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†William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des
organisations (CIRANO), and Centre interuniversitaire de rechercheenéconomie quantitative (CIREQ). Mailing address:
Department of Economics, McGill University, Leacock Building, Room 519, 855 Sherbrooke Street West, Montréal,
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ABSTRACT

We consider the problem of developing practical methods for modelling weakVARMA processes.
In a first part, we propose new identified VARMA representations, thediagonal MA equation form
and thefinal MA equation form, where the MA operator is diagonal and scalar respectively. Both of
these representations have the important feature that they constitute relatively simple modifications
of a VAR model (in contrast with the echelon representation). In a secondpart, we study the problem
of estimating VARMA models by relatively simple methods which only require linear regressions.
We consider a generalization of the regression-based estimation method proposed by Hannan and
Rissanen (1982). The asymptotic properties of the estimator are derived under weak hypotheses on
the innovations (uncorrelated and strong mixing) so as to broaden the classof models to which it
can be applied. In a third part, we present a modified information criterion which gives consistent
estimates of the orders under the proposed representations. To demonstrate the importance of using
VARMA models to study multivariate time series we compare the impulse-response functions and
the out-of-sample forecasts generated by VARMA and VAR models.

Key words: linear regression; VARMA; final equation form; information criterion; weak represen-
tation; strong mixing condition; impulse-response function.
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1. Introduction

In time series analysis and econometrics, VARMA models are scarcely used torepresent multivari-
ate time series. VAR models are much more widely employed because they are easier to implement.
The latter models can be estimated by least squares methods, while VARMA modelstypically re-
quire nonlinear methods (such as maximum likelihood). Specification is also easier for VAR models
since only one lag order must be chosen.

VAR models, however, have important drawbacks. First, they are typicallyless parsimonious
than VARMA models [e.g., see L̈utkepohl and Poskitt (1996b)]. Second, the family of VAR models
is not closed under marginalization and temporal aggregation [see Lütkepohl (1991)]. The truth
cannot always be a VAR. If a vector satisfies a VAR model, subvectors do not typically satisfy
VAR models (but VARMA models). Similarly, if the variables of a VAR process are observed at a
different frequency, the resulting process is not a VAR process. Incontrast, the class of VARMA
models is closed under such operations. Furthermore, Athanasopoulos and Vahid (2008) argue that
there is no compelling reason for restricting macroeconomic forecasting to VAR models and show
that VARMA models can forecast macroeconomic variables more accuratelythan VARs. Chen,
Choi, and Escanciano (2012) refers to many examples in macroeconomics where the models contain
an MA component.

The importance of nonlinear models has been growing in the time series literature. These models
are interesting and useful but may be hard to use. Because of this and thefact that many important
classes of nonlinear processes admit an ARMA representation [e.g., see Francq and Zakoı̈an (1998),
Francq, Roy, and Zakoı̈an (2005)] many researchers and practitioners still have an interest in linear
ARMA models. However, the innovations in these ARMA representations do not have the usual
i.i.d. or m.d.s. property, although they are uncorrelated. One must then be careful before applying
usual results to the estimation of ARMA models because they usually rely on the above strong as-
sumptions [e.g., see Brockwell and Davis (1991) and Lütkepohl (1991)]. We refer to these as strong
and semi-strong ARMA models respectively, by opposition to weak ARMA models where the in-
novations are only uncorrelated. The i.i.d. and m.d.s. properties are also not robust to aggregation
(the i.i.d. Gaussian case being an exception); see Francq and Zakoı̈an (1998), Francq, Roy, and
Zaköıan (2005), Palm and Nijman (1984), Nijman and Palm (1990), Drost (1993). In fact, the Wold
decomposition only guarantees that the innovations are uncorrelated.

It follows that (weak) VARMA models appear to be preferable from a theoretical viewpoint, but
their adoption is complicated by identification and estimation difficulties. The directmultivariate
generalization of ARMA models does not give an identified representation [see L̈utkepohl (1991,
Section 7.1.1)]. It follows that one has to decide on a set of constraints to impose so as to achieve
identification. Standard estimation methods for VARMA models (maximum likelihood, nonlin-
ear least squares) require nonlinear optimization which may not be feasibleas soon as the model
involves a few time series, because the number of parameters can increasequickly.

In this paper, we consider the problem of modeling weak VARMA processes. Our goal is to
develop a procedure which will ease the use of these models. It will coverthree basic modelling
operations: identification, estimation and specification.

First, in order to avoid identification problems and to further ease the use of VARMA models,
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we introduce three new identified VARMA representations, thediagonal MA equation form, the
final MA equation formand thediagonal AR equation form. Under the diagonal MA equation
form (diagonal AR equation form) representation, the MA (AR) operatoris diagonal and each lag
operator may have a different order. Under the final MA equation formrepresentation the MA
operator is scalar,i.e. the operators are equal across equations. The diagonal and final MA equation
form representations can be interpreted as simple extensions of the VAR model, which should be
appealing to practitioners who prefer to employ VAR models due to their ease ofuse. The identified
VARMA representation which is the most widely employed in the empirical literatureis theechelon
form. Specification of VARMA models in echelon form does not amount to specifying the orderp
andq as with ARMA models. Under this representation, VARMA models are specifiedby as many
parameters, called Kronecker indices, as the number of time series studied. These indices determine
the order of the elements of the AR and MA operators in a non trivial way. The complicated nature of
the echelon form representation is a major reason why practitioners are not using VARMA models,
so the introduction of a simpler identified representation is interesting.

Second, we consider the problem of estimating VARMA models by relatively simple methods
which only require linear regressions. For that purpose, we considera multivariate generalization
of the regression-based estimation method proposed by Hannan and Rissanen (1982) for univariate
ARMA models. The method is performed in three steps. In a first step, a long autoregression is
fitted to the data. In the second step, the lagged innovations in the ARMA model are replaced
by the corresponding residuals from the long autoregression and a regression is performed. In a
third step, the data from the second step are filtered so as to give estimates that have the same
asymptotic covariance matrix than one would get with the maximum likelihood [claimed inHannan
and Rissanen (1982), proven in Zhao-Guo (1985)]. Extension of thisinnovation-substitution method
to VARMA models was also proposed by Hannan and Kavalieris (1984a) and Koreisha and Pukkila
(1989), under the assumption that the innovations are a m.d.s.

Here, we extend these results by showing that the linear regression-based estimators are consis-
tent under weak hypotheses on the innovations and how filtering in the third step gives estimators
that have the same asymptotic distribution as their nonlinear counterparts (maximum likelihood if
the innovations are i.i.d., or nonlinear least squares if they are merely uncorrelated). In the non i.i.d.
case, we consider strong mixing conditions [Doukhan (1995), Bosq (1998)], rather than the usual
m.d.s. assumption. By using weaker assumptions for the process of the innovations, we broaden the
class of processes to which our method can be applied.

Third, we suggest a modified information criterion to choose the orders of VARMA models
under these representations. This criterion is to be minimized in the second stepof the estima-
tion method over the orders of the AR and MA operators and gives consistent estimates of these
orders. Our criterion is a generalization of the information criterion proposed by Hannan and Rissa-
nen (1982), which was later corrected by Hannan and Rissanen (1983) and Hannan and Kavalieris
(1984b), for choosing the ordersp and q in ARMA models. The idea of generalizing this in-
formation criterion is mentioned in Koreisha and Pukkila (1989) but a specificgeneralization and
theoretical properties are not presented.

Fourth, the method is applied to U.S. macroeconomic data previously studied by Bernanke and
Mihov (1998) and McMillin (2001). To illustrate the impact of using VARMA models instead of

2



VAR models to study multivariate time series we compare the impulse-response functions generated
by each model. We show that we can obtain much more precise estimates of the impulse-response
function by using VARMA models instead of VAR models.

The rest of the paper is organized as follows. Our framework and notation are described in
section 2. The new identified representations are presented in section 3. In section 4, we present
the estimation method. In section 5, we describe the information criterion used for choosing the
orders of VARMA models under the representation proposed in our work. Section 6 contains results
of Monte Carlo simulations which illustrate the properties of our method. Section 7 presents the
macroeconomic application where we compare the impulse-response functions from a VAR model
and VARMA models. Section 8 contains a few concluding remarks. Finally, proofs are in the
appendix.

2. Framework

Consider the followingK-variate zero mean VARMA(p,q) model in standard representation for a
real-valued seriesYt :

Yt =
p

∑
i=1

ΦiYt−i +Ut −
q

∑
j=1

Θ jUt− j (2.1)

whereUt is a sequence of uncorrelated random variables defined on some probability space (Ω ,
A , P). The vectorsYt andUt contain theK univariate time series:Yt = [y1t , . . . , yKt ]

′ andUt =
[u1t , . . . , uKt ]

′. We can also write the previous equation with lag operators:

Φ(L)Yt = Θ(L)Ut (2.2)

where
Φ(L) = IK −Φ1L−·· ·−ΦpLp , Θ(L) = IK −Θ1L−·· ·−ΘqLq. (2.3)

Let Ht be the Hilbert space generated by(Ys, s< t). The processUt can be interpreted as the
linear innovation ofYt :

Ut = Yt −EL[Yt |Ht ]. (2.4)

We assume thatYt is a strictly stationary and ergodic sequence and that the processUt has common
variance (Var[Ut ] = ΣU ) and finite fourth moment (E[|uit |4+2ε ] < ∞, for all i andt, whereε > 0).
The case of I(1) and cointegrated variables is left for future work. Wemake the zero mean-mean
hypothesis only to simplify notation.

Assuming that the processYt is stable,

det[Φ(z)] 6= 0 for all |z| ≤ 1, (2.5)

and invertible,
det[Θ(z)] 6= 0 for all |z| ≤ 1, (2.6)
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it can be represented as an infinite VAR,

Π(L)Yt = Ut , (2.7)

where

Π(L) = Θ(L)−1Φ(L) = IK −
∞

∑
i=1

ΠiL
i , (2.8)

or an infinite VMA
Yt = Ψ(L)Ut , (2.9)

where

Ψ(L) = Φ(L)−1Θ(L) = IK −
∞

∑
j=1

ΨjL
j . (2.10)

We will denote byϕ ik(L) the polynomial in rowi and columnk of Φ(L), and the rowi or columnk
of Φ(L) by

Φi•(L) = [ϕ i1(L), . . . , ϕ iK (L)], (2.11)

Φ•k(L) = [ϕ1k(L), . . . , ϕKk(L)]′. (2.12)

The diag operator creates a diagonal matrix,

diag[ϕ ii (L)] = diag[ϕ11(L), . . . , ϕKK(L)] =






ϕ11(L) · · · 0
...

...
...

0 · · · ϕKK(L)




 (2.13)

where
ϕ ii (L) = 1−ϕ ii ,1L−·· ·−ϕ ii ,pLp. (2.14)

The function deg[ϕ(L)] returns the degree of the polynomialϕ(L) and the function dim(γ) gives the
length of the vectorγ.

We need to impose some structure on the processUt . The typical hypothesis which is imposed in
the time series literature is that theUt ’s are either independent and identically distributed (i.i.d.) or
a martingale difference sequence (m.d.s.). In this work, we do not impose such strong assumptions
because we want to broaden the class of models to which it can be applied. We only assume that it
satisfies a strong mixing condition [Doukhan (1995), Bosq (1998)]. LetUt be a strictly stationary
process, and

α(h) = sup
B∈σ(Us,s≤t)

C∈σ(Us,s≥t+h)

|Pr(B∩C)−Pr(B)Pr(C)| (2.15)

the α-mixing coefficient of orderh ≥ 1, whereσ(Us,s≤ t) and σ(Us,s≥ t +h) the σ -algebras
associated with{Us : s≤ t}andσ(Us : s≥ t +h) respectively. We suppose thatUt is strong mixing,
i.e.

