Practical Linear-value
Approximation Techniques
for First-order MDPs

Scott Sanner & Craig Boutilier
University of Toronto
UAI 2006

Why Solve First-order M DPS?

m Relational desc. of (prob) planning domain in (P)PDDL:

o
/Paris """"" ’

Lon on

Box World:

Ber'lm — Moscow
A SN
@ Rome \im

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c - city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
teffect (and (On ?b ?t) (not (BIn ?b ?c)))

m Can solveaground MDP for each domain instantiation:
o 3trucks. v o 2planes. 3= 3= 4boxes.® & & ®

m Or solvefirst-order MDP for all domain inst. at oncel
o Lift PPDDL MDP specification to first-order (FOMDP)
¢ Soln makes value distinctions for all dom. instantiations!

Background / Talk Outline

1) Symbolic DP for first-order MDPs (BRP, 2001)
¢ DefinesFOMDP / operators/ value iteration
¢ Requires FO smplification for compactness ®

2) First-order approx. linear prog. (SB, 2005)
¢ Approximate value with linear comb. of basis funs.
¢ No simplification — project onto weight space ©

3) Many practical questionsremaining (SB, 2006)
¢ Other algorithms — first-order API?
¢ Where do basis functions come from?
¢ How to efficiently handle universal rewards?
¢ Optimizations for scalability?

FOMDP Foundation: SitCalc

m Deterministic Actions: loads(b,t), unloadS(b 1), ..
m Situations. s,, do(loads(b,1), Sp), .

m Fluents: BIn(b,c,s), TIn(t,c,s), On(b,t,s)

m Successor-state axioms (SSAS) for each fluent F:
¢ Describe how action affects fluent (like det. FO-DBN)
¢ EX. BIn(b,c,do(a,s)) =

(1) Bin(b,c,s) AND a # loadS(b,1)
OR (2) for some t: a = unloadS(b,t) AND TIn(t,c,s)

m Regression Operator: Regr(o) = ¢
¢ Takesaformula ¢ describing a post-action state
¢ Uses SSAsto build ¢' describing pre-action state

¢ Crucial for backing up value fun to produce Q-fun!

FOMDP Case Representation

m Case: Assign valueto first-order state abstraction
¢ E.g., can expressreward in BoxWorld FOMDP as...

Vb,c. Dest(b,c) = BIn(b,c,s) 1
— Vb,c. Dest(b,c) = BIn(b,c,s) 0

rCase(s) =

m Operators: Define unary, binary case operations
¢ E.g., cantake “cross-sum” @ (or ®, ©) of two cases...

dx.A(x) A Ty.A(y)AB(Y) 13

Ix.A(x) |10 dy.A(y)AB(y) 3 Ix.A(X) A —Jy.A(y)AB(y) |14

—dx.A(x) |20 EB —IAWNBY) |4 | At~y Aty Bty—23

—3Ix.A(x) A —3y.A(y)AB(y) | 24

)

+ Must remove inconsistent elements (i.e., red bar

FOMDP Actionsand FODTR

m SitCalc isdeterministic, how to handle probabilities?
o User’s stochastic actions: load(b,t)

o Nature' sdeterministic choice: loadS(b,t), loadF(b,t)
+ Probability distribution over Nature's choice:

snhow(s) 1

PloadS(b.1) | load(b.1)) = =2 15

P(loadF(b,t) | load(b,t)) = 1 © P(loadS(b,t) | load(b,t))

m First-order decision-theoretic regression (FODTRY):

¢ Given valuefun vCase(s) and user action, produces
first-order description of “ Q-fun” (modulo reward)

"Q-Fun” = FODTR[vCase(s), load(b,t)] =
Regr[vCase(after loadS..)] ® P(loadS.. | load...)
@® Regr[vCase(afterloadF..)] ® P(loadF.. | load..)

FOMDP Backup Operators

In fact, thereare 3 types of “Q-funs’/backup operators:

Let Bload®bD[vCase(s)] =

ob,t) |2

—@(b,1) |0

1) BA™[vCase(s)] = rCase(s) ® yFODTR[vCase(s)]

Think of as Q(A(x),s),
note the free vars!

