
The VLDB Journal (2005) 14(3): 281–299
DOI 10.1007/s00778-005-0154-8

REGULAR PAPER

Yuanyuan Tian · Sandeep Tata ·

Richard A. Hankins · Jignesh M. Patel

Practical methods for constructing suffix trees

Received: 14 October 2004 / Accepted: 1 July 2005 / Published online: 26 September 2005
c© Springer-Verlag 2005

Abstract Sequence datasets are ubiquitous in modern life-
science applications, and querying sequences is a common
and critical operation in many of these applications. The suf-
fix tree is a versatile data structure that can be used to evalu-
ate a wide variety of queries on sequence datasets, including
evaluating exact and approximate string matches, and find-
ing repeat patterns. However, methods for constructing suf-
fix trees are often very time-consuming, especially for suffix
trees that are large and do not fit in the available main mem-
ory. Even when the suffix tree fits in memory, it turns out
that the processor cache behavior of theoretically optimal
suffix tree construction methods is poor, resulting in poor
performance. Currently, there are a large number of algo-
rithms for constructing suffix trees, but the practical trade-
offs in using these algorithms for different scenarios are not
well characterized.

In this paper, we explore suffix tree construction algo-
rithms over a wide spectrum of data sources and sizes. First,
we show that on modern processors, a cache-efficient algo-
rithm with O(n2) worst-case complexity outperforms popu-
lar linear time algorithms like Ukkonen and McCreight, even
for in-memory construction. For larger datasets, the disk I/O
requirement quickly becomes the bottleneck in each algo-
rithm’s performance. To address this problem, we describe
two approaches. First, we present a buffer management
strategy for the O(n2) algorithm. The resulting new algo-
rithm, which we call “Top Down Disk-based” (TDD), scales
to sizes much larger than have been previously described
in literature. This approach far outperforms the best known
disk-based construction methods. Second, we present a new
disk-based suffix tree construction algorithm that is based on
a sort-merge paradigm, and show that for constructing very

Y. Tian · S. Tata · J. M. Patel
University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-
2122, USA
E-mail: {ytian, tatas, jignesh}@eecs.umich.edu

R. A. Hankins (B)
Microarchitecture Research Lab, Intel Corp., 2200 Mission College
Blvd, Santa Clara, CA 95054, USA
E-mail: richard.a.hankins@intel.com

large suffix trees with very little resources, this algorithm is
more efficient than TDD.

Keywords Suffix tree construction · sequence matching

1 Introduction

Querying large string datasets is becoming increasingly im-
portant in a number of life-science and text applications.
Life-science researchers are often interested in explorative
querying of large biological sequence databases, such as
genomes and large sets of protein sequences. Many of
these biological datasets are growing at exponential rates–
for example, the sizes of the sequence datasets in Gen-
Bank have been doubling every 16 months [50]. Conse-
quently, methods for efficiently querying large string datasets
are critical to the success of these emerging database
applications.

A suffix tree is a versatile data structure that can help
execute such queries efficiently. In fact, suffix trees are
useful for evaluating a wide variety of queries on string
databases [26]. For instance, the exact substring matching
problem can be solved in time proportional to the length
of the query, once the suffix tree is built on the database
string. Suffix trees can also be used to solve approximate
string matching problems efficiently. Some bioinformatics
applications such as MUMmer [16, 17, 37], REPuter [36],
and OASIS [41] exploit suffix trees to efficiently evalu-
ate queries on biological sequence datasets. However, suffix
trees are not widely used because of their high cost of con-
struction. As we show in this paper, building a suffix tree
on moderately sized datasets, such as a single chromosome
of the human genome, takes over 1.5 hours with the best-
known existing disk-based construction technique [28]. In
contrast, the techniques that we develop in this paper reduce
the construction time by a factor of 5 on inputs of the same
size.

Even though suffix trees are currently not in widespread
use, there is a rich history of algorithms for constructing

282 Y. Tian et al.

suffix trees. A large focus of previous research has been
on linear-time suffix tree construction algorithms [40, 52,
54]. These algorithms are well suited for small input strings
where the tree can be constructed entirely in main memory.
The growing size of input datasets, however, requires that
we construct suffix trees efficiently on disk. The algorithms
proposed in [40, 52, 54] cannot be used for disk-based con-
struction as they have poor locality of reference. This poor
locality causes a large amount of random disk I/O once the
data structures no longer fit in main memory. If we naively
use these main-memory algorithms for on-disk suffix tree
construction, the process may take well over a day for a sin-
gle human chromosome.

The large and rapidly growing size of many string
datasets underscores the need for fast disk-based suffix tree
construction algorithms. Theoretical methods for optimal
external memory suffix tree construction have also been de-
veloped [22], however, the practical behavior of these al-
gorithms has not been explored. A number of recent re-
search investigations have also examined practical suffix tree
construction techniques for large datasets [7, 28]. However,
these approaches do not scale well for large datasets (such
as an entire eukaryotic genome).

In this paper, we present new approaches for efficiently
constructing large suffix trees on disk. We use a philosophy
similar to the one in [28]. We forgo the use of suffix links
in return for a much better memory reference pattern, which
translates to better scalability and performance for construct-
ing large suffix trees.

The main contributions of this paper are as follows:

1. We present the “Top Down Disk-based” (TDD) ap-
proach, which was first introduced in [49]. TDD can be
used to efficiently build suffix trees for a wide range of
sizes and input types. This technique includes a suffix
tree construction algorithm called Partition and Write
Only Top Down (PWOTD), and a sophisticated buffer
management strategy.

2. We compare the performance of TDD with Ukko-
nen [52], McCreight [40], and a suffix array-based tech-
nique: Deep-Shallow [39] for the in-memory case, where
all the data structures needed for building the suffix trees
are memory resident (i.e., the datasets are “small”). In-
terestingly, we show that even though Ukkonen and Mc-
Creight have a better worst-case theoretical complexity
on a random access machine, TDD and Deep-Shallow
perform better on modern cached processors because
they incur fewer cache misses.

3. We systematically explore the space of data sizes and
types, and highlight the advantages and disadvantages of
TDD with respect to other construction algorithms.

4. We experimentally demonstrate that TDD scales grace-
fully with increasing input size. With extensive experi-
mental evaluation, we show that TDD outperforms ex-
isting disk-based construction methods. Using the TDD
process, we are able to construct a suffix tree on the
entire human genome in 30 h on a single processor
machine! To the best of our knowledge, suffix tree

construction on an input string of this size (approxi-
mately three billion symbols) has yet to be reported in
literature.

5. We describe a new algorithm called ST-Merge that is
based on a partition and merge strategy. We experimen-
tally show that ST-Merge algorithm is more efficient than
TDD when the input string size is significantly larger
than the available memory. However, for most current
biological sequence datasets on modern machines with
large memory configuration, TDD is the algorithm of
choice.

The remainder of this paper is organized as follows:
Sect. 2 discusses related work. The TDD technique is de-
scribed in Sect. 3, and we analyze the behavior of this al-
gorithm in Sect. 4. The ST-Merge algorithm is presented in
Sect. 5. Sect. 6 describes the experimental results, and Sect.
7 presents our conclusions.

2 Related work

Linear time algorithms for constructing suffix trees have
been described by Weiner [54], McCreight [40], and
Ukkonen [52]. (For a discussion on the relationship between
these algorithms, see [24].) Ukkonen’s is a popular algo-
rithm because it is easier to implement than the other al-
gorithms. It is an O(n), in-memory construction algorithm
based on the clever observation that constructing the suffix
tree can be performed by iteratively expanding the leaves of
a partially constructed suffix tree. Through the use of suf-
fix links, which provide a mechanism for quickly traversing
across subtrees, the suffix tree can be expanded by simply
adding the i + 1st character to the leaves of the suffix tree
built on the previous i characters. The algorithm thus relies
on suffix links to traverse through all of the subtrees in the
main tree, expanding the outer edges for each input char-
acter. McCreight’s algorithm is a space-economical linear
time suffix tree construction algorithm. This algorithm starts
from an empty tree and inserts suffixes into the partial tree
from the longest to the shortest suffix. Like Ukknonen’s al-
gorithm, McCreight’s algorithm also utilizes suffix links to
traverse from one part of the tree to another. Both are linear
time algorithms, but they have poor locality of reference.
This leads to poor performance on cached architectures and
on disk.

Variants of suffix trees construction algorithms have
been considered for disk-based construction [27]. Recently,
Bedathur and Haritsa developed a buffering strategy, called
TOP-Q, which improves the performance of Ukkonen’s al-
gorithm (which uses suffix links) when constructing on-disk
suffix trees [7]. A different approach was suggested by Hunt
et al. [28] where the authors drop the use of suffix links and
use an O(n2) algorithm with a better locality of memory
reference. In one pass over the string, they index all suf-
fixes with the same prefix by inserting them into an on-
disk subtree managed by PJama [6], a Java-based object
store. Construction of each independent subtree requires a

Practical methods for constructing suffix trees 283

full pass over the string. The main drawback of Hunt’s al-
gorithm is that the tree traversal incurs a large number of
random accesses during the construction process. A parti-
tion and clustering-based approach is described by Schür-
mann and Stoye in [46], which is an improvement over Hunt
et al. This approach uses clustering to better organize disk
accesses. A partitioning-based approach was suggested by
Clifford and Sergot in [13] to build distributed and paged
suffix trees. However, this is an in-memory technique. Che-
ung et al. [12] have recently proposed an algorithm called
DynaCluster. This algorithm employs a dynamic clustering
technique to reduce the random accesses that are incurred
during the tree traversal. Every cluster contains tree nodes
that are frequently referenced by each other. In this paper,
we compare our suffix tree construction methods with TOP-
Q [7], Hunt’s [28] method, and DynaCluster [12], and show
that in practice our methods for constructing suffix trees are
more efficient.

A top-down suffix tree construction approach has been
suggested in [3]. In [25], Giegerich, Kurtz, and Stoye ex-
plore the benefits of using a lazy implementation of suffix
trees. In this approach, the authors argue that one can avoid
paying the full construction cost by constructing the subtree
only when it is accessed for the first time. This approach is
useful either when a small number of queries are posed or
only short queries are posed against a string dataset. When
executing a large number of (longer) queries, most of the
tree must be materialized, and in this case, this approach will
perform poorly.

Previous research has also produced theoretical results
on understanding the average sizes of suffix trees [9, 48],
and theoretical complexity of using sorting to build suffix
trees. In [21], Farach describes a linear time algorithm by
constructing odd and even suffix trees, and merging them.
In [22], the authors show that this algorithm has the same I/O
complexity as sorting on the DAM model described by Vitter
and Shriver [53]. However, they do not differentiate between
random and sequential I/O. In contrast, our approach makes
careful choices in order to reduce random I/O, and incurs
mostly sequential I/O.

