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Practical Methods for Measuring and Managing Operational Risk in the Financial 

Sector: A Clinical Study 

1. Introduction 

Since the first Basel Accord was adopted in 1988, the financial sector consistently 

complained about its simplistic approach based on the Cooke ratio for the determination of 

regulatory capital. The need for reorganizing the framework under which exposures to credit risk 

should be assessed was a major impetus for the revision of this system through the second Accord, 

or Basel II. The Basel Committee on Banking Supervision (hereafter the Basel Committee) seized 

this opportunity to extend the scope of its proposals by introducing explicit recommendations with 

regard to operational risk.1  

While the two simplest approaches proposed by Basel II (i.e., the Basic Indicator Approach, 

or BIA, and the Standardized Approach, or SA) define the operational risk capital of a bank as a 

fraction of its gross income, the Advanced Measurement Approach (AMA) allows banks to develop 

their own model for assessing the regulatory capital that covers their yearly operational risk 

exposure within a confidence interval of 99.9% (henceforth, this exposure is called Operational 

Value at Risk, or OpVaR). Among the eligible variants of AMA, a statistical model widely used in 

the insurance sector and often referred to as the Loss Distribution Approach (LDA) has become a 

standard in the industry over the last few years. Yet, the implementation of a compliant LDA 

involves many sensitive modelling choices as well as practical measurement issues. The first 

objective of this paper is to develop a comprehensive LDA framework for the measurement of 

operational risk, and to address in a systematic fashion all the issues involved in its construction.  

As a consequence of their conceptual simplicity, BIA and SA models do not provide any 

insights into the drivers of operational risks, nor into the specific performance of the bank with 

respect to risk management. By contrast, the LDA model lends itself to quantifying the impact of 

active operational risk management actions, and justifying (potentially substantial) capital 

reductions. Unlike credit risk modelling, however, the cost-benefit trade-off of this alternative 
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approach is largely unknown to date. Therefore, the second major objective of this paper is to 

examine the costs and benefits associated with two distinct decisions, namely: the adoption of the 

LDA instead of the basic approaches on one hand, and the improvement of the operational risk 

management system on the other hand. We propose a RAROC-based framework for the analysis of 

the financial impact of various operational risk management decisions, where the distribution of 

losses is viewed as an input and cost variables as an output.  

To achieve the two objectives mentioned above, we face most of the practical issues 

encountered by a financial institution in a similar situation. Namely, in the process of implementing 

the LDA, the institution must, in turn, (i) infer the distribution of rare losses from an internal sample 

of observations of limited size, (ii) incorporate possibly heterogeneous external loss data into its 

estimation, and (iii) account for dependence – or lack thereof – between individual series of losses. 

Furthermore, the economic analysis of the operational risk management system requires (iv) 

assessing the impact of managerial actions on the distribution of losses, and finally (v) mapping this 

loss exposure into an economically meaningful cost function.  

The last two issues (iv)-(v) in the above list have apparently not been handled in the 

literature and require an original investigation. For this purpose, using analogies with credit risk and 

market risk modelling, we introduce a measure of risk-adjusted return (RAROC) on operational 

capital and perform a sensitivity analysis based on models developed in the LDA implementation. 

By contrast, the first three issues (i)-(iii) in the above list have been previously identified and 

separately addressed in the financial risk management literature. For instance, Embrechts, 

Klüppelberg and Mikosch (1997) recommend the use of Extreme Value Theory (EVT) to model the 

tail of the distribution in risk management, and so do King (2002), Moscadelli (2004), Cruz (2004) 

or Chavez-Demoulin, Embrechts and Neslehova (2006). Frachot and Roncalli (2002) and Baud et 

al. (2002) both address the incorporation of external losses in the internal dataset. Applications of 

copulas to model dependence between financial risks have been reported in the field of market risk, 

credit risk, insurance or overall risk management, but very few applications seem to have been 
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performed in the context of operational risk (for an example, see Di Clemente and Romano (2004) 

or Chavez-Demoulin, Embrechts and Neslehova (2006)). Even so, however, our claim is that these 

issues cannot be considered as satisfactorily solved from the point of view of operational risk 

practitioners, since either they have been investigated in a purely theoretical framework 

(disregarding the inevitable hurdles encountered in any real-world implementation), or, in the best 

case, they have been addressed as separate and disconnected issues only. As a consequence, 

methodological gaps remain to be filled in order to link different components of the approach, and 

practitioners are often at loss when confronted with the formidable task of developing a complete 

operational risk measurement system based on the LDA. 

Our work can be seen as an attempt at overcoming these shortcomings. In the empirical part 

of our paper, we opt for a clinical case study that encompasses all components of the discussion in a 

single framework based on real operational loss data collected by a European bank. This 

methodological choice enables us to adopt the realistic point of view of the risk manager of a 

specific financial institution. To our knowledge, no published application adopts a similar 

perspective. The closest work in this respect is a study by Chavez-Demoulin, Embrechts and 

Neslehova (2006) in which the authors focus on individual statistical modelling issues and illustrate 

them using transformed operational risk data, a framework which prevents them from discussing the 

underlying practical issues in great detail. Other related investigations are reported by Fontnouvelle, 

Jordan and Rosengren (2003), who rely on a public operational loss database (which is not 

exhaustive and restricted to large losses), and by Moscadelli (2004), who uses loss data gathered 

during the 2002 Loss Data Collection Exercise carried out by the Basel Committee. The paper by Di 

Clemente and Romano (2004) performs its analysis on catastrophe insurance data.  

The paper is organized as follows. In Section 2 and 3, we discuss the modelling choices 

underlying the measurement and management of operational risk capital, respectively. Section 4 

tests the risk measurement methodology on real data, and assesses the impact of operational risk 

management on the profitability of the bank. Finally, Section 5 presents some conclusions. 
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2. Measuring operational risk 

2.1. Overview 

Although the application of AMA is in principle open to any proprietary model, the most 

popular methodology is by far the Loss Distribution Approach (LDA), a parametric technique that 

consists in separately estimating a frequency distribution for the occurrence of operational losses 

and a severity distribution for the economic impact of individual losses. In order to obtain the total 

distribution of operational losses, these two distributions are then combined through n-convolution 

of the severity distribution with itself, where n is a random variable that follows the frequency 

distribution (see Frachot et al., 2001, for details). 

In addition to processing homogeneous categories of internal observations to produce 

univariate distributions of operational losses for a single type of loss event, the LDA methodology 

must include two additional steps dealing with different technical issues, namely: integrating 

external loss data in order to refine the fit of the extreme tail of the distribution; and jointly 

analyzing the loss event categories, so as to adjust the aggregate distribution for possible 

dependence between the univariate distributions.2 Sections 2.2, 2.3 and 2.4 respectively describe our 

implementation of each of these three steps. 