∞

∑
h=1

α(h)ε/(2+ε) < ∞ for some ε > 0. (2.16)

4



This is a fairly minimal condition that will be satisfied by many processes of interest.

3. Identification and diagonal VARMA representations

It is important to note that we cannot work with the standard representation (2.1) because it is not
identified. To help us gain intuition on the identification of VARMA models we can consider a more
general representation whereΦ0 andΘ0 are not identity matrices:

Φ0Yt = Φ1Yt−1 + · · ·+ΦpYt−p +Θ0Ut −Θ1Ut−1 + · · ·+ΘqUt−q. (3.1)

By this specification, we mean the well-defined process

Yt = (Φ0−Φ1L−·· ·−ΦpLp)−1(Θ0 +Θ1L+ · · ·+ΘqLq)Ut . (3.2)

But we can see this such process has a standard representation ifΦ0 andΘ0 are nonsingular. To
see this, we premultiply (3.1) byΦ−1

0 and defineŪt =Φ−1
0 Θ0Ut :

Yt = Φ−1
0 Φ1Yt−1 + · · ·+Φ−1

0 ΦpYt−p

+Ūt −Φ−1
0 Θ1Θ−1

0 Φ0Ūt−1−·· ·−Φ−1
0 ΘqΘ−1

0 Φ0Ūt−q. (3.3)

Redefining the matrices, we get a representation of type (2.1). As long asΦ0 andΘ0 are nonsingular,
we can transform a non-standard VARMA into a standard one.

We say that two VARMA representations are equivalent ifΦ(L)−1Θ(L) results in the same op-
eratorΨ(L). Thus, to ensure uniqueness of a VARMA representation, we must imposerestrictions
on the AR and MA operators such that for a givenΨ(L) there is one and only one set of operators
Φ(L) andΘ(L) that can generate this infinite MA representation.

A first restriction that we impose is a multivariate equivalent of the coprime property in the
univariate case. We do not want factors ofΦ(L) andΘ(L) to “cancel out” whenΦ(L)−1Θ(L)
is computed. This feature is called theleft-coprimeproperty [see Hannan (1969), Hannan and
Deistler (1988) and L̈utkepohl (1993)]. There exist more than one representation which guarantee
the uniqueness of the left-coprime operators. The predominant representation in the economics
literature is theechelon form[see Deistler and Hannan (1981), Hannan and Kavalieris (1984b),
Lütkepohl (1993), L̈utkepohl and Poskitt (1996a)]. It requires the selection of Kronecker indices,
which conceptually is not as easy as selecting the ordersp andq of an ARMA model.1 This might
be a reason why practitioners are reluctant to employ VARMA models.

In this work, to ease the use of VARMA models we present new VARMA representations which
can be seen as a simple extensions of the VAR model. To introduce them, we first review another
identified representation, thefinal equation form, which will refer to as thefinal AR equation form,

1Specification of VARMA models in echelon form is discussed for example inHannan and Kavalieris (1984b),
Lütkepohl and Claessen (1997), Poskitt (1992), Nsiri and Roy (1992, 1996), L̈utkepohl and Poskitt (1996b), Bartel and
Lütkepohl (1998). A more general and in-depth discussion of identification of VARMA models can be found in Hannan
and Deistler (1988, Chapter 2).

5



under which the AR operator is scalar [see Zellner and Palm (1974), Hannan (1976), Wallis (1977),
Lütkepohl (1993)].

Definition 3.1 (Final AR equation form) The VARMA representation (2.1) is said to be in final
AR equation form ifΦ(L) = ϕ(L)IK , whereϕ(L) = 1−ϕ1L− ·· ·−ϕ pLp is a scalar polynomial
with ϕ p 6= 0.

To see how we can obtain a VARMA model with a final AR equation form representation, we
can proceed as follows. By standard linear algebra, we have

Φ⋆(L)Φ(L) = Φ(L)Φ⋆(L) = det[Φ(L)] IK (3.4)

whereΦ⋆(L) is the adjoint matrix ofΦ(L). On multiplying both sides of (2.2) byΦ⋆(L), we get:

det[Φ(L)]Yt = Φ(L)⋆Θ(L)Ut . (3.5)

This representation may not be attractive for several reasons. First, itis quite far from usual
VAR models by excluding lagged values of other variables in each equation (e.g., the AR part of
the first equation includes lagged values ofy1t but no lagged values ofy2t , . . . , yKt). Further, the
AR coefficients are the same in all the equations, which will require a polynomial of higher order
pK. Second, the interaction between the different variables is modeled through the MA part of the
model, which may have to be quite complex.

However, more convenient alternative representations can be derived through analogous manip-
ulations. Upon multiplying both sides of (2.2) byΘ ⋆(L), we get:

Θ(L)⋆Φ(L)Yt = det[Θ(L)]Ut (3.6)

whereΘ(L)⋆ is the adjoint matrix ofΘ(L). We refer to VARMA models in (3.6) as being infinal
MA equation form.

Definition 3.2 (Final MA equation form) The VARMA representation(2.1) is said to be in final
MA equation form ifΘ(L) = θ(L)IK , whereθ(L) = 1−θ 1L−·· ·−θ qLq is a scalar operator with
θ q 6= 0.

The same criticism regarding the parsimony of the final equation form would apply but it is pos-
sible to get a more parsimonious representation by looking at common structures across equations.
Suppose there are common roots across rows for some columns ofΘ(L), so that starting from (2.1)
we can write:

Φ(L)Yt = Θ̄(L)D(L)Ut , (3.7)

Θ̄ ∗(L)Φ(L)Yt = det
[
Θ̄(L)

]
D(L)Ut , (3.8)

whereD(L) = diag[d1(L), . . . , dK(L)] andd j(L) is a polynomial common toθ i j (L), ∀i = 1, . . . , K.
We see that allowing non-equal diagonal polynomials in the moving average as in equation (3.8)
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may yield a more parsimonious representation than in (3.6). We will call the representation (3.8)
diagonal MA equation formrepresentation.

Definition 3.3 (Diagonal MA equation form) The VARMA representation(2.1) is said to be in
diagonal MA equation form ifΘ(L) = diag[θ ii (L)] = IK −Θ1L− ·· · −ΘqLq whereθ ii (L) = 1−
θ ii ,1L−·· ·−θ ii ,qi L

qi , θ ii ,qi 6= 0, and q= max1≤i≤K(qi).

This representation is interesting because contrary to the echelon form it iseasy to specify.
We don’t have to deal with rules for the orders of the off-diagonal elements in the AR and MA
operators. The fact that it can be seen as a simple extension of the VAR model is also appealing.
Practitioners are comfortable using VAR models, so simply adding lags ofuit to equationi is a
natural extension of the VAR model which could give a more parsimonious representation. It also
has the advantage of putting the simple structure on the MA polynomials, the partwhich complicates
the estimation, rather than the AR part as in the final AR equation form. Notice that in VARMA
models, it is not necessary to include lags of all the innovationsu1t , · · · ,uKt in every equation. This
could entice practitioners to consider VARMA models if it is combined with a simple regression-
based estimation method. For this representation to be useful, it needs to be identified. This is
demonstrated in Theorem3.8below under the following assumptions and using Lemma3.7below.

Assumption 3.4 The matricesΦ(z) andΘ(z) have the following form:

Φ(z) = IK −Φ1z−·· ·−Φpzp , Θ(z) = IK −Θ1z−·· ·−Θqzq.

Assumption 3.5 Θ(z) is diagonal:

Θ(z) = diag[θ ii (z)]

whereθ ii (z) = 1−θ ii ,1z−·· ·−θ ii ,qi z
qi andθ ii ,qi 6= 0.

Assumption 3.6 For each i= 1, . . . , K, there are no roots common toΦi•(z) andθ ii (z), i.e. there
is no value z⋆ such thatΦi•(z⋆) = 0 andθ ii (z⋆) = 0.

Lemma 3.7 Let [Φ(z),Θ(z)] and
[
Φ̄(z),Θ̄(z)

]
be two pairs of polynomial matrices which satisfy

the Assumptions3.4 to 3.6. If R0 is a positive constant such that

Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z)

for 0≤ |z| < R0, then
Φ(z) = Φ̄(z) andΘ(z) = Θ̄(z),∀z.

The proof of this lemma as well as other propositions appear in the Appendix.In Lemma3.7,
the condition

Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z) (3.9)

could be replaced by
Θ(z)−1Φ(z) = Θ̄(z)−1Φ̄(z) (3.10)
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since by assumption the inverse ofΘ(z) andΘ̄(z) exist. The assumptions3.4 to 3.6and conditions
in Lemma3.7 allow det[Φ(z)] and det[Θ(z)] to have roots on or inside the unit circle|z| = 1. It
should be noted that Assumption3.6 is weaker than the hypothesis that det[Φ(L)] and det[Θ(L)]
have no common roots, which would be a generalization of the usual identification condition for
ARMA models.

Theorem 3.8 (Identification of diagonal MA equation form representation) Let the VARMA
model be defined by equations(2.1) - (2.6) and let Assumptions3.4-3.6hold. If the VARMA model
is in diagonal MA equation form, then it is identified.

Similarly, we can demonstrate that the final MA equation form representation isidentified under
the following assumption.

Assumption 3.9 There are no roots common toΦ(z) andθ(z), i.e. there is no value z⋆ such that
Φ(z⋆) = 0 andθ(z⋆) = 0.

Theorem 3.10 (Identification of final MA equation form representation) Let the VARMA
model be defined by equations (2.1)-(2.6) and let Assumptions3.4 and 3.9 hold. If the VARMA
model is in final MA equation form, then it is identified.

From equation (3.6), we see that it is always possible to obtain a diagonal MA equation form
representation starting from any VARMA representation. One case where we would obtain a diag-
onal and not final MA representation is when there are common factors across rows of columns of
Θ(L) as in (3.8).

A strong appeal of the diagonal and final MA equation form representations is that it is easy
to get the equivalent (in term of autocovariances) invertible MA representation of a non-invertible
representation. With ARMA models, we simply have to invert the roots of the MA polynomial
which are inside the unit circle and adjust the standard deviation of the innovations (divide it by the
square of these roots): see Hamilton (1994, Section 3.7). The same procedure could be applied to
VARMA models in diagonal or final MA equation form.

For VARMA representations where no particular simple structure is imposed on the MA part, at
the moment we are not aware of an algorithm to go from the non-invertible to theinvertible represen-
tation tough theoretically this invertible representation exist and is unique as long as det[Θ(z)] 6= 0
for |z| = 1; see Hannan and Deistler (1988, chapter 1, section 3). So it might be troublesome to use
a nonlinear optimization with these VARMA representations since we don’t know how to go from
the non-invertible to the invertible representation.

We can also consider the following natural generalization of the final AR equation form, where
we simply replace the scalar AR operator by a diagonal operator.

Definition 3.11 (Diagonal AR equation form) The VARMA representation (2.1) is said to be in
diagonal AR equation form ifΦ(L) = diag[ϕ ii (L)] = IK −Φ1L− ·· · −ΦpLp whereϕ ii (L) = 1−
ϕ ii ,1L−·· ·−ϕ ii ,pi

Lpi and p= max1≤i≤K(pi).
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Assumption 3.12 For each i= 1, . . . , K, there are no roots common toϕ ii (z) andΘi•(z), i.e. there
is no value z⋆ such thatϕ ii (z

⋆) = 0 andΘi•(z⋆) = 0.

Theorem 3.13 (Identification of diagonal AR equation form representation) Let the VARMA
model be defined by equations (2.1)-(2.6) and let Assumptions3.4 and 3.12hold. If the VARMA
model is in diagonal AR equation form, then it is identified.