Suffix arrays are closely related to suffix trees, and can
be used as an alternative to suffix trees for many string
matching tasks [1, 11, 14, 42]. A suffix tree can also be
constructed by first building a suffix array. With the help
of an additional longest common prefix (LCP) array, a suf-
fix array can be converted into a suffix tree in O(n) time.
Theoretical linear time suffix array construction algorithms
have been proposed in [31, 33, 34]. There has also been
considerable interest in practical suffix array construction
algorithms. The Deep-Shallow algorithm proposed in [39]
is a space-efficient internal memory suffix array construc-
tion algorithm. Although its worst-case time complexity is
�(n2 log n), it is arguably the fastest in-memory method in
practice. In [31, 32, 38], algorithms for constructing LCP
arrays in linear time are proposed.

The long interest of the algorithmic community in op-
timal external memory suffix array construction algorithms
has led to the external DC3 algorithm recently proposed by

Dementiev et al. [18]. This external construction method is
based on the Skew algorithm [31]. The Skew algorithm is
a theoretically optimal suffix array construction algorithm,
and uses a merge-based approach. This method recursively
reduces the suffix array construction using a two-thirds–one-
thirds split of the suffix array. Each recursive call first sorts
the larger array, and the smaller array is sorted using the or-
dering information in the larger array. The arrays are merged
to produce the final array. The external DC3 algorithm ex-
tends the in-memory Skew algorithm with the help of the
STXXL library [47]. The STXXL library is a C++ tem-
plate library that enables containers and algorithms to pro-
cess large amounts of data that do not fit in main memory.
It also improves performance by supporting multiple disks
and overlapping I/O with CPU computation (see [47] for
details). The external DC3 algorithm [18] is theoretically
optimal and superior to the previous external suffix array
construction methods in practice. We draw some compar-
isons between our methods and the external DC3 algorithm
in Sect. 6.5, and show that in practice TDD is faster than the
external DC3 algorithm.

TDD uses a simple partitioning strategy. However, a
more sophisticated partitioning method was recently pro-
posed by Carvalho et al. [10], which can complement our
existing partitioning method.

3 The TDD technique

Most suffix tree construction algorithms do not scale due
to the prohibitive disk I/O requirements. The high per-
character space overhead of a suffix tree quickly causes the
data structures to outgrow main memory, and the poor local-
ity of reference makes efficient buffer management difficult.

We now present a new disk-based construction tech-
nique called the “Top-Down Disk-based” technique, here-
after referred to simply as TDD. TDD scales much more
gracefully than existing techniques by reducing the main-
memory requirements through strategic buffering of the
largest data structures. The TDD technique consists of a suf-
fix tree construction algorithm, called PWOTD, and the re-
lated buffer management strategy described in the following
sections.

3.1 PWOTD algorithm

The first component of the TDD technique is our suffix tree
construction algorithm, called Partition and Write Only Top
Down (PWOTD). This algorithm is based on the wotdeager
algorithm suggested by Giegerich et al. [25]. We improve
on this algorithm by using a partitioning phase which al-
lows one to immediately build larger, independent subtrees
in memory. (A similar partitioning strategy was proposed
in [46].) Before we explain the details of our algorithm, we
briefly discuss the representation of the suffix tree.

The suffix tree is represented by a linear array, just as in
wotdeager. This is a compact representation using 8.5 bytes

284 Y. Tian et al.

8

A T CA$ GTACA$ $ A

5 6 70 1 2 3 4

39470 12 1 7 R 10

T
A

G
T

A
C

A
$

G
T

A
C

A
$

T
T

A
G

T
A

C
A

$

C
A

$

C
A

$

G
T

A
C

A
$ $

1511109 12 13 14

R94747R2 R 1

String: ATTAGTACA$
0 1 2 3 4 5 6 7 8 9

A

T

GTACA$

$

A

CA$

G
T

A
C

A
$

T
A

G
T

A
C

A
$

CATTAGTACA$

CA$

G
TA

C
A

$

Fig. 1 Suffix tree representation (leaf nodes are shaded, the right-most
child is denoted with an R)

per indexed symbol in the average case with 4 byte integers.
Fig. 1 illustrates a suffix tree on the string ATTAGTACA$
and the tree’s corresponding array representation in mem-
ory. Shaded entries in the array represent leaf nodes, with
all other entries representing non-leaf nodes. An R in the
lower right-hand corner of an entry denotes a right-most
child. Note that leaf nodes are represented using a single
integer, while non-leaf nodes use two integers. (The two en-
tries of a non-leaf node are separated by a dashed line in the
figure.) The first entry in a non-leaf node is an index into the
input string; the character at that index is the starting charac-
ter of the incoming edge’s label. The length of the label can
be deduced by examining the children of the current node.
The second entry in a non-leaf node points to the first child.
For example, in Fig. 1, the non-leaf node represented by the
entries 0 and 1 in the tree array has four leaf children lo-
cated at entries 12, 13, 14, and 15, respectively. The parent’s
suffix starts at index 0 in the string, whereas the children’s
suffixes begins with the indexes 1, 7, 4, and 9, respectively.
Therefore, we know the length of the parent’s edge label is
min{1, 7, 4, 9}−0 = 1. Note that the leaf nodes do not have
a second entry. The leaf node requires only the starting index
of the label; the end of the label is the string’s terminating
character. See [25] for a more detailed explanation.

The PWOTD algorithm consists of two phases. In the
first phase, wepartition the suffixes of the input string into
|A|pre f i xlen partitions, where |A| is the alphabet size of the
string and prefixlen is the depth of the partitioning. The
partitioning step is executed as follows. The input string
is scanned from left to right. At each index position i the
prefixlen subsequent characters are used to determine one
of the |A|pre f i xlen partitions. This index i is then written to

Fig. 2 The TDD algorithm

the calculated partition’s buffer. At the end of the scan, each
partition will contain the suffix pointers for suffixes that all
have the same prefix of size prefixlen. Note that the number
of partitions (|A|pre f i xlen) is much smaller than the length
of the string.

To further illustrate the partition step, consider the fol-
lowing example. Partitioning the string ATTAGTACA$ us-
ing a prefixlen of 1 would create four partitions of suffixes,
one for each symbol in the alphabet. (We ignore the final
partition consisting of just the string terminator symbol $.)
The suffix partition for the character A would be {0, 3, 6,
8}, representing the suffixes {ATTAGTACA$, AGTACA$,
ACA$, A$}. The suffix partition for the character T would
be {1,2,5} representing the suffixes {TTAGTACA$, TAG-
TACA$, TACA$}. In phase two, we use the wotdeager al-
gorithm to build the suffix tree on each partition using a top
down construction.

The pseudo-code for the PWOTD algorithm is shown in
Fig. 2. While the partitioning in phase one of PWOTD is
simple enough, the algorithm for wotdeager in phase two
warrants further discussion. We now illustrate the wotdeager
algorithm using an example.

3.1.1 Example illustrating the wotdeager algorithm

The PWOTD algorithm requires four data structures for con-
structing suffix trees: an input string array, a suffix array, a
temporary array, and the suffix tree. For the discussion that
follows, we name each of these structures String, Suffixes,
Temp, and Tree, respectively.

The Suffixes array is first populated with suffixes from a
partition after discarding the first prefixlen characters.Using
the same example string as before, ATTAGTACA$ with

Practical methods for constructing suffix trees 285

prefixlen= 1, consider the construction of the Suffixes ar-
ray for the T-partition. The suffixes in this partition are at
positions 1, 2, and 5. Since all these suffixes share the same
prefix, T, we add one to each offset to produce the new Suf-
fix array {2, 3, 6}. The next step involves sorting this array
of suffixes based on the first character. The first characters of
each suffix are {T, A, A}. The sorting is done in linear time
using an algorithm called count-sort (for a constant alphabet
size). In a single pass, for each character in the alphabet, we
count the number of occurrences of that character as the first
character of each suffix, and copy the suffix pointers into the
Temp array. We see that the count for A is 2 and the count
for T is 1; the counts for G, C, and $ are 0. We can use these
counts to determine the character group boundaries: group A
will start at position 0 with two entries, and group T will start
at position 2 with one entry. We make a single pass through
the Temp array and produce the Suffixes array sorted on the
first character. The Suffixes array is now {2, 6, 3}. The A-
group has two members and is therefore a branching node.
These two suffixes completely determine the subtree below
this node. Space is reserved in the Tree to write this non-leaf
node once it is expanded, then the node is pushed onto the
stack. Since the T-group has only one member, it is a leaf
node and will be immediately written to the Tree. Since no
other children need to be processed, no additional entries are
added to the stack, and this node will be popped off first.

Once the node is popped off the stack, we find the longest
common prefix (LCP) of all the nodes in the group {3, 6}.
We examine position 4 (G) and position 7 (C) to determine
that the LCP is 1. Each suffix pointer is incremented by the
LCP, and the result is processed as before. The computation
proceeds until all nodes have been expanded and the stack
is empty. Fig. 1 shows the complete suffix tree and its array
representation.

3.1.2 Discussion of the PWOTD algorithm

Observe that the second phase of PWOTD operates on sub-
sets of the suffixes of the string. In wotdeager, for a string
of n symbols, the size of the Suffixes array and the Temp
array needed to be 4 × n bytes (assuming 4 byte integers
are used as pointers). By partitioning in the first phase, the
amount of memory needed by the suffix arrays in each run
is just (4 × n)/(|A|pre f i xlen) on average. (Some partitions
might be smaller and some larger than this fig. due to skew
in real world data. Sophisticated partitioning techniques can
be used to balance the partition sizes [10].) The important
point is that partitioning decreases the main-memory re-
quirements for suffix tree construction, allowing indepen-
dent subtrees to be built entirely in main memory. Suppose
we are partitioning a 100 million symbol string over an al-
phabet of size 4. Using a pre f i xlen = 2 will decrease the
space requirement of the Suffixes and Temp arrays from
400 MB to approximately 25 MB each, and the Tree array
from 1200 to approximately 75 MB. Unfortunately, this sav-
ings is not entirely free. The cost of the partitioning phase is
O(n×pre f i xlen), which increases linearly with prefixlen.

For small input strings where we have sufficient main mem-
ory for all the structures, we can skip the partitioning phase
entirely. It is not necessary to continue partitioning once the
Suffixes and Temp arrays fit into memory. For even very
large datasets, such as the human genome, partitioning with
prefixlen more than 7 is not beneficial.

3.2 Buffer management

Since suffix trees are an order of magnitude larger in size
than the input data strings, suffix tree construction algo-
rithms require large amounts of memory, and may exceed
the amount of main memory that is available. For such
large datasets, efficient disk-based construction methods are
needed that can scale well for large input sizes. One strength
of TDD is that its data structures transition gracefully to disk
as necessary, and individual buffer management polices for
each structure are used. As a result, TDD can scale grace-
fully to handle large input sizes.

Recall that the PWOTD algorithm requires four data
structures for constructing suffix trees: String, Suffixes,
Temp, and Tree. Figure 3 shows each of these structures as
separate, in-memory buffer caches. By appropriately allo-
cating memory and by using the right buffer replacement
policy for each structure, the TDD approach is able to build
suffix trees on extremely large inputs. The buffer manage-
ment policies are summarized in Fig. 3 and are discussed in
detail below.