The output of the LDA methodology is a full characterization of the distribution of annual 

operational losses of the bank. This loss distribution contains all relevant information for the 

computation of the regulatory capital charge – defined as the difference between the 99.9% 

percentile and the expected value of the distribution – as well as necessary inputs for the assessment 

of the efficiency of operational risk management procedures. 

2.2. Processing of internal data 

In this section, we discuss the methodological treatment of a series of internal loss data for a single 

category of risk events in order to construct a complete probability distribution of these losses. 

The frequency distribution models the occurrence of operational loss events within the bank. 

Such a distribution is by definition discrete and, for short periods of time, the frequency of losses is 

 6



often modelled either by a homogenous Poisson or by a (negative) binomial distribution. The choice 

between these distributions is important as the intensity parameter is deterministic in the first case 

and stochastic in the second (see Embrechts, Furrer and Kaufmann, 2003).  

When modelling the severity of losses, on the other hand, our preliminary tests3 indicate that 

classical distributions are unable to fit the entire range of observations in a realistic manner. A study 

by Fontnouvelle et al. (2004) independently reaches similar conclusions. Hence, as in King (2001), 

Alexander (2003) or Fontnouvelle et al. (2004), we propose to distinguish between ordinary (i.e., 

high frequency/low impact) and large (i.e., low frequency/high impact) losses originating, in our 

view, from two different generating processes. The “ordinary distribution” includes all losses in a 

limited range denoted [L;U] (L being the collection threshold used by the bank), while the “extreme 

distribution” generates all the losses above the cut-off threshold U. We then define the severity 

distribution as a mixture of the corresponding mutually exclusive distributions.4  

2.2.1. Severity distribution – ordinary losses 

The distribution of ordinary losses can be modelled by a strictly positive continuous 

distribution such as the Exponential, Weibull, Gamma or Lognormal distribution. More precisely, 

let f(x;θ) be the chosen parametric density function, where θ denotes the vector of parameters, and 

let F(x;θ) be the cumulative distribution function (cdf) associated with f(x;θ). Then, the density 

function f*(x;θ) of the losses in [L;U] can be expressed as ( ) ( )
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where (x1,…,xN) is the sample of observed ordinary losses. It should be maximized in order to 

estimate θ. 

 7



2.2.2. Severity distribution – large losses 

Small-sized samples containing few – if any – exceptional, very severe losses represent a 

common issue when dealing with operational losses in banks (see Embrechts et al., 2003). When 

applied to such samples, classical maximum likelihood methods tend to yield distributions that are 

not sufficiently heavy-tailed to reflect the probability of occurrence of exceptional losses. To resolve 

this issue, we rely on concepts and methods from Extreme Value Theory (EVT), and more 

specifically on the Peak Over Threshold (POT) approach. This approach will enable us to 

simultaneously determine the cut-off threshold U and to calibrate a distribution for extreme losses 

using all the observations above this threshold. 

The procedure builds upon results of Balkema and de Haan (1974) and Pickands (1975) 

which state that, for a broad class of distributions, the values of the random variables above a 

sufficiently high threshold U follow a Generalized Pareto Distribution (GPD) with parameters ξ (the 

shape index, or tail parameter), β (the scale index) and U (the location index). The GPD can thus be 

thought of as the conditional distribution of X given X > U (see Embrechts et al., 1997, for a 

comprehensive review). Its cdf can be expressed as: 

( ) ξ

β
ξβξ

1

11),,;(
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−=

UxUxF  .    (2) 

While several authors (see e.g. Drees and Kaufmann, 1998, Dupuis, 1999, Matthys and 

Beirlant, 2003) have suggested methods to identify the cut-off threshold, no single approach has 

become widely accepted, yet. A standard technique is based on the visual inspection of the Mean 

Excess Function Plot (see Embrechts et al., 1997, for details). We replace this graphical tool by an 

algorithmic procedure that builds on ideas from Huisman et al. (2001) and shares some similarities 

with a procedure used by Longin and Solnik (2001) in a different context. The steps are: 

1. Let (x1,…,xn) be the ordered sample of observations. Consider m candidate thresholds U1,…,Um 

such that xn-i,…,xn > Ui for i=1,…,m. 
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2. For each threshold Ui, use the weighted average of Hill estimators proposed by Huisman et al. 

(2001) to estimate the tail index ξi of the GPD distribution.  

3. Compute the maximum likelihood estimator of the scale parameter βi of the GPD, with the tail 

index ξi fixed to the value obtained in step 2. 

4. For each threshold Ui, compute the Mean Squared Error statistic5 ( )∑
=

−=
in

k
kk

i
i FF

n
UMSE

1

2ˆ1)( , 

where ni is the number of losses above threshold Ui, Fk is the cdf of the GPD(ξk,βk, μ k) and  

is the empirical cdf of the excesses. 

kF̂

5. Identify MSE(Uopt) = min(MSE(U1),…,MSE(Um));  is retained as estimator of the cut-off 

threshold and the excesses are assumed to follow a 

Û

( )UGPD ˆ,ˆ,ˆ βξ  distribution. 

Note in particular that the method proposed in Step 2 corrects for the small-sample bias of the 

original Hill estimator. As the robustness of maximum likelihood estimators might be questioned 

when working with very small dataset, we prefer to rely on this modified Hill estimator to fully 

benefit from the information contained in the whole dataset. As a consequence, however, the 

estimation of the tail and scale parameters requires two successive steps (namely, Steps 2 and 3). 

2.3. Processing of external data 

In order to comply with Basel II, the AMA ought to specify a proper way to integrate 

external loss data into the capital charge calculation using one of the following three methods:  

• integrating external data in the internal loss database to increase the number of observations;  

• separately estimating the operational risk profile of internal and external database and 

combining them by Bayesian techniques (see Chapter 7 in Alexander, 2003);  

• providing additional examples and descriptions of real large loss events to illustrate “what if” 

scenarios and to allow the self-assessment of extreme risks. 

In this study, we illustrate a possible implementation of the first option. Keeping in line with 

the recommendations of the Basel Committee (2004), we use an external dataset of very large losses 
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in order to improve the accuracy of the tail of the severity distribution6. (Note that, by contrast, 

Frachot et al., 2002, create an enlarged sample containing a mix of internal and external data that 

cover losses of all sizes).  

As observed by Frachot and Roncalli (2002) and Baud et al. (2002), integrating external data 

in the internal loss database raises major methodological questions, including the determination of 

an appropriate scaling technique which allows to account for the size of the bank (see also Shih et 

al., 2000, Hartung, 2003). To scale the external severity data, we follow the approach of Shih et al. 

(2000) and we accordingly posit the non-linear relationship:  

,rSLoss a=       (3) 

where Loss is the magnitude of the loss, S is a proxy for the firm size (its gross income, in our 

implementation7), a is a scaling factor, and r is the multiplicative residual term not explained by any 

fluctuations in size.  Note that if a = 0, the severity of the losses is not related to the size of the 

institution. If a = 1, this relation is assumed to be linear.  