2) BA[vCase(s)] = dx. BAX)[vCase(s)] (action abstraction!)

Bload [vCase(s)]=

max

db,t. @(b,t)

~(3b.t. ¢(b.1))
A 3b.t. —@(b.1)

Jb.t. o(b,t) |2 : ~
Bload[yCase(s)] = ¢(b.1) Think of as ~Q(A,s), no

Jb,t. —p(b,1) |0 free vars but now overlap!
3) BA__[vCase(s)] = max(BA[vCase(s)])

Think of as Q(A,s), no
free vars and no overlap!

First-order Approx. Linear Prog. (FOALP)

m Represent valuefn aslinear comb. of k basisfns:

db,c BIn(b,c,s) 1 3t,c TIn(t,c,s)
@ @ Wk'

vCase(s) = wy*
' [23b.cBInbes) [0 —3tcTIn(tes) |0

m Reduces MDP solution to finding good weights...
generalize approx. L P used by (van Roy, GKP, SP):

Vars: w. i<k

Minimize: 2 2.1 | w, *bCase(s)
Subject to: 0> B . [®i.; , W, bCase(s)]
© ®;.; kW;bCases); VaeAs
m FOALP issuesresolved in (SB, 2005):
¢ o Sum in objective: We give principled approximation

¢ o constraints: Only finite set of distinct constraints,
solve exactly & efficiently w/ constraint gen. (SP)

First-order Approx. Policy Iter. (FOAPI)

m Need an explicit representation of a policy:
¢ nCase(s) = max(U,.; ,, BA[vCase(s)])
¢ Each case partition snhould retain mapping to A,

m Now separate partitionsin A;-specific policies:
¢ nCase,(s) = { part € nCase(s) s.t. part — A;}

+ Specifies states where policy would apply A,

m FOAPI: Direct generalization of GKP (exact objective!)
o Start w/ w0=0, nCase(s); iterate L P soln until w*1=mw:
Vars: w,0*D; i <k
Minimize: QU*D
Subject to: OUD > | nCasei (s) ® Be ., (®;.; WD -bCase(s))
O @1 kWD -bCase(s)|; VacA,s
m Usecgen; if converges, obtain bounds on policy (GKP)!

Generating Basis Functions

m Wheredo basisfunctions come from?
¢ Major question for automation!

+ Huge candidate space if systematically building basis
functions for al first-order formulae

m ldea (GT, 2004): Regressions from goal make
good candidate basis functions!

¢ Giveninitial basis function for reward: 3b.Bin(b,P,s)

o Regr w/ unload: 3b.Bin(b P.s) v (3b* 1*.TIn(+* P s)AOn(b* 1*,5))
m Render basisdigoint from parents, will use later
m [teratively solve FOMDP

¢ Retain all basis functions with wgt. > threshold t

+ Generate new basis fns from retained set

10

Problemsw/ Universal Reward

m Universal rewardsaredifficult for FOMDPs, e.g.
¢ Given reward:

Vb,c. Dest(b,c) = BIn(b,cs) |1
7 0
¢ Exact n-stage-to-go value function has form:

rCase (s)=

Vb,c. Dest(b,c) = BIn(b,c,s) |1

vCasen(s)= | 1box not at dest Y

n-1 boxes not at dest yn-l

¢ Exact value function hasinfinitely many values!

o Cannot compactly represent such structurewith
piecewise-constant case approximation of value fn

11

Additive Goal Decomposition

m Solution for universal rewards:

When reward in simple implicative form, solve
for single goal with distinguished constants.

¢ E.g,, given: Vb,c. Dest(b,c) = BIn(b,c,s)
o Solve FOMDP for: BIn(b* c*,s)

+ Given solution, gen. Q-funs Q(A s) g« +,(s) for Vae A

m At run-time Given concrete domain, e.g.
¢ Instantiation:{ Dest(b,,c,), Dest(b,,c,), Dest(bs,c;) }

o Letoverall Q(As) = Q(AS)p1c(S) + QIAS)p2c2(S) +
Q(A 5)ip3 c3:(8) fOr Vaec A

¢ To execute policy: select action that maximizes sum of
values across all Q-funs, i.e., Q(A.s)