The largest data structure is the Tree buffer. This array
stores the suffix tree during its intermediate stages as well as
the final computed result. The Tree data structure is typically
8-12 times the size of the input string. The reference pattern
to Tree consists mainly of sequential writes when the chil-
dren of a node are being recorded. Occasionally, pages are
revisited when an unexpanded node is popped off the stack.
This access pattern displays very good temporal and spatial
locality. Clearly, the majority of this structure can be placed

Main Memory

Temp

MRU LRU

Tree Buffer

LRU

Replacement Policy: LRU / RANDOM

String Buffer

Suffixes

Disk

Size: n

String File

Suffixes File
Size: 4n

Temp File
Size: 4n

Tree File
Size: 12n

Fig. 3 Buffer management schema

286 Y. Tian et al.

on disk and managed efficiently with a simple LRU (Least
Recently Used) replacement policy.

The next largest data structures are the Suffixes and the
Temp arrays. The Suffixes array is accessed as follows: first
a sequential scan is used to copy the values into the Temp
array. The count phase of the count-sort is piggybacked on
this sequential scan. The sort operation following the scan
causes writes back into the Suffixes array. However, there is
some locality in the pattern of writes in the Suffixes array,
since the writes start at each character-group boundary and
proceed sequentially to the right. Based on the (limited) lo-
cality of reference, one expects LRU to perform reasonably
well. The Temp array is referenced in two sequential scans:
the first to copy all of the suffixes in the Suffixes array, and
the second to copy all of them back into the Suffixes array
in sorted order. For this reference pattern, replacing the most
recently used page (MRU) works best.

The String array has the smallest main-memory require-
ment of all the data structures, but the worst locality of ac-
cess. The String array is referenced when performing the
count-sort and to find the longest common prefix in each
sorted group. During the count-sort all of the portions of the
string referenced by the suffix pointers are accessed. Though
these positions could be anywhere in the string, they are al-
ways accessed in left to right order. In the function to find the
longest common prefix of a group, a similar pattern of refer-
ence is observed. In the case of this find-LCP function, each
iteration will access the characters in the string, one symbol
to the right of those previously referenced. In the case of the
count-sort operation, the next set of suffixes to be sorted will
be a subset of the current set. This is a fairly complex refer-
ence pattern, and there is some locality of reference, so we
expect LRU and RANDOM to do well. Based on evidence
in Sect. 6.4, we see that both are reasonable choices.

3.3 Buffer size determination

To obtain the maximum benefit from buffer management
policy, it is important to divide the available memory
amongst the data structures appropriately. A careful appor-
tioning of the available memory among these data structures
can affect the overall execution time dramatically. In the rest
of this section, we describe a technique to divide the avail-
able memory among the buffers.

If we know the access pattern for each of the data struc-
tures, we can devise an algorithm to partition the memory
to minimize the overall number of buffer cache misses. Note
that we need only an access pattern on a string representative
of each class, such as DNA sequences, protein sequences,
etc. In fact, we have found experimentally that these access
patterns are similar across a wide-range of datasets (we dis-
cuss these results in detail in Sect. 6.4.) An illustrative graph
of the buffer cache miss pattern for each data structure is
shown in Fig. 4. In this figure, the X-axis represents the num-
ber of pages allocated to the buffer as a percentage of the
total size of the data structure. The Y-axis shows the number
of cache misses. This figure is representative of biological

D
is

k
 A

c
c
e
s
s
e
s

0

2000

4000

6000

8000

10000

12000

14000

Buffer Size (% of File Size)
 0 20 40 60 80 100

String Buffer
Suffixes Buffer
Temp Buffer
Tree Buffer

Fig. 4 Sample page miss curves

sequences, and it is based on data derived from actual exper-
iments in Sect. 6.4.

As we will see at the end of Sect. 3.3.1, our buffer alloca-
tion strategy needs to estimate only the relative magnitudes
of the slopes of each curve and the position of the “knee”
towards the start of the curve. The full curve as shown in
Fig. 4 is not needed for the algorithm. However, it is useful
to facilitate the following discussion.

3.3.1 TDD heuristic for allocating buffers

We know from Fig. 4 that the cache miss behavior for each
buffer is approximately linear once the memory is allocated
beyond a minimum point. Once we identify these points,
we can allocate the minimum buffer size necessary for each
structure. The remaining memory is then allocated in order
of decreasing slopes of the buffer miss curves.

We know from arguments in Sect. 3.2 that references to
the String have poor locality. One can infer that the String
data structure is likely to require the most buffer space. We
also know that the references to the Tree array have very
good locality, so the buffer space it needs is likely to be
a very small fraction of its full size. Between Suffixes and
Temp, we know that the Temp array has more locality than
the Suffixes array, and will therefore require less memory.
Both Suffixes and Temp require a smaller fraction of their
pages to be resident in the buffer cache when compared to
the String. We exploit this behavior to design a heuristic for
memory allotment.

We suggest the minimum number of pages allocated to
the Temp and Suffixes arrays to be |A|. During the sort
phase, we know that the Suffixes array will be accessed at
|A| different positions which correspond to the character
group boundaries. The incremental benefit of adding a page
will be very high until |A| pages, and then one can expect to
see a change in the slope at this point. By allocating at least
|A| pages, we avoid the penalty of operating in the initial
high miss-rate region. The TDD heuristic chooses to allo-
cate a minimum of |A| pages to Suffixes and Temp first.

Practical methods for constructing suffix trees 287

We suggest allocating two pages to the Tree array. Two
pages allow a parent node, possibly written to a previous
page and then pushed onto the stack for later processing, to
be accessed without replacing the current active page. This
saves a large amount of I/O over choosing a buffer size of
only one page.

The remaining pages are allocated to the String array
upto its maximum required amount. If any pages are left
over, they are allocated to Suffixes upto its maximum re-
quirement. The remaining pages (if any) are allocated to
Temp, and finally to Tree.

The reasoning behind this heuristic is borne out by the
graphs in Fig. 4. The String, which has the least locality
of reference, has the highest slope and the largest magni-
tude. Suffixes and Temp have a lower magnitude and a more
gradual slope, indicating that the improvement with each ad-
ditional page allocated is smaller. Finally, the Tree, which
has excellent locality of reference, is nearly zero. All curves
have a knee which we estimate by choosing minimum allo-
cations.

3.3.2 An example allocation

The following example demonstrates how to allocate the
main memory to the buffer caches. Assume that your sys-
tem has 100 buffer pages available for use and that you are
building a suffix tree on a small string that requires 6 pages.
Further assume that the alphabet size is 4 and that 4 byte in-
tegers are used. Assuming that no partitioning is done, the
Suffixes array will need 24 pages (one integer for each char-
acter in the String), the Temp array will need 24 pages, and
the Tree will need at most 72 pages. First we allocate 4 pages
each to Suffixes and Temp. We allocate 2 pages to Tree. We
are now left with 90 pages. Of these, we allocate 6 pages
to the String, thereby fitting it entirely in memory. From the
remaining 84 pages, Suffixes and Temp are allocated 20 and
fit into memory, and the final 44 pages are all given to Tree.
This allocation is shown pictorially in the first row of Fig. 5.

Similarly, the second row in Fig. 5 is an allocation for
a medium-sized input of 50 pages. The heuristic allocates 2
pages to the Tree, 4 to the Temp array, 44 to Suffixes, and
50 to the String. The third allocation corresponds to a large
string of 120 pages. Here, Suffixes, Temp, and Tree are allo-
cated their minimums of 4, 4, and 2, respectively, and the rest
of the memory (90 pages) is given to String. Note that the en-
tire string does not fit in memory now, and portions will be
swapped into memory from disk when they are needed.

Observe from Fig. 5 that when the input is small and
all the structures fit into memory, most of the space is oc-
cupied by the largest data structure: the Tree. As the input
size increases , the Tree is pushed out to disk. For very large
strings that do not fit into memory, everything but the String
is pushed out to disk, and the String is given nearly all of the
memory. By first pushing the structures with better locality
of reference onto disk, TDD is able to scale gracefully to
very large input sizes.

Note that our heuristic does not need the actual utility
curves to calculate the allotments. It estimates the “knee” of

In Memory
 (small dataset)

Partial Disk
 (medium dataset)

On Disk
 (large dataset)

Percentage of Main Memory

 0% 20% 40% 60% 80% 100%

String Suffix Temp Tree

Fig. 5 Buffer allocation for different data structures: Note how other
data structures are gradually pushed out of memory as the input string
size increases

each curve using the algorithm, and assumes that the curve
is linear for the rest of the region.

4 Analysis

In this section, we analyze the advantages and the disadvan-
tages of using the TDD technique for various types and sizes
of string data. We also describe how the design choices we
have made in TDD overcome the performance bottlenecks
present in other proposed techniques.

4.1 I/O benefits

Unlike the approach of [7] where the authors use the in-
memory O(n) algorithm (Ukkonen) as the basis for their
disk-based algorithm, we use the theoretically less efficient
O(n2) wotdeager algorithm [25]. A major difference be-
tween the two algorithms is that Ukkonen’s algorithm se-
quentially accesses the string data and then updates the suf-
fix tree through random traversals, while our TDD approach
accesses the input string randomly and then writes the tree
sequentially. For disk-based construction algorithms, ran-
dom access is the performance bottleneck as on each access
an entire page will potentially have to be read from disk;
therefore, efficient caching of the randomly accessed disk
pages is critical.

On first appearance, it may seem that we are simply
trading some random disk I/O for other random disk I/O,
but the input string is the smallest structure in the construc-
tion algorithm, while the suffix tree is the largest structure.
TDD can place the suffix tree in very small buffer cache as
the writes are almost entirely sequential, which leaves the
remaining memory free to buffer the randomly accessed,
but much smaller, input string. Therefore, our algorithm re-
quires a much smaller buffer cache to contain the randomly
accessed data. Conversely, for the same amount of buffer

288 Y. Tian et al.

cache, we can cache much more of the randomly accessed
pages, allowing us to construct suffix trees on much larger
input strings.

4.2 Main-memory analysis

When we build suffix trees on small strings (i.e., when the
string and all the data structures fit in memory), no disk
I/O is incurred. For the case of in-memory construction, one
would expect that a linear time algorithm such as Ukkonen
or McCreight would perform better than the TDD approach,
which has a worst-case complexity of O(n2). However, one
must consider more than just the theoretical complexity to
understand the execution time of the algorithms.

Traditionally, in designing disk-based algorithms, all ac-
cesses to main memory are considered equally good, as the
disk I/O is the performance bottleneck. However, for pro-
grams that incur little disk I/O, the performance bottleneck
shifts to the main-memory hierarchy. Modern processors
typically employ one or more data caches for improving ac-
cess time to memory when there is a lot of spatial and/or
temporal locality in the access patterns. The processor cache
is analogous to a database’s buffer cache, the primary dif-
ference being that the user does not have control over the
replacement policy. Reading data from the processor’s data
cache is an order of magnitude faster than reading data from
the main memory. Furthermore, as the speed of the proces-
sor increases, so does the main-memory latency (in terms of
number of cycles). As a result, the latency of random mem-
ory accesses will only grow with future processors.