Equation (3) yields the linear regression model  

i
ii

i

S
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ε++=
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1
)ln(

)ln(        (i = 1,…p)    (4) 

where (Lossi,Si), i = 1,…p, are the external observations. This model can be estimated by OLS. 

Then, the scaled loss Lossi
scaled associated to observation i can be computed as 

a

i

int

i
scaled
i S

S
LossLoss ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ,     (5) 

where  is the size of the internal business segment corresponding to observation i.  intS

By applying the same scaling coefficient a to the collection threshold of the external 

database, we obtain the threshold E from which the tail of the distribution of internal data is 

replaced by the calibrated distribution of external data. Finally, a parametric distribution on [E,+∝) 

can be fitted to the sample of scaled loss data. This will be illustrated in Section 4.2.5 hereunder. 
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We end up with a distribution of loss severity consisting of three distinct parts, associated 

respectively with ordinary losses, large losses and extreme losses (see Figure 1). In a simulation 

framework, this distribution can be sampled by weighing each part of the distribution according to 

the relative occurrence of each type of losses in the internal loss database. 

Insert Figure 1 approximately here 

2.4. Dealing with all business lines and event types  

The methodology outlined in Sections 2.2-2.3 is applicable to a homogeneous category of 

operational loss data. In contrast, however, Basel II requires taking into consideration 56 categories 

of risks, corresponding to 8 business lines and 7 loss events types. For this purpose, the Accord 

proposes to compute the total capital charge by simple addition of the capital charges for all 56 risk 

categories, thus implicitly assuming perfect positive dependence between risks. Banks are 

nevertheless offered the possibility to account for dependence by appropriate techniques.  

Dependence between risks can be modelled either between frequencies of loss events, or 

between their severities, or between aggregate annual losses. Frachot et al. (2004) argue 

convincingly that “the correlation considered by the Basel Committee is unambiguously the 

aggregate loss correlation” and that it can be expected to be rather weak in general. They also 

explain that this dependence can be adequately captured in the LDA framework by the frequency 

correlations, not by severity correlations (see Frachot et al., 2003, for a discussion of this topic).  

We directly model the dependence of aggregate losses through the use of copulas (see e.g. 

Genest and McKay, 1986, or Nelsen, 1999 for an overview) in order to combine the marginal 

distributions of different risk categories into a single joint distribution. This method possesses more 

attractive theoretical properties than traditional linear correlation when dealing with non-elliptical 

distributions, such as those encountered in operational risk modelling. 

If Fi(xi) denotes the marginal cdf of aggregate losses for cell i (i = 1,…, p) of the (business 

line×risk type) matrix, then we represent the joint distribution of aggregate losses as 

 where C is an appropriate copula. We report here results  ,))x(F ),...,x(FC(   ), x,x(F 5611561 =…
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obtained with a mixture copula combining the default Basel II assumption of perfect dependence 

between risks (corresponding to the upper Fréchet bound) with a much less conservative view, 

namely, independence between risks.  

In its bivariate form, the mixture copula used in this study can be expressed as 

( ) ( ) ( )vuCvuCC ,,1 +⊥ ⋅+⋅−= θθθ     (6) 

where θ is the Spearman rank correlation coefficient which is assumed to be positive; un is the cdf 

of a uniform U(0,1) distribution; C⊥ denotes the independence, or product, copula defined as 

, and C∏
=

⊥ =
N

n
nuC

1

+ denotes the full dependence, or upper Fréchet bound, copula defined as 

. It is often referred to as the linear Spearman copula and is similar to 

family B11 in Joe (1997) (see e.g. Hürlimann, 2004a,b, for applications to insurance problems).

( Nn uuuC ,...,,...,min 1=+ )
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3. Managing operational risk  

Operational risk management involves an array of methods and approaches that essentially 

serve two purposes: reduction of average losses and avoidance of catastrophic losses. Some of these 

techniques aim at reducing the magnitude of losses, some at avoiding loss events, some at both.  

Table 1 reviews a number of illustrative management actions and three different possible 

types of impact on the parameters of the loss distributions, either in frequency or in severity: 

reduction in the number of large losses, reduction in the frequency of all losses, or reduction in the 

severity of all losses. The business lines or event types impacted depend on the action taken.  

Insert Table 1 approximately here 

3.1. Mapping of the distribution of losses on profitability 

Our methodology produces the necessary tools to estimate the quantitative impact of various 

risk management actions on the risk-adjusted return of activities, and, in turn, their consequence on 

the tariffs applicable to financial products. 
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Remember that RAROC, the Risk Adjusted Return on Capital, is a performance measure that 

expresses the return of an investment, adjusted for its risk and related to the economic capital 

consumed when undertaking this investment. The general formula for RAROC writes:  

CapitalEconomic
LossesExpectedvenuesReRAROC −

=     (7) 

The adjustment for risk takes place both in the numerator and the denominator of the ratio.  

Until recently, the RAROC performance measure had been mostly used to assess the credit 

activities of banks. Since the Basel Accord introduces regulatory capital for operational risks, banks 

could start considering introducing risk-adjusted pricing of activities that are particularly exposed to 

operational risk and developing an analogous RAROC approach to operational risk. In order to 

obtain a proper RAROC measurement adapted to operational risk, we must identify (i) expected 

losses due to operational events; (ii) economic capital necessary to cover the unexpected operational 

losses; and (iii) revenues generated by taking operational risks. 

The first two inputs are readily derived from our methodology, as the fitted distribution of 

operational losses provides both the expected aggregate loss and the percentile for the regulatory 

99.9% OpVaR used to determine regulatory capital. The estimation of the revenues associated with 

operational risks represents a more complex challenge. Unlike credit risk whose counterpart in 

revenues can be clearly identified, we face here the fundamental question of the existence of 

operational revenues as counterpart of operational risks. Strictly speaking, operational revenues are 

null. We plead for a less restrictive view, though, since even pure market or credit activities, and a 

fortiori those that generate other types of revenues like the fee business (asset management, private 

banking, custody, payments and transaction) involve large components of business and operational 

risks that call for compensation through an adequate tariff policy. A proportion of the bank revenues 

are generated by operations and are, as such, a counterpart for operational risk. Along the same line 

of reasoning, banks are willing to apply a mark-up to the price of their operations, in order to get a 
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proper remuneration for the operational risk they generate by doing business. As a first 

approximation, this mark-up is equal to the gross operating margin of the financial institution.  

Thus we define the “operational” RAROC (RAROCO) of a business line i as 

.
)i(CapitalEconomic

)i(EL)i(GI
)i(RAROCO

op

opop −
=     (8) 

Here, GIop(i) = λi × GI(i) where GI(i) is the Gross Income of business line i and λi is the mark-up for 

operational risks charged by business line i (equal to its gross operating margin). The choice of a 

multiplier of gross income is justified by the evolution of financial institutions towards an 

adaptation of their tariffs in consideration with the Basel II Accord.  

