
hT HE(xk)h

Minimizing this expression with respect to h, yields:

dẼ(xk + h)

dh
= ∇E(xk)+ HE(xk)h = 0,

from which we derive h = HE(xk)
−1∇E(xk). Now, we would like to choose xk+1 =

xk +h since it seems that in this case xk+1 would minimize a local second order approx-

imation of E(x). Unfortunately, xk + h is a minima of the approximation only if the

curvature at this point is positive or in other words if HE(xk) is positive semi-definite.

If the function is convex over the domain we are minimizing over, then it is always

true; if not, we cannot guarantee that h is a descent direction.

For this reason and also because each step requires solving a system of equations,

quasi-Newton’s methods, that replace the Hessian matrix by a positive definite approx-

imation, are often preferred. Newton’s method has a quadratic convergence rate.

8.5 Gauss-Newton method

The Gauss-Newton method is a simplification of Newton’s algorithm with line search.

Recall that in Newton’s method iterations are computed using a step vector h that is

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 51

solution of the system of equations:

HE(xk)h = ∇E(xk),

using the derivatives of r we obtain:

(JT (xk)J(xk)+
m

∑
j=1

r j(xk)Hr j
(xk))h = JT (xk)∇r(xk),

finally if we neglect the terms with second order derivatives, ∑m
j=1 r j(xk)Hr j

(xk), the

previous expression becomes:

JT (xk)J(xk)h = JT (xk)∇r(xk)

In practice, in many cases the term JT J dominates the Hessian, so that the Gauss-

Newton method exhibits performances similar to Newton’s method. Notice also that

the approximation is justified when the residuals are small which is the case near the

minimum for many problems (interestingly adding a constant to the residual would

alter this property but not change the position of the minimum x̂).

The advantages of this simplification are two-folds. First, second-order derivatives

are not required. Second, if J has full-rank and ∇E is non-zero, then h is a descent

direction and as such is a suitable direction for a line search.

8.6 Levenberg-Marquardt

Levenberg-Marquardt generalizes least squares fitting to non-linear models. As with

ordinary least squares, a sum of squares is to be minimized, and the errors are assumed

to be Gaussian:

argmin
p ∑

(

bk − f (ak,x)

σk

)2

where f (ak,x) is a non-linear function of parameters x evaluated at location ak, σk is

the assumed noise variance at location ak, and bk is the measured data value at this

location.

The popular Numerical Recipes book [33] has a good description of this method, but

we will give an intuitive description of the basic idea here.

The Levenberg-Marquardt procedure is based on the idea a quadratic is a good approxi-

mation sufficiently close to the minimum, but may be a bad approximation far from the

minimum. Thus, it “blends” between gradient descent and Newton approaches based

on how well the Newton approach is performing. More specifically, it uses a step size

defined by

(H + λ I)δ = ∇ f

where I is the identity matrix and λ is a scalar. When λ is small, obviously the be-

havior is guided by the Newton approach. When λ is large, the step size becomes

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 52

more proportional to the gradient, i.e., gradient descent is used. Levenberg-Marquardt

dynamically varies λ , increasing it when previous steps fail to reduce the error. In ad-

dition, Levenberg-Marquardt uses an approximation to the Hessian matrix that reduces

the second derivative sensitivity to noise.

Although the descriptions on Numerical Recipes are clear, the coding style there is

not ideal, in part because of the Fortran-style array indexing and short names. One of

the authors has produced a Java language Levenberg-Marquardt implementation with a

more readable style (http://www.idiom.com/∼zilla/Computer/Javanumeric/index.html);

it should be easy to translate this into C/C++.

http://www.idiom.com/~zilla/Computer/Javanumeric/index.html

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 53

9 Conclusion

In these notes, we tried to offer an overview of the different least-squares techniques

available. We also tried to illustrate these techniques through examples taken from

the computer graphics community. Our hope is to expose some of the less known

techniques.

It often seems that every problem can be formulated as a least-squares minimization

on which we can unleash an array of numerical techniques. Our experience has taught

us that it is valuable to spend some time studying the data and carefully formulating

the problem to derive a robust and efficient solution. Also when working with artists

who sometime lack the necessary mathematical background, it is often better to prefer

techniques and solutions that are predictable and appeal to common sense. Or you

might have to explain why non-convexity prevented your non-linear solver from finding

the “correct” solution.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 54

References

[1] N. Amenta and Y. J. Kil. Defining point-set surfaces. In SIGGRAPH ’04: ACM

SIGGRAPH 2004 Papers, pages 264–270, New York, NY, USA, 2004. ACM

Press.

[2] A. Bjork. Numerical methods for least-squares problems. SIAM, Philiadephia,

1934.

[3] M. Black. Robust Incremental Optical Flow. PhD thesis, Yale, 1992.