Linear time algorithms such as Ukkonen and McCreight
require a large number of random memory accesses due to
the linked list traversals through the tree structure. In Ukko-
nen, a majority of cache misses occur after traversing a suf-
fix link to a new subtree and then examining each child of
the new parent. The traversal of the suffix link to the sibling
subtree and the subsequent search of the destination node’s
children require random accesses to memory over a large ad-
dress space. Because this span of memory is too large to fit
in the processor cache, each access has a very high proba-
bility of incurring the full main-memory latency. Similarly,
McCreight’s algorithm also traverses suffix links during con-
struction, and incurs many cache misses. Furthermore, the
rescanning and scanning steps used to find the extended lo-
cus of the head of the newly added suffix result in more
random accesses. Using an array-based representation [35],
where the pointers to the children are stored in an array with
an element for each symbol in the alphabet, can reduce the
number of cache misses. However, this representation uses a
lot of space, potentially leading to higher execution time. In
previous work, both McCreight [40] and TOP-Q [7] argue
for the linked list based implementation as being a better
choice.

Observe that when using the linked list implementation,
as the alphabet size grows, the number of children for each
non-leaf node will increase accordingly. As more children
are examined to find the right position to insert the next char-
acter, the number of cache misses also increases. Therefore,

Ukkonen’s method will incur an increasing number of pro-
cessor cache misses with an increase in alphabet size. Sim-
ilarly, with McCreight’s algorithm, an increase in alphabet
size leads to more cache misses.

For TDD, the alphabet size has the opposite effect. As
the branching factor increases, the working set of the Suf-
fixes and Temp arrays quickly decreases, and can fit into
the processor cache sooner. The majority of read misses in
the TDD algorithm occur when calculating the size of each
character group (in line 8 of Fig. 2). This is because the
beginning character of each suffix must be read, and there
is little spatial locality in the reads. While both algorithms
must perform random accesses to main memory, incurring
very expensive cache misses, there are three properties about
the TDD algorithm that make it more suited for in-memory
performance: (a) the access pattern is sequential through
memory, (b) each random memory access is independent
of the other accesses, and (c) the accesses are known a pri-
ori. A detailed discussion of these properties can be found
in [25]. Because the accesses to the input data string are se-
quential through the memory address space, hardware-based
data prefetchers may be able to identify opportunities for
prefetching the cache lines [29]. In addition, techniques for
overlapping execution with main-memory latency can easily
be incorporated in TDD.

The Deep-Shallow algorithm of [39] is a space-efficient
in-memory suffix array construction technique. It differenti-
ates the cases of sorting suffixes with a short common prefix
from sorting suffixes with a long common prefix. These two
cases are called “shallow” sorting and “deep” sorting, re-
spectively. The Bentley-Sedgewick multikey quick sort [8]
is used as the shallow sorter, and a combination of different
algorithms are used in the deep sorter. The memory refer-
ence pattern is different in the case of each algorithm, and
a thorough analysis of the reference pattern is very compli-
cated. This complex combination of different sorting strate-
gies at different stages of suffix array construction turns out
to perform very well in practice.

4.3 Effect of alphabet size and data skew

In this section, we consider the effect of alphabet size and
data skew on TDD.

There are two properties of the input string that can af-
fect the execution time of TDD: the size of the alphabet and
the skew in the string. The average case running time for
constructing a suffix tree on a Random Access Machine for
uniformly random input strings is O(n log|A| n), where |A|

is the size of the input alphabet and n is the length of the
input string. (A uniformly random string can be thought of
as a sequence generated by a source that emits each symbol
in sequence from the alphabet set with equal probabilities,
and the symbol emitted is independent of previous symbols.)
The suffix tree has O(log|A| n) levels [19], and at each level

i , the suffixes array is divided into |A|i equal parts (|A| is the
branching factor, and the string is uniformly random.) The
count-sort and the find-LCP (line 7 of Fig. 2) functions are

Practical methods for constructing suffix trees 289

called on each of these levels. The running time of count-
sort is linear. To find the longest common prefix for a set
of suffixes from a uniformly distributed string, the expected
number of suffixes compared before a mismatch is slightly
over 1. Therefore, the find-LCP function would return after
just one or two comparisons most of the time. In some cases,
the actual LCP is more than 1 and a scan of the entire suffixes
is required. Therefore, in the case of uniformly random data,
the find-LCP function is expected to run in constant time.
At each of the O(log|A|n) levels, the amount of computa-
tion performed is O(n). This gives rise to the overall average
case running time of O(n log|A| n). The same average case
cost can be shown to hold for random strings generated by
picking symbols independently from the alphabet with fixed
non-uniform probabilities. [4] shows that the height of trees
on such strings is O(log n), and a linear amount of work is
done at each level, leading to an average cost of O(n log n).

The longest common prefix of a set of suffixes is actu-
ally the label on the incoming edge for the node that corre-
sponds to this set of suffixes. The average length of all the
LCPs computed while building a tree is equal to the average
length of the labels on each edge ending in a non-leaf node.
This average LCP length is dependent on the distribution
of symbols in the data. Real datasets, such as DNA strings,
have a skew that is particular to them. By nature, DNA often
consists of large repeating sequences; different symbols oc-
cur with more or less the same frequency but certain patterns
occur more frequently than others. As a result, the average
LCP length is higher than that for uniformly distributed data.

Figure 6 shows a histogram for the LCP lengths gener-
ated while constructing suffix trees on the SwissProt pro-
tein database [5] and the first 50 MB of Human DNA from
chromosome 1 [23]. Notice that both sequences have a high
probability that the LCP length will be greater than 1. Even

C
o
u
n
t
(n

o
rm

a
liz

e
d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

LCP Length

0 5 10 15 20 25 30

swp

hdna50

Fig. 6 LCP histogram: This figure plots the histogram until an LCP
length of 32. For the DNA dataset, 18.8% of the LCPs have a length
greater than 32, and for the protein dataset 13.8% of the LCPs have a
length greater than 32

among biological datasets, the differences can be quite dra-
matic. From the figure, we observe that the DNA sequence
is much more likely to have LCP lengths greater than 1 com-
pared with the protein sequence (70% versus 50%). It is im-
portant to note that the LCP histograms for the DNA and
protein sequences shown in the figure are not representative
of all DNA and protein sequences, but these particular re-
sults do highlight the differences one can expect between
input datasets.

For data with a lot of repeating sequences, the find-LCP
function will not be able to complete in a constant amount of
time. It will have to scan at least the first l characters of all
the suffixes in the range, where l is the length of the actual
LCP. In this case, the cost of find-LCP becomes O(l × r)

where l is the length of the actual LCP, and r is the number
of suffixes in the range that the function is examining. As a
result, the PWOTD algorithm will take longer to complete.

TDD performs worse on inputs with many repeats such
as DNA. On the other hand, Ukkonen’s algorithm exploits
these repeats by terminating an insert phase when a sim-
ilar suffix is already in the tree. With long repeating se-
quences like DNA, this works in favor of Ukkonen’s al-
gorithm. Unfortunately, this advantage is not enough to
offset the random reference pattern which still makes it
a poor choice for large input strings when using cached
architectures.

The size of the input alphabet also has an important ef-
fect. Larger input alphabets are an advantage for TDD be-
cause the running time is O(n log|A| n), where |A| is the size
of the alphabet. A larger input alphabet size implies a larger
branching factor for the suffix tree. This in turn implies that
the working size of the Suffixes and Temp arrays shrinks
more rapidly—and could fit into the cache entirely at a lower
depth. For Ukkonen, a larger branching factor would imply
that on an average, more siblings will have to be examined
while searching for the right place to insert. This leads to a
longer running time for Ukkonen. The same discussion also
applies to McCreight’s algorithm. There are hash-based and
array-based approaches that alleviate this problem [35], but
at the cost of consuming much more space for the tree. A
larger tree representation naturally implies that for the in-
memory case, we are limited to building trees on smaller
strings.

Note that the case where Ukkonen’s and McCreight’s
methods will have an advantage over TDD is for short in-
put strings over a small alphabet size with high skew (repeat
sequences). TDD is a better choice in all other cases. We
experimentally demonstrate these effects in Sect. 6.

5 The ST-merge algorithm

The TDD technique works very well so long as the input
string fits into available main memory. In Sect. 6, we show
that if the input string does not fit completely in memory, ac-
cesses to the string will incur a large number of random I/O.
Consequently, for input strings that are significantly larger

290 Y. Tian et al.

Tree

0
Tree

4
Tree

3
Tree

2
Tree

1

 Partition 0 Partition 1 Partition 2 Partition 3 Partition 4

Suffix Tree

Merged

Fig. 7 The scheme for ST-merge

Fig. 8 The ST-merge algorithm

than the available memory the performance of TDD will
rapidly degrade. In this section, we present a merge-based
suffix tree construction algorithm that is more efficient than
TDD when the input data string does not fit in main memory.

The ST-Merge algorithm employs a divide-and-conquer
strategy similar to the external sort-merge algorithm. It is
outlined in Fig. 7 and shown in detail in Fig. 8. While the
ST-Merge algorithm can have more than one merge phase
(as with sort-merge), here we only present a two-phase al-
gorithm which has a single merge phase. (As with external
sort-merge, in practice, this two-phase method is often suffi-
cient with large main-memory configurations.) At a high-
level, the ST-Merge algorithm works as follows: To con-
struct a suffix tree for a string of size n, the algorithm first
partitions the set of n suffixes into k disjoint subsets. Then a
suffix tree is built on each of these subsets. Next, the inter-
mediate trees are merged to produce the final suffix tree.

Note that the partitioning step of ST-Merge can be car-
ried out in any arbitrary way–in fact, we could randomly
assign a suffix to one of k buckets. However, we choose to
partition the suffixes such that a given subset will contain
only contiguous suffixes from the string. As we will discuss
in detail in Sect. 5.1, using this partition strategy, we have a
very high locality of access to the string when constructing
the trees on each partition.

In the merging phase, the references to the input string
have a more clustered access pattern, which has a better

Fig. 9 The NodeMerge subroutine

locality of reference than TDD. In addition, the ST-Merge
method permits a number of merge strategies. For exam-
ple, all the trees could be merged in a single merge step,
or alternatively trees can be merged incrementally, i.e., trees
are merged one after another. However, the first approach
is preferable as it reduces the number of intermediate suffix
trees that are produced (which may be written to the disk).

For building the suffix trees on the individual partitions,
the ST-Merge algorithm simply uses the PWOTD algorithm.
The subsequent merge phase is more complicated, and is de-
scribed in detail below.

There are two main subroutines used in the merge phase:
NodeMerge and EdgeMerge. The merge algorithm starts by
merging the root nodes of the trees that are generated by the
first phase. This is accomplished by a call to NodeMerge.
EdgeMerge is used by NodeMerge when it is trying to merge
multiple nodes that have outgoing edges with a common pre-
fix. The NodeMerge and EdgeMerge subroutines are shown
in Figs. 9 and 10, respectively.

