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Relational desc. of (prob) planning domain in (P)PDDL:

(:action load-box-on-truck-in-city
:parameters (?b - box ?t - truck ?c - city)
:precondition (and (BIn ?b ?c) (TIn ?t ?c))
:effect (and (On ?b ?t) (not (BIn ?b ?c))) 

London
Paris

Rome
Berlin MoscowBox World:

Why Solve First-order MDPs?

Or solve first-order MDP for all domain inst. at once!
Lift PPDDL MDP specification to first-order (FOMDP)
Soln makes value distinctions for all dom. instantiations! 

Can solve a ground MDP for each domain instantiation:
3 trucks:                  2 planes:               4 boxes:
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Background
1) Symbolic DP for first-order MDPs (BRP, 2001)

Defines FOMDP / operators / value iteration
Requires FO simplification for compactness 

2) First-order approx. linear prog. (SB, 2005)
Approximate value with linear comb. of basis funs.
No simplification → project onto weight space ☺

3) Many practical questions remaining (SB, 2006)
Other algorithms – first-order API? 
Where do basis functions come from?
How to efficiently handle universal rewards? 
Optimizations for scalability?

/ Talk Outline
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FOMDP Foundation: SitCalc
Deterministic Actions: loadS(b,t), unloadS(b,t), …

Situations: S0, do(loadS(b,t), S0), …

Fluents: BIn(b,c,s), TIn(t,c,s), On(b,t,s)

Successor-state axioms (SSAs) for each fluent F:
Describe how action affects fluent (like det. FO-DBN)
Ex: BIn(b,c,do(a,s)) ≡

(1) Bin(b,c,s) AND a g loadS(b,t) 
OR (2) for some t: a = unloadS(b,t) AND TIn(t,c,s)

Regression Operator: Regr(ϕ) = ϕ’
Takes a formula ϕ describing a post-action state
Uses SSAs to build ϕ’ describing pre-action state
Crucial for backing up value fun to produce Q-fun!
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Operators: Define unary, binary case operations
E.g., can take “cross-sum” / (or 1, 0) of two cases…

Must remove inconsistent elements (i.e., red bar            )

¬∃x.A(x)

∃x.A(x)
20

10

¬∃x.A(x)  ∧ ¬∃y.A(y)∧B(y)

¬∃x.A(x)  ∧ ∃y.A(y)∧B(y)

∃x.A(x)  ∧ ¬∃y.A(y)∧B(y)

∃x.A(x)  ∧ ∃y.A(y)∧B(y)

24

23

14

13

¬∃y.A(y)∧B(y)

∃y.A(y)∧B(y)
4

3
=/

FOMDP Case Representation
Case: Assign value to first-order state abstraction

E.g., can express reward in BoxWorld FOMDP as…

¬ ∀b,c. Dest(b,c) ⇒ BIn(b,c,s)

∀b,c. Dest(b,c) ⇒ BIn(b,c,s)
0

1
rCase(s) =
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FOMDP Actions and FODTR
SitCalc is deterministic, how to handle probabilities?

User’s stochastic actions: load(b,t)
Nature’s deterministic choice: loadS(b,t), loadF(b,t)
Probability distribution over Nature’s choice:

First-order decision-theoretic regression (FODTR):
Given value fun vCase(s) and user action, produces 
first-order description of “Q-fun” (modulo reward)

“Q-Fun” = FODTR[ vCase(s), load(b,t) ] = 
Regr[ vCase( after loadS… ) ] 1 P( loadS… | load… ) 

/ Regr[ vCase( after loadF… ) ] 1 P( loadF… | load… ) 

P(loadS(b,t) | load(b,t)) =

P(loadF(b,t) | load(b,t)) = 1 0 P(loadS(b,t) | load(b,t)) 

¬ snow(s)

snow(s)
.5

.1
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FOMDP Backup Operators
In fact, there are 3 types of “Q-funs”/backup operators:

1) BA(x)[vCase(s)] = rCase(s) / γ⋅FODTR[vCase(s)]

2) BA[vCase(s)] = ∃x. BA(x)[vCase(s)] (action abstraction!)

3) BA
max[vCase(s)] = max( BA[vCase(s)] )

Let Bload(b,t)[vCase(s)] =
¬ϕ(b,t)

ϕ(b,t)
0

.9

Bload[vCase(s)] =
∃b,t. ¬ϕ(b,t)

∃b,t. ϕ(b,t)
0

.9

Bload
max[vCase(s)] =

0¬(∃b,t. ϕ(b,t)) 
∧ ∃b,t. ¬ϕ(b,t)

∃b,t. ϕ(b,t) .9

Think of as Q(A(x),s),
note the free vars!

Think of as ~Q(A,s), no 
free vars but now overlap!

Think of as Q(A,s), no
free vars and no overlap!
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First-order Approx. Linear Prog. (FOALP)

Represent value fn as linear comb. of k basis fns:

Reduces MDP solution to finding good weights…
generalize approx. LP used by (van Roy, GKP, SP):

FOALP issues resolved in (SB, 2005):
∞ sum in objective: We give principled approximation
∞ constraints: Only finite set of distinct constraints, 
solve exactly & efficiently w/ constraint gen. (SP)

¬ ∃b,c BIn(b,c,s)

∃b,c BIn(b,c,s)
0

1

¬ ∃t,c TIn(t,c,s)

∃t,c TIn(t,c,s)
0

1
vCase(s) = w1• ⊕ … ⊕ wk•

Vars: wi; i [ k

Minimize: Σs Σi=1..k wi •bCasei(s)
Subject to: 0 m Ba

max[/i=1..k wi •bCasei(s)] 
0 /i=1..k wi •bCasei(s);      ∀a∈A,s
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First-order Approx. Policy Iter. (FOAPI)
Need an explicit representation of a policy:

πCase(s) = max( ∪i=1..m BAi[vCase(s)] )
Each case partition should retain mapping to Ai

Now separate partitions in  Ai-specific policies:
πCaseAi(s) = { part ∈ πCase(s) s.t. part → Ai } 
Specifies states where policy would apply Ai

FOAPI: Direct generalization of GKP (exact objective!)
Start w/ wi

0=0, πCase0(s); iterate LP soln until πj+1= πj:

Use cgen; if converges, obtain bounds on policy (GKP)!

