Practical Linear-value Approximation Techniques for First-order MDPs

Scott Sanner \& Craig Boutilier
University of Toronto
UAI 2006

Why Solve First-order MDPs?

■ Relational desc. of (prob) planning domain in (P)PDDL:

```
Box World:
```


(:action load-box-on-truck-in-city
: parameters (?b - box ?t - truck ?c - city)
: precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c)))

- Can solve a ground MDP for each domain instantiation:

- Or solve first-order MDP for all domain inst. at once!
- Lift PPDDL MDP specification to first-order (FOMDP)
- Soln makes value distinctions for all dom. instantiations!

Background / Talk Outline

1) Symbolic DP for first-order MDPs (BRP, 2001)

- Defines FOMDP / operators / value iteration
- Requires FO simplification for compactness $: *$

2) First-order approx. linear prog. (SB, 2005)

- Approximate value with linear comb. of basis funs.
- No simplification \rightarrow project onto weight space ()

3) Many practical questions remaining (SB, 2006)

- Other algorithms - first-order API?
- Where do basis functions come from?
- How to efficiently handle universal rewards?
- Optimizations for scalability?

FOMDP Foundation: SitCalc

- Deterministic Actions: loadS(b,t), unloadS(b,t), ...

■ Situations: $S_{0}, \operatorname{do}\left(\operatorname{load} S(b, t), S_{0}\right), \ldots$

- Fluents: $\operatorname{BIn}(b, c, s), \operatorname{TIn}(t, c, s), O n(b, t, s)$

■ Successor-state axioms (SSAs) for each fluent F :

- Describe how action affects fluent (like det. FO-DBN)
- Ex: $\operatorname{BIn}(b, c, d o(a, s)) \equiv$
(1) $\operatorname{Bin}(b, c, s)$ AND $a \neq \operatorname{loadS}(b, t)$

OR (2) for some t: $a=$ unloadS(b,t) AND $\operatorname{TIn}(t, c, s)$

- Regression Operator: $\operatorname{Regr}(\varphi)=\varphi^{\prime}$
- Takes a formula φ describing a post-action state
- Uses SSAs to build φ^{\prime} describing pre-action state
- Crucial for backing up value fun to produce Q-fun!

FOMDP Case Representation

- Case: Assign value to first-order state abstraction
- E.g., can express reward in BoxWorld FOMDP as...

$$
\text { rCase(s) }=\begin{array}{|l|l|}
\hline \forall b, c . \operatorname{Dest}(b, c) \Rightarrow \operatorname{BIn}(b, c, s) & 1 \\
\hline \neg \forall b, c . \operatorname{Dest}(b, c) \Rightarrow \operatorname{BIn}(b, c, s) & 0 \\
\hline
\end{array}
$$

■ Operators: Define unary, binary case operations

- E.g., can take "cross-sum" $\oplus($ or $\otimes, \ominus)$ of two cases...

$\exists x \cdot A(x)$	10			
$\neg \exists x \cdot A(x)$	20	\oplus	$\exists y \cdot A(y) \wedge B(y)$	3
:---	:---	:---	:---	
$\neg \exists y \cdot A(y) \wedge B(y)$	4			
$\exists x \cdot A(x) \wedge \neg \exists y \cdot A(y) \wedge B(y)$	14			
$\neg \exists x \cdot A(x) \wedge \neg \exists y \cdot A(y) \wedge B(y)$	24			

- Must remove inconsistent elements (i.e., red bar -—)

FOMDP Actions and FODTR

- SitCalc is deterministic, how to handle probabilities?
- User's stochastic actions: load(b,t)
- Nature's deterministic choice: $\operatorname{loadS}(b, t), \operatorname{loadF}(b, t)$
- Probability distribution over Nature's choice:

$$
\begin{aligned}
& P(\operatorname{loadS}(b, t) \mid \operatorname{load}(b, t))=\begin{array}{|l|l|}
\hline \operatorname{snow}(s) & .1 \\
\hline \neg \operatorname{snow}(s) & .5 \\
\hline
\end{array} \\
& P(\operatorname{loadF}(b, t) \mid \operatorname{load}(b, t))=1 \ominus P(\operatorname{loadS}(b, t) \mid \operatorname{load}(b, t))
\end{aligned}
$$