The NodeMerge algorithm merges the nodes from the
source trees and creates a merged node as the ending node
of the parent edge in the merged suffix tree. Note that
the parent edge of the merged node is NULL only when
the roots of the source trees are merged. The NodeMerge
algorithm first groups all the outgoing edges from the
source nodes according to the first character along each
edge, so that edges from each group share the same starting
alphabet. If the alphabet set size is |A|, there are at most
|A| groups of edges. As the edges of each node are already
sorted, replacement selection sort or count-sort can be used
to generate the groups. Next, the algorithm examines each
edge group. If the edge group contains only one edge, then
it implies that this edge along with the subtree below is a
branch of the merged node in the merged suffix tree. In this
case, the algorithm simply copies the entire branch from the

Practical methods for constructing suffix trees 291

Fig. 10 The EdgeMerge subroutine

ATGCG$

TAC

GC
TAA

TCG

GC

$
AT GC

C

C
$

Group GGroup A Group T Group C Group $

Group A

Group T

Group G

T1 T3T2

MT

Fig. 11 Example of trees being merged: T1, T2, and T3 are three
source trees to be merged. The final merged tree is MT. The trian-
gle below a node represents the subtree under that node. The algorithm
starts by calling NodeMerge on the trees T1–T3, which creates a root
node for MT and groups the edges of the source trees according to the
first character of each edge. This step produces five groups. Group A,
T, and G all contain more than one edge, so EdgeMerge is called for
each of these groups. Whereas group C and $ only have one edge, so
the corresponding branches are copied to MT

source tree to the merged tree. If a group contains more than
one edge, the algorithm creates a new outgoing edge of the
merged node. This step is carried out by calling EdgeMerge.

Note that NodeMerge will never need to merge a leaf
node with an internal node. If such a case arose, it would
mean that the suffix represented by the leaf node is a pre-
fix of another suffix. This cannot happen since we add a
terminating symbol to the end of the string to prevent this
very case! The EdgeMerge algorithm merges together mul-
tiple edges that start with the same symbol. It first finds the
longest common prefix (LCP) of the set of edges. Then, it
creates a new edge in the result tree and labels it with the
LCP. If any of the source edges have labels longer than the
LCP, the edges are artificially split by inserting a node after
the LCP. All the nodes ending at LCP now can be merged

New

Node ATAT

GCG$

 NodeMerge

AT

Group A

T1 T2 MT

Fig. 12 EdgeMerge for group-A: We first create one outgoing edge
from MT’s root node, and label it with the LCP of the edges in group A.
As the edge from T1 is longer than the LCP, we insert a new node in the
middle of the long edge of T1 to split it into two edges labeled AT and
GCG$, respectively. Then, NodeMerge is called on the newly created
node in T1 and the node in T2 at the end of the label AT. NodeMerge
then produces a node at the end of the edge AT in MT, as well as the
subtree below it

 NodeMerge

TT

AC

T

AA

T

CG

T

CG

Group T

T1 T3T2 MT

Fig. 13 EdgeMerge for group-T: The LCP of the edges in this group is
a proper prefix of every edge, so we insert a node at the end of the LCP
into every edge. The newly created nodes are then merged by making
a call to NodeMerge

 NodeMerge

GC GC GC GC

Group G

T2 T3T1 MT

Fig. 14 EdgeMerge for group-G: All the edges are the same in this
group. Consequently, the corresponding nodes ending at these edges
are merged by making a call to NodeMerge

together with a call to NodeMerge, since they are all at the
end of edges labeled identically.

A detailed example of ST-Merge is shown in Figs. 11–
15.

5.1 Comparison with TDD

In this section, we present an analysis of the ST-Merge algo-
rithm and discuss its relative advantages and disadvantages.

The main advantage for ST-Merge comes from the way
it accesses the disk. In the partition and build phase, the al-
gorithm accesses only a small portion of the string corre-
sponding to that partition (the suffixes at the end of each

292 Y. Tian et al.

C
$AT

T

GC

MT

Fig. 15 The result of the merge

partition may require accesses that spill across the partition
boundary). This ensures that most accesses to the string are
in memory if the buffer for the String is at least the size
of the partition. This can be much smaller than the whole
string, and can therefore save a large amount of I/O. In fact,
the first phase of the algorithm typically takes an order of
magnitude less time than TDD. In the second phase, the in-
put trees and the output tree are all sequentially accessed.
So, each tree only requires a small buffer. The remaining
memory is allocated to the string. Compared to TDD, the
accesses to the string in the second phase of ST-Merge have
more spatial locality of reference. This is because the ac-
cesses to the string (driven by the trees from phase 1) result
in a smaller working set.

The decision of how many partitions to use in the first
phase can be made using a simple formula. Suppose that M
is the total amount of memory available. Let n be the size
of the input string. The number of partitions to be used in

the first phase is given by k = ⌈
n× f

M ⌉, where f (> 1) is
an adjustment multiplication factor to account for overhead
associated with the memory required for the auxiliary data
structures, which are proportional in size to the input string.
When the amount of main memory is greater than the string
size, partitioning does not provide much benefit, and we sim-
ply use TDD.

Now, we examine the worst-case complexity of the
merge algorithm. The first phase is O(n2) in the worst case.
The second phase has two components: the cost of merging
the nodes, and the cost of merging the edges. In the worst
case, each node in the output tree (O(n) nodes) is a result of
merging k nodes from the source trees. This involves sorting
at most |A| × k edges. Any sorting algorithm can be used
to group the edges–a count-sort can do this in O(|A| × k)

time. Therefore, the cost of merging the nodes is O(n × k)

(assuming a constant-sized alphabet). The cost of merging
the edges is the sum of the lengths of the edges of the source
trees. This is because each symbol on an edge is consid-
ered at most once. In the worst case, the length of an edge
is O(n). This yields a worst-case cost of O(n2). Adding the
three components, the worst-case complexity of ST-Merge
is O(n2).

Next, we derive a loose bound for the average case com-
plexity assuming that the string is generated by a Bernoulli
source (i.e., the characters are drawn from the alphabet in-
dependently with fixed probabilities). The first phase takes

O(n log n
k), with k partitions each taking time O(n

k log n
k).

The cost of merging the edges is O(n log n
k) on average,

since the number of edges in the source trees totals O(k× n
k),

and the average length of the LCP is O(log n
k) [4]. The

worst-case complexity of merging the nodes serves as an up-
per bound for the average case cost. Adding the three com-
ponents, the average cost of merging is O(nk + n log n

k). As

k = �(n), this is O(n2). Note that in practice with large
main-memory configurations, k is usually a small number,

since k = ⌈
n× f

M ⌉, where M is the size of the memory.
It is important to note that since ST-Merge writes a set

of intermediate trees (the trees generated for each partition
in the first phase) and merges them together for the final
tree, the amount of data it writes is approximately twice
the amount written by TDD (assuming that phase 2 requires
only a single pass). However, this disadvantage is offset by
the fact that the amount of memory required by the string
buffer is smaller for ST-Merge and this results in less ran-
dom I/O. The exact effect of these two factors depends on
the ratio of the size of the string to the amount of memory
available. In Sect. 6.6, we compare the execution times of
TDD and ST-Merge.

6 Experimental evaluation

In this section, we present the results of an extensive exper-
imental evaluation of the different suffix tree construction
techniques. First, we compare the performance of TDD with
Ukkonen’s algorithm [52] and Kurtz’s implementation [35]
of McCreight’s algorithm [40] for constructing in-memory
suffix trees. For the in-memory case, we also compare these
algorithms with an indirect approach that builds a suffix ar-
ray first and converts the suffix array to a suffix tree. The
suffix array method we choose is the Deep-Shallow algo-
rithm [39], which is a fast, lightweight, in-memory suffix
array construction algorithm. Then we compare TDD with
Hunt’s algorithm [28] for disk-based construction perfor-
mance. We also evaluate the external DC3 algorithm [18],
which is a fast disk-based suffix array construction tech-
nique. Finally, we examine the performance of ST-Merge
and TDD when the input string is larger than the available
memory.

6.1 Experimental setup and implementation

Our TDD algorithm uses separate buffer caches for the four
main structures: the string, the suffixes array, the tempo-
rary working space for the count-sort, and the suffix tree.
We use fixed-size pages of 8 K for reading and writing to
disk. Buffer allocation for TDD is done using the method
described in Sect. 3.3. If the amount of memory required is
less than the size of the buffer cache, then that structure is
loaded into the cache, with accesses to the data bypassing
the buffer cache logic. TDD was written in C++ and com-
piled with GNU’s g++ compiler version 3.2.2 with full opti-
mizations activated.

Practical methods for constructing suffix trees 293

For an implementation of Ukkonen’s algorithm, we use
the version from [55]. It is a textbook implementation based
on Gusfield’s description [26] and is written in C. The al-
gorithm operates entirely in main memory, and there is no
persistence. The suffix tree representation uses 32 bytes per
node.

For the McCreight’s algorithm we use the implementa-
tion that is part of the MUMmer software package [51]. This
version of McCreight’s algorithm is both space- and time-
efficient, and the tree representation requires 10.1 bytes on
average per input character.

The implementation of the Deep-Shallow suffix array
construction algorithm is from [15]. Since this algorithm
only constructs a suffix array, to build a suffix tree we aug-
mented this method with a method for converting the suffix
array to a suffix tree. For the remainder of this section, we
refer to this Deep-Shallow implementation for constructing
suffix trees as Deep-Shallow*. The conversion from suffix
arrays to suffix trees requires the construction of an LCP
array. For this implementation, we used the GetHeight al-
gorithm proposed in [32]. We implemented a simple linear
algorithm for converting a suffix array to a suffix tree as de-
scribed in [2].

Our C++ implementation of Hunt’s algorithm is from the
OASIS sequence search tool [41], which is part of a larger
project called Periscope [43]. The OASIS implementation
uses a shared buffer cache instead of the persistent Java
object store, PJama [6], described in the original proposal
[28]. The buffer manager employs the CLOCK replacement
policy. The OASIS implementation performed better than
the implementation described in [28]. This is not surprising
since PJama incurs the overhead of running through the Java
Virtual Machine.

To compare TDD with a disk-based suffix array con-
struction method, we used the external DC3 algorithm [18].
For the external DC3 suffix array construction algorithm, we
use the code provided in [20]. The external DC3 algorithm
from [20] can support multiple disks, but for all the disk-
based methods including DC3, we used only one disk.

For the disk-based experiments that follow, unless stated
otherwise, all I/O is to raw devices; i.e., there is no buffer-
ing of disk blocks by the operating system, and all reads
and writes to disk are synchronous (blocking). This provides
an unbiased accounting of the performance for disk-based
construction as operating system buffering will not (posi-
tively) affect the performance. Therefore, our results present
the worst-case performance for the disk-based construction
methods. Using asynchronous writes is expected to improve
the performance of our algorithm over the results presented.
Each raw device accesses a single partition on one Max-
tor Atlas 10K IV drive. The disk drive controller is an LSI
53C1030, Ultra 320 SCSI controller.

All experiments were performed on an Intel Pentium 4
processor with 2.8 GHz clock speed and 2 GB of main mem-
ory. This processor includes a two-level cache hierarchy.
There are two first-level caches, named L1-I and L1-D, that
cache instructions and data, respectively. There is also a sin-

gle L2 cache that stores both instructions and data. The L1
data cache is an 8 KB, four-way set-associative cache with
a 64 byte line size. The L1 instruction cache is a 12 K trace
cache, four-way set associative. The L2 cache is a 512 KB,
eight-way, set-associative cache, also with a 128 byte line
size. The operating system was Linux, kernel version 2.4.20.