From Theorem3.8, we can see that one way to ensure identification is to impose constraints
on the MA operator. This is an alternative approach to the ones developedfor example in Hannan
(1971, 1976) where the identification is obtained by restricting the autoregressive part to be lower
triangular withdeg[ϕ ik(L)] ≤deg[ϕ ii (L)] for k > i, or in the final AR equation form whereΦ(L)
is scalar. It may be more interesting to impose constraints on the moving averagepart instead
because it is this part which causes problems in the estimation of VARMA models.Other identified
representations which do not have a simple MA operator include the reversed echelon canonical
form [see Poskitt (1992)] where we the rows of the VARMA model in echelon form are permuted
so that the Kronecker indices are ordered from smallest to largest, and the scalar component model
[see Tiao and Tsay (1989)] where contemporaneous linear transformations of the vector process
are considered. A general treatment of algebraic and topological structure underlying VARMA
models is given in Hannan and Kavalieris (1984b). For the maximum likelihood estimation of
linear state space models, data driven local coordinates are often used.Seee.g. Ribarits, Deistler,
and McKelvey (2004) and McKelvey, Helmersson, and Ribarits (2004).Theorem 2.7.1 in Hannan
and Deistler (1988) provides general conditions for a class of ARMAX models to be identifiable.
These conditions are satisfied by the proposed representations.

4. Estimation

We next introduce elements of notation for the parameters of our model. First,irrespective of the
VARMA representation employed, we split the whole vector of parametersγ in two partsγ1 (the
parameters for the AR part) andγ2 (MA part):

γ =

[
γ1
γ2

]

. (4.1)

For a VARMA model in diagonal MA equation form,γ1 andγ2 are

γ1 =
[
ϕ1•,1, . . . , ϕ1•,p, . . . , ϕK•,1, . . . , ϕK•,p

]′
, (4.2)

γ2 = [θ 11,1, . . . , θ 11,q1, . . . , θ KK,1, . . . , θ KK,qK ]′ , (4.3)

while for a VARMA model in final MA equation form,γ2 is

γ2 = [θ 1, . . . , θ q]
′ .
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For VARMA models in diagonal AR equation form, we simply invertγ1 andγ2:

γ1 =
[
ϕ11,1, . . . , ϕ11,p1

, . . . , ϕKK,1, . . . , ϕKK,pK

]′
, (4.4)

γ2 = [θ 1•,1, . . . , θ 1•,q, . . . , θ K•,1, . . . , θ K•,q]
′ , (4.5)

while for a VARMA model in final AR equation form,

γ1 =
[
ϕ1, . . . , ϕ p

]′
. (4.6)

The estimation method involves three steps. The observations go fromt = 1, . . . ,T.
Step 1. Estimate a VAR(nT) to approximate the VARMA(p,q) and keep the residuals that we will
call Ût :

Ût = Yt −
nT

∑
j=1

Π̂ (nT)
j Yt− j for t = nT +1, . . . ,T, (4.7)

with T > (K +1)nT .
Step 2. With the residuals from step 1, compute an estimate of the covariance matrix ofUt , Σ̂U =
1
T ∑T

t=nT+1ÛtÛ ′
t and estimate by GLS the multivariate regression

Φ(L)Yt = [Θ(L)− IK ]Ût +et , (4.8)

to get estimates̃Φ(L) andΘ̃(L) of Φ(L) andΘ(L). The estimator is

γ̃ =

[
T

∑
t=l

Ẑ′
t−1Σ̂−1

U Ẑt−1

]−1[ T

∑
t=l

Ẑ′
t−1Σ̂−1

U Yt

]

(4.9)

wherel = nT +max(p,q)+1. Setting

Y(p)
t−1 = [y1,t−1, . . . , yK,t−1, . . . , y1,t−p, . . . , yK,t−p] , (4.10)

Û(q)
t−1 = [û1,t−1, . . . , ûK,t−1, . . . , û1,t−q, . . . , ûK,t−q] , (4.11)

y(k)
t−1 =

[
yk,t−1, . . . , yk,t−pk

]
, (4.12)

û(k)
t−1 =

[
ûk,t−1, . . . , ûk,t−qk

]
, (4.13)

the matrixẐt−1 for the various representations is:

ẐDMA
t−1 =






Y(p)
t−1 · · · 0 −û(1)

t−1 · · · 0
...

...
...

...
. . .

...

0 · · · Y(p)
t−1 0 · · · −û(K)

t−1




 , (4.14)

ẐFMA
t−1 =






Y(p)
t−1 · · · 0 −û(1)

t−1
...

.. .
...

...

0 · · · Y(p)
t−1 −û(K)

t−1




 , (4.15)
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ẐDAR
t−1 =






y(1)
t−1 · · · 0 −Û(q)

t−1 · · · 0
...

...
...

...
. . .

...

0 · · · y(K)
t−1 0 0 −Û(q)

t−1




 , (4.16)

ẐFAR
t−1 =






y(1)
t−1 −Û(q)

t−1 · · · 0
...

...
...

...

y(K)
t−1 0 0 −Û(q)

t−1




 , (4.17)

whereDMA, FMA, DARandFAR respectively stands for Diagonal MA, Final MA, Diagonal AR
and Final AR equation form.
Step 3.Using the second step estimates, we first form new residuals

Ũt = Yt −
p

∑
i=1

Φ̃iYt−i +
q

∑
j=1

Θ̃ jŨt− j (4.18)

initiating with Ũt = 0, t ≤ max(p,q), and we define

Xt =
q

∑
j=1

Θ̃ jXt− j +Yt , (4.19)

Wt =
q

∑
j=1

Θ̃ jWt− j +Ũt , (4.20)

initiating with Xt = Wt = 0 for t ≤ max(p,q). We also compute a new estimate ofΣU , Σ̃U =
1
T ∑T

t=l ′ ŨtŨ ′
t , with l ′ = max(p,q)+1. Then we regress by GLS̃Ut +Xt −Wt onṼt−1 with

Ṽt =
q

∑
j=1

Θ̃ jṼt− j + Z̃t (4.21)

where Z̃t is just like Ẑt from step 2 except that it is computed with̃Ut instead ofÛt to obtain
regression coefficients that we callΦ̂i andΘ̂ j :

γ̂ =

[
T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U Ṽt−1

]−1[ T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U [Ũt +Xt −Wt ]

]

. (4.22)

The properties of the above estimators are summarized in the following three theorems. Theo-
rem4.1 is a generalization of results from Lewis and Reinsel (1985) where convergence is demon-
strated for mixing rather than i.i.d. innovations. We denote the Euclidean norm by ‖B‖2 = tr(B′B).

Theorem 4.1 (VARMA first step estimates)Let (i) the VARMA model be defined by equations
(2.1)-(2.6); (ii) for someε > 0 the strong mixing condition (2.16) holds and E[|uit |4+2ε ] < ∞, ∀i. If
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nT/ log(T) → ∞ and nT
2/T → 0 as T→ ∞, then for the first stage estimates

nT

∑
j=1

‖Π̂ (nT)
j −Π j‖ = Op(nTT−1/2). (4.23)

Theorem 4.2 (VARMA second step estimates)Under the assumptions of Theorem4.1and the as-
sumption that the VARMA model is identified, then the second stage estimator converge in proba-
bility to the true value and √

T (γ̃ − γ)
d−→ N

(
0, J̃−1Ĩ J̃−1)

where

Ĩ =
∞

∑
j=−∞

E
[{

Z′
t−1Σ−1

U Ut
}{

Z′
t−1− jΣ−1

U Ut− j
}′]

, J̃ = E
[
Z′

t−1Σ−1
U Zt−1

]
, (4.24)

and Zt−1 is equal to the matrix̂Zt−1 whereÛt is replaced by Ut . Further, if m4
T/T → 0 with mT → ∞

then the matrix̃I and J̃ can be consistently estimated in probability respectively by

ĨT =
1
T

mT

∑
j=−mT

ω( j,mT)
T

∑
t=l+| j|

{
Ẑ′

t−1Σ̂−1
U Ũt

}{
Ẑ′

t−1− j Σ̂−1
U Ũt− j

}′
, (4.25)

J̃T =
1
T

T

∑
t=l

Ẑ′
t−1Σ̂−1

U Ẑt−1, (4.26)

with ω( j,mT) = 1−| j|/(mT +1).

Theorem 4.3 (VARMA third step estimates) Under the assumptions of Theorem4.2, the third
stage estimator converge in probability to the true value, and

√
T (γ̂ − γ)

d−→ N
(
0, Ĵ−1Î Ĵ−1) (4.27)

with

Î =
∞

∑
j=−∞

E
[{

V ′
t−1Σ−1

U Ut
}{

V ′
t−1− jΣ−1

U Ut− j
}′]

, Ĵ = E
[
V ′

t−1Σ−1
U Vt−1

]
(4.28)

and Vt−1 is equal to the matrix̃Vt−1 whereŨt is replaced by Ut . Further, if m4
T/T → 0 with mT → ∞

then the matrix̂I and Ĵ can be consistently estimated in probability respectively by

ÎT =
1
T

mT

∑
j=−mT

ω( j,mT)
T

∑
t=l ′+| j|

{
Ṽ ′

t−1Σ̃−1
U Ūt

}{
Ṽ ′

t−1− j Σ̃−1
U Ūt− j

}′
, (4.29)

ĴT =
1
T

T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U Ṽt−1 , (4.30)

whereŪt are the filtered residuals computed withγ̂.

Notice the simplicity of this estimation method. Only three regressions are needed so we can
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avoid all the caveats associated with nonlinear optimizations. This is an importantproblem with
VARMA models where one typically deals with a high number of parameters and numerical con-
vergence may be hard to obtain. This is especially important when we consider the fact that the
asymptotic distribution of our estimators, on which we would base our inference, may be a bad
approximation to the finite-sample distribution in high-dimensional dynamic models. Because of
this, an estimation procedure which only requires linear methods is interesting since it suggests that
simulation-based procedures – bootstrap techniques for example – shouldbe used, something that
would be impractical if the estimation is based on non-linear optimizations.

It is also important to mention that this procedure is not specific to the representations consid-
ered in this work. The expressions can be easily adapted to other identifiedrepresentation,e.g. the
echelon form. Since our estimation method is only based on regressions we can afford to use a
less parsimonious representation whereas for nonlinear method it is highly important to keep the
number of parameters to a minimum. An advantage of the proposed diagonal MAand final MA
representations is that if the second step estimates do not correspond to aninvertible MA represen-
tation (roots inside the unit circle), it is easy to get the corresponding invertible representation2 to
be able to perform Step 3.

For the estimation of VARMA models the emphasis has been on maximizing the likelihood
(minimizing by nonlinear least squares) quickly. There are two ways of doing this. The first is hav-
ing quick and efficient algorithm to evaluate the likelihood [e.g. Lucẽno (1994) and the reference
therein, Mauricio (2002), Shea (1989)]. The second is to find preliminary consistent estimates that
can be computed quickly to initialize the optimization algorithm. We are not the first to present
a generalization to VARMA models of the Hannan and Rissanen (1982) estimation procedure for
ARMA models [whose asymptotic properties are further studied in Zhao-Guo(1985) and Saikkonen
(1986)]; see also Durbin (1960), Hannan and Kavalieris (1984a), Hannan, Kavalieris, and Mack-
isack (1986), Poskitt (1987), Koreisha and Pukkila (1990a, 1990b,1995), Pukkila, Koreisha, and
Kallinen (1990), Galbraith and Zinde-Walsh (1994, 1997). A similar method inthree steps is also
presented in Hannan and Kavalieris (1984a) where the third step is presented as a correction to the
second step estimates.

