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Comment: Monitoring Convergence of the Gibbs
Sampler: Further Experience with the Gibbs

Stopper

Lu Cui, Martin A. Tanner, Debajyoti Sinha and W. J. Hall

1. INTRODUCTION

Whether one follows the “multiple-run” or the “one
long run” approach to implementing Markov chain
methods, diagnostics for monitoring convergence will
be of value. The purpose of this note is to provide
further illustration of one such diagnostic, the Gibbs
Stopper, originally presented in Ritter and Tanner
(1992) in the multiple run context.

The basic idea behind the Gibbs Stopper is to assign
the weight w to the vector 8 = (0, . . . , 64), which has
been drawn from the current approximation to the
joint density g; via

w(e) — q(aly ceey adIY)’
gi(01,. ey 0d)
where q(6y, . . ., 04|Y) is proportional to the posterior
density p(6y, . . ., 64Y). As g; converges toward p(6;,

. ««., 04]Y), the distribution of the-weights (associated
with values of 8 drawn from g;) should converge toward
a spike distribution. We have found this observation
useful in assessing convergence of the Gibbs sampler,
as well as in transforming a sample from g; into a
sample from the exact distribution; see Ritter and
Tanner (1992). Historically, the idea of using impor-
tance weights to monitor convergence of the data aug-
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mentation algorithm was first presented in the
Rejoinder of Tanner and Wong (1987) and illustrated
in Wei and Tanner (1990).

To write down the functional form for g; for the Gibbs
sampler, we introduce notation following Schervish and
Carlin (1990). Let p™6) = p(6i|6s, . . . , Oi=1, 41, . . .,
04, Y). For two vectors @ and @', define for each i <d,
0(1") = (01, e .oy 0,', 0','+1, e eey 0ld) and 0“” = . As noted
in Schervish and Carlin (1990), if g; is the joint density
of the observations sampled at iteration i, then the
joint density (gi+1) of the observations sampled at the
next iteration is given by

d
(1) / K(0',0)g40") dA0"),  K(6",6) = ] p™(6Y)
i=1
[see also Tanner and Wong (1987) and Liu, Wong and

Kong (1991, 1991a)]. One may approximate the integral
in (1) via the method of Monte Carlo. In particular,

given the observations 6', 6% . .., 6™, use the Monte
Carlo sum
(@) LS kie,0

m =

to approximate gi+1(6). Ritter and Tanner (1992) sug-
gest using 6 values from independent chains. In this
note, we use successive 0 values from one chain to
construct the Monte Carlo sum (2). Note that construc-
tion of (2) requires the normalizing constants (or good
approximations to the normalizing constants) for the
conditional distributions. Also note that we are exam-
ming, through p(0k|01, e ey ﬂk_l, 0k+1, e ooy 0d, Y), the
first component of each @ vector along with components
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2 through d of the other m — 1 6 vectors, the first
and second components of each @ vector along with
components 3 through d of the other m — 1 6 vectors,
and so on, thereby expanding the coverage of the
parameter space. We feel that the effort in constructing
(2) will yield useful information regarding the state of
the Markov chain vis-a-vis the equilibrium distribu-
tion. An example of the potential of this approach is
given in the next section.

To illustrate this convergence diagnostic, we con-
sider a “witch’s hat” distribution presented in Mat-
thews (1991). The posterior under consideration is
proportional to a mixture of a multivariate normal
distribution and the uniform distribution on the open
d-dimensional hypercube (0,1)¢ C:

d
d 2
(3) (1- 5)<«/21_7w> e~ Zi=ilbi=0io) 12 STy 0.
We have chosen 6 =107}, 6 =0.03, d=9 and Y =
(0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9). A cursory
examination of the posterior reveals a spike centered
at Y, with a flat “brim” extending out to the boundary
of the unit hypercube. We proceed under the assump-
tion that the posterior at hand is analytically compli-
cated, thereby not allowing for an easy recognition of

the location of or number of spikes. Clearly, in a situa-
tion where determining the number of and location of
the modes is straightforward, one would focus atten-
tion around these points, possibly along the lines sug-
gested by Gelman and Rubin (1992).

2. RESULTS

Figure 1 presents a history of the §, marginal, start-
ing from the point (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1). The plots for the other marginals are quite similar.
As can be seen from the plot, the Markov chain wan-
ders about the hypercube until iteration 4,400 or so,
at which point it locates the mode. A run shorter than
4,400 iterations would not have detected the spike.