The Pentium 4 processor includes 18 event counters that
are available for recording microarchitectural events, such
as the number of instructions executed [30]. To access the
event counters, the perfctr library was used [44]. The events
measured include: clock cycles executed, instructions and
micro-operations executed, L2 cache accesses and misses,
Translation Lookaside Buffer (TLB) misses, and branch
mispredictions.

6.2 Implications of 64-bit architectures

The implementation that we use for the evaluation presented
in this section, is based on a 32-bit architecture. However,
our code can easily be adapted to use 64-bit addressing. In
this section, we briefly examine the impact of using 64-bit
architectures, which can directly address more than 4 GB of
physical memory.

We first investigate the memory requirement of the data
structures used in our algorithms. There are two types of
pointers in the data structures. The first type is a string
pointer, which points to a position in the input string. The
second type of pointer is a node pointer, which points to
another node in the suffix tree. For the pointer to the string
position, a 64-bit integer representation is needed only when
the string size is larger than 4G (232) symbols. For the point-
ers to nodes, a 64-bit integer representation is needed only
if the number of array entries in the suffix tree structure is
more than 4G. Note that if the string has less than 4G sym-
bols, and the suffix tree has more than 4G entries, then we
can use a 32-bit representation for the string pointer and a
64-bit representation for the node pointer.

A non-leaf node in the suffix tree (the Tree structure
shown in Fig. 1) has one string pointer and one node pointer,
whereas a leaf node simply has one string pointer. In our
tree representation, in addition to the tree array, we have 2
bits per entry in the tree array to indicate whether the entry
is a leaf or a non-leaf, and whether the entry is the right-
most sibling (see Fig. 1 for details). The bit overhead is not
affected by the changes to the pointer representation.

With a 32-bit representation for both string and node
pointers, the size of a non-leaf node is 8 bytes, and the size
of a leaf-node is 4 bytes. Going to a 64-bit representation
adds four bytes for each pointer type that is affected.

In addition to the actual suffix tree (the Tree structure
shown in Fig. 1), the suffix tree construction algorithm also
uses two additional arrays, namely the Suffixes and Temp ar-
rays. Both of them only contain string pointers. The size of
the entries for both these arrays is 4 bytes with a 32-bit rep-
resentation.

Note that TDD uses a partitioning method to construct
the suffix trees (see Sect. 3 for details). This partitioning
method constructs disjoint suffix trees based on the first few

294 Y. Tian et al.

Table 1 Main-memory data sources

Data source Description Symbols (106)

dmelano D. Melanogaster Chr. 2 (DNA) 20
guten95 Gutenberg project, Year 1995 20

(English text)
swp20 Slice of SwissProt (Protein) 20
unif4 4-char alphabet, uniform distrib. 20
unif40 40-char alphabet, uniform distrib. 20
unif80 80-char alphabet, uniform distrib. 20

symbols of the suffixes (the pre f i xlen variable in Fig. 2).
Since each disjoint suffix tree only contains node pointers
that point to nodes within the subtree, even when the total
number of entries in the system is more than 4G, as long as
each subtree has less than 4G entries, the node pointers can
continue to use 32-bit representation.

6.3 Comparison of the in-memory algorithms

To evaluate the performance of the TDD technique for in-
memory construction, we compare with the O(n) time algo-
rithms of Ukkonen and McCreight, and the Deep-Shallow*
algorithm. We do not evaluate Hunt’s algorithm in this sec-
tion as it was not designed as an in-memory technique.

For this experiment, we used six different datasets: chro-
mosome 2 of Drosophila Melanogaster from GenBank [23],
a slice of the SwissProt dataset [5] containing 20 million
symbols, and the text dataset from the 1995 collection from
project Gutenberg [45]. The DNA dataset has an alphabet
size of 5 (4 nucleotides, and the character ‘N’ for unknown
positions). The protein dataset has an alphabet size of 23 (for
the 20 amino acids, one character for representing unknown,
and two characters to represent combinations), and the text
dataset uses an alphabet of size 61 (all uppercase charac-
ters, numbers, and punctuation marks). We also chose three
strings that contain uniformly distributed symbols from an
alphabet of size 4, 40, and 80. The datasets used in this ex-
periment are summarized in Table1.

Figure 16 shows the execution time breakdown for four
algorithms, grouped by the datasets. In order, we present the

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

0

40

80

120

160

200

240

280

320

T U M D T U M D T U M D T U M D T U M D T U M D
unif4 dmelano swp20 unif40 guten95 unif80

L2 miss

L2 hit

Branch

TLB

Inst+Resource

Fig. 16 In-memory execution time breakdown for TDD, Ukkonen,
McCreight, and Deep-Shallow*

Table 2 Execution time details for Deep-Shallow*: Time spent by the
algorithm in the three phases—suffix array construction (SA), LCP
array construction (LCP), and suffix array to suffix tree conversion
(Conv)

Data source SA (s) LCP (s) Conv (s) Total (s)

unif4 9.32 9.34 5.09 24.03
dmelano 10.65 9.69 7.25 27.59
swp20 9.57 9.22 4.86 23.65
unif40 7.87 10.61 3.98 22.46
guten95 9.31 8.1 4.58 21.78
unif80 7.53 9.98 3.67 21.18

times for TDD, Ukkonen, McCreight, and Deep-Shallow*.
Note that since this is the in-memory case, TDD reduces to
the PWOTD algorithm. In these experiments, all data struc-
tures fit into memory. The total execution time is decom-
posed into the time executing the following microarchitec-
tural events (from bottom to top): instructions executed plus
resource related stalls, TLB misses, branch mispredictions,
L2 cache hits, and L2 cache misses (or main-memory reads).

From Fig. 16, we observe that the L2 cache miss com-
ponent is a large contributor to the execution time for all
algorithms. All algorithms show a similar breakdown for
the small alphabet sizes of DNA data (unif4 and dmelano).
When the alphabet size increases from 4 symbols to 20 sym-
bols for swp20, then to 40 symbols for unif40, and finally
to 80 symbols for unif80, the cache miss component of the
suffix link based algorithms (Ukkonen and McCreight) in-
creases dramatically, while it remains low for TDD. The rea-
son for this, as discussed in Sect. 4.2, is that these algorithms
incur a lot of cache misses while following the suffix link to
a new portion of the tree, and in traversing all the children
when trying to find the right position to insert the new entry.
The suffix array-based method, Deep-Shallow*, does not ex-
hibit this increase.

We observe that for each dataset, TDD outperforms
the implementation of Ukkonen’s algorithm that we use,
and the performance difference increases with the alpha-
bet size. This behavior was expected based on discussions
in Sect. 4.3. TDD is faster than Ukkonen’s method by
a factor of 2.5 (dmelano)–16 (unif80). TDD also outper-
forms McCreight’s algorithm for swp20, unif40, guten95,
and unif80 by a factor of 2.7, 6.2, 1.5, and 10.9, respec-
tively. On the other two datasets, unif4 and dmelano, the per-
formance is nearly the same. Interestingly, the suffix array-
based method, Deep-Shallow*, performs roughly as well as
TDD. For the Deep-Shallow* algorithm, Table 2 shows the
actual times spent in each of the three phases of the algo-
rithm.

Collectively, these results demonstrate that despite hav-
ing a O(n2) time complexity, the TDD technique signifi-
cantly outperforms the implementations of the linear time
algorithms of Ukkonen and McCreight on cached architec-
tures. It does not, however, have any significant advantage
over the suffix array-based Deep-Shallow* algorithm.

We must caution the reader, however, that this superior
performance of TDD is not guaranteed in all cases. There

Practical methods for constructing suffix trees 295

B
u

ff
e

r
M

is
s
e

s

0

1e+08

2e+08

3e+08

4e+08

5e+08

Buffer Size (% of File Size)
0 20 40 60 80 100

(a) SwissProt

LRU
RANDOM
CLOCK

B
u
ff
e
r

M
is

s
e
s

0

1e+08

2e+08

3e+08

4e+08

5e+08

Buffer Size (% of File Size)
0 20 40 60 80 100

(b) H.Chr1

LRU
RANDOM
CLOCK

Fig. 17 String buffer

B
u
ff
e
r

M
is

s
e
s

0

100000

200000

300000

400000

500000

Buffer Size (% of File Size)
0 20 40 60 80 100

(a) SwissProt

LRU
RANDOM
CLOCK

B
u
ff
e
r

M
is

s
e
s

0

100000

200000

300000

400000

500000

Buffer Size (% of File Size)
0 20 40 60 80 100

(b) H.Chr1

LRU
RANDOM
CLOCK

Fig. 18 Suffix buffer

B
u
ff
e
r

M
is

s
e
s

0

20000

40000

60000

80000

100000

Buffer Size (% of File Size)
0 20 40 60 80 100

(a) SwissProt

LRU
MRU
RANDOM
CLOCK

B
u
ff
e
r

M
is

s
e
s

0

20000

40000

60000

80000

100000

Buffer Size (% of File Size)
0 20 40 60 80 100

(b) H.Chr1

LRU
MRU
RANDOM
CLOCK

Fig. 19 Temp buffer

B
u
ff
e
r

M
is

s
e
s

0

160

320

480

640

800

Buffer Size (% of File Size)
0 2 4 6 8 10

(a) SwissProt

LRU
RANDOM
CLOCK

B
u
ff
e
r

M
is

s
e
s

0

160

320

480

640

800

Buffer Size (% of File Size)
0 2 4 6 8 10

(b) H.Chr1

LRU
RANDOM
CLOCK

Fig. 20 Tree buffer

may be inputs with a small alphabet size and a high amount
of skew on which Ukkonen or McCreight could outperform
TDD, despite being less cache-efficient.

6.4 Buffer management with TDD

In this section, we evaluate the effectiveness of various
buffer management policies on TDD. For each data structure

Table 3 The on-disk sizes of each data structure

Data SwissProt Human DNA)
structure (size in pages) (size in pages)

String 6,250 (50 MB) 6,250 (50 MB)
Suffixes 1,250 (10 MB) 6,250 (10 MB)
Temp 1,250 (10 MB) 6,250 (50 MB)
Tree 4,100 (32.8 MB) 16,200 (129.6 MB)

used in the TDD algorithm, we analyze the performance of
the LRU, MRU, RANDOM, and CLOCK page replacement
polices over a wide range of buffer cache sizes. To facilitate
this analysis over the wide range of variables, we employed
a buffer cache simulator. The simulator takes as input a trace
of the address requests into the buffer cache and the page
size. The simulator outputs the disk I/O statistics for the de-
sired replacement policy. For all the results shown here, ex-
cept for the Temp array, MRU performs the worst by far and
is not shown in the figures that we present in this section.

To generate the address request traces, we built suffix
trees on the SwissProt database [5] and a 50 Mbp slice of the
Human Chromosome-1 database [23]. A prefixlen of 1 was
used for partitioning in the first phase. The total size of each
of the arrays for these datasets is summarized in Table 3.