There are many variations around the innovation-substitution approach for the estimation of
VARMA models but with the exception of Hannan and Kavalieris (1984b)3 and us, none use a
third step to get efficient estimators, surely because these procedures are often seen as a way to get
initial values to start up a nonlinear optimization [e.g., see Poskitt (1992), Koreisha and Pukkila
(1989), L̈utkepohl and Claessen (1997)]. In one of them, Koreisha and Pukkila (1989), lagged and
current innovations are replaced by the corresponding residuals anda regression is performed. This
is asymptotically the same as the first two steps of our method. Other variations are described in
Hannan and Kavalieris (1986), Hannan and Deistler (1988), Huang and Guo (1990), Spliid (1983),
Reinsel, Basu, and Yap (1992), Poskitt and Lütkepohl (1995), L̈utkepohl and Poskitt (1996b) and
Flores de Frutos and Serrano (2002). Another approach is to use the link that exist between the
VARMA parameters and the infinite VAR and VMA representations. See Galbraith, Ullah, and

2See the comments after Theorem3.10.
3They use a similar third step that is presented as a correction to the second step estimator but suggest that the third

step should be iterated. They assume that the{Ut} is a m.d.s.
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Zinde-Walsh (2000) for the estimation of VMA models using a VAR. VARMA models can also be
estimated with subspace methods, which is based on multiple regressions and a weighted singular
value decomposition [see Bauer and Wagner (2002, 2008), Bauer (2005a, 2005b)].

Here, however, we supply a distributional theory which holds under muchweaker assumptions.
In the articles cited above, the data generating processes considered have innovations that are either
i.i.d. or at a minimum form a martingale difference sequence. This allow us to study a broader class
of models,e.g. temporally aggregated processes, marginalized processes, weak representation of
nonlinear models.

We can ask ourselves what is the cost of not doing the nonlinear estimation.For a given sample
size we will certainly lose some efficiency because of the first step estimation.We can nonetheless
compare the asymptotic variance matrix of our estimator with the corresponding nonlinear estima-
tor. We first can see that if the innovations are a m.d.s., then the asymptotic variance of our linear
estimator is the same as the variance of maximum likelihood estimates under Gaussianity. The
variance of MLE for i.i.d. Gaussian innovations is given in Lütkepohl (1993):

I = plim

[

1
T

T

∑
t=1

∂U ′
t

∂γ
Σ−1 ∂Ut

∂γ ′

]−1

. (4.31)

We can transform this expression so as to obtain an equation more closely related to our previous
results. First, we splitγ in the same two vectorsγ1 (the AR parameters) andγ2 (the MA parameters),
then we compute∂Ut/∂γ ′1 and∂Ut/∂γ ′2. We know that

Ut = Yt −Φ1Yt−1−·· ·−ΦpYt−p +Θ1Ut−1 + · · ·+ΘqUt−q. (4.32)

So taking the derivative with respect toγ ′1:

∂Ut

∂γ ′1
= −Z•1:dim(γ1),t−1 +Θ1

∂Ut−1

∂γ ′1
+ · · ·+Θq

∂Ut−q

∂γ ′1
, (4.33)

Θ(L)
∂Ut

∂γ ′1
= −Z•1:dim(γ1),t−1 , (4.34)

∂Ut

∂γ ′1
= −Θ(L)−1Z•1:dim(γ1),t−1 , (4.35)

whereZ•1:dim(γ1),t−1 is the first dim(γ1) columns ofZt−1. Similarly, the derivative with respect toγ ′2
is

∂Ut

∂γ ′2
= −Z•dim(γ1)+1:dim(γ),t−1 +Θ1

∂Ut−1

∂γ ′2
+ · · ·+Θq

∂Ut−q

∂γ ′2
= −Θ(L)−1Z•dim(γ1)+1:dim(γ),t−1 (4.36)
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Combining the two expressions we see that

∂Ut

∂γ ′
= −Vt−1 (4.37)

so the variance matrix for maximum likelihood estimatesI is equal to the matrixJ−1 from the third
step estimation. Moreover ifUt is a m.d.s. we see that we have the equalityJ = I so that the asymp-
totic variance matrix that we get in the third step of our method is the same as one would get by doing
the maximum likelihood. For the weak VARMA case, from the results in Boubacar Mäınassara and
Francq (2011) we know that the asymptotic covariance matrix of the QMLE estimator ofγ is equal
to J−1IJ−1 with

I = 4
∞

∑
k=−∞

Cov

[

Ut Σ−1 ∂Ut

∂γ ′
; Ut−k Σ−1 ∂Ut−k

∂γ ′

]

, J = 2E

[
∂U ′

t

∂γ
Σ−1 ∂Ut

∂γ ′

]

(4.38)

In our previous results we saw that∂Ut/∂γ ′ =Vt−1. From this we see thatJ = 2Ĵ, I = 4Î and our
third-step estimator have the same asymptotic variance-covariance matrix as maximum likelihood
or non-linear least squares estimators depending on the properties of theinnovations. To get a feel
for the loss of efficiency in finite samples due to replacing the true innovationsby residuals from a
long VAR we performed Monte Carlo simulations and report the results in section 6. As pointed out
by a referee, from the result in (4.38), we can interpret the third step asa Netwon-Raphson step in
the minimization of the sum of squared residuals∑T

t=1U ′
t Ut . It can also be seen as a GLS correction

induced by the MA structure in the error we make when we replace the true error termUt by the
first step residual̂Ut [see Reinsel, Basu, and Yap (1992)].

5. Order selection

We still have unknowns in our model, the orders of the AR and MA operators. If no theory specifies
these parameters, we have to use a statistical procedure to choose them. Wepropose the following
information criterion method to choose the orders for VARMA models in the different identified
representations proposed in Section 3. In the second step of the estimation,we compute for all
p≤ P andq≤ Q the following information criterion:

log(detΣ̃U)+dim(γ)
(logT)1+δ

T
. (5.1)

We then choose ˆp andq̂ as the set which minimizes the information criterion. We assume that the
upper boundP andQ on the order of the AR and MA part are bigger than the true values ofp and
q (or that they slowly grow with the sample size). The properties of ˆp andq̂ are summarized in the
following theorem.

Theorem 5.1 (Estimation of the orderp and q in VARMA models) Under the assumptions of
Theorem4.1, if nT = O((logT)1+δ 1) from someδ 1 > 0 with δ 1 < δ and the orders are chosen
by minimizing(5.1), thenp̂ andq̂ converge in probability to their true value.
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In practice, this procedure can lead to a search over too many models for the diagonal represen-
tations. A valid alternative is to search for the true orders by proceeding equation by equation. In the
second step of the estimation, instead of doing a simultaneous estimation, just perform univariate
regressions. For a VARMA model in diagonal MA equation form, regress

yit =
pi

∑
j=1

K

∑
k=1

ϕ ik, jyk,t− j −
qi

∑
j=1

θ ii , j ûi,t− j +eit , (5.2)

for i = 1, . . . , K, while for a VARMA models in diagonal AR equation form we regress

yit =
pi

∑
j=1

ϕ ii , jyi,t− j −
qi

∑
j=1

K

∑
k=1

θ ik, j ûk,t− j +eit . (5.3)

We then chose ˆpi andq̂i as the orders which minimize the following information criterion:

log(σ2
i )+g(pi ,qi)

(logT)1+δ

T
(5.4)

whereδ > 0 andg(pi ,qi) = pi K + qi or g(pi ,qi) = pi + qi K for the diagonal MA or AR equa-
tion form representation respectively. The global order for the autoregressive operator is then
p̂ = max(p̂1, . . . , p̂K) for the diagonal MA representation and, similarly for the diagonal AR rep-
resentation, ˆq = max(q̂1, . . . , q̂K). We see that this equation by equation selection procedure is not
only easier to apply, it can lead to more parsimonious representations by identifying rows of zeros
coefficients inΦ j or Θ j .

Theorem 5.2 (Estimation of the orderp and q in diagonal VARMA models) Under the as-
sumption of Theorem5.1, if the VARMA model is in either the diagonal MA or AR equation form
and the orders are chosen by minimizing (5.4), thenp̂i andq̂i , i = 1, . . . , K, converge in probability
to their true value.

The criterion in equation (5.1) is a generalization of the information criterion proposed by Han-
nan and Rissanen (1982) which the authors acknowledged that it must in fact be modified to provide
consistent estimates of the order,p andq. The original criterion was

logσ̃2 +(p+q)
(logT)δ

T
(5.5)

with δ > 0. But in Hannan and Rissanen (1983) they acknowledged thatσ̃2 − 1
T ∑T

t=1u2
t is

Op(nTT−1) and notOp(T−1) so the penalty(logT)δ /T is not strong enough. The authors pro-
posed two possible modifications to their procedure. The simpler is to take(logT)1+δ instead of
(logT)δ in the information criterion so that the penalty onp+ q will dominate logσ̂2 in the cri-
terion. The second, which they favored and was used in later work [seeHannan and Kavalieris
(1984b)], is to modify the first step of the procedure. Instead of takingnT = O(logT) they used
another information criterion to choose the order of the long autoregression and they iterated the
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whole procedure picking a potentially differentp andq at every iteration. A similar approach is
also proposed in Poskitt (1987). In this work we prefer the first solutionso as to keep the procedure
as simple as possible.

For the identification of the order of VARMA models, it all depends on the representation used.
Although it was one of the first representation studied, not much work hasbeen done with the
final AR equation form. People felt that this representation gives VARMA models with too many
parameters. A complete procedure to fit VARMA models under this representation is given in
Lütkepohl (1993): One would first fit an ARMA(pi , qi) model to every univariate time series, using
maybe the procedure of Hannan and Rissanen (1982). To build the VARMA representation in final
AR equation form, knowing that the VAR operator is the same for every equation we would take it
to be the product of all the univariate AR polynomials. This would give a VARoperator of order
p = ∑K

i=1 pi . Accordingly, for the VMA part we would takeq = maxk[qk + ∑K
i=1,i 6=k pi ]. It is no

wonder that people feel that the final equation form uses to many parameters.
For VARMA models in echelon form, there has been a lot more work done on the identification

of Kronecker indices. The problem has been studied by, among others,Hannan and Kavalieris
(1984b), Poskitt (1992) and Lütkepohl and Poskitt (1996b). Non-stationary or cointegrated systems
are considered by Huang and Guo (1990), Bartel and Lütkepohl (1998), and L̈utkepohl and Claessen
(1997). Additional references are given in Lütkepohl (1993, Chapter 8).

As for weak VARMA models estimated by QMLE, Boubacar Maı̈nassara (2012) propose a
modified Akaike’s information criteria for selecting the ordersp andq.

A complementing approach to specify VARMA models, which is based on Cooper and Wood
(1982), aims at finding simplifying structures via some combinations of the different series to obtain
more parsimonious models. It includes Tiao and Tsay (1989), Tsay (1989a, 1989b, 1991) and Nsiri
and Roy (1992, 1996).

The final stage of ARMA model specification usually involve analyzing the residuals,i.e. check-
ing if they are uncorrelated. Popular tools include portmanteau tests such asBox-Pierce [Box
and Pierce (1970)] and Ljung-Box [Ljung and Box (1978)] tests, andtheir multivariate generaliza-
tion [Lütkepohl (1993, Section 5.2.9)]. Those tests are not directly applicable inour case because
they are derived under strong assumptions for the innovations (independence or martingale differ-
ence). But recent developments for weak ARMA and VARMA models are applicable. They include
Francq, Roy, and Zakoı̈an (2005) and Shao (2011) (weak ARMA), Francq and Raı̈ssi (2007) (weak
VAR), Boubacar Mäınassara (2011) and Katayama (2012) (weak VARMA).

6. Monte Carlo simulations

To illustrate the performance of our estimation method we ran two types of simulations. For the
first type, weak VARMA models were simulated where the innovations are notindependent nor a
m.d.s. but merely uncorrelated. The second type of simulations involves strong VARMA models
(VARMA models with i.i.d. Gaussian innovations). All the simulated models are bivariate so the
results are easier to analyze. The results are generated using Ox version 3.30 on Linux [see Doornik
(1999)]. We performed 1000 simulations for each model. The results with strong VARMA models
being comparable to those for weak VARMA models, we only report results for the latter.

