Practical Linear-value Approximation Techniques for First-order MDPs

Scott Sanner & Craig Boutilier University of Toronto UAI 2006

Why Solve First-order MDPs?

Relational desc. of (prob) planning domain in (P)PDDL:

:precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c)))

- Can solve a *ground MDP* for *each* domain instantiation:
 - 3 trucks: $\mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}}$ 2 planes: $\mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}}$ 4 boxes: $\mathbf{r}_{\mathbf{r}} \mathbf{r}_{\mathbf{r}}$
- Or solve *first-order MDP* for *all* domain inst. at once!
 - ◆ Lift PPDDL MDP specification to first-order (FOMDP)
 - Soln makes value distinctions for *all* dom. instantiations!

Background / Talk Outline

1) Symbolic DP for first-order MDPs (BRP, 2001)

- Defines FOMDP / operators / value iteration
- ♦ Requires FO simplification for compactness ☺

2) First-order approx. linear prog. (SB, 2005)

- Approximate value with linear comb. of basis funs.
- No simplification \rightarrow project onto weight space \bigcirc

3) Many practical questions remaining (SB, 2006)

- Other algorithms first-order API?
- Where do basis functions come from?
- How to efficiently handle universal rewards?
- Optimizations for scalability?

FOMDP Foundation: SitCalc

- Deterministic Actions: loadS(b,t), unloadS(b,t), ...
- **Situations:** S₀, do(loadS(b,†), S₀), ...
- Fluents: BIn(b,c,s), TIn(t,c,s), On(b,t,s)
- Successor-state axioms (SSAs) for each fluent F:
 - ◆ **Describe how action affects fluent** (like det. FO-DBN)

- **Regression Operator:** $Regr(\phi) = \phi'$
 - Takes a formula φ describing a *post-action* state
 - Uses SSAs to build φ' describing pre-action state
 - Crucial for backing up value fun to produce Q-fun!

FOMDP Case Representation

- **Case:** Assign value to first-order state abstraction
 - E.g., can express reward in BoxWorld FOMDP as...

 $rCase(s) = \begin{array}{|c|c|} \forall b,c. \ Dest(b,c) \Rightarrow BIn(b,c,s) & 1 \\ \neg \ \forall b,c. \ Dest(b,c) \Rightarrow BIn(b,c,s) & 0 \end{array}$

- **Operators:** Define unary, binary case operations
 - ◆ E.g., can take "cross-sum" \oplus (or \otimes , \ominus) of two cases...

◆ Must remove inconsistent elements (i.e., red bar ——

FOMDP Actions and FODTR

- SitCalc is deterministic, how to handle probabilities?
 - User's stochastic actions: load(b,t)
 - Nature's deterministic choice: loadS(b,t), loadF(b,t)
 - Probability distribution over Nature's choice:

$$P(loadS(b,t) \mid load(b,t)) = \frac{snow(s)}{\neg snow(s)} \frac{.1}{.5}$$

 $P(loadF(b,t) | load(b,t)) = 1 \ominus P(loadS(b,t) | load(b,t))$

- First-order decision-theoretic regression (FODTR):
 - Given value fun vCase(s) and user action, produces first-order description of "Q-fun" (modulo reward)

"Q-Fun" = FODTR[vCase(s), load(b,t)] = Regr[vCase(after loadS...)] ⊗ P(loadS... | load...) ⊕ Regr[vCase(after loadF...)] ⊗ P(loadF... | load...)

FOMDP Backup Operators

In fact, there are 3 types of "Q-funs"/backup operators:

First-order Approx. Linear Prog. (FOALP)

Represent value fn as linear comb. of k basis fns:

$$\mathbf{wCase(s)} = \mathbf{w}_{1} \cdot \begin{bmatrix} \exists b, c \ BIn(b, c, s) & 1 \\ \neg \ \exists b, c \ BIn(b, c, s) & 0 \end{bmatrix} \oplus \dots \oplus \mathbf{w}_{k} \cdot \begin{bmatrix} \exists t, c \ TIn(t, c, s) & 1 \\ \neg \ \exists t, c \ TIn(t, c, s) & 0 \end{bmatrix}$$