6.4.1 Page size

In order to determine the page size to use for the buffers,
we conducted several experiments. We observed that larger
page sizes produced fewer page misses when the alphabet
size was large (protein datasets, for instance). Smaller page
sizes seemed to have a slight advantage in the case of in-
put sets with smaller alphabets (like DNA sequences). We
observed that a page size of 8192 bytes performed well for
a wide range of alphabet sizes. In the interest of space, we
omit the details of our page-size study. For all the experi-
ments described in this section we use a page size of 8 KB.

6.4.2 Buffer replacement policy

The results showing the effect of the various buffer replace-
ment policies for the four data structures are presented in
Figs. 17–20. In these figures, the X-axis is the buffer size
(shown as a percentage of the original input string size), and
the Y-axis is the number of buffer misses that are incurred
by various replacement policies.

From Fig. 17, we observe that for the String buffer LRU,
RANDOM, and CLOCK all perform similarly. Of all the
arrays, when the buffer size is a fixed fraction of the total
size of the structure, the String incurs the largest number
of page misses. This is not surprising since this structure is
accessed the most and in a random fashion. RANDOM and
LRU are both good choices for the String buffer.

In the case of the Suffixes buffer (shown in Fig. 18), all
three policies perform similarly for small buffer sizes. In the
case of the Temp buffer, the reference pattern consists of

296 Y. Tian et al.

one linear scan from left to right to copy the suffixes from
the Suffixes array, and then another scan from left to right to
copy the suffixes back into the Suffixes array in the sorted
order. Clearly, MRU is the best policy in this case as shown
by the results in Fig. 19. It is interesting to observe that the
space required by the Temp buffer is much smaller than the
space required by the Suffixes buffer to keep the number of
misses down to the same level, though the array sizes are the
same.

For the Tree buffer (see Fig. 20), with very small buffer
sizes, LRU and CLOCK outperform RANDOM. However,
this advantage is lost for even moderate buffer sizes. The
most important observation to be made here is that de-
spite being the largest data structure, it requires the small-
est amount of buffer space, and takes a relatively insignifi-
cant number of misses for any policy. Therefore, for the Tree
buffer, we can choose to implement the cheapest policy–the
RANDOM replacement policy.

6.5 Comparison of disk-based algorithms

In this section, we first compare the performance of our
technique with the technique proposed by Hunt et al. [28],
which is currently considered the best practical disk-based
suffix tree construction approach. We also compare the per-
formance of TDD with the DC3 suffix array construction
method [20]. Note that the DC3 method only constructs a
suffix array and not the suffix tree. However, these results
provide a lower bound on the cost of constructing a disk-
based suffix tree using a suffix array construction method.

For this experiment, we used seven datasets which are
described in Table 4. The construction times for the three
algorithms are shown in Table 5.

From Table 5, we see that in each case TDD significantly
outperforms Hunt’s algorithm. On the TrEMBL dataset,
TDD is faster by a factor of 7.4. For Human Chromosome-1,
TDD is faster by a factor of 5.5. For a large text dataset like
the Gutenberg Collection, TDD is nearly 10 times faster!
For the largest dataset, the human genome, Hunt’s algorithm
did not complete in a reasonable amount of time. TDD fin-
ishes in less than 30 h. The 3 billion symbols of the human
genome can be in memory if we use 4 bits per symbol, which

Table 4 On-disk data sources

Data source Description Symbols (106)

swp Entire UniProt/SwissProt 53
(Protein)

H.Chr1-50 50 Mbps slice of Human 50
Chromosome-1 (DNA)

guten03 2003 Directory of Gutenberg 58
Project (English Text)

trembl TrEMBL (Protein) 338
H.Chr1 Entire Human 227

Chromosome-1 (DNA)
guten Entire Gutenberg Collection 407

(English Text)
HG Entire Human Genome (DNA) 3,000

Table 5 On-disk performance comparison

Data Symbols Hunt TDD Speed- DC3

source (106) (min) (min) up (min)

swp 53 13.95 2.78 5.0 12.60
H.Chr1-50 50 11.47 2.02 5.7 12.67
guten03 58 22.5 6.03 3.7 13.78
trembl 338 236.7 32.00 7.4 102.78
H.Chr1 227 97.50 17.83 5.5 74.57
guten 407 463.3 46.67 9.9 120.53
HG 3, 000 — 30 h — —

is what was used to obtain the number in Table 5. The reason
why TDD performs better is that Hunt’s algorithm traverses
the on-disk tree during construction, while TDD does not.
During construction, a given node in the tree is written at
most once in TDD. In addition, the careful management of
the buffer sizes and the separate buffer replacement policies
help reduce the disk I/O costs for TDD even further.

Next, we compare TDD with the fastest known disk-
based suffix array construction algorithm—the disk-based
DC3 algorithm [18]. These results are shown in Table 5.
From Table 5, we can see that TDD is more than twice as
fast as the external DC3 method in all cases. For HG, DC3
did not complete successfully. When the cost of building the
LCP array and converting the suffix array to a suffix tree
is added, the cost of this approach will be even higher (the
number for the external DC3 algorithm in Table 5 only in-
cludes the time to build the suffix array). The suffix array
construction algorithm works by recursively splitting the set
of suffixes into a “two thirds” array (for suffixes starting at
positions i such that i mod 3 �= 0) and a “one thirds” array
(for suffixes starting at positions i such that i mod 3 = 0).
The larger array is sorted using radix sort, essentially giving
lexicographic names to triples of symbols in the suffix. If
there are two suffixes that cannot be distinguished by radix
sort at this level, then an additional level of recursion is used
where the lexicographic name is derived from three times as
many symbols, and so on. The smaller array is sorted using
the information from the “two thirds” array and then merged
to this larger array using a fairly simple merge algorithm.
In this algorithm, a large amount of random I/O is incurred
during the radix sort. In addition, the amount of random I/O
quickly increases as the recursion proceeds to a deeper level.
This can happen very frequently with biological sequences
where long repeats are common and deeper recursion is re-
quired to sort suffixes with longer LCPs.

6.5.1 Comparison of TDD with TOP-Q

Recently, Bedathur and Haritsa have proposed the TOP-
Q technique for constructing suffix trees [7]. TOP-Q is a
new low overhead buffer management method which can
be used with Ukkonen’s construction algorithm. The goal of
the TOP-Q approach is to invent a buffer management tech-
nique that does not require modifying an existing in-memory
construction algorithm. In contrast, TDD and Hunt’s algo-
rithm [28] take the approach of modifying existing suffix

Practical methods for constructing suffix trees 297

tree construction algorithms to produce a new disk-based
suffix tree construction algorithm. Even though the research
focus of TOP-Q is different from TDD and Hunt’s algo-
rithm, it is natural to ask how the TOP-Q method compares
to these other approaches.

To compare TDD with TOP-Q, we obtained a copy of the
TOP-Q code from the authors. This version of the code sup-
ports building suffix tree indices only on DNA sequences.
As per the recommendation in [7], we used a buffer pool of
880 MB for the internal nodes and 800 MB for the leaf nodes
(this was the maximum memory allocation possible with the
TOP-Q code). On 50 Mbp of Human Chromosome-1, TOP-
Q took about 78 min. By contrast, under the same condi-
tions, TDD took about 2.1 min: faster by a factor of 37. On
the entire Human Chromosome-1, TOP-Q took 5800 min,
while our approach takes around 18 min. In this case, TDD
is faster by 2 orders of magnitude!

6.5.2 Comparison of TDD with DynaCluster

The DynaCluster algorithm [12] is based upon Hunt’s algo-
rithm and tries to group nodes that are frequently referenced
by each other into one cluster. The clusters are recursively
created in a top-down fashion and a depth-first order. By us-
ing a dynamic clustering technique, DynaCluster reduces the
random accesses to the suffix tree during construction time.
However, just as in TOP-Q, DynaCluster is also inherently
disadvantaged because they use clustering to improve what
is a highly random reference pattern (on a large structure) to
start with.

This is highlighted in the following comparison of I/O
costs. In one of the their experiments in [12], the au-
thors constructed the suffix tree for Human Chromosome-
1 (224 MB) with a total of 864 MB of available memory.
The I/O cost of this experiment is more than 800 s on their
experimental platform. For computing the I/O costs, the au-
thors used simulated disk numbers. Based on their method
and the parameters in their paper (30 MB/s transfer rate, 8
KB pages), 800 s translates to 3 million disk reads/writes.
For the same dataset and with identical parameters, TDD in-
curs 0.5 million disk accesses, which is around a sixth of that
incurred by DynaCluster. This directly translates to a clear
advantage for TDD.

6.6 Constructing suffix trees on very large inputs

In the previous section, we saw that TDD outperformed
the other methods. The ST-Merge algorithm has advantages
over TDD when the input string size is much larger than the
main memory available (n

M ≫ 1). When the input string fits
in memory, ST-Merge is the same as the TDD algorithm.

Figure 21 shows the execution times of TDD and ST-
Merge when the data string is much larger than the available
main memory. To keep the running times for this experi-
ment measurable, for this experiment only, we limited the
total memory available to the algorithms to 6 MB, and var-
ied the size of the input string from 10 to 80 MB. The other

T
im

e
 (

m
in

)

0

1000

2000

3000

4000

5000

6000

7000

8000

String Size (MB)

0 20 40 60 80 100

ST Merge
TDD Time

Fig. 21 Execution times : TDD and ST-merge

experimental conditions are the same as before. We note that
our main motivation for using a small amount of main mem-
ory for this experiment is primarily to keep this experiment
manageable. As can be seen in Fig. 21, even in this “scaled
down” setting the execution time for the algorithms is very
large–using a larger dataset with a larger amount of mem-
ory would have taken many days or weeks for each run. The
“scaled down” setting exposes the behavior of these algo-
rithms, while keeping the run times for the algorithms rea-
sonable.

From Fig. 21, we observe, that when the input data string
is significantly larger (about three times or more) than the
main-memory size, the ST-Merge algorithm starts to outper-
form the TDD algorithm. We also observe that as the ratio
n
M increases, the ST-Merge algorithm has a larger advantage
over TDD. This is expected because TDD incurs an increas-
ingly larger penalty from the random I/O on the string. Con-
sequently, for very large datasets, in which case the input
string is significantly larger than the available main mem-
ory, ST-Merge is clearly the algorithm of choice.

7 Conclusions and future work

Practical methods for suffix tree construction on large char-
acter sequences have been virtually intractable. Existing ap-
proaches have excessive memory requirements and poor lo-
cality of reference and therefore do not scale well for even
moderately sized datasets.

We first compare different algorithms used for construct-
ing suffix trees in-memory. We demonstrate that our method
(which is essentially PWOTD for the in-memory case) has
an advantage over Ukkonen’s algorithm by a factor of 2.5–
16. It is also better than McCreight in some cases by up to a
factor of 10. We argue that PWOTD wins over Ukkonen and
McCreight because of superior cache performance. We also
show that PWOTD is competitive with the suffix array based
Deep-Shallow* algorithm and takes nearly the same time on
various inputs.

To address the problem of disk-based suffix tree con-
struction and unlock the potential of this powerful indexing

298 Y. Tian et al.

structure, we have introduced the “Top Down Disk-based”
(TDD) technique. The TDD technique includes the suffix
tree construction algorithm (PWOTD), and an accompany-
ing buffer management strategy.