17



We simulate weak VARMA processes by directly simulating weak innovations, from which we
build the simulated series. From the results in Drost and Nijman (1993), we know that the temporal
aggregation of a strong GARCH process (where the standardized innovations are i.i.d.) will give a
weak process4. SupposeŨt is given by the following bivariate ARCH model:

Ũt = H1/2
t ε t , Ht = Ω +αŨt−1Ũ

′
t−1 (6.1)

whereε t is i.i.d. N(0, I2), H1/2
t is the Cholesky decomposition ofHt andα is a scalar. If we consider

Ũt as a stock variable, then temporal aggregation ofŨt over two periods,i.e.

Ut = Ũ2t (6.2)

will give a weak process. The seriesUt will be uncorrelated but not a m.d.s., its mean will be zero
and the variance will beΩ(1−α2)/(1−α).

In these examples, because the innovations are not a m.d.s., we cannot do maximum likelihood.
We instead employ nonlinear generalized least-squares (GLS),i.e. we minimize the nonlinear least
squares, compute an estimate of the variance matrix of the innovations and thendo nonlinear GLS.
We did not apply this procedure, partly to reduce the estimation time in our Monte Carlo study,
partly because there is no asymptotic gain in iterating.

In these simulations the sample size is 250 observations, which represent about 20 years of
monthly data, a reasonable sample size for macroeconomic data. Tables 1 gives results for a
VARMA model in final MA equation form [VARMA(1,1)], while results for VARMA models
in diagonal MA equation form are given in Tables 2 and 3 [VARMA(1,1) with q = (1,1) and
VARMA(2,1) with q = (1,1) respectively]. We present the results (mean, standard deviations, root
mean square error, 5% quantile, 95% quantile and median) for the second (when the number of
parameters does not exceed five) and third step estimates, and the nonlinear GLS estimates (using
the true value of the parameters as initial values). Samples for which the optimization algorithm did
not converge were dropped (this happened for less than 1% of the simulations). In our simulations,
we took

Ω =

[
1.0 0.7
0.7 1.0

]

, α = 0.3. (6.3)

From looking at the RMSE, a first thing to notice is that there can be sizable improvement in
doing the third step. Some of the third step RMSEs in Tables 1 and 2 are more than50% smaller than
for the second step. This is an interesting observation considering that thethird step basically involve
only one extra regression. Comparing the third step RMSEs and the RMSEs for the nonlinear GLS
estimates, we see that the former are usually no more than 15% bigger. This is also an interesting
observation. The cost of avoiding a numerical optimization, which can become quite challenging as
the number of time series studied or order of the operators increases, appears to be small.

In the top part of these tables we also present the results for the selection of the order of the

4Another way of simulating a weak VARMA process is to time-aggregate a strong VARMA process with innovations
that have skewed marginal distributions (e.g., a mixture of two Gaussian distributions with different means but mean zero
unconditionally). We can appeal to the results of Francq and Zakoı̈an (1998, Section 2.2.1) to claim that the resulting
VARMA is only weak.
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operators using our proposed information criterion. For models in final MAequation form, we have
to select the ordersp andq, and for models in diagonal MA equation, the selection is overp, q1

andq2. In Table 1, we see that for VARMA models in final MA equation form the mostfrequently
chosen orders are the true ones, and the criterion will tend to pick a higher value forq than for p.
This result might partially be skewed by the fact that the simulated models have ahighly persistent
moving average (θ 1 = 0.9). For VARMA models in diagonal equation form (Tables 2 and 3), we
get similar results, the orders selected with the highest frequency are the true ones.

7. Application to a macroeconomics model of the U.S. monetary policy

To illustrate our estimation method and the gains that can be obtained from using amore parsi-
monious representation, we fit VARMA and VAR models to six macroeconomic time series and
compute the impulse-response functions generated by each model. What people typically do to
get the impulse-response functions is first fit a VAR to their multiple time series and then get the
implied infinite VMA representation. The order of the VAR required for macroseries is usually
high. For example, Bernanke and Mihov (1998) use a VAR(13) to model six monthly macroeco-
nomic time series when about 30 years of data are available. The resulting standard errors for the
impulse-response functions are very large, like in most macroeconomic study. We can ask ourselves
how much of this is due to the fact that so many parameters are estimated. To try toanswer this
we will study the impulse-response functions generated by VARMA models estimated on the same
data. We will concentrate on VARMA models in final MA equation form.

Our example is based on McMillin (2001) who compare numerous identification restrictions
for the structural effects of monetary policy shocks using the same dataset as Bernanke and Mihov
(1998).5 The series are plotted in Figure 1. One of the model studied is a VAR applied to the
first difference of the series, in order,gdpm, (psscom-pgdpm), fyff, nbrec1, tr1, psscom. With an
argument based on Keating (2002), the author state that using this ordering of the variables the
Cholesky decomposition, based on long-run macroeconomic restrictions, which are described in an
appendix, of the variance matrix of the innovations will identify the structuraleffects of the policy
variable nbrec1without imposing any contemporaneous restrictions among the variables. Since the
model is in first difference, the impulse-response at a given order is thecumulative shocks up to that
order.

By fitting a VAR(12) to these series we get basically the same impulse-response functions and
confidence bands as in McMillin (2001) They are plotted in Figure 2. The impulse-response func-
tion for the output and federal funds rate tends to zero as the order increases which is consistent
with the notion that a monetary variable does not have a long term impact on real variables. The

5The dataset consist of the log of the real GDP (gdpm), total bank reserves (tr1), nonborrowed reserves (nbrec1),
federal funds rate (fyff), log of the GDP deflator (pgdpm), log of the Dow-Jones index of spot commodity prices (psccom).
These are monthly data and cover the period January 1962 to December1996. The monthly data for real GDP and the
GDP deflator were constructed by state space methods, using a list of monthly interpolator variables and assuming that
the interpolation error is describable as an AR(1) process. Both total reserves and nonborrowed reserves are normalized
by a 36-month moving average of total reserves.
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Table 1. Estimation of a weak final MA equation form VARMA(1,1).

The simulated model is a weak VARMA(1,1) in final MA equation form withϕ11,1 = 0.5,
ϕ21,1 = 0.7, ϕ12,1 = −0.6, ϕ22,1 = 0.3 andθ 1 = 0.9. The variance of the innovations is 1.3 and
the covariance is 0.91. Sample size is 250, the length of the long AR isnT = 15, the number of
repetition is 1000. The parameter in the criterion isδ = 0.5.

Frequencies of selection of(p̂, q̂) using the information criteria.
p \ q 0 1 2 3 4 5

0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.953 0.025 0.002 0.001 0.001
2 0.000 0.001 0.014 0.003 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000

Value Average Std. dev. RMSE 5% 95% Median
Second step
ϕ11,1 0.5 0.441 0.065 0.088 0.328 0.544 0.444
ϕ21,1 0.7 0.675 0.060 0.065 0.576 0.770 0.677
ϕ12,1 -0.6 -0.631 0.054 0.062 -0.717 -0.540 -0.632
ϕ22,1 0.3 0.229 0.057 0.091 0.134 0.321 0.230
θ 1 0.9 0.825 0.057 0.095 0.725 0.917 0.826

Third step
ϕ11,1 0.5 0.491 0.055 0.055 0.399 0.580 0.494
ϕ21,1 0.7 0.695 0.053 0.054 0.603 0.779 0.698
ϕ12,1 -0.6 -0.601 0.049 0.049 -0.680 -0.519 -0.600
ϕ22,1 0.3 0.294 0.050 0.051 0.204 0.375 0.294
θ 1 0.9 0.887 0.034 0.037 0.830 0.940 0.886

NLLS
ϕ11,1 0.5 0.495 0.050 0.051 0.412 0.579 0.496
ϕ21,1 0.7 0.702 0.049 0.049 0.621 0.781 0.702
ϕ12,1 -0.6 -0.609 0.043 0.044 -0.681 -0.540 -0.609
ϕ22,1 0.3 0.288 0.046 0.048 0.214 0.366 0.287
θ 1 0.9 0.887 0.028 0.031 0.838 0.929 0.888
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Table 2. Estimation of a weak diagonal MA equation form VARMA(1,1)
Weak diagonal MA equation form VARMA(1,1)

The simulated model is a weak VARMA(1,1) in diagonal MA equation form withϕ11,1 = 0.5,
ϕ12,1 =−0.6, ϕ21,1 = 0.7, ϕ22,1 = 0.3, θ 1,1 = 0.9 andθ 1,1 = 0.7. The variance of the innovations is
1.3 and the covariance is 0.91. Sample size is 250, the length of the long AR isnT = 15, the number
of repetition is 1000. The parameter in the criterion isδ = 0.5.

Frequencies of selection of(p̂, q̂) using the information criteria.
(p,q1,q2) Frequency

1,1,1 0.924
2,1,0 0.027
1,2,1 0.013
2,2,1 0.011
2,1,1 0.008
1,1,2 0.004
1,1,3 0.002

Value Average Std. dev. RMSE 5% 95% Median
Second step
ϕ11,1 0.5 0.442 0.063 0.085 0.336 0.540 0.445
ϕ21,1 0.7 0.679 0.053 0.057 0.591 0.760 0.680
ϕ12,1 -0.6 -0.635 0.053 0.064 -0.724 -0.544 -0.636
ϕ22,1 0.3 0.243 0.055 0.079 0.148 0.332 0.246
θ 1,1 0.9 0.824 0.068 0.102 0.703 0.936 0.826
θ 2,1 0.7 0.645 0.071 0.089 0.523 0.759 0.646
Third step
ϕ11,1 0.5 0.494 0.050 0.050 0.411 0.572 0.496
ϕ21,1 0.7 0.699 0.044 0.044 0.625 0.768 0.701
ϕ12,1 -0.6 -0.606 0.050 0.051 -0.690 -0.520 -0.607
ϕ22,1 0.3 0.287 0.048 0.049 0.206 0.364 0.288
θ 1,1 0.9 0.883 0.044 0.047 0.808 0.950 0.886
θ 2,1 0.7 0.686 0.050 0.052 0.608 0.767 0.687
NLLS
ϕ11,1 0.5 0.497 0.045 0.045 0.422 0.570 0.497
ϕ12,1 -0.6 -0.612 0.044 0.046 -0.686 -0.537 -0.611
ϕ21,1 0.7 0.701 0.041 0.041 0.633 0.768 0.701
ϕ22,1 0.3 0.290 0.044 0.045 0.219 0.365 0.289
θ 1,1 0.9 0.887 0.035 0.037 0.826 0.939 0.889
θ 2,1 0.7 0.695 0.045 0.045 0.620 0.767 0.696
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Table 3. Estimation of a weak diagonal MA equation form VARMA(2,1)
Weak diagonal MA equation form weak VARMA(2,1).

The simulated model is a weak VARMA(2,1) in diagonal MA equation form withϕ11,1 = 0.9,
ϕ12,1 = −0.5, ϕ21,1 = 0.3, ϕ22,1 = 0.1, ϕ11,2 = −0.1, ϕ12,2 = −0.2, ϕ21,2 = 0.1, ϕ22,2 = −0.15,
ϕ1,1 = 0.9, andϕ2,1 = 0.7. The variance of the innovations is 1.3 and the covariance is 0.91. Sample
size is 250, the length of the long AR isnT = 15, the number of repetition is 1000. The parameter
in the criterion isδ = 0.5.