The formulation in equation (8) allows us to perform two kinds of economic analyses: first, 

we can directly quantify the impact of a given management action on the RAROCO, generated by 

the reduction of EL and the subsequent variation of economic capital following better risk 

management. Second, the specification of a target value for the RAROCO induces estimates of the 

maximum acceptable cost of a given action through the variation of the necessary level of revenues 

to maintain the target RAROCO.  

 

4. Empirical analysis  

4.1. Data 

The methodology outlined in Sections 2 and 3 has been applied to real operational loss data 

provided by a large European bank. Data collection has been performed in compliance with the 

Basel II definition of business lines and event types, but the available data set is still incomplete and 

unsatisfactory in some respects. Therefore, and since our main purpose is to illustrate a 

methodology (and not to analyze the exact situation of a specific institution), we focus our analysis 

on a sub-matrix consisting of two rows and two columns of the original (business lines × loss event) 

matrix. The selected business lines are “Asset management” and “Retail banking”, while the loss 

event types are “Clients, products & business practices” and “Execution, delivery & process 
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management”. For the sake of data confidentiality, we have multiplied all loss amounts by a 

constant and we have adjusted the time frame of data collection so as to obtain a total of 5,000 loss 

events.9 Summary statistics are given in Table 2. 

Our external data set is the OpVar Loss Database provided by Fitch Risks. It consists of 

publicly released operational losses above USD 1 million collected by the vendor. We have filtered 

the database to remove losses arising from drastically different geographical regions and/or 

activities. Moreover, in order to allow scaling (see Section 2.3), we keep losses only from those 

banks whose gross income is available in the database. The summary statistics of external losses are 

provided in Table 2. 

Insert Table 2 approximately here 

4.2. Calibration of LDA 

4.2.1. Frequency distribution 

We illustrate the computation of the Operational Value-at-Risk (OpVaR) for the cell “Asset 

Management / Execution, process and delivery management” (henceforth Cell (1,2)). 

The variance of the monthly frequency series is higher than its mean, suggesting that a 

negative binomial distribution might be more appropriate than a Poisson process. This is confirmed 

by Table 3, which displays some classical goodness-of-fit measures that all favour the negative 

binomial distribution against the Poisson distribution.   

Insert Table 3 approximately here 

For Cell(1,2), the fitted frequency distribution is a Negative Binomial (645, 0.459). 

4.2.2. Internal data 

Applying the algorithm developed in section 2.2.3, the weighted average of Hill estimators proposed 

by Huisman et al. (2001) is ξ = 1.412. The subsequent steps of this algorithm yield the optimal cut-

off threshold U = 537 (64 loss events exceed this threshold). Using a constrained Maximum 

Likelihood approach to estimate the remaining parameter of the GPD, we obtain β = 994.2. Thus we 
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conclude that the extreme losses of the sample (above the threshold U = 537) are modelled by a 

GPD with tail index ξ = 1.412, scale index β = 994.2 and location index U = 537. 

Insert Table 4 approximately here 

To fit the distribution of the “ordinary” losses (smaller than U = 537), we calibrate five 

distributions10 (Exponential, Pareto, Weibull, Lognormal and Gamma) by maximizing the log-

likelihood expression in equation (1). A summary of the different fitting exercises is given in Table 

4. In each case, we report the Mean Squared Error and Anderson-Darling goodness-of-fit indicators 

(adapted to account for the truncation of the distributions). The Weibull distribution with parameters 

a= 4.42 and b= 0.094 provides the best fit for this specific cell.  

4.2.3. Measurement for the complete matrix 

A similar methodology has been used for the other three cells of the matrix. Table 5 summarizes the 

corresponding results. If the operations of the bank were limited to these four cells, Table 6 would 

directly provide the total required capital charge for operational risk under the assumption of perfect 

dependence between the cells of the matrix and without inclusion of external data. 

Insert Table 5 approximately here 

Based on the default assumption of Basel II, we simply need to aggregate the OpVaR in excess of 

Expected Losses to get the overall capital charge. Table 6 indicates that the total capital charge 

(estimated by Monte Carlo simulation) amounts to: 

19.29 million (OpVaR99.9) – 3.12 million (Expected Loss) = 16.17 million.11

Insert Table 6 approximately here 

4.2.4. Dependence 

We now turn to the explicit introduction of a dependence structure among risks. With a 

sample of limited extent, one can only perform reliable inference about dependence by analyzing 

weekly or monthly observations. However, in order to carry out the OpVaR calculations, we would 

really need to identify the dependence structure between aggregated yearly losses. In order to work 

around this difficulty, we make the following observation: under the i.i.d. assumption for monthly 
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losses relating to a single class of risk (i.e., for an individual cell of the loss matrix), there does not 

exist any non-contemporaneous dependence between observations relating to different classes of 

risks (i.e., to different cells), and the observed dependence structure at the monthly level can simply 

be transposed at the yearly level.12 To assess whether this transposition can actually be performed, 

we have run a Vector AutoRegressive (VAR) analysis on the monthly aggregated losses. Our results 

indicate that almost no coefficient is significant at the usual confidence level. Therefore, we use the 

monthly dependence structure in our annual simulations.  

Insert Table 7 approximately here 

Table 7 displays the Spearman’s rank correlation coefficients13 between monthly aggregate 

losses of the four cells. The relatively low values of these coefficients confirm that the perfect 

positive dependence assumption appears unduly strong. Taking the “real” dependence structure into 

account would lead to more accurate results and possibly lower the total required capital charge (as 

predicted by Frachot et al., 2004). 

Due to data availability reasons, some banks might not be able to calibrate the copulas 

modelling the dependence structure between individual cells. A solution to this problem is to 

concentrate instead on the dependence between business lines, conservatively assuming perfect 

positive dependence between loss event types. To assess the impact of such an assumption, Table 8 

also provides estimations obtained when using “real” dependence between business lines only. 

Spearman’s correlation coefficient between the aggregate losses of the two business lines under 

consideration is equal to 0.042. As this value is also the weight associated with the upper Fréchet 

copula (corresponding to perfect dependence) in Equation (6), this result clearly indicates that the 

default assumption of Basel II is far from being observed in this clinical study. 

Table 8 displays the OpVaR values and the capital charges reported under various 

dependence assumptions when using the linear Spearman copula to introduce dependence in our 

Monte Carlo simulations.14 Parameters of the copulas are estimated through a Maximum Likelihood 

approach and the Monte Carlo experiments are based on a procedure described in Nelsen (1999). As 
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in the full dependence case, we simulate 20,000 years of losses to obtain the annual aggregated loss 

distribution for the bank. 