Reduces MDP solution to finding good weights... generalize <u>approx. LP</u> used by (van Roy, GKP, SP):

$$\begin{array}{ll} \text{Vars:} & w_i; \, i \leq k \\ \text{Minimize:} & \sum_s \sum_{i=1..k} w_i \cdot bCase_i(s) \\ \text{Subject to:} & 0 \geq B^a_{\max}[\oplus_{i=1..k} w_i \cdot bCase_i(s)] \\ & \oplus \oplus_{i=1..k} w_i \cdot bCase_i(s); \quad \forall a \in A, s \end{array}$$

- **FOALP** issues resolved in (SB, 2005):
 - ◆ ∞ **sum in objective:** We give principled approximation
 - ◆ ∞ constraints: Only finite set of *distinct* constraints, solve exactly & efficiently w/ constraint gen. (SP)

First-order Approx. Policy Iter. (FOAPI)

- Need an explicit representation of a policy:
 - $\pi Case(s) = max(\cup_{i=1..m} B^{A_i}[vCase(s)])$
 - Each case partition should retain mapping to A_i
- Now separate partitions in A_i-specific policies:
 - $\pi Case_{A_i}(s) = \{ part \in \pi Case(s) s.t. part \rightarrow A_i \}$
 - Specifies states where policy would apply A_i
- **FOAPI:** Direct generalization of GKP (exact objective!)
 - Start w/ $w_i^{0}=0$, $\pi Case^{0}(s)$; iterate LP soln until $\pi^{j+1}=\pi^{j}$:
- Vars: $w_i^{(j+1)}$; $i \le k$
- Minimize: $\phi^{(j+1)}$

Subject to: $\phi^{(j+1)} \ge | \pi Case_{a}^{j}(s) \oplus B^{a}_{max}(\bigoplus_{i=1..k} w_{i}^{(j+1)} \cdot bCase_{i}(s)) \oplus \bigoplus_{i=1..k} w_{i}^{(j+1)} \cdot bCase_{i}(s)|; \forall a \in A, s$

Use cgen; if converges, obtain bounds on policy (GKP)!

Generating Basis Functions

Where do basis functions come from?

- Major question for automation!
- Huge candidate space if systematically building basis functions for all first-order formulae
- Idea (GT, 2004): Regressions from goal make good candidate basis functions!
 - ◆ Given initial basis function for reward: ∃b.Bin(b,P,s)
 - Regr w/ unload: $\exists b.Bin(b,P,s) \lor (\exists b^*,t^*.TIn(t^*,P,s) \land On(b^*,t^*,s))$
- Render basis *disjoint* from parents, will use later
- Iteratively solve FOMDP
 - \blacklozenge Retain all basis functions with wgt. > threshold τ
 - Generate new basis fns from retained set

Problems w/ Universal Reward

- Universal rewards are difficult for FOMDPs, e.g.
 - Given reward:

rCase(s)=
$$\begin{array}{|c|c|} \forall b,c. Dest(b,c) \Rightarrow BIn(b,c,s) & 1 \\ \neg & 0 \end{array}$$

• Exact n-stage-to-go value function has form:

	\forall b,c. Dest(b,c) \Rightarrow BIn(b,c,s)	1
vCase ⁿ (s)=	1 box not at dest	γ
	•••	
	n-1 boxes not at dest	γ ^{n−1}

- Exact value function has infinitely many values!
- Cannot compactly represent such structure with piecewise-constant case approximation of value fn

Additive Goal Decomposition

Solution for universal rewards:

When reward in simple implicative form, solve for single goal with distinguished constants.