Frequencies of selection of(p̂, q̂) using the information criteria.
(p,q1,q2) Frequency

2,1,1 0.852
2,1,0 0.088
2,2,1 0.017
2,1,2 0.014
3,1,0 0.008
3,1,1 0.006
3,0,1 0.003

Value Average Std. dev. RMSE 5% 95% Median
Third step
ϕ11,1 0.9 0.882 0.066 0.069 0.773 0.992 0.881
ϕ21,1 0.3 0.289 0.056 0.057 0.193 0.377 0.291
ϕ12,1 -0.5 -0.504 0.079 0.079 -0.630 -0.371 -0.504
ϕ22,1 0.1 0.088 0.095 0.096 -0.063 0.255 0.087
ϕ11,2 -0.5 -0.482 0.064 0.066 -0.586 -0.378 -0.483
ϕ21,2 0.1 0.111 0.064 0.064 0.001 0.210 0.112
ϕ12,2 -0.2 -0.222 0.105 0.107 -0.388 -0.053 -0.220
ϕ22,2 -0.15 -0.161 0.097 0.097 -0.322 -0.004 -0.161
θ 1,1 0.9 0.880 0.048 0.052 0.801 0.953 0.882
θ 2,1 0.7 0.688 0.074 0.075 0.567 0.807 0.689
NLLS
ϕ11,1 0.9 0.885 0.063 0.065 0.782 0.991 0.885
ϕ21,1 0.3 0.289 0.055 0.056 0.197 0.385 0.286
ϕ12,1 -0.5 -0.506 0.078 0.078 -0.628 -0.381 -0.507
ϕ22,1 0.1 0.092 0.084 0.084 -0.047 0.228 0.089
ϕ11,2 -0.5 -0.482 0.059 0.062 -0.575 -0.385 -0.483
ϕ21,2 0.1 0.114 0.061 0.062 0.015 0.212 0.113
ϕ12,2 -0.2 -0.225 0.102 0.105 -0.390 -0.056 -0.230
ϕ22,2 -0.15 -0.168 0.093 0.094 -0.315 -0.020 -0.166
θ 1,1 0.9 0.886 0.037 0.040 0.821 0.940 0.888
θ 2,1 0.7 0.690 0.067 0.068 0.572 0.790 0.697
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impulse response of the price level increases as we let the order grow and does not revert to zero.
We next estimate VARMA models for the four representations proposed in thiswork. The in-

formation criterion picked a VARMA(3,10) for the final MA representation.The impulse-response
functions for this model are plotted in Figure 3. The behavior of the impulse-response function for
GDP, the federal funds rate and the price level from the VARMA models are similar to what we
obtained with a VAR. The most notable differences are that the initial decrease in the federal funds
rate is smaller (0.20 versus 0.32 percentage point) and the GDP is peaking earlier with the VARMA.

It is not surprising that VAR and VARMA models are giving similar impulse-response functions
since they both are a way of getting an infinite MA representation. What is moreinteresting is the
comparison of the width of the confidence bands for the VAR and VARMA’simpulse-response
functions.6 For GDP and the federal funds rate, we see that the bands are much smaller for the
VARMA model and they shrink more quickly as the horizon increases. The confidence bands for
these two variables should be collapsing around their IRF since there should be no long-term effect
of the policy variable so the uncertainty should decrease as the horizon increases. The situation is
different for the price level. For this variable the confidence band grows with the order. Again this
is not so surprising because we expect that a change in the non-borrowed reserves should have a
long-term impact on the price level. With a non-dying impact it is natural that theuncertainty about
this impact can grow as time passes.

The result that the confidence bands around IRFs can be shorter with aVARMA than with a VAR
could be expected since these models are simple extensions of the VAR approach. The introduction
of a simple MA operator allows the reduction of the required AR order so we can get more precise
estimates, which translate into more precise impulse-response functions.

Another way of comparing the performance of VAR and VARMA models is to compare their
out-of-sample forecasts using a metric (e.g., RMSE as in our example). Employing the same dataset
as above, we recursively estimated the models and computed the out-of-sample forecasts, starting
at observation 300 until the end of the sample. The orders of the different models are chosen by
minimizing the RMSE over the possible values7. The results for the VAR, VARMA diagonal MA
and VARMA final MA representations are presented in Table 4. We see that reduction of up to 12%
of the RMSE can be obtained by using a VARMA model instead of a VAR, the greatest gain being
for one-step ahead VARMA in final MA representation.

8. Conclusion

In this paper, we proposed a modeling and estimation method which ease the useof VARMA mod-
els. We first propose new identified VARMA representations, the final MAequation form and the
diagonal MA equation form. These two representations are simple extensions of the class of VAR
models where we add a simple MA operator, either a scalar or a diagonal operator. The addition of

6The confidence bands are computed by performing a parametric bootstrap using Gaussian innovations.
7For the VARMA diagonal MA representation we don’t search over all thepossible orders because it would involve

the estimation of too many models. We instead proceed in two steps. We first impose that all theqi orders are equal
which gives us an upper bound for the value of MA orders. In a second step, oneqi after the other we check to see if a
lower order for the MA order of that equation would lower the RMSE.
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Figure 1. Macroeconomic series.
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Figure 2. Impulse-response functions for VAR model.

A VAR(12) is fitted to the first difference of the six time series. The confidence band represent a one standard deviation. The standard
deviations are derived from a parametric bootstrap using Gaussian innovations.
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Figure 3. Impulse-response functions for VARMA model in final MA equation form.

A VARMA(3,10) is fitted to the first difference of the six time series. The confidence band represent a one standard deviation. The
standard deviations are derived from a parametric bootstrap using Gaussian innovations.
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Table 4. RMSE for VAR and VARMA models]RMSE for VAR and VARMA models

Step ahead VAR VARMA diag. MA VARMA final MA

1 0.0829 0.0778 0.0725
p = 1 p = 0 p = 0

q = (2,1,2,1,0,1) q = 18
3 0.0794 0.0775 0.0729

p = 1 p = 1 p = 1
q = (1,1,1,1,0,1) q = 15

6 0.0822 0.0826 0.0773
p = 7 p = 1 p = 0

q = (0,1,2,2,2,1) q = 18
9 0.0867 0.0803 0.0798

p = 2 p = 3 p = 0
q = (8,11,11,1,11,11) q = 18

12 0.0836 0.0805 0.0807
p = 2 p = 3 p = 0

q = (6,6,6,3,1,6) q = 18

a MA part can give more parsimonious representations, yet the simple formof the MA operators
does not introduce undue complications.

To ease the estimation we studied the problem of estimating VARMA models by relatively sim-
ple methods which only require linear regressions. For that purpose, weconsidered a generalization
of the regression-based estimation method proposed by Hannan and Rissanen (1982) for univariate
ARMA models. Our method is in three steps. In a first step a long VAR is fitted to thedata. In the
second step, the lagged innovations in the VARMA model are replaced by thecorresponding lagged
residuals from the first step and a regression is performed. In a third step, the data from the second
step are filtered and another regression is performed. We showed that the third-step estimators have
the same asymptotic variance as their nonlinear counterpart (Gaussian maximum likelihood if the
innovations are i.i.d., or generalized nonlinear least squares if they are merely uncorrelated). In the
non i.i.d. case, we consider strong mixing conditions, rather than the usual martingale difference
sequence assumption. We make these minimal assumptions on the innovations to broaden the class
of models to which this method can be applied.

We also proposed a modified information criterion that gives consistent estimates of the orders
of the AR and MA operators of the proposed VARMA representations. This criterion is to be
minimized in the second step of the estimation method over a set of possible values for the different
orders.

Monte Carlo simulation results indicates that the estimation method works well for small sample
sizes and the information criterion picks the true value of the orderp andq most of the time. These
results holds for sample sizes commonly used in macroeconomics,i.e. 20 years of monthly data or
250 sample points. To demonstrate the importance of using VARMA models to study multivariate
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time series we compare the impulse-response functions and the out-of-sampleforecasts generated
by VARMA and VAR models when these models are applied to the dataset of macroeconomic time
series used by Bernanke and Mihov (1998).
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A. Proofs

Lemma A.1 Let U and V be random variables measurable with respect toF 0
−∞ andF ∞

n , respec-
tively whereF b

a is theσ -algebra of events generated by sets of the form{(Xi1,Xi2, . . . , Xin) ∈ En}
with a≤ i1 < i2 < · · · < in ≤ b, and En is some n-dimensional Borel set. Let r1, r2, r3 be positive
numbers. Assume that‖U‖r1 < ∞ and‖V‖r2 < ∞ where‖U‖r = (E[|U |]r)1/r . If r−1

1 +r−1
2 +r−1

3 = 1,
then there exists a positive constant c0 independent of U, V and n, such that

|E[UV]−E[U ]E[V]| ≤ c0‖U‖r1‖V‖r2α(n)1/r3.

whereα(n) is defined in equation (2.15).

Proof. See Davydov (1968).

Lemma A.2 If the random process{yt} is stationary and satisfies the strong mixing condition
(2.15), with E|yt |2+ε < ∞ for someε > 0, and if∑∞

j=1 α( j)ε/(2+ε) < ∞, then

σ2 ≡ lim
T→∞

Var[y1 + · · ·+yT ]

= E
[
(yt −E[yt ])

2]+2
∞

∑
j=1

E [(yt −E[yt ])(yt+ j −E[yt+ j ])] .

Moreover, ifσ 6= 0 and E[yt ] = 0, then

Pr

[
y1 + · · ·+yT

σ
√

T
< z

]

−→
T→∞

1√
2π

∫ z

−∞
e−u2/2du.

Proof. See Ibragimov (1962).
Proof of Lemma 3.7

Clearly,Φ(0) = Θ(0) = IK and det[Φ(0)] = det[Θ(0)] = 1 6= 0. The polynomials det[Φ(z)] and
det[Θ(z)] are different from zero in a neighborhood of zero. So we can choose R0 > 0 such that
det[Φ(z)] 6= 0 and det[Θ(z)] 6= 0 for 0≤ |z| < R0. It follows that the matricesΦ(z) andΘ(z) are
invertible for 0≤ |z| < R0.

Let
C0 = { | 0≤ |z| < R0}

and
Ψ(z) = Φ(z)−1Θ(z)

for z∈C0. Since

Φ(z)−1 =
1

det[Φ(z)]
Φ⋆(z) , Θ(z)−1 =

1
det[Θ(z)]

Θ ⋆(z),

whereΦ⋆(z) andΘ ⋆(z) are matrices of polynomials, it follows that, forz∈ C0, each element of
Φ(z)−1 andΘ(z)−1 is a rational function whose denominator is different from zero. Thus, for
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z∈C0, Φ(z)−1 andΘ(z)−1 are matrices of analytic functions, and the function

Ψ(z) = Φ(z)−1Θ(z)

is analytic in the circle 0≤ |z| < R0. Hence, it has a unique representation of the form

Ψ(z) =
∞

∑
k=0

Ψkz
k, z∈C0.

By assumption,
Ψ(z) = Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z)

for z∈C0. Hence, forz∈C0,

Φ̄(z)Φ(z)−1Θ(z) = Θ̄(z),

Φ̄(z)Φ(z)−1 = Θ̄(z)Θ(z)−1 ≡ ∆(z), (A.1)

where∆(z) is a diagonal matrix becauseΘ(z) andΘ̄(z) are both diagonal,

∆(z) = diag[δ ii (z)] ,

where

δ ii (z) =
θ̄ ii (z)
θ ii (z)

, θ ii (0) = 1, δ ii (0) = θ̄ ii (0), i = 1, . . . , K. (A.2)

From (A.2), it follows that eachδ ii (z) is rational with no pole inC0 such thatδ ii (0) = 1, so it can
be written in the form

δ ii (z) =
ei(z)
fi(z)

whereei(z) and fi(z) have no common roots,fi(z) 6= 0 for z∈ C0 andδ ii (0) = ei(0) = 1. From
(A.1), it follows that forz∈C0

θ̄ ii (z) = δ ii (z)θ ii (z), ϕ̄ i j (z) = δ ii (z)ϕ i j (z), i, j = 1, . . . , K.