Insert Table 8 approximately here 

The capital charge obtained with the SA is low when compared to the default AMA, mostly 

due to the nature of our dataset.15 Taking partial dependence into account substantially reduces the 

required capital charge with respect to the default AMA, by a factor of about 30%. This is consistent 

with results reported in the literature (for instance, Frachot et al. (2001) report potential reductions 

of 38% for the capital charge while Chavez et al. (2006) observe a decline of slightly more than 

40% when comparing full independence with perfect dependence on a 3-business lines example). In 

this study, if the costs associated with the adoption of an advanced measurement approach (IT 

systems to collect, store and handle data, training costs for staff, potential need for skilled resources 

to maintain the model, etc.) represent less than 38% of the capital charge under SA, it may be 

worthwhile adopting the AMA on an own funds requirements basis. 

4.2.5. External data 

To illustrate a possible way to integrate external data in the internal database, we scale the 

external data described in Table 2 by the procedure of Shih et al. (2000), as explained in Section 2.3. 

The estimation of equation (4) by OLS regression yields an estimate of the scaling factor a = 0.154 

for the external data of Cell (1, 2), which is in line with the findings in Shih et al. (2000) of a highly 

nonlinear relationship between losses and size. Then we scale the external data accordingly and 

estimate the distribution of the resulting data. Using the same parametric distributions as in Section 

4.2.1, a lognormal distribution (12.37; 1.57) provides the best fit. The rescaled threshold for external 

losses is E = 21,170.  

Next, we can compute the aggregate loss distribution based on a severity distribution that 

combines three elements: a distribution for the body of the data (“high frequency/low severity” 

events), the GPD distribution for large losses and the external data distribution for extremely large 

losses. In order to assess the impact of the introduction of external data on the estimates of the high 
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percentiles of the aggregate loss distribution and of the regulatory capital, Table 9 provides a 

comparison between results obtained with or without external data.  

Insert Table 9 approximately here 

Replacing EVT estimates of the GPD parameters for the very far end of the severity 

distribution by the fitted distribution of comparable external observations alters the aggregate loss 

distribution. The mean loss increases with the inclusion of external data, while the tail appears to be 

thinner. Thus, adding external data results in a more dense distribution of aggregated losses. 

To check the robustness of these results, we report confidence intervals for our estimates 

derived from a bootstrap analysis. We randomly extract from our internal data a sub-sample 

containing 90% of the original loss events. Then we estimate the severity distribution of this sub-

sample (both the “body” and the “tail” parameters) following the methodology described in Section 

2. Finally we derive the aggregated loss distribution (using the same frequency distribution in all 

cases) and compute the statistics of interest. This process is repeated 250 times. Figures 2a and 2b 

display the graphical evolution of the confidence intervals. 

Insert Figures 2a and 2b approximately here 

For the higher quantiles, the confidence intervals have similar sizes for both approaches. 

However, for smaller quantiles, the confidence interval tends to be narrower and the median 

estimate is in general closer to the lower bound of the interval when no external data is used. 

Apparently, the use of EVT to fit the tail of the loss distribution results in a right-skewed 

distribution of the quantile estimates. 

4.3. Impact of ORM on the RAROC  

4.3.1. Determination of the Operational RAROC 

The quantitative analysis described in the previous sections provides two out of the three 

data elements needed to calculate the Operational RAROC (RAROCO), namely, the Expected Loss 

and the Economic Capital; see Equation (8). The third element, i.e., revenues can be estimated 

according to two approaches discussed below.  
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The first approach is to consider that a proportion of the bank revenues are generated by 

operations and are, as such, a counterpart to operational risk. For the sake of illustration, we 

calculate the RAROCO of each of the two business lines according to this view. To quantify the 

“operational revenues”, we assume that the ratio between expected operational losses and 

operational revenues is similar to the average cost/revenue ratio in the business line, i.e., the gross 

operating margin. Our dataset displays an average gross operating margin of 14.0% over the last 

years for the retail segment, which includes both retail banking and asset management.  

The second option is to assess the minimum level of revenue needed in a business line to 

reach a RAROCO threshold. A common RAROC threshold in the banking industry is 18%, which 

roughly corresponds to 12% of net ROE, after taking into account tax deductibility since RAROC is 

a gross return measure. This enables us to compute the minimum compensation level of income 

which is necessary for the different business lines. More importantly, this view will allow 

computing the maximum acceptable cost for risk management actions, as detailed in the next sub-

section. Results are displayed in Table 10  

Insert Table 10 approximately here 

Note that the RAROCO values are very low (less than 3.5% with the default AMA). This 

result indicates that the operational risk-reward relationship does not yield a profitable rate of return 

for the bank, i.e. it can be seen as a cost center if the bank charges the same gross margin as for the 

other activities. Nevertheless, the differential results obtained with managerial actions will indicate 

to what extent they are likely to increase the bank’s profitability. 

For both measures, the correction for dependence in the RAROC displays a great 

improvement over the full dependence case by showing an increase of more than 50% in risk-

adjusted return on capital. 

4.3.2. Comparative analysis of different risk mitigating actions  

We analyze the impact of risk mitigating actions on profitability by comparing the first two 

actions described in Table 1. For “Dashboards”, the expected frequency of events is proportionally 
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reduced across all business lines and loss event types while with “Audit Tracking”, the expected 

frequency and the magnitude of the severity are simultaneously reduced in all business lines for one 

specific loss event type.  

We assume the bank’s management has set the following objectives: (i) to reach a target 

RAROCO of 18%, and (ii) to reduce the Expected Loss (EL) by 15% for strategic purposes. The risk 

manager should select the most attractive solution through a cost-benefit analysis.  

To solve this problem, we first assess the performance (i.e., the necessary reductions in 

frequency x and severity y) required for each action in order to reach a 15% reduction of the EL. 

Next, we combine these performance requirements with the constraint on the target RAROCO to 

measure the maximum acceptable cost for each action. Table 11 summarizes the impact of the 

various risk management actions on the inputs of the bank’s profitability.   

Insert Table 11 approximately here 

Note that different actions, while leading to the same reduction of the expected losses, have 

different impacts on the unexpected loss and thus on the regulatory capital. Data show that actions 

targeting Cell (2,2) “Retail banking / Execution, delivery & process management” have the greatest 

impact on EL. By contrast, Cell (1,2) “Asset management / Execution, delivery & process 

management” is least impacted by risk management actions.  

Overall, the impact on regulatory capital seems to be influenced by two factors: the cell 

where the effort is targeted, with a dominant impact of Cell (2,2), and the relative focus on severity. 

From Table 5, Cell (1,2) displays the largest proportion of “Large” internal losses. Thus, any 

managerial action addressing this cell results in a greater effect on the tail of the distribution.  

On the other hand, the variation in unexpected loss, and thus the impact on the regulatory 

capital, is connected to the relative weight of changes in frequency and severity of losses. For any 

given cell, a shift from a reduction of frequency of losses to a decrease in severity induces a further 

reduction in regulatory capital.  
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Table 12 provides an overview of the major results ensuing from a successful 

implementation of these actions. The “Acceptable Cost” column indicates the percentage of income 

that can be spent to implement the risk management action while maintaining the same RAROCO 

level for the activity. 