- First-order decision-theoretic regression (FODTR):
- Given value fun vCase(s) and user action, produces first-order description of "Q-fun" (modulo reward)

```
"Q-Fun" = FODTR[ vCase(s), load(b,t)]=
    Regr[vCase(after loadS... )] \otimes P(loadS...|load... )
Regr[vCase( after loadF... )] \otimes P(loadF... | load... )
```


FOMDP Backup Operators

In fact, there are 3 types of " Q -funs"/backup operators:

1) $B^{A(x)}[v \operatorname{Case}(s)]=r \operatorname{Case}(s) \oplus \gamma \cdot \operatorname{FODTR}[v \operatorname{Case}(s)]$

Let Bload $(\mathrm{b}, \mathrm{t})[\mathrm{vCase}(\mathrm{s})]=$| $\varphi(\mathrm{b}, \mathrm{t})$ | .9 |
| :--- | :--- |
| $\neg \varphi(\mathrm{~b}, \mathrm{t})$ | 0 | Think of as $Q(A(x), s)$, note the free vars!

2) $B^{A}[v \operatorname{Case}(s)]=\exists x \cdot B^{A(x)}[v \operatorname{Case}(s)]$ (action abstraction!)

$\left.B^{\operatorname{load}[v C a s e}(\mathrm{s})\right]=$| $\exists \mathrm{b}, \mathrm{t} . \varphi(\mathrm{b}, \mathrm{t})$ | .9 |
| :--- | :--- |
| $\exists \mathrm{~b}, \mathrm{t} . \neg \varphi(\mathrm{b}, \mathrm{t})$ | 0 | Think of as $\sim Q(A, S)$, no free vars but now overlap!

3) $B^{A}{ }_{\text {max }}[v \operatorname{Case}(s)]=\max \left(B^{A}[v \operatorname{Case}(s)]\right)$

First-order Approx. Linear Prog. (FOALP)

- Represent value $f n$ as linear comb. of k basis fns:

vCase $(s)=w_{1} \cdot$\begin{tabular}{|l|l|}
$\exists \exists \mathrm{b}, \mathrm{c} \operatorname{BIn}(b, c, s)$ \& 1

$\neg \exists \mathrm{~b}, \mathrm{BIn}(b, c, s)$ \& 0

\hline

$\oplus \ldots \oplus w_{\mathrm{k}} \cdot$

\hline$\exists \mathrm{t}, \mathrm{c} \operatorname{TIn}(t, c, s)$ \& 1

$\neg \exists \mathrm{t}, \mathrm{c} \operatorname{Tn}(t, c, s)$ \& 0

\hline
\end{tabular}

- Reduces MDP solution to finding good weights... generalize approx. LP used by (van Roy, GKP, SP):

Vars: $\quad w_{i} ; i \leq k$
Minimize: $\quad \Sigma_{s} \Sigma_{i=1 . . k} w_{i} \cdot$ Case $_{i}(s)$
Subject to: $0 \geq B_{\text {max }}{ }^{[} \oplus_{i=1 . . k} w_{i} \cdot$ base $\left._{i}(s)\right]$ $\ominus \oplus_{i=1 . . k} w_{i} \cdot b \operatorname{Case}_{i}(s) ; \quad \forall a \in A, s$

- FOALP issues resolved in (SB, 2005):
- ∞ sum in objective: We give principled approximation
- ∞ constraints: Only finite set of distinct constraints, solve exactly \& efficiently w/ constraint gen. (SP)

First-order Approx. Policy Iter. (FOAPI)