[4] C. Bregler, L. Loeb, E. Chuang, and H. Deshpande. Turning to the masters:

motion capturing cartoons. In SIGGRAPH ’02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages 399–407,

New York, NY, USA, 2002. ACM Press.

[5] S. R. Buss and J.-S. Kim. Selectively damped least squares for inverse kinematics.

journal of graphics tools, 10(3):37–49, 2005.

[6] B. Le Callennec and R. Boulic. Robust kinematic constraint detection for mo-

tion data. In SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 281–290, Aire-la-Ville, Switzerland,

Switzerland, 2006. Eurographics Association.

[7] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCal-

lum, and T. R. Evans. Reconstruction and representation of 3d objects with radial

basis functions. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics

Proceedings, Annual Conference Series, pages 67–76, August 2001.

[8] E. Chuang and C. Bregler. Performance driven facial animation using blendshape

interpolation. CS-TR-2002-02, Department of Computer Science, Stanford Uni-

versity, 2002.

[9] M. Eck, T. D. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuet-

zle. Multiresolution analysis of arbitrary meshes. In Proceedings of SIGGRAPH

95, Computer Graphics Proceedings, Annual Conference Series, pages 173–182,

August 1995.

[10] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe

super resolution. IEEE Transactions on image processing, 13(10):1327– 1344,

2004.

[11] G. D. Finlayson, S. D. Hordley, and I. Tastl. Gamut constrained illuminant esti-

mation. Int. J. Comput. Vision, 67(1):93–109, 2006.

[12] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 55

[13] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares fitting

with sharp features. ACM Trans. Graph., 24(3):544–552, 2005.

[14] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall,

2003.

[15] M. Gleicher. A graphics toolkit based on differential constraints. In UIST ’93:

Proceedings of the 6th annual ACM symposium on User interface software and

technology, pages 109–120, New York, NY, USA, 1993. ACM Press.

[16] M. Gleicher and A. Witkin. Through-the-lens camera control. In SIGGRAPH ’92:

Proceedings of the 19th annual conference on Computer graphics and interactive

techniques, pages 331–340, New York, NY, USA, 1992. ACM Press.

[17] G. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for

choosing good ridge parameters. Techntronics, 21:215–223, 1979.

[18] G. H. Golub, V. C. Klema, and G. W. Stewart. Rank degeneracy and least squares

problems. Technical Report CS-TR-76-559, 1976.

[19] Y. Guo, J. Wang, H. Sun, X. Cui, and Q. Peng. A novel constrained texture

mapping method based on harmonic map. Computers & Graphics, 29(6):972–

979, December 2005.

[20] P. C. Hansen. Rank-deficient and discrete ill-posed problems: numerical aspects

of linear inversion. SIAM, Philiadephia, 1987.

[21] P. C. Hansen. Analysis of discrete ill-posed problems by means of the l-curve.

SIAM Rev., 34:561–580, 1994.

[22] P. C. Hansen. Rank-deficient and discrete ill-Posed problems: numerical aspects

of linear inversion. SIAM, Philiadephia, 1997.

[23] M. Hardy. An Illuminating Counterexample. ArXiv Mathematics e-prints, June

2002.

[24] D. L. James and C. D. Twigg. Skinning mesh animations. In SIGGRAPH ’05:

ACM SIGGRAPH 2005 Papers, pages 399–407, New York, NY, USA, 2005.

ACM Press.

[25] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture optimization for example-

based synthesis. ACM Trans. Graph., 24(3):795–802, 2005.

[26] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Prentice–Hall,

Englewood Cliffs, NJ, 1974.

[27] A. Mohr and M. Gleicher. Building efficient, accurate character skins from ex-

amples. ACM Transactions on Graphics, 22(3):562–568, July 2003.

[28] Y. Nakamura and H. Hanafusa. Inverse kinematics solutions with singularity

robustness for robot manipulator control. Journal of dynamic systems, measure-

ments, and control, 108:163–171, 1986.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 56

[29] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Laplacian mesh optimiza-

tion. In GRAPHITE ’06: Proceedings of the 4th international conference on

Computer graphics and interactive techniques in Australasia and Southeast Asia,

pages 381–389, New York, NY, USA, 2006. ACM Press.

[30] J. Noh and U. Neumann. Expression cloning. In Proceedings of ACM SIGGRAPH

2001, Computer Graphics Proceedings, Annual Conference Series, pages 277–

288, August 2001.

[31] D. P. O’Leary. Near-optimal parameters for tikhonov and other regularization

methods. SIAM Journal on Scientific Computing, 23(4):1161–1171, 2001.

[32] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin. Synthesizing

realistic facial expressions from photographs. In Proceedings of SIGGRAPH 98,

Computer Graphics Proceedings, Annual Conference Series, pages 75–84, July

1998.

[33] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C : The Art of Scientific Computing. Cambridge University Press,

1992.