Insert Table 12 approximately here 

In all cases, by reducing the EL and the Economic Capital, operational risk management 

measures improve the RAROCO performance of the business lines to a significant extent. The 

RAROCO doubles (for dashboards) and almost triples (for audit tracking actions) after completion 

of the management actions.  

The objective of loss reduction subject to the profitability constraint is achieved if the 

performance requirements on frequency and severity described above are met. A cost-benefit 

analysis is needed to ensure that the costs associated with their implementation do not exceed the 

benefits that they carry. Accordingly, Table 12 reads as follows: if the costs linked to an “Audit 

tracking” plan allowing a reduction of 12% of the number of losses per year and a 5% reduction of 

their severity (see Table 10) represent less than 0.98% of the cumulated Gross Income of the two 

business lines, then the management’s objectives (15% reduction of Expected Loss and a target 

RAROCO of 18%) are met. 

Our approach permits to compare acceptable costs between different managerial actions. In 

our case, thanks to its better impact on economic capital reduction, cost incurred by the 

implementation of “Audit Tracking” action can be substantially greater than for “Dashboards” while 

still meeting the managerial wishes described above.  

 

5. Concluding remarks  

In this paper, we have attempted to explicitly and consistently address several major issues 

triggered by the emergence of operational risk coverage in the scope of the Basel II Accord. The 

first part of the paper is rooted in the observation of a significant gap between theoretical 
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quantitative approaches in the academic literature and the somewhat pragmatic approaches to 

modelling of operational losses adopted in the banking industry. We believe that this gap is due to 

the practical difficulties met in the implementation of advanced theoretical models. Thus, a first 

objective of our work was to suggest and implement a complete methodological framework to 

overcome these difficulties, whose various steps have been illustrated on a realistic case-study.  

As for the next research question, namely the cost-benefit analysis of adopting the AMA 

instead of a less sophisticated method, two major conclusions can be drawn. First, the behaviour of 

extremely large losses collected in external databases, as well as the dependence structure of 

operational losses among business lines and/or event types, are both likely to affect the cost-saving 

properties of the AMA choice in a significant way. A proper treatment of external data allows 

refining the analysis of the tail of the aggregate loss distribution. Furthermore, since the AMA aims 

at capturing rare events, it tends to be overly conservative when the basic assumption of additive 

capital charges (perfect correlation) is adopted. The estimation of risk exposure is significantly 

reduced when dependence is taken into account in a reasonable way.  

Second, the differential capital charge between the Standardized Approach and the AMA, 

and thus the opportunity cost of adopting (or not) a complex operational risk management system, 

significantly hinges on the discretionary weight assigned to the business lines. Banks should not 

take capital reduction for granted when adopting well-calibrated AMA, as the choice of the SA may 

be attractive to some banks whose risk is greater than average, and unattractive to others. With this 

respect, our cost-benefit trade-off analysis of adopting a full-fledged operational risk management 

system has less normative content than methodological substance. On the basis of controlled 

scenarios, we document that managerial actions are likely to bring significant improvements on the 

risk-adjusted profitability of the institution. The arbitrage between different managerial actions is 

mostly tied to the distributional behavior of the aggregate loss for each business line and event type. 

This kind of analysis of the profit side of operational risk management should be matched with a 
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more industrial view on the cost-side of these types of actions, which is beyond the scope of the 

study. 

All aspects of this research could be extended in various ways provided more complete and 

robust databases would become available. For instance, the inclusion in the framework of “soft” 

elements such as experts’ opinion, or bank-specific business environment and internal control 

factors, remains a major methodological challenge.16 This very promising area will actually reach 

its full potential only when banks will have collected extensive operational data – both on loss 

events and on corrective devices – on a systematic basis for several years. 
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Figures 

Figure 1: Integration of external data to model the tail of the severity distribution 
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This graph reports the Operational Value-at-Risk (OpVaR) at various confidence level (Basel II 

requires OpVaR at 99.9%) when considering both internal and external data. The dotted lines 

indicate the lower and upper bound at 90% confidence interval.  

 

 

This graph reports the Operational Value-at-Risk (OpVaR) at various confidence level (Basel II 

requires OpVaR at 99.9%) when considering only internal data. The dotted lines indicate the lower 

and upper bound at 90% confidence interval.  
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Figure 2a: OpVaR and Confidence Intervals 

 

 



Type of action Description Impact on the distribution 
Dashboard Systematic reduction of events in BL 

“i”, event types “j,k,l” 
Minus x% in the number of events in Business Line “i”, for the event types 
“j,k,l”. 

Audit tracking  Application of audit recommendations 
in BL “i” 

Minus x% in the number of events in Business Lines “i”, minus y% in the 
severity of losses for “internal fraud” and “processing errors” 

Business line 
reorganization  

New product review process for all BL Minus x% in frequency and minus y% in severity for event types “clients, 
products and business practices”  

Lessons learned Analysis of largest losses in Business 
Line (BL) “i” 

Cut off the z top losses, all Business Lines 
 

Rapid reaction  Mitigation of severity of OR events Minus x% in severity, all BL and all event types 
Business Continuity 
Plan 

Avoidance of events that may cause 
severe disruptions 

Minus x% in severity for event types of business disruption and system failure 
(if non existent in the original distribution) 

31

Table 1: Impact of managerial actions 
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Table 2: Summary statistics for the operational loss database 

 

 Asset Management Retail Banking 
 CP&BP ED&PM CP&BP ED&PM 
 Cell (1,1) Cell (1,2) Cell (2,1) Cell (2,2) 

External Data 
(scaled) 

No. Obs. 238 712 764 3,286 224 

Median loss 195 30 25 20 183,484 

Mean loss 2,923 1,113 364 123 1,347,859 

Std. Dev. 23,034 10,325 1,958 929 4,530,245 

Total loss 695,570 792,350 278,147 403,235 301,920,406 
 

This table provides descriptive statistics of the four “Business Line” / “Loss Event Type” 

combinations considered in this paper. All statistics are expressed in transformed units. The 

“Internal” columns refer to the statistics of the internal operational risk loss database used in this 

study (net of recovery) while the “External” column relates to the (filtered) database of large 

publicly released external loss events. 
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Table 3: Calibration of the frequency distribution for Cell (1, 2) 

 

Distribution Poisson Negative Binomial 

Parameter 1 712 660 

Parameter 2 - 0.476 

Log-likelihood -223.8 -165.8 

CVM 1.058 0.650 

KS 0.296 0.234 
 

This table contains the estimated parameters of the frequency distribution for Cell(1,2) (“Asset 

Management” / “Execution, Delivery & Process Management”). All parameters are estimated 

using the Maximum Likelihood method. CVM refers to the Cramer – von Mises goodness-of-fit 

test while KS refers to the Kolmogorov-Smirnov goodness-of-fit statistic. 
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Table 4: Calibration of the severity distributions for Cell (1,2) 

 

 “Ordinary Losses”  “Extreme Losses” 

Distribution Exponential Pareto Weibull Lognormal Gamma  GPD 

Parameter 1 0.019 6.79 4.416 0.0000 0.00008  1.412 

Parameter 2 - 0.498 0.094 2.767 0.0057  994 

Parameter 3 - - - - -  537 

MSE 0.03334 0.00009 0.00007 0.00009 0.00425  0.0006 

AD 103.76 0.609 0.402 0.578 12.49  - 
 

This table contains the estimated parameters for Cell(1,2) (“Asset Management” / “Execution, 

Delivery & Process Management”) for the body and for the tail parts of the severity distribution. 