We first show thatδ ii (z) must be a polynomial. Iffi(z) 6= 1, then its order cannot be greater than
the orderqi ≡ deg[θ ii (z)] for otherwiseθ̄ ii (z) would not be a polynomial. Similarly, iffi(z) 6= 1 and
is a polynomial of order less or equal toqi , then all its roots must be roots ofθ ii (z) andϕ i j (z), for
otherwiseθ̄ ii (z) or ϕ̄ i j (z) would be a rational function. Ifqi ≥ 1, these roots are then common to
θ ii (z) andϕ i j (z), j = 1, . . . , K, which is in contradiction with Assumption3.6. Thus the degree of
fi(z) must be zero, andδ ii (z) is a polynomial.

If δ ii (z) is a polynomial of degree greater than zero, this would entail thatθ̄ ii (z) andϕ̄ i j (z) have
roots in common, in contradiction with Assumption3.6. Thusδ ii (z) must be a constant. Further,
δ ii (0) = 1 so that fori = 1, . . . , K,

θ̄ ii (z) = θ ii (z), ϕ̄ i j (z) = ϕ i j (z), j = 1. . . ,K,
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hence
Θ̄(z) = Θ(z), Φ̄(z) = Φ(z).

Proof of Theorem 3.8.Under the assumption that the VARMA process is invertible, we can write

Θ(L)−1Φ(L)Yt = Ut .

Now suppose by contradiction that there exist operatorsΦ̄(L) andΘ̄(L), with Θ̄(L) diagonal and
invertible, andΦ̄(L) 6= Φ(L) or Θ̄(L) 6= Θ(L), such that

Θ̄(L)−1Φ̄(L) = Θ(L)−1Φ(L),

If the above equality hold, then it must also be the case that

Θ̄(z)−1Φ̄(z) = Θ(z)−1Φ(z), ∀z∈C0,

whereC0 = {z∈ C | 0≤ |z| < R0} andR0 > 0. By Lemma3.7, it follows that

Φ̄(z) = Φ(z), Θ̄(z) = Θ(z) ∀z.

Hence, the representation is unique.

Proof of Theorem 3.10.The proof can be easily adapted from the proof of Theorem3.8 once we
replace Assumption3.6by Assumption3.9.

Lemma A.3 (Infinite VAR convergence) If the VARMA model is invertible and if nT/ log(T)→ ∞
as T→∞, then∑K

k=1 ∑∞
j=nT+1 |π ik, j |= o(T−1) for i = 1, . . . , K, whereπ ik, j represent the parameters

in Π(L) = Θ(L)−1Φ(L) .

Proof of Lemma A.3. The matrixΘ(L)−1 can be seen has its adjoint matrix divided by its deter-
minant. SinceYt is invertible, the roots of detΘ(L) are outside the unit circle and so the elements of
Π(L) = Θ(L)−1Φ(L) decrease exponentially:

|π ik, j | ≤ cρ j , ∀i,m,

with c > 0 and 0< ρ < 1. From this

T
K

∑
k=1

T

∑
j=nT+1

|π ik, j | ≤ T
K

∑
k=1

T

∑
j=nT+1

cρ j

≤ cK T
ρnT+1

1−ρ
→ 0

asT → ∞ if nT/ log(T) → ∞ because|ρ| < 1.
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From the proof of LemmaA.3, we see that the conditionnT/ logT → ∞ could be replaced by a
weaker condition likenT = κ log(T) with κ > 1/ log(ρ) whereρ is the value given the upper bound
at which the parametersπ ik, j are declining to zero. A drawback if this assumption is that it would
depend on the persistence of the process.

Lemma A.4 (Covariance estimation) If the process{Yt} is a strictly stationary VARMA process
with {Ut} uncorrelated, E[|uit |4+2ε ] < ∞ for someε > 0, α-mixing with∑∞

h=1 α(h)ε/(2+ε) < ∞ then

1
T

T

∑
t=1

yi,t−ryi′,t−s−E[yi,t−ryi′,t−s] = Oms(T
−1/2) ∀i, i′, r,s.

Proof of Lemma A.4. In a preliminary step, let us prove that the following result holds (assuming
thats> r without loss of generality):

1
T2

T

∑
t=1

T

∑
t ′=1

Cov
[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]
= O(1/T). (A.3)

We start by breaking this sum in the following parts:

1
T2

T

∑
t=1

T

∑
t ′=1

Cov
[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]

=
1

T2

T−(s−r)−1

∑
t=1

T

∑
t ′=t+1+(s−r)

Cov
[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]

+
1

T2

T−(s−r)−1

∑
t ′=1

T

∑
t=t ′+1+(s−r)

Cov
[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]

+
1

T2

T−(s−r)

∑
t=1+(s−r)

t+(s−r)

∑
t ′=t−(s−r)

Cov
[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]

+
1

T2

1+(s−r)

∑
t=1

t+(s−r)

∑
t ′=1

Cov
[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]

+
1

T2

T

∑
t ′=T−(s−r)

T

∑
t=T−(s−r)−(T−t ′)

Cov
[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]
. (A.4)

The last three double sums areO(1/T) since the covariances are finite and the number of terms is of
orderT. For the first two double sums, using Davydov’s inequality (lemmaA.1), the strong mixing
hypothesis and the finite fourth moment we know that

lim
T→∞

T

∑
t ′=t+1+(s−r)

∣
∣Cov

[
ui,t−rui′,t−s; ui,t ′−rui′,t ′−s

]∣
∣
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≤ lim
T→∞

T

∑
t ′=t+1+(s−r)

c0‖ui,t−rui′,t−s‖2+ε‖ui,t ′−rui′,t ′−s‖2+ε α(t ′− t − (s− r))ε/(2+ε)

< ∞ ,

from which we conclude that the first two terms converge to zero at rate 1/T.
Now that have the result in Equation (A.3), we first notice that by stationarityof the process,

E

[

1
T

T

∑
t=1

yi,t−ryi′,t−s

]

−E[yi,t−ryi′,t−s] = 0.

Now taking the variance and writing the covariances in terms of the innovationsUt :

Var

[

1
T

T

∑
t=1

yi,t−ryi′,t−s

]

=
1

T2

T

∑
t=1

T

∑
t ′=1

Cov
[
yi,t−ryi′,t−s; yi,t ′−ryi′,t ′−s

]

≤
∞

∑
j1=0

∞

∑
j ′1=0

∞

∑
j2=0

∞

∑
j ′2=0

K

∑
k1=1

K

∑
k′1

K

∑
k2=1

K

∑
k′2=1

|ψ ik1, j1| |ψ i′k′1, j
′
1
| |ψ ik2, j2| |ψ i′k′2, j

′
2
|

1
T2

T

∑
t=1

T

∑
t ′=1

|Cov
[

uk1,t−r− j1uk′1,t−s− j ′1
; uk2,t ′−r− j2uk′2,t

′−s− j ′2

]

|. (A.5)

From the assumption of stationarity we know that theψ ’s are decreasing exponentially, and from
Equation (A.3) we get that the right-hand side of Equation (A.5) isO(1/T). Hence,

1
T

T

∑
t=1

yi,t−ryi′,t−s−E[yi,t−ryi′,t−s] = Oms(T
−1/2) ∀i, i′, r,s.

Corollary A.5 (Moment estimation) Under the assumption of LemmaA.4,

1
T

T

∑
t=1

yi,t−rui′,t−s−E[yi,t−rui′,t−s] = Oms(T
−1/2) ∀i, i′, r,s.

Proof of Lemma A.5. The proof is very similar to the proof of LemmaA.4 where in Equation (A.5)
some of theψ ’s would be zero.

Proof of Theorem 4.1.We first introduce some additional matrix norms:

‖B‖2
2 = sup

l 6=0

l ′B′Bl
l ′l

, (A.6)

‖B‖1 = max
i≤ j≤n

n

∑
i=1

|bi j |, (A.7)
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‖B‖∞ = max
1≤i≤n

n

∑
j=1

|bi j |, (A.8)

where (A.6) is the largest eigenvalue ofB′B. Useful inequalities relating these norms are given in
Horn and Johnson (1985, p. 313):

‖AB‖2 ≤ ‖A‖2
2‖B‖2 , ‖AB‖2 ≤ ‖A‖2‖B‖2

2 , ‖B‖2
2 ≤ ‖B‖1‖B‖∞. (A.9)

In the first step estimation, we regress

yit =
nT

∑
j=1

K

∑
k=1

π ik, jyk,t− j +eit , (A.10)

when in fact

yit =
∞

∑
j=1

K

∑
k=1

π ik, jyk,t− j +uit .

If we let

B̂(nT) =
T

∑
t=nT+1

Y′
t−1(nT)Yt−1(nT)

T −nT
,

then OLS applied to (A.10) yields:

Π̂ (nT)
i• = [π̂ i•,1, . . . , π̂ i•,nT ]′

= B̂(nT)−1
T

∑
t=nT+1

Y(nT)′

t−1 yit

T −nT

= B̂(nT)−1
T

∑
t=nT+1

Y(nT)′

t−1

T −nT

{
∞

∑
j=1

π i•, jYt− j +uit

}

= Π (nT)
i• + B̂(nT)−1

T

∑
t=nT+1

Y(nT)′

t−1

T −nT

{
∞

∑
j=nT+1

π i•, jYt− j +uit

}

.

Rearranging the elements,

Π̂ (nT)
i• −Π (nT)

i• = B̂(nT)−1
T

∑
t=nT+1

Y(nT)′

t−1

T −nT

{
∞

∑
j=nT+1

π i•, jYt− j

}

+ B̂(nT)−1
T

∑
t=nT+1

Y(nT)′

t−1 uit

T −nT
.

Using inequalities (A.9) and the fact thatB̂(nT) is symmetric,

‖Π̂ (nT)
i• −Π (nT)

i• ‖ ≤ ‖B̂(nT)−1‖2‖V1T‖+‖B̂(nT)−1‖2‖V2T‖ , (A.11)
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where

V1T =
1

T −nT

T

∑
t=nT+1

Y(nT)′
t−1

∞

∑
j=nT+1

π i•, jYt− j ,

V2T =
1

T −nT

T

∑
t=nT+1

Y(nT)′
t−1 uit .

Firstly, ‖V2T‖2 can be expanded into

‖V2T‖2 = tr
(
V ′

2TV2T
)

=
K

∑
k=1

nT

∑
j=1

(

∑T
t=nT+1yk,t− juit

T −nT

)2

=
K

∑
k=1

nT

∑
j=1



E[yk,t− juit ]
︸ ︷︷ ︸

=0

+Op(T
−1/2)





2

.

It follows that‖V2T‖2 = Op(nTT−1/2). Similarly, for‖V1T‖2

‖V1T‖2 = tr
(
V ′

1TV1T
)

=
K

∑
k=1

nT

∑
j=1

(

∑T
t=nT+1yk,t− j [∑∞

j ′=nT+1 ∑K
k′=1 π ik′, j ′yk′,t− j ′ ]

T −nT

)2

=
K

∑
k=1

nT

∑
j=1

(
K

∑
k′=1

∞

∑
j ′=nT+1

π ik′, j ′
1

T −nT

T

∑
t=nT+1

yk,t− jyk′,t− j ′

)2

=
K

∑
k=1

nT

∑
j=1

(
K

∑
k′=1

∞

∑
j ′=nT+1

π ik′, j ′

[

Cov[yk,t− j ;yk′,t− j ′ ]+Op(T
−1/2)

]
)2

.

From Lemma A.3, we know that ∑∞
j=nT+1 |π ik, j | = o(T−1) and it follows that

∑∞
j ′=nT+1 π ik′, j ′Cov[yk,t− j ;yk′,t− j ′ ] = o(T−1). Hence,‖V1T‖2 = op(nTT−1).

