
Practical Linear-value
Approximation Techniques

for First-order MDPs

Scott Sanner & Craig Boutilier
University of Toronto

UAI 2006

2

� Relational desc. of (prob) planning domain in (P)PDDL:

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c - city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c)))

London
Paris

Rome
Berlin MoscowBox World:

Why Solve First-order MDPs?

� Or solve first-order MDP for all domain inst. at once!
� Lift PPDDL MDP specification to first-order (FOMDP)
� Soln makes value distinctions for all dom. instantiations!

� Can solve a ground MDP for each domain instantiation:
� 3 trucks: 2 planes: 4 boxes:

3

Background
1) Symbolic DP for first-order MDPs (BRP, 2001)

� Defines FOMDP / operators / value iteration
� Requires FO simplification for compactness /

2) First-order approx. linear prog. (SB, 2005)
� Approximate value with linear comb. of basis funs.
� No simplification → project onto weight space ☺

3) Many practical questions remaining (SB, 2006)
� Other algorithms – first-order API?
� Where do basis functions come from?
� How to efficiently handle universal rewards?
� Optimizations for scalability?

/ Talk Outline

4

FOMDP Foundation: SitCalc
� Deterministic Actions: loadS(b,t), unloadS(b,t), …

� Situations: S0, do(loadS(b,t), S0), …

� Fluents: BIn(b,c,s), TIn(t,c,s), On(b,t,s)

� Successor-state axioms (SSAs) for each fluent F:
� Describe how action affects fluent (like det. FO-DBN)
� Ex: BIn(b,c,do(a,s)) ≡

(1) Bin(b,c,s) AND a g loadS(b,t)
OR (2) for some t: a = unloadS(b,t) AND TIn(t,c,s)

� Regression Operator: Regr(ϕ) = ϕ’
� Takes a formula ϕ describing a post-action state
� Uses SSAs to build ϕ’ describing pre-action state
� Crucial for backing up value fun to produce Q-fun!

5

� Operators: Define unary, binary case operations
� E.g., can take “cross-sum” / (or 1, 0) of two cases…

� Must remove inconsistent elements (i.e., red bar)

¬∃x.A(x)

∃x.A(x)
20

10

¬∃x.A(x) ∧ ¬∃y.A(y)∧B(y)

¬∃x.A(x) ∧ ∃y.A(y)∧B(y)

∃x.A(x) ∧ ¬∃y.A(y)∧B(y)

∃x.A(x) ∧ ∃y.A(y)∧B(y)

24

23

14

13

¬∃y.A(y)∧B(y)

∃y.A(y)∧B(y)
4

3
=/

FOMDP Case Representation
� Case: Assign value to first-order state abstraction

� E.g., can express reward in BoxWorld FOMDP as…

¬ ∀b,c. Dest(b,c) ⇒ BIn(b,c,s)

∀b,c. Dest(b,c) ⇒ BIn(b,c,s)
0

1
rCase(s) =

6

FOMDP Actions and FODTR
� SitCalc is deterministic, how to handle probabilities?

� User’s stochastic actions: load(b,t)
� Nature’s deterministic choice: loadS(b,t), loadF(b,t)
� Probability distribution over Nature’s choice:

� First-order decision-theoretic regression (FODTR):
� Given value fun vCase(s) and user action, produces

first-order description of “Q-fun” (modulo reward)

“Q-Fun” = FODTR[vCase(s), load(b,t)] =
Regr[vCase(after loadS…)] 1 P(loadS… | load…)

/ Regr[vCase(after loadF…)] 1 P(loadF… | load…)

P(loadS(b,t) | load(b,t)) =

P(loadF(b,t) | load(b,t)) = 1 0 P(loadS(b,t) | load(b,t))

¬ snow(s)

snow(s)
.5

.1

7

FOMDP Backup Operators
In fact, there are 3 types of “Q-funs”/backup operators:

1) BA(x)[vCase(s)] = rCase(s) / γ⋅FODTR[vCase(s)]

2) BA[vCase(s)] = ∃x. BA(x)[vCase(s)] (action abstraction!)

3) BA
max[vCase(s)] = max(BA[vCase(s)])

Let Bload(b,t)[vCase(s)] =
¬ϕ(b,t)

ϕ(b,t)
0

.9

Bload[vCase(s)] =
∃b,t. ¬ϕ(b,t)

∃b,t. ϕ(b,t)
0

.9

Bload
max[vCase(s)] =

0¬(∃b,t. ϕ(b,t))
∧ ∃b,t. ¬ϕ(b,t)

∃b,t. ϕ(b,t) .9

Think of as Q(A(x),s),
note the free vars!

Think of as ~Q(A,s), no
free vars but now overlap!

Think of as Q(A,s), no
free vars and no overlap!

8

First-order Approx. Linear Prog. (FOALP)

� Represent value fn as linear comb. of k basis fns:

� Reduces MDP solution to finding good weights…
generalize approx. LP used by (van Roy, GKP, SP):

� FOALP issues resolved in (SB, 2005):
� ∞ sum in objective: We give principled approximation
� ∞ constraints: Only finite set of distinct constraints,

solve exactly & efficiently w/ constraint gen. (SP)

¬ ∃b,c BIn(b,c,s)

∃b,c BIn(b,c,s)
0

1

¬ ∃t,c TIn(t,c,s)

∃t,c TIn(t,c,s)
0

1
vCase(s) = w1• ⊕ … ⊕ wk•

Vars: wi; i [k

Minimize: Σs Σi=1..k wi •bCasei(s)
Subject to: 0 m Ba

max[/i=1..k wi •bCasei(s)]
0 /i=1..k wi •bCasei(s); ∀a∈A,s

9

First-order Approx. Policy Iter. (FOAPI)
� Need an explicit representation of a policy:

� πCase(s) = max(∪i=1..m BAi[vCase(s)])
� Each case partition should retain mapping to Ai

� Now separate partitions in Ai-specific policies:
� πCaseAi(s) = { part ∈ πCase(s) s.t. part → Ai }
� Specifies states where policy would apply Ai

� FOAPI: Direct generalization of GKP (exact objective!)
� Start w/ wi

0=0, πCase0(s); iterate LP soln until πj+1= πj:

� Use cgen; if converges, obtain bounds on policy (GKP)!