Vars:  wi
(j+1); i [ k

Minimize:     φ(j+1)

Subject to: φ(j+1) m | πCasej
a(s) / Ba

max (/i=1..k wi
(j+1) •bCasei(s)) 

0 /i=1..k wi
(j+1) •bCasei(s)|; ∀a∈A,s
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Generating Basis Functions
Where do basis functions come from?

Major question for automation!
Huge candidate space if systematically building basis 
functions for all first-order formulae

Idea (GT, 2004): Regressions from goal make 
good candidate basis functions!

Given initial basis function for reward: ∃b.Bin(b,P,s) 

Regr w/ unload: ∃b.Bin(b,P,s) ∨ (∃b*,t*.TIn(t*,P,s)∧On(b*,t*,s))

Render basis disjoint from parents, will use later
Iteratively solve FOMDP

Retain all basis functions with wgt. > threshold τ
Generate new basis fns from retained set
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Universal rewards are difficult for FOMDPs, e.g.
Given reward:

Exact n-stage-to-go value function has form:

Exact value function has infinitely many values!
Cannot compactly represent such structure with 
piecewise-constant case approximation of value fn

Problems w/ Universal Reward

n-1 boxes not at dest
…

1 box not at dest

∀b,c. Dest(b,c) ⇒ BIn(b,c,s)

γn-1

…

γ

1

vCasen(s)=

¬”

∀b,c. Dest(b,c) ⇒ BIn(b,c,s)
0

1
rCase (s)=
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Additive Goal Decomposition
Solution for universal rewards:

E.g., given: ∀b,c. Dest(b,c) ⇒ BIn(b,c,s)
Solve FOMDP for: BIn(b*,c*,s)
Given solution, gen. Q-funs Q(A,s)<b*,c*>(s) for ∀a∈A

At run-time: Given concrete domain, e.g.
Instantiation:{Dest(b1,c1), Dest(b2,c2), Dest(b3,c3) }
Let overall Q(A,s)  = Q(A,s)<b1,c1>(s)  +  Q(A,s)<b2,c2>(s)  +

Q(A,s)<b3,c3>(s) for ∀a∈A
To execute policy: select action that maximizes sum of 
values across all Q-funs, i.e., Q(A,s) 
Only heuristic: works in many, but not all cases

When reward in simple implicative form, solve 
for single goal with distinguished constants.
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Optimizations
Exploiting disjointness in basis functions:

Worst case for set B of basis functions: must examine 2|B|

case partitions in constraint generation
But for any pairwise disjoint set B’ of basis functions, 
need examine only |B’| case partitions in cgen
Basis generation enforces disjointness b/w child/parent!

Exploiting implicit max in constraint generation:
In constraints, substitute 0 m Ba

max …with 0 m Ba …

Removing internal redundancy/inconsistency w/ BDDs:
Given: (∃x A(x)) ∧ (∃x A(x)) ∧ (∃x A(x)∧B(x))

a⇒b ∃x A(x)∧B(x)a
¬b⇒¬a∃x A(x)b

FOL Mapping Impl.Prop Var a

T F

a

T

b

F

∃x A(x)∧B(x)
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Empirical Results: Runtime
Offline solution times for BoxWorld & BlocksWorld:

Without optimizations, cannot get past iteration 2 (> 36000 sec.)
BoxWorld: Policies simple, fewer constraints for FOAPI
BlocksWorld: Policies complex (lots of equality)
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Empirical Results: Performance
Evaluated cumulative reward on ICAPS 2004 Prob. 
Planning Comp. BoxWorld (bx) and BlocksWorld (bw):

G2: temp. logic w/ control knowledge;  P: RTDP-based
J1: human-coded policy; J2: inductive FO policy iter.;
J3: deterministic FF-replanner



16

Related Work
Direct value iteration:

ReBel algorithm for RMDPs (KvOdR, 2004)

FOVIA algorithm for fluent calculus (KS, 2005)

First-order decision diagrams (JKW, 2006)

→ all disallow ∀ quant., e.g., universal cond. effects

Sampling and/or inductive techniques:
Approx. linear programming for RMDPs (GKGK, 2003)

Inductive policy selection using FO regression (GT, 2004)

Approximate policy iteration (FYG, 2004)

→ sampled domain instantiations do not ensure  
generalization across all possible worlds

→ nonetheless, these methods have worked well 
empirically
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Conclusions and Future Work
Conclusions:

Developed domain-independent linear-value 
approximation techniques / optimization for FOMDPs
Encouraging empirical results on ICAPS 2004 IPPC
2nd place in ICAPS 2006 IPPC by # problems solved

Future work:
Goal decomposition for complex ∀ rewards

(∀b,c. Dest(b,c) ⇒ BIn(b,c,s)) ∨ ∃b.Bin(b,Paris,s)
Online search to “patch-up” decomposition error

E.g., additive decomposition is inadequate to solve 
some difficult problems in BlocksWorld

More expressive rewards
Σb (∀c. Dest(b,c) ⇒ BIn(b,c,s)) 