- E.g., given: $\forall b,c. Dest(b,c) \Rightarrow BIn(b,c,s)$
- Solve FOMDP for: BIn(b*,c*,s)
- Given solution, gen. Q-funs $Q(A,s)_{(b^*,c^*)}(s)$ for $\forall a \in A$
- At run-time: Given concrete domain, e.g.
 - Instantiation: { $Dest(b_1,c_1)$, $Dest(b_2,c_2)$, $Dest(b_3,c_3)$ }
 - ♦ Let overall $Q(A,s) = Q(A,s)_{(b1,c1)}(s) + Q(A,s)_{(b2,c2)}(s) + Q(A,s)_{(b3,c3)}(s)$ for $\forall a \in A$
 - To execute policy: select action that maximizes sum of values across *all* Q-funs, i.e., Q(A,s)
 - Only heuristic: works in many, but not all cases

Optimizations

- Exploiting disjointness in basis functions:
 - Worst case for set B of basis functions: must examine 2^{|B|} case partitions in constraint generation
 - But for any pairwise disjoint set B' of basis functions, need examine only |B'| case partitions in cgen
 - Basis generation enforces disjointness b/w child/parent!
- Exploiting implicit max in constraint generation:
 - In constraints, substitute $0 \ge B^{\alpha}_{max}$... with $0 \ge B^{\alpha}$...

Removing internal redundancy/inconsistency w/ BDDs:

Prop Var	FOL Mapping	Impl.	a	a	F		_
۵	$\exists x A(x) \land B(x)$	a⇒b	$\rightarrow b$ $\rightarrow \checkmark$		→[$\exists x A(x) \land B(x)$	
b	∃x A(x)	−b⇒−a		F			
			I r				13

• Given: $(\exists x A(x)) \land (\exists x A(x)) \land (\exists x A(x) \land B(x))$

Empirical Results: Runtime

Offline solution times for BoxWorld & BlocksWorld:

- Without optimizations, cannot get past iteration 2 (> 36000 sec.)
- **BoxWorld: Policies simple, fewer constraints for FOAPI**
- BlocksWorld: Policies complex (lots of equality)

Empirical Results: Performance

Evaluated *cumulative reward* on ICAPS 2004 Prob.
 Planning Comp. BoxWorld (bx) and BlocksWorld (bw):

Problem	Prob. Planning System				FO-		
	G2	P	J1	<u>J2</u>	<u>J3</u>	ALP	API
bx c10 b5	438	184	419	376	425	433	433
<i>bx c10 b10</i>	376	0	317	0	346	366	366
bx c10 b15	0	—	129	0	279	0	0
<i>bw b5</i>	495	494	494	495	494	494	490
<i>bw b11</i>	479	466	480	480	481	480	0
<i>bw b15</i>	468	397	469	468	0	470	0
<i>bw b18</i>	352	—	462	0	0	464	0
<i>bw b21</i>	286	—	456	455	459	456	0

G2: temp. logic w/ control knowledge; P: RTDP-based J1: human-coded policy; J2: inductive FO policy iter.; J3: deterministic FF-replanner

Related Work

- Direct value iteration:
 - ReBel algorithm for RMDPs (KvOdR, 2004)
 - FOVIA algorithm for fluent calculus (KS, 2005)
 - First-order decision diagrams (JKW, 2006)
 - $\bullet \rightarrow$ all disallow \forall quant., e.g., universal cond. effects
- Sampling and/or inductive techniques:
 - Approx. linear programming for RMDPs (GKGK, 2003)
 - Inductive policy selection using FO regression (GT, 2004)
 - Approximate policy iteration (FYG, 2004)
 - → sampled domain instantiations do not ensure generalization across all possible worlds
 - → nonetheless, these methods have worked well empirically

Conclusions and Future Work

Conclusions:

- Developed *domain-independent* linear-value approximation techniques / optimization for FOMDPs
- Encouraging empirical results on ICAPS 2004 IPPC
- ◆ 2nd place in ICAPS 2006 IPPC by # problems solved

Future work:

- Goal decomposition for complex \forall rewards
 - $(\forall b,c. Dest(b,c) \Rightarrow BIn(b,c,s)) \lor \exists b.Bin(b,Paris,s)$
- Online search to "patch-up" decomposition error
 - E.g., additive decomposition is inadequate to solve some difficult problems in BlocksWorld
- More expressive rewards
 - Σ_{b} (\forall c. Dest(b,c) \Rightarrow BIn(b,c,s))