[34] O. Sorkine and D. Cohen-Or. Least-squares meshes. In Proceedings of Shape

Modeling International, pages 191–199. IEEE Computer Society Press, 2004.

[35] L. N. Trefethen and III D. Bau. Numerical linear algebra. SIAM, Philiadephia,

1997.

[36] G. Turk and J. F. O’Brien. Modelling with implicit surfaces that interpolate. ACM

Transactions on Graphics, 21(4):855–873, October 2002.

[37] C. W. Wampler. Manipulator inverse kinematic solutions based on vector fomu-

lations and damped least-squares methods. IEEE Transactions on Systems, Man,

and Cybernetics, 16:93–101, 1986.

[38] D. Zhang and M. Hebert. Harmonic maps and their applications in surface match-

ing. cvpr, 02:2524, 1999.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 57

Figure 12: Geometric interpretation of the SVD for a 2×2 matrix, A.

A The Singular Value Decomposition

Matrix decompositions are tools both for solving and for gaining insight into linear

algebra problems. One of the most useful decomposition is the Singular Value Decom-

position (SVD). Consider the case m ≥ n which corresponds to an over-determined

system of equations (the case m ≤ n being quite similar).

Given an m×n real matrix A, the SVD of A is written:

A = UDVT ,

where U is an m×m orthogonal 4 matrix, V is an n×n orthogonal matrix, and D is an

m×n matrix of the form:

D =





















σ1 . . . 0
...

. . .
...

0 . . . σn

0 . . . 0
...

. . .
...

0 . . . 0





















In other words the top n rows form a diagonal matrix and the bottom m− n rows are

filled with zeroes. The {σi} are non-negative scalars called the singular values of A.

For ease of analysis it is conventional to assume that the singular values are sorted in

non-increasing order (i.e. σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0). Any matrix can be decomposed

using the SVD.

In what follows, we call {ui} and {vi} the columns vectors of matrix U and V respec-

tively.

4Recall that a square matrix M is orthogonal if MMT = I. Orthogonal matrices preserve distances (i.e.

‖Mp‖ = ‖p‖). In 3-space they represent rotations (det(M) = +1) and symmetries (det(M) = −1).

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 58

Geometric interpretation. The SVD has a geometric interpretation: it describes the

transformation of a unit sphere (in an n dimensional space) into a hyperellipse 5 (in an

m-dimensional space). This relies on the fact that linear transformations (i.e. matri-

ces) transform spheres into hyperellipses. With the unit sphere as input, the resulting

hyperellipse has for principal semiaxes the vectors {σiui}. The vectors {vi} give the

directions in which the sphere is stretched in the original space. Figure 12 illustrates

this geometric interpretation.

Properties. We can learn a lot about a matrix once it has been decomposed. Here are

some of the most useful properties:

|det(A)| =
n

∏
i=1

σi,

‖A‖2 = σ1,

‖A‖F =

√

n

∑
i=1

σ2
i ,

and with r = rank(A):

range(A) = 〈u1, . . . ,ur〉,
null(A) = 〈vr+1, . . . ,vn〉

5An hyperellipse is to an m dimensional space what an ellipse is to a 2-dimensional space.

Practical Least-Squares for Computer Graphics, Fred Pighin and J.P. Lewis 59

B Errata

In the Constrained Least Squares subsection on Lagrange Multipliers, the final equation

should be

∇ f (x,y)+ λ ∇g(x,y) = 0

	Introduction
	Motivation
	History
	Outline
	Notations

	Ordinary least-squares
	Linear regression
	Geometry of ordinary least-squares and the normal equation
	Ordinary least-squares and system of equations
	Examples
	Example: mesh reconstruction and optimization
	Example: computation of harmonic maps

	Least-squares and optimality
	The Gauss-Markov theorem
	Assumptions
	Conclusion

	What can go wrong?
	Other estimators
	Maximum likelihood estimate
	Maximum a posteriori

	Measuring goodness of fit

	Least-squares with generalized errors
	Weighted least-squares
	Total least-squares

	Robust least squares
	Redescending estimators
	Iteratively reweighted least-squares
	RANSAC
	Least Median of Squares, Forward Search
	Example: detecting kinematic constraints in motion data

	Constrained Least Squares
	Lagrange Multipliers
	Example: closest point on a sphere.
	Example: inverse kinematics
	Other Applications

	Convex Weights
	Inequality constraints
	Example: illuminant estimation

	Regularized least-squares
	Truncated SVD
	Example: skin weights computation from examples

	Damped least-squares and Tikhonov regularization
	Example: inverse kinematics.
	Example: surface correspondences.
	Example: image registration.

	Quadratic constraints

	Non-linear least squares
	Characterization and uniqueness of a solution
	Iterative descent algorithms
	Steepest descent
	Newton's method
	Gauss-Newton method
	Levenberg-Marquardt

	Conclusion
	The Singular Value Decomposition
	Errata