All parameters are estimated using Maximum Likelihood method, except Parameters 1 and 3 of 

the GPD (ξ and U, respectively) which are obtained applying the algorithm described in Section 

2.2. MSE refers to the Mean Square Error while AD refers to the Anderson-Darling goodness-of-

fit statistic. 
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Table 5: Calibration of the fitted distributions  

 

 Business Line & Event Type 

 Cell (1,1) Cell (1,2) Cell (2,1) Cell (2,2) 

Frequency     
Distribution Neg.Bin. Neg.Bin. Neg.Bin. Neg.Bin. 

K 191 660 654 3,070 

P 0.431 0.476 0.459 0.482 

“Ordinary” losses     

Distribution Pareto Weibull Weibull Lognormal 

Parameter 1 6.79 4.42 2.92 0.786 

Parameter 2 0.157 0.094 0.119 2.044 

“Large” losses     

% above U 8.9 % 9.0 % 5.0 % 1.5 % 

GPD 1 (ξ) 1.05 1.416 1.113 1.101 

GPD 2 (β) 3002.5 994.2 1437.5 1464.6 

GPD 3 (U) 4076 537 1034 950 
 

This table contains the estimated parameters for frequency and severity distributions of the four 

considered cells. Parameters for the frequency distribution and for distribution fitting “ordinary” 

losses are obtained with MLE. “Large” losses are modelled with a GPD whose parameters are 

estimated using the algorithm described in Section 2.2.  Neg.Bin. refers to the Negative Binomial 

distribution. 
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Table 6: Regulatory capital under perfect dependence 

 

 Business Line & Event Type 

 Cell (1,1) Cell (1,2) Cell (2,1) Cell (2,2) 
Total 

Real total loss 695,570 792,350 278,147 403,235 2,169,302 

Median simulated loss 476,601 884,729 407,469 470,921 2,239,720 

Mean simulated loss (a) 654,329 1,244,147 592,317 630,493 3,121,286 

OpVaR99.9  (b) 4,211,260 6,877,495 4,086,106 4,116,113 19,290,974

Capital charge (b-a) 3,556,931 5,633,348 3,493,789 3,485,620 16,169,688

OpVaR99.9  / EL ratio (b/a) 6.44 5.53 6.90 6.53 6.18 
 

The “Mean” and “OpVaR” rows report the mean and 99.9% percentile of annual aggregate losses 

computed by simulating 20,000 years of losses for each cell. The mean is taken as the proxy for 

the Expected Loss (EL). In our case, we assume that the bank’s pricing scheme integrates the 

Expected Loss so that the regulatory capital charge reduces to the Unexpected Loss, which is the 

difference between OpVaR99.9 and EL. 
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Table 7: Spearman’s rank correlation matrix for the selected cells  

 

 Cell(1,1) Cell(1,2) Cell(2,1) Cell(2,2) 

Cell(1,1) 1.000    

Cell(1,2) 0.209 1.000   

Cell(2,1) 0.668 0.039 1.000  

Cell(2,2) -0.307 0.110 -0.645 1.000 
 

This table provides the Spearman’s rank correlation between the four selected cells. Spearman’s 

rank correlation (ρS) between two random variables X and Y is defined 

as ( ) ( ) (( YFXFYX YXS ,, ))ρρ = , where ρ is the traditional Pearson’s correlation coefficient. 
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Table 8: Comparison of total capital charges  

 

Method Expected Loss OpVaR99.9 Capital Charge Base 100

BIA  - - 17,877,462 125 

SA   - - 14,301,970 100 

AMA (Basel II default) 4,436,968 21,952,325 16,169,688 113 

AMA (real dependence #1) 4,382,481 16,537,021 12,154,540 85 

AMA (real dependence #2) 4,361,659 13,354,638 8,992,979 63 

AMA (independence) 4,378,761 12,038,990 7,660,229 54 
 

In this table, the reference capital charges obtained by the Basic Indicator Approach (BIA) and 

Standardized Approach (SA) are based on Basel II definition. “Basel II default” assumes full 

positive dependence between risks; “real dependence #1” refers to the observed dependence 

between business lines and full positive dependence between loss event type (intra-business lines); 

“real dependence #2” refers to the observed dependence between the four cells; “independence” 

assumes no correlation between cells. The last column reports the ratio of the capital charge 

obtained from each model to the capital charge derived from the Standardized Approach. 
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Table 9: Comparison of distributions obtained with or without external data  

for Cell (1,2) 

 

Data used beyond cut-off threshold 
Internal data only Internal and external data 

LB Estimate UB LB Estimate UB 
Real Total Loss  792,349   792,349  

Median  884,729   1,333,948  
Mean (=EL) 1,048,846 1,244,147 1,712,263 471,595 1,562,793 2,360,613

OpVaR95 3,018,060 3,398,271 
(+173.1%)

4,229,647 1,925,822 3,040,296 
(+94.5%) 

3,902,967

OpVaR99 4,241,718 4,744,537 
(+39.6%)

5,941,456 3,245,589 4,347,037 
(+43.0%) 

5,216,748

OpVaR99.5 4,768,228 5,482,138
 (+15.5%)

6,645,258 3,532,582 4,694,103 
(+8.0%) 

5,620,977

OpVaR99.9 5,939,985 6,877,495 
(+25.4%)

8,249,290 4,533,070 5,774,601 
(+23.0%) 

6,920,889

OpVaR99.95 6,441,825 7,253,584 
(+5.5%) 

8,929,050 4,914,309 6,257,562 
(+8,4%) 

7,434,028

 

This table presents estimates and the lower and upper bounds of 90% confidence intervals of the 

OpVaR for the Cell (1,2). The fitted distributions are a Negative Binomial (660, 0.476) for the 

frequency and the severity distribution is the combination of a Weibull (4,42, 0.094) for “ordinary” 

losses (from the collection threshold up to the cut-off threshold U = 537), a GPD (994; 1.412) for 

“large” losses (from U = 537 upwards). When including external data, the extreme threshold is 

21,170 and a lognormal (12.37, 1.58) is used for “external” losses (above E = 21,170). Percentage 

increases with respect to the previous cell are shown between parentheses. To compute the 

confidence intervals, a bootstrap technique is applied: the severity distribution is fitted on a 

random sub-sample whose size is 90% of the original sample. The frequency distribution is a 