Extensive experimental evaluations show that TDD
scales gracefully as the dataset size increases. The TDD ap-
proach lets us build suffix trees on large frequently used se-
quence datasets such as UniProt/TrEMBL [5] in a few min-
utes. The TDD approach outperforms a popular disk-based
suffix tree construction method (the Hunt’s algorithm) by a
factor of 5–10. In fact, to demonstrate the strength of TDD,
we show that using slightly more main-memory than the in-
put string, a suffix tree can be constructed on the entire Hu-
man Genome in 30 hours on a single processor machine!
These input sizes are significantly larger than the datasets
that have been used in previously published approaches.

In this paper, we also compare TDD with a recently pro-
posed disk-based suffix array construction method [18], and
show that TDD also outperforms this method.

Even though TDD far outperforms the existing suffix
tree construction algorithms, TDD degrades in performance
when the input data string is much larger than the amount of
main memory. To address this case, we have also proposed
a new merge-based suffix tree algorithm called ST-Merge.
The TDD algorithm can be seen as a special case of the
ST-Merge algorithm when the number of merge partitions is
equal to one. We have implemented ST-Merge, and demon-
strated its benefits over TDD for constructing suffix trees on
very large string datasets.

As part of our future work, we plan on making ST-Merge
and TDD more amenable to parallel execution. We believe
that these algorithms are extremely parallelizable due to the
partitioning phase that they employ. We are also exploring
the benefits of using multiple disks, and of overlapping I/O
and computation.

Acknowledgements This work was completed while Richard A.
Hankins was a Ph.D. student at the University of Michigan. This re-
search was supported by the National Science Foundation under grant
IIS-0093059, and by a research gift donation from Microsoft. We
would like to thank the reviewers of this paper for their careful study
of our previous manuscript, and their constructive suggestions. Their
comments have helped strengthen this paper. We would like to thank
Srikanta Bedathur and Jayant Haritsa for providing us a copy of their
TOP-Q code. We thank Stefan Kurtz for providing us with an imple-
mentation of McCreight’s algorithm. We also thank Roman Dementiev,
Juha Kärkkäinen, Jens Mehnert, and Peter Sanders for providing us the
source code for their DC3 algorithm. In addition, we also thank Gio-
vanni Manzini and Paolo Ferragina for providing us the source code of
their Deep-Shallow algorithm.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms 2, 53–
86 (2004)

2. Aluru, S.: Suffix Trees and Suffix Arrays, Handbook of Data
Structures and Applications. CRC Press (2004)

3. Andersson, A., Nilsson, S.: Efficient implementation of suffix
trees. Software: Pract Exp. 25(2), 129–141 (1995)

4. Apostolico, A., Szpankowski, W.: Self-alignments in words and
their applications. J. Algorithms 13(3), 446–467 (1992)

5. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W., Boeckmann, B.,
Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Mar-
tin, M.J., Natale, D., O’Donovan, A.C., Redaschi, N., Yeh, L.L.:
Uniprot: The universal protein knowledgebase. Nucl. Acids Res.
32(D), 115–119 (2004)

6. Atkinson, M., Jordan, M.: Providing orthogonal persistence for
java. In Proceedings of the 12th European Conference on Object-
Oriented Programming, pp. 383–395 (1998)

7. Bedathur, S.J., Haritsa, J.R.: Engineering a fast online persistent
suffix tree construction. In: Proceedings of the 20th International
Conference on Data Engineering, pp. 720–731 (2004)

8. Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and
searching strings. In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 360–369 (1997)

9. Blumer, A., Ehrenfeucht, A., Haussler, D.: Average sizes of suffix
trees and DAWGs. Discrete Applied Mathematics 24(1), 37–45
(1989)

10. Carvalho, A., Freitas, A., Oliveira, A., Sagot, M.-F.: A parallel
algorithm for the extraction of structured motifs. In Proceedings
of the 2004 ACM Symposium on Applied Computing, pp. 147–
153 (2004)

11. Cheng, L.-L., Cheung, D., Yiu, S.-M.: Approximate string match-
ing in DNA sequences. In: Proceeings of the 8th International
Conference on Database Systems for Advanced Applications, pp.
303–310 (2003)

12. Cheung, C.-F., Yu, J.X., Lu, H.: Constructing suffix tree for gi-
gabyte sequences with megabyte memory. IEEE Transactions on
Knowledge and Data Engineering 17(1), 90–105 (2005)

13. Clifford, R., Sergot, M.J.: Distributed and paged suffix trees for
large genetic databases. In: Proceedings of 14th Annual Sympo-
sium on Combinatorial Pattern Matching, pp. 70–82, 2003.

14. Crauser, A., Ferragina, P.: A theoretical and experimental study
on the construction of suffix arrays in external memory and its
applications. Algorithmica 32(1), 1–35 (2002)

15. Deep-Shallow Suffix Array and BWT Construction Algorithms.
http://www.mfn.unipmn.it/∼manzini/lightweight/.

16. Delcher, A., Kasif, S., Fleischmann, R., Peterson, J., White, O.,
Salzberg, S.: Alignment of whole genomes. Nucleic Acids Res.
27(11), 2369–2376 (1999)

17. Delcher, A., Phillippy, A., Carlton, J., Salzberg, S.: Fast algorithms
for large-scale genome alignment and comparision. Nucleic Acids
Res. 30(11), 2478–2483 (2002)

18. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better ex-
ternal memory suffix array construction. In: Proceedings of the 7th
Workshop on Algorithm Engineering and Experiments (2005)

19. Devroye, L., Szpankowski, W., Rais, B.: A note on the height of
suffix trees. SIAM J. Comput. 21(1), 48–53 (1992)

20. External Memory Suffix Array Construction Project. http://
i10www.ira.uka.de/dementiev/esuffix/docu/index.html.

21. Farach, M.: Optimal suffix tree construction with large alphabets.
In: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, pp. 137–143. IEEE Computer Society (1997)

22. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the
sorting-complexity of suffix tree construction. Journal of The
ACM 47(6), 987–1011 (2000)

23. GenBank, NCBI, 2004. http://www.ncbi.nlm.nih.gov/GenBank.
24. Giegerich, R., Kurtz, S.: From Ukkonen to McCreight and Weiner:

A unifying view of linear-time suffix tree construction. Algorith-
mica 19(3), 331–353 (1997)

25. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy
suffix trees. Soft. Pract. Exp. 33(11), 1035–1049 (2003)

26. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology. Cambridge University
Press (1997)

27. Heumann, K., Mewes, H.-W.: The hashed position tree (HPT): A
suffix tree variant for large data sets stored on slow mass storage
devices. In: Proceedings of the 3rd South American Workshop on
String Processing, pp. 101–115 (1996)

Practical methods for constructing suffix trees 299

28. Hunt, E., Atkinson, M.P., Irving, R.W.: A database index to large
biological sequences. The VLDB J. 7(3), 139–148 (2001)

29. Intel Corporation. The IA-32 Intel Architecture Optimization Ref-
erence Manual. Intel (Order Number 248966) (2004)

30. Intel Corporation. The IA-32 Intel Architecture Software Devel-
oper’s Manual: System Programming Guide, vol. 3. Intel (Order
Number 253668) (2004)

31. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array con-
struction. In: Proceedings of the 13th International Conference on
Automata, Languages and Programming, pp. 943–955 (2003)

32. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-
time longest-common-prefix computation in suffix arrays and its
applications. In: Proceedings of the 12th Annual Symposium on
Combinatorial Pattern Matching, pp. 181–192 (2001)

33. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction
of suffix arrays. In: Proceedings of the 14th Annual Symposium
on Combinatorial Pattern Matching, pp. 186–199 (June 2003)

34. Ko, P., Aluru, S.: Space efficient linear-time construction of suffix
arrays. In: Proceedings of the 14th Annual Symposium on Com-
binatorial Pattern Matching, pp. 200–210 (June 2003)

35. Kurtz, S.: Reducing space requirement of suffix trees. Soft: Pract.
Exp. 29(13), 1149–1171 (1999)

36. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C.,
Stoye, J., Giegerich, R.: REPuter: The manifold applications of
repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633–
4642 (2001)

37. Kurtz, S., Phillippy, A., Delcher, A., Smoot, M., Shumway, M.,
Antonescu, C., Salzberg, S.: Versatile and open software for com-
paring large genomes. Genome Bio. 5(R12) (2004)

38. Manzini, G.: Two space saving tricks for linear time LCP array
computation. In Proceedings of the 9th Scandinavian Workshop
on Algorithm Theory, pp. 372–383 (2004)

39. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array
construction algorithm. Algorithmica 40(1), 33–50 (2004)

40. McCreight, E.M.: A space-economical suffix tree construction al-
gorithm. Journal of The ACM 23(2), 262–272 (1976)

41. Meek, C., Patel, J.M., Kasetty, S.: Oasis: An online and accurate
technique for local-alignment searches on biological sequences. In
Proceedings of 29th International Conference on Very Large Data
Bases, pp. 910–921 (2003)

42. Navarro, G., Baeza-Yates, R., Tariho, J.: Indexing methods for ap-
proximate string matching. IEEE Data Eng. Bull. 24(4), 19–27
(2001)

43. Patel, J.M.: The role of declarative querying in bioinformatics.
OMICS: J. Integr. Biol. 7(1), 89–92 (2003)

44. Pettersson, M.: Perfctr: Linux performance montioring counters
driver. http://user.it.uu.se/∼mikpe/linux/perfctr.

45. Project Gutenberg. http://www.gutenberg.net.
46. Schurmann, K.-B., Stoye, J.: Suffix-tree construction and storage

with limited main memory. Technical Report 2003-06, Univeristy
of Bielefeld, Germany (2003)

47. STXXL Library. http://i10www.ira.uka.de/dementiev/stxxl.shtml.
48. Szpankowski, W.: Average-Case Analysis of Algorithms on Se-

quences. John Wiley and Sons (2001)
49. Tata, S., Hankins, R.A., Patel, J.M.: Practical suffix tree construc-

tion. In: Proceedings of 30th International Conference on Very
Large Data Bases, pp. 36–47 (2004)

50. The Growth of GenBank, NCBI, 2004. http://www.ncbi.nlm.nih.
gov/Genbank/genbankstats.html.

51. The MUMmer Software. http://www.tigr.org/software/mummer/.
52. Ukkonen, E.: Constructing suffix-trees on-line in linear time. In

Proceedings of the IFIP 12th World Computer Congress on Algo-
rithms, Software, Architecture: Information Processing, pp. 484–
492 (1992)

53. Vitter, J.S., Shriver, M.: Algorithms for parallel memory: Two-
level memories. Algorithmica 12, 110–147 (1994)

54. Weiner, P.: Linear pattern matching algorithms. In Proceedings of
the 14th Annual Symposium on Switching and Automata Theory,
pp. 1–11 (1973)

55. Yona, S., Tsadok, D.: ANSI C implementation of a suffix tree.
http://cs.haifa.ac.il/∼shlomo/suffix_tree.