- Need an explicit representation of a policy:
- π Case(s) $=\max \left(\cup_{i=1 . . m} B^{A_{i}}[v \operatorname{Case}(s)]\right)$
- Each case partition should retain mapping to $\boldsymbol{A}_{\mathbf{i}}$
- Now separate partitions in $\mathbf{A}_{\mathbf{i}}$-specific policies:
- $\pi \operatorname{Case}_{A i}(s)=\left\{\right.$ part $\in \pi$ Case(s) s.t. part $\left.\rightarrow A_{i}\right\}$
- Specifies states where policy would apply A_{i}
- FOAPI: Direct generalization of GKP (exact objective!)
- Start $\mathbf{w} / w_{i}{ }^{0}=0, \pi \operatorname{Case}^{0}(s)$; iterate LP soln until $\pi^{j+1=} \pi^{j}$:

Vars: $\quad w_{i}^{(j+1)} ; i \leq k$
Minimize: $\quad \phi^{(j+1)}$
Subject to: $\phi^{(j+1)} \geq \mid \pi$ Case $_{a}^{j}(s) \oplus B_{\text {max }}\left(\oplus_{i=1 . . . k} w_{i}^{(j+1)} \cdot\right.$ Casase $\left._{i}(s)\right)$

$$
\ominus \oplus_{\mathrm{i}=1 . . \mathrm{k}} \mathrm{w}_{\mathrm{i}}^{(\mathrm{j}+1)} \cdot \mathrm{bCase}{ }_{i}(\mathrm{~s}) \mid ; \forall a \in A, s
$$

- Use cgen; if converges, obtain bounds on policy (GKP)!

Generating Basis Functions

- Where do basis functions come from?
- Major question for automation!
- Huge candidate space if systematically building basis functions for all first-order formulae
- Idea (GT, 2004): Regressions from goal make good candidate basis functions!
- Given initial basis function for reward: $\exists \mathrm{b} . \operatorname{Bin}(\mathrm{b}, \mathrm{P}, \mathrm{s})$
- Regr w/ unload: $\exists \mathrm{b} . \operatorname{Bin}(\mathrm{b}, \mathrm{P}, \mathrm{s}) \vee\left(\exists \mathrm{b}^{\star}, \dagger^{\star} . \operatorname{TIn}\left(\dagger^{\star}, \mathrm{P}, \mathrm{s}\right) \wedge O n\left(\mathrm{~b}^{\star}, \iota^{\star}, s\right)\right)$
- Render basis disjoint from parents, will use later
- Iteratively solve FOMDP
- Retain all basis functions with wgt. > threshold τ
- Generate new basis fns from retained set

Problems w/ Universal Reward

- Universal rewards are difficult for FOMDPs, e.g.
- Given reward:

$$
r \operatorname{Case}(s)=\begin{array}{|c|l|}
\hline \forall b, c . \operatorname{Dest}(b, c) \Rightarrow B \operatorname{In}(b, c, s) & 1 \\
\hline \neg & 0 \\
\hline
\end{array}
$$

- Exact \mathbf{n}-stage-to-go value function has form:

v Case $^{n}(s)=$| $\forall b, c . \operatorname{Dest}(b, c) \Rightarrow \operatorname{BIn}(b, c, s)$ | 1 |
| :--- | :--- |
| 1 box not at dest | γ |
| \ldots | \ldots |
| $n-1$ boxes not at dest | γ^{n-1} |

- Exact value function has infinitely many values!
- Cannot compactly represent such structure with piecewise-constant case approximation of value fn

Additive Goal Decomposition

- Solution for universal rewards:

When reward in simple implicative form, solve for single goal with distinguished constants.

- E.g., given: $\forall b, c$. $\operatorname{Dest}(b, c) \Rightarrow B \operatorname{In}(b, c, s)$
- Solve FOMDP for: BIn(b*, $\left.c^{\star}, s\right)$
- Given solution, gen. Q-funs $Q(A, s)_{\left|b^{*}, c^{*}\right\rangle}(s)$ for $\forall a \in A$
- At run-time: Given concrete domain, e.g.
- Instantiation: $\left\{\operatorname{Dest}\left(b_{1}, c_{1}\right), \operatorname{Dest}\left(b_{2}, c_{2}\right), \operatorname{Dest}\left(b_{3}, c_{3}\right)\right\}$
- Let overall $Q(A, s)=Q(A, s)_{b 1, c 1\rangle}(s)+Q(A, s)_{b b 2, c 2\rangle}(s)+$

$$
Q(A, s)_{\& b 3, c 3}(s) \text { for } \forall a \in A
$$

- To execute policy: select action that maximizes sum of values across all Q -funs, i.e., Q(A,s)
- Only heuristic: works in many, but not all cases