Negative Binomial (654, 0.459) for all iterations. The procedure is repeated 250 times. 
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Table 10: Operational RAROC  

 

 RAROCO 

Business line Default AMA Corrected AMA 

Asset management 3.73% - 

Retail banking 3.13% - 

TOTAL 3.48% 6.89% 
 

In this table, the RAROCO figure represents the value of the operational risk adjusted return on 

capital defined as ,
)(

)()(
)(

iCapitalEconomic
iELiGI

iRAROCO
op

opop −
=  when the revenues corresponding to 

operational risk (GIop) are set equal to the gross operating margin of the business line (14% in our 

case). “Default AMA” corresponds to the default dependence assumption of Basel II (aggregation 

of capital charges) while “Corrected AMA” takes observed dependence into account. 
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Table 11: Impact of managerial actions on regulatory capital 

 

 Dashboards Audit Tracking  

 (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)  

Frequency x  15 15 15 12 - 12 - 12  

Severity y - - - - - 5 - 5  

Expected Loss 13.0 10.7 12.7 18.6 - 12.4 - 23.5  

Unexpected Loss 8.4 8.6 2.3 1.6 - 10.6 - 13.1  

Reg. Capital (by cell) 8.3 8.5 1.9 0.6 - 10.4 - 11.7  

Reg. Capital (by BL) 8.4 1.1 5.2 5.3  

Reg. Capital (total) 4.7 5.8  
 

This table reports the changes in (input) frequency and severity parameters and (output) loss and 

capital measures consecutive to a 15% reduction in the total expected loss. All elements of this 

table are expressed as percentage reductions. 
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Table 12: Impact of actions on profitability 

 

 Default AMA Dashboards Audit tracking 

Business Line RAROC A.C. RAROC A.C. RAROC A.C. 

Asset Mgmt 3.73% - 7.30% 1.48% 10.31% 2.28% 

Retail Banking 3.13% - 6.78% 0.36% 9.34% 0.59% 

TOTAL 3.48% - 7.08% 0.61% 9.95% 0.98% 
 

In this table, the RAROCO figure represents the value of the operational risk adjusted return on 

capital defined as ,
)(

)()(
)(

iCapitalEconomic
iELiGI

iRAROCO
op

opop −
=  when the Expected Loss (EL) is set equal 

to 14% of the Gross Income (GI) corresponding the operational risk. “A.C.” means “Acceptable 

Cost” and represents the percentage amount of gross income generated by the business line that is 

necessary to reach a RAROC threshold of 18%. 
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Footnotes 
1 Operational risk is defined by the Revised Framework of the International Convergence of 

Capital Measurement and Capital Standards (hereafter Basel II) as the “risk of loss resulting from 

inadequate or failed internal processes, people and systems or from external events. This definition 

includes legal risk, but excludes strategic and reputational risk.” (BCBS, 2004). 
2 In order to comply with Basel II, “a bank’s internal measurement system must reasonably 

estimate unexpected losses based on the combined use of internal and relevant external loss data, 

scenario analysis and bank-specific business environment and internal control factors.”  The model 

presented here is limited to the first two elements, as integrating subjective elements such as 

experts’ opinions in the actuarial model goes beyond the scope of this paper. 
3 Available upon request. 
4
 An alternative model could be used to fit the severity distribution, e.g., a compound distribution 

including adependence structure between ordinary and large losses. To our knowledge, there is no 

decisive evidencethat strongly favors such a model over ours (that is, a mixture of the 

corresponding mutually exclusivedistributions). Both choices can be supported by sound 

arguments. We chose to select our model because the actuarial models on which LDA is built 

assume that individual losses are jointly independent within one specific risk type.  

Indeed, the aggregated loss distribution is obtained through the n-fold convolution of the severity  

distribution with itself (n being the random variable of the frequency process), thus implicitly 

assuming independently distributed losses.  
5 We choose the MSE criterion because it explicitly accounts for both the bias and inefficiency 

effects (see Theil, 1971). 
6 As noted in the final Accord, “A bank (…) must use relevant external data (…), especially when 

there is reason to believe that the bank is exposed to infrequent, yet potentially severe, losses.” 

(BCBS, 2004, § 674).. 
7 One could think of relevant measures different from size (such as location, business mix, 

governance and corporate controls) that might distinguish the financial institutions from others in 

the external database. However, such measures are not always readily available in public database. 
8 While formal comparison with other copulas is beyond the scope of this study, we have also used 

Clayton, Frank and Gumbel copulas and capital charge estimates were similar to the one obtained 

with the mixture copula.    
9 Applying such a linear scaling does not affect the interpretation of the results. 
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10 These distributions are classical candidates, although other specifications could obviously be 

considered as well. It is important to remember that these distributions are used to fit the body of 

the severity distribution and are thus bounded towards the upper side. Distinction between a 

heavy-tailed distribution such as Pareto and a thin-tailed distribution such as Weibull is therefore 

less relevant in this case as fitted data are not characterized by rare and severe losses. 
11 We assume here that the bank’s pricing scheme integrates the Expected Loss so that the capital 

charge is only the Unexpected Loss. Basel II indeed requires banks “to calculate its regulatory 

capital requirement as the sum of expected loss (EL) and unexpected loss (UL), unless the bank 

can demonstrate that it is adequately capturing EL in its internal business practices.” (BCBS, 

2004). 
12 We only examine the possibility of serial autocorrelation across weekly loss amounts, showing 

that this serial autocorrelation within operational risks is not statistically significant, However  

studies suggest the existence of a cyclical component inherent in operational risk, such that 

operational losses are correlated with external elements, such as economic conditions and business 

cycles. See Allen and Bali (2005) for details. 
13 In our context of strictly positive random variables following a highly skewed distribution, the 

use of a non-parametric indicator of dependence such as the Spearman’s rank correlation 

coefficient seems more appropriate than Pearson’s product-moment coefficient (see Embrechts et 

al., 2002). 
14 While formal comparison with other copulas falls outside the scope of this study, we have also 

used Clayton, Frank and Gumbel copulas in additional experiments. Capital charge estimates were 

very similar to the one obtained with the mixture copula. The total capital charges were all within 

a [+3%; -5%] range from the value obtained with the copula used in this study.  
15 Indeed, the SA derives the capital charge by simply applying a given factor (called “beta”) 

ranging from 12 to 18% to each business line’s gross income. The business lines considered in this 

study have the lowest beta factor (12%). Thus the total capital charge computed by the SA is 

particularly attractive in this case. 
16 Several techniques exist to include these factors in the overall framework: “adjustment 

functions” applied to the regulatory capital charge obtained with LDA, or “weighted” approaches 

to combine soft assessment (i.e., based on opinions or indicators) with pure statistical results from 

internal data inspection, etc. 
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