Figure 2 presents a plot of w(8") versus iteration i,
i = 1,270. The weights in this plot are based on the
first 270 successive (9-dimensional) points in the chain.
The 270 weights in the plot were standardized to have
mean zero and unit standard deviation. As can be seen
in the plot, all 270 weights are equal, with the exception
of two weights.

The reason for the outlying weights is easily ex-
plained. The conditional densities p(6:|6, . . . , 6k—1, Or+1,
..., 04Y) used in computing K in (1) are proportional to

theta1
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Fi1c. 1. 6, versus iteration.
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(3) for specified 6, and 0 < 6; < 1. When 6; is “far” from
Vi iR, p(6r]6y, . . ., Or—1, Op+1, . . ., 03, Y) is virtually
equal to unity, independent of the value of 6;,.When 6;
is “near” y;, i#k, p(Or|6s, . . ., Oh—1, k41, . . ., 64, Y) (as
a function of 6;) follows the normal curve. The outlying
weight points noted in Figure 2 stem from the fact
that in three of the 270 products in (2), which are
averaged to compute g;+1, one of the terms p(6:|6y, . . .,
Or-1, Or+1, - - ., 04, Y) has seven of the eight 6;’s within
three o’s of 0.9, i #k, with 6, “far” from 0.9. (For future
reference call these components 6;*, i #k.) This term is
nearly zero, thereby causing the entire product of terms
in K to be small. Thus, rather than averaging 270
products equal to unity to compute g;+1, the average
was diminished by the three near-zero products, lead-
ing to the outlying weight.

As a follow-up to the investigation of the cause of
the two outliers, we located the maximizer (6;*) of
p(6:|61, . - . ,Ok—1,6k+1, » . ., 04, Y), where the 6;s
were set equal to the 6* (i k) values identified in the
previous paragraph. We then started a chain from this
point. Figure 3 presents a plot of the history of the 6,
marginal for this path; the other marginals are similar.
As indicated in the figure, the chain moved immedi-
ately into the neighborhood of the spike.

In this example, we see how a careful examination
of the outlying weights helps to locate the spike much
earlier than the 4,400 iterations required by the original
chain. Of course, this Gibbs Stopper technique is not
infallible. Had we only considered the first 100 points in
the Markov chain, we would have missed the outliers.
Similarly, one would expect that smaller values of &
and higher values of d would require more terms in
(2) —though both of these modifications would probably
increase the run time of the chain as well. We feel,
however, that careful use of the conditionals p(6|6;,
veuyOp—1,6k41, ..., 04 Y) can reveal more information
about the convergence of the chain than what can be
learned from the realized values of the Markov chain
alone (i.e., the observed multivariate time series).

We examined additional weight plots based on non-
overlapping segments (iterations 271-810, 810-1,850,
1,850-4,010, etc.) of the original Markov chain. One
does not see in this series of plots a degeneration of
the distribution of the weights about a spike, as would
be expected if the chain was in equilibrium — providing
further indication to the data analyst of an anomaly
regarding convergence of the chain. These plots high-
light the slowly mixing nature of the chain.

In summary, we feel that a careful examination of
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the importance weights can yield valuable information
about the convergence of the Markov chain. Further
experience with this Gibbs Stopper method is war-
ranted. Also of value would be analytical expressions
that quantify the probability of outlier detection for
important classes of problems.

Comment

‘Alan E. Gelfand

As noted by Gelman and Rubin, the problem of
creating a simulation mechanism is clearly separate
from the problem of using this mechanism to draw
inference. Moreover, for the former problem, as ob-
served in Green and Han (1992), the objectives of rapid
convergence and good estimation performance are dis-
tinct. Translating these objectives to the latter prob-
lem, it appears that Gelman and Rubin focus on
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diagnosis of convergence, whereas Geyer focuses on
assessing estimation performance. Again, these enter-
prises are not identical, accounting in part for the
authors’ differing views.

The two papers share a common thread in that,
regardless of whether single or multiple trajectories
are used, the state space of the Markov chain at each
iteration is reduced to a univariate observation with
trajectories thus treated as univariate time series.
Though the authors’ proposals can be carried out for
any univariate reduction of interest, the thrust of my
comments is the suggestion that, at least in certain