Optimizations

- Exploiting disjointness in basis functions:
- Worst case for set B of basis functions: must examine $2^{|B|}$ case partitions in constraint generation
- But for any pairwise disjoint set B^{\prime} of basis functions, need examine only $\left|\mathrm{B}^{\prime}\right|$ case partitions in cgen
- Basis generation enforces disjointness b/w child/parent!
- Exploiting implicit max in constraint generation:
- In constraints, substitute $0 \geq B^{a}{ }_{\text {max }} \ldots$ with $0 \geq B^{a} \ldots$
- Removing internal redundancy/inconsistency w/ BDDs:
- Given: $(\exists x A(x)) \wedge(\exists x A(x)) \wedge(\exists x A(x) \wedge B(x))$

Empirical Results: Runtime

- Offline solution times for BoxWorld \& BlocksWorld:

- Without optimizations, cannot get past iteration 2 (> 36000 sec.)

■ BoxWorld: Policies simple, fewer constraints for FOAPI

- BlocksWorld: Policies complex (lots of equality)

Empirical Results: Performance

- Evaluated cumulative reward on ICAPS 2004 Prob. Planning Comp. BoxWorld (bx) and BlocksWorld (bw):

Problem	Prob. Planning System				FO-		
	G2	\mathbf{P}	$\mathbf{J 1}$	$\mathbf{J 2}$	$\mathbf{J 3}$	ALP	API

$b x c 10 b 5$	438	184	419	376	425	433	433
$b x c 10 b 10$	376	0	317	0	346	366	366
$b x c 10 b 15$	0	-	129	0	279	0	0
$b w b 5$	495	494	494	495	494	494	490
$b w b 11$	479	466	480	480	481	480	0
$b w b 15$	468	397	469	468	0	470	0
$b w b 18$	352	-	462	0	0	464	0
$b w b 21$	286	-	456	455	459	456	0

G2: temp. logic w/ control knowledge; P: RTDP-based J1: human-coded policy; J2: inductive FO policy iter.; J3: deterministic FF-replanner

Related Work

- Direct value iteration:
- ReBel algorithm for RMDPs (KvOdR, 2004)
- FOVIA algorithm for fluent calculus (KS, 2005)
- First-order decision diagrams (JKW, 2006)
- \rightarrow all disallow \forall quant., e.g., universal cond. effects
- Sampling and/or inductive techniques:
- Approx. linear programming for RMDPs (GKGK, 2003)
- Inductive policy selection using FO regression (GT, 2004)
- Approximate policy iteration (FYG, 2004)
- \rightarrow sampled domain instantiations do not ensure generalization across all possible worlds
$\bullet \rightarrow$ nonetheless, these methods have worked well empirically

Conclusions and Future Work

- Conclusions:
- Developed domain-independent linear-value approximation techniques / optimization for FOMDPs
- Encouraging empirical results on ICAPS 2004 IPPC
- $2^{\text {nd }}$ place in ICAPS 2006 IPPC by \# problems solved
- Future work:
- Goal decomposition for complex \forall rewards
- $(\forall b, c . \operatorname{Dest}(b, c) \Rightarrow \operatorname{BIn}(b, c, s)) \vee \exists b . \operatorname{Bin}(b, P a r i s, s)$
- Online search to "patch-up" decomposition error
- E.g., additive decomposition is inadequate to solve some difficult problems in BlocksWorld
- More expressive rewards
- $\Sigma_{b}(\forall c . \operatorname{Dest}(b, c) \Rightarrow B \operatorname{In}(b, c, s))$