¢ Only heuristic: works in many, but not all cases

12

Optimizations

m Exploiting digointnessin basisfunctions:

o Worst case for set B of basis functions. must examine 2Pl
case partitions in constraint generation

+ But for any pairwise digoint set B’ of basis functions,
need examine only |B'| case partitionsin cgen

o Basis generation enforces digointness b/w child/parent!

m Exploiting implicit max in constraint gener ation:
¢ Inconstraints, substitute 0 > B¢, . ..with0 > Be ..

max

m Removing internal redundancy/inconsistency w/ BDDs:
s Given: (Ax A(X)) A (Ax A(x)) A (Ix A(X)AB(x))

Prop Var | FOL Mapping | Impl. /a a
6 [IxAGINBX) | a=b | bx‘-.__ 2> ¥ D | IXABKX)

T F

13

Empirical Results. Runtime

m Offline solution timesfor BoxWorld & BlockswWorld:

Offline Solution Time for Each FOALP/FOAPI Basis Gen. Iteration
9000 T T T T T
i
—4— FOAPI BlocksWorld /
—8— FOALP BlocksWorld /
8000 | _o— FOALP BoxWorld /]
—x— FOAPI BoxWorld {;’
7000+ f/ -
E 6000 |- / .
® /
£ so000} / i
|_ ',f"
[@)] /
£ 4000} / -
-
-
3
O 3000} 1
2000} //—
// -~
_— a/ _ -9
1000 |- s - A
= — :__a_f’_':'"-— - = - =
e - - e ~ 1
e _ — === - - '
1 2 3 4 5 6 7
Iteration # of Basis Fn Generation Algorithm

m Without optimizations, cannot get past iteration 2 (> 36000 sec.)
m BoxWorld: Policiessimple, fewer constraintsfor FOAPI
m BlocksWorld: Policies complex (lots of equality)

Empirical Results: Perfor mance

m Evaluated cumulative reward on | CAPS 2004 Praob.
Planning Comp. BoxWorld (bx) and BlocksWorld (bw):

Problem Prob. Planning System FO-
G2 P J1 J2 J3 ALP | API

bx c10 b5 438 | 184 | 419 | 376 | 425 433 | 433
bx cl0bI10 || 376 0 317 0 346 366 | 366
bx cl10 D15 0 - 129 0 279 0 0

bw b5 495 | 494 | 494 | 495 | 494 494 | 490
bw bl1 479 | 466 | 480 | 480 | 481 480 0

bw b15 468 | 397 | 469 | 468 0 470 0
bw bl8 352 — 462 0 0 464 0
bw b21 286 — 456 | 455 | 459 456 0

G2: temp. logic w/ control knowledge; P: RTDP-based
J1. human-coded policy; J2: inductive FO policy iter.;
J3: deterministic FF-replanner

15

Related Work

m Direct valueiteration:
¢ ReBel agorithm for RMDPs (KvOdR, 2004)
¢ FOVIA agorithm for fluent calculus (KS, 2005)
o First-order decision diagrams (JKW, 2006)
¢ — dl disallow V quant., e.g., universal cond. effects

m Sampling and/or inductive techniques:
o Approx. linear programming for RMDPs (GKGK, 2003)
+ Inductive policy selection using FO regression (GT, 2004)
o Approximate policy iteration (FY G, 2004)

¢ — sampled domain instantiations do not ensure
generalization across all possible worlds

¢ — nonetheless, these methods have worked well
empirically

16

Conclusions and Future Work

m Conclusions:

¢ Developed domain-independent linear-value
approximation techniques/ optimization for FOMDPs

+ Encouraging empirical results on |CAPS 2004 1PPC
¢ 2 placein ICAPS 2006 | PPC by # problems solved

m Futurework:
o Goa decomposition for complex V rewards
¢ (Vb,c. Dest(b,c) = BIn(b,c,s)) v Ib.Bin(b Paris,s)
¢ Online search to “patch-up” decomposition error

+ E.Q., additive decomposition is inadequate to solve
some difficult problemsin BlockswWorld

o More expressive rewards
¢ 2, (Vc. Dest(b,c) = BIn(b,c,s))

17