Vars: wi
(j+1); i [k

Minimize: φ(j+1)

Subject to: φ(j+1) m | πCasej
a(s) / Ba

max (/i=1..k wi
(j+1) •bCasei(s))

0 /i=1..k wi
(j+1) •bCasei(s)|; ∀a∈A,s

10

Generating Basis Functions
� Where do basis functions come from?

� Major question for automation!
� Huge candidate space if systematically building basis

functions for all first-order formulae

� Idea (GT, 2004): Regressions from goal make
good candidate basis functions!
� Given initial basis function for reward: ∃b.Bin(b,P,s)

� Regr w/ unload: ∃b.Bin(b,P,s) ∨ (∃b*,t*.TIn(t*,P,s)∧On(b*,t*,s))

� Render basis disjoint from parents, will use later
� Iteratively solve FOMDP

� Retain all basis functions with wgt. > threshold τ
� Generate new basis fns from retained set

11

� Universal rewards are difficult for FOMDPs, e.g.
� Given reward:

� Exact n-stage-to-go value function has form:

� Exact value function has infinitely many values!
� Cannot compactly represent such structure with

piecewise-constant case approximation of value fn

Problems w/ Universal Reward

n-1 boxes not at dest
…

1 box not at dest

∀b,c. Dest(b,c) ⇒ BIn(b,c,s)

γn-1

…

γ

1

vCasen(s)=

¬”

∀b,c. Dest(b,c) ⇒ BIn(b,c,s)
0

1
rCase (s)=

12

Additive Goal Decomposition
� Solution for universal rewards:

� E.g., given: ∀b,c. Dest(b,c) ⇒ BIn(b,c,s)
� Solve FOMDP for: BIn(b*,c*,s)
� Given solution, gen. Q-funs Q(A,s)<b*,c*>(s) for ∀a∈A

� At run-time: Given concrete domain, e.g.
� Instantiation:{Dest(b1,c1), Dest(b2,c2), Dest(b3,c3) }
� Let overall Q(A,s) = Q(A,s)<b1,c1>(s) + Q(A,s)<b2,c2>(s) +

Q(A,s)<b3,c3>(s) for ∀a∈A
� To execute policy: select action that maximizes sum of

values across all Q-funs, i.e., Q(A,s)
� Only heuristic: works in many, but not all cases

When reward in simple implicative form, solve
for single goal with distinguished constants.

13

Optimizations
� Exploiting disjointness in basis functions:

� Worst case for set B of basis functions: must examine 2|B|

case partitions in constraint generation
� But for any pairwise disjoint set B’ of basis functions,

need examine only |B’| case partitions in cgen
� Basis generation enforces disjointness b/w child/parent!

� Exploiting implicit max in constraint generation:
� In constraints, substitute 0 m Ba

max …with 0 m Ba …

� Removing internal redundancy/inconsistency w/ BDDs:
� Given: (∃x A(x)) ∧ (∃x A(x)) ∧ (∃x A(x)∧B(x))

Îa⇒b ∃x A(x)∧B(x)a
¬b⇒¬a∃x A(x)b

FOL Mapping Impl.Prop Var

Î
a

T F

a

T

b

F

Î ∃x A(x)∧B(x)

14

Empirical Results: Runtime
� Offline solution times for BoxWorld & BlocksWorld:

� Without optimizations, cannot get past iteration 2 (> 36000 sec.)
� BoxWorld: Policies simple, fewer constraints for FOAPI
� BlocksWorld: Policies complex (lots of equality)

15

Empirical Results: Performance
� Evaluated cumulative reward on ICAPS 2004 Prob.

Planning Comp. BoxWorld (bx) and BlocksWorld (bw):

G2: temp. logic w/ control knowledge; P: RTDP-based
J1: human-coded policy; J2: inductive FO policy iter.;
J3: deterministic FF-replanner

16

Related Work
� Direct value iteration:

� ReBel algorithm for RMDPs (KvOdR, 2004)

� FOVIA algorithm for fluent calculus (KS, 2005)

� First-order decision diagrams (JKW, 2006)

� → all disallow ∀ quant., e.g., universal cond. effects

� Sampling and/or inductive techniques:
� Approx. linear programming for RMDPs (GKGK, 2003)

� Inductive policy selection using FO regression (GT, 2004)

� Approximate policy iteration (FYG, 2004)

� → sampled domain instantiations do not ensure
generalization across all possible worlds

� → nonetheless, these methods have worked well
empirically

17

Conclusions and Future Work
� Conclusions:

� Developed domain-independent linear-value
approximation techniques / optimization for FOMDPs

� Encouraging empirical results on ICAPS 2004 IPPC
� 2nd place in ICAPS 2006 IPPC by # problems solved

� Future work:
� Goal decomposition for complex ∀ rewards

� (∀b,c. Dest(b,c) ⇒ BIn(b,c,s)) ∨ ∃b.Bin(b,Paris,s)
� Online search to “patch-up” decomposition error

� E.g., additive decomposition is inadequate to solve
some difficult problems in BlocksWorld

� More expressive rewards
� Σb (∀c. Dest(b,c) ⇒ BIn(b,c,s))