For ‖B̂(nT)−1‖1, the existence of̂B(nT)−1 is guaranteed by a lemma that can be found in Tiao
and Tsay (1983). The argument is the following. It is clear thatB̂(nT) is a symmetric non-negative
definite matrix. To show that it is positive definite take any arbitrary vectorc = [c1, . . .cKnT ]′ and
consider

c′B̂(nT)c =
1

(T −nT)2

T

∑
t=nT+1

(
nT

∑
j=1

K

∑
k=1

c( j−1)K+kyk,t− j

)2

.
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If c′B̂(nT)c = 0, then

nT

∑
j=1

K

∑
k=1

c( j−1)K+kyk,t− j = 0 for t = nT +1, . . . , T,

which, sinceT > (K +1)nT , is a system of linear equations ofK nT unknowns and more thanK nT

equations. SinceYt is real-valued and non deterministic, this implies thatc= 0 (except for a set with
measure zero). This proves thatB̂(nT) is positive definite.

The final step is to show that‖B̂(nT)−1‖2 is bounded. We first see that

‖B̂(nT)−1‖2 ≤ ‖B(nT)−1‖2 +‖B̂(nT)−1−B(nT)−1‖2

whereB(nT) denotes the(K nT ×K nT) matrix of the corresponding covariances instead of the
empirical covariances. As in the univariate case Berk (1974, p. 491),‖B(nT)−1‖2 is uniformly
bounded above by a positive constantF for all nT sinceYt is stationary and invertible. Next, us-
ing a similar argument as in the proof of Theorem 1 in Lewis and Reinsel (1985), we show that
‖B̂(nT)−1−B(nT)−1‖2

p→ 0. From previous results,E[‖B̂(nT)−B(nT)‖2
2]≤E[‖B̂(nT)−B(nT)‖2]≤

c0
n2

T
T → 0 asT → ∞ for some positive constantc0. Then, from

‖B̂(nT)−1−B(nT)−1‖2 = ‖B̂(nT)−1[B̂(nT)−B(nT)]B(nT)−1‖2

≤ F(‖B̂(nT)−1−B(nT)−1‖2 +F)‖B̂(nT)−B(nT)‖2,

we have

0≤ ΞnT =
‖B̂(nT)−1−B(nT)−1‖2

F(‖B̂(nT)−1−B(nT)−1‖1 +F)
≤ ‖B̂(nT)−B(nT)‖2

so that asT → ∞, ΞnT

p→ 0 and‖B̂(nT)−1−B(nT)−1‖2 = F2ΞnT /(1−FΞnT )
p→ 0. Hence,‖Π̂ (nT)

i• −
Πi•(nT)‖ = Op(nTT−1/2).

Proof of Theorem 4.2.If we denote byZt−1 the equivalent of̂Zt−1 which contains the true innova-
tionsukt instead of the residuals ˆukt,

γ̂ =

[
T

∑
t=l

Ẑ′
t−1Σ̂−1

U Ẑt−1

]−1[ T

∑
t=l

Ẑt−1Σ̂−1
U (Zt−1γ +Ut)

]

=

[
T

∑
t=l

Ẑ′
t−1Σ̂−1

U Ẑt−1

]−1[ T

∑
t=l

Ẑ′
t−1Σ̂−1

U Zt−1

]

γ +

[
T

∑
t=l

Ẑ′
t−1Σ̂−1

U Ẑt−1

]−1[ T

∑
t=l

Ẑt−1Σ̂−1
U Ut

]

.
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Firstly, we show that̂ΣU
p→ ΣU . We can write the residual̂Ut as

Ût = Π̂nT (L)Yt

= Π̂nT (L)Ψ(L)Ut

= [IK +(Π̂nT (L)Ψ(L)− IK)]Ut

= [IK +(Π̂nT (L)−Π(L))Ψ(L)]Ut

= Ut +(Π̂nT (L)−Π(L))Yt .

Using the results from LemmaA.4, Theorem4.1 where we showed that∑nT
l=1‖Π̂ (nT)

l − Πl‖ =
Op(nTT−1/2), combined with∑∞

l=nT+1‖Πl‖= o(T−1) if log(T)/nT → 0 asT →∞, we can conclude
that

Σ̂U =
1

T −nT

T

∑
t=nT+1

ÛtÛ
′
t =

1
T −nT

T

∑
t=nT+1

UtU
′
t +op(T

−1/2)
p→ ΣU .

To show that1T ∑T
t=l Ẑ

′
t−1Σ̂−1

U Ẑt−1 converge toJ̃ = E[Z′
t−1Σ−1

U Zt−1] in probability, sinceΣ̂U
p→

ΣU we only have to show:

• 1
T ∑T

t=l yi,t− jyk,t− j ′
p→ E[yi,t− jyk,t− j ′ ],

• 1
T ∑T

t=l yi,t− j ûk,t− j ′
p→ E[yi,t− juk,t− j ′ ],

• 1
T ∑T

t=l ûi,t− j ûk,t− j ′
p→ E[ui,t− juk,t− j ′ ].

The first is proved in LemmaA.4. The second can be proved in a similar manner. Start by
writing

1
T

T

∑
t=l

yi,t− j ûk,t− j ′ =
1
T

T

∑
t=l

yi,t− juk,t− j ′ +
1
T

T

∑
t=l

yi,t− j(ûk,t− j ′ −uk,t− j ′)

=
1
T

T

∑
t=l

yi,t− juk,t− j ′ +
1
T

T

∑
t=l

nT

∑
m=1

K

∑
k′=1

(πkk′,m− π̂kk′,m)yi,t− jyk′,t−m

+
1
T

T

∑
t=l

∞

∑
m=nT+1

K

∑
k′=1

πkk′,myi,t− jyk′,t−m (A.12)

Proving that the first term in (A.12),1T ∑T
t=l yi,t− juk,t− j ′ , converges in quadratic mean to

E[yi,t− juk,t− j ′ ] is very similar to the proof in LemmaA.4 where we expressyi,t− j as an infinite
MA so we omit the details to shorten the exposition. Proving that the second andthird term con-
verge to zero in probability is also similar; combine the results of LemmaA.4 and Theorem4.1 for
the second, LemmasA.3 andA.4 for the third. Combining all these results we can conclude that
γ̃ ms→ γ.

For the asymptotic distribution, sincêΣU
p→ ΣU , the limit distribution of 1√

T ∑T
t=l Ẑ

′
t−1Σ̂−1

U Ut will

be the same as that of1√
T ∑T

t=l Ẑ
′
t−1Σ−1

U Ut . For the latter, we can prove the asymptotic normality
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using an argument similar to the one used in Francq and Zakoı̈an (1998, Lemma 4). The argu-
ment is the following. Neglecting the constants inΣ−1

U , 1√
T ∑T

t=l Ẑ
′
t−1Σ−1

U Ut contains terms such
1√
T ∑T

t=l ui,tyk,t− j with i,k = 1, . . . ,K and j = 1, . . . ,max(p,q). Using the MA(∞) representation of
Yt ,

1√
T

T

∑
t=l

ui,tyk,t− j =
1√
T

T

∑
t=l

ui,t

(
K

∑
k′=1

∞

∑
j ′=0

ψkk′, j ′uk′,t− j− j ′

)

=
1√
T

T

∑
t=l

A(1)
r,t +

1√
T

T

∑
t=l

A(2)
r,t

where for any positive integerr,

A(1)
r,t =

r

∑
j ′=0

K

∑
k′=1

ψkk′, j ′ui,tuk′,t− j− j ′ ,

A(2)
r,t =

∞

∑
j ′=r+1

K

∑
k′=1

ψkk′, j ′ui,tuk′,t− j− j ′ .

First note thatA(1)
r,t is a function of a finite number of values from the process{Ut}. Therefore, the

stationary process{A(1)
r,t } satisfies a mixing property of the form (2.16). LemmaA.2 implies that

1√
T ∑T

t=l A
(1)
r,t has a limiting distributionN (0, ı̃r) and asr → ∞, ı̃r → ı̃.

Now we will show thatE[ 1
T (∑T

t=l A
(2)
r,t )2] converges to 0 uniformly inT as r → ∞. It will

follow that the limiting distribution of 1√
T ∑T

t=l ui,tyk,t− j is the same as the limiting distribution of
1√
T ∑T

t=l A
(1)
r,t from a straightforward adaptation of a result given in Anderson (1971, Corollary 7.1.1,

p. 426). We have

Var

[

1√
T

T

∑
t=l

A(2)
r,t

]

= Var

[

1√
T

T

∑
t=l

∞

∑
j ′=r+1

K

∑
k′=1

ψkk′, j ′ui,tuk′,t− j− j ′

]

≤
∞

∑
j1=r+1

∞

∑
j2=r+1

K

∑
k1=1

K

∑
k2=1

|ψkk1, j1||ψkk2, j2|
1
T

T

∑
t=l

T

∑
t ′=l

|cov(ui,tuk1,t− j− j1;ui,t ′uk2,t ′− j− j2)|

≤
∞

∑
j1=r+1

∞

∑
j2=r+1

K

∑
k1=1

K

∑
k2=1

|ψkk1, j1||ψkk2, j2|
1
T

T

∑
t=l

∞

∑
t ′=l

|cov(ui,tuk1,t− j− j1;ui,t ′uk2,t ′− j− j2)|

≤ C
∞

∑
j1=r+1

∞

∑
j2=r+1

K

∑
k1=1

K

∑
k2=1

|ψkk1, j1||ψkk2, j2|
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for some positive constantC following a similar argument as in the proof of LemmaA.4. Thus,

sup
T

Var

[

1√
T

T

∑
t=l

A(2)
r,t

]

→ 0

asr → ∞.
We can extend this asymptotic normality to all the elements of1√

T ∑T
t=l Ẑ

′
t−1Σ−1

U Ut to conclude
that

1√
T

T

∑
t=l

Ẑ′
t−1Σ̂−1

U Ut
d−→ N

(
0, Î
)

with Ĩ defined in Equation (4.24). From this,

√
T (γ̃ − γ)

d−→ N
(
0, J̃−1Ĩ J̃−1) .

From the preceding results, it is obvious thatJ̃ can be consistently estimated byJ̃T as defined in
Equation (4.26) and using Theorem 2 of Newey and West (1987) or moreexplicit results from
Francq and Zaköıan (2000) for weak ARMA models, we know thatĨT

p→ Ĩ if we takem4
T/T → 0

with mT → ∞ asT → ∞.

Proof of Theorem 4.3.First we can rewriteXt , Wt andṼt as

Xt = Θ̂(L)−1Yt , Wt = Θ̂(L)−1Ũt , Ṽt = Θ̂(L)−1Z̃t .

We can also rewritẽUt +Xt −Wt as

Ũt +Xt −Wt = Θ̂(L)−1Yt +Ũt −Θ̂(L)−1Ũt

= Θ̂(L)−1 [Zt−1γ +Ut ]+Ũt −Θ̂(L)−1Ũt

= Θ̂(L)−1Zt−1γ +Θ̂(L)−1Ut +Ũt −Θ̂(L)−1Ũt

= Vt−1γ +Ut +[(Ũt −Ut)−Θ̂(L)−1(Ũt −Ut)]

= Vt−1γ +Ut +Op(T
−1/2).

With this, the regression becomes

γ̂ =

[
T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U Ṽt−1

]−1[ T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U

(
Ũt +Xt −Wt

)

]

=

[
T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U Ṽt−1

]−1[ T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U Vt−1

]

γ +

[
T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U Ṽt−1

]−1[ T

∑
t=l ′

Ṽ ′
t−1Σ̃−1

U Ut

]

+op(T
−1/2).
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Just like in the proof of theorem4.2 we see that̂γ − γ = Op(T−1/2). With a similar application of
Ibragimov’s central limit theorem as in the proof of Theorem4.2, we conclude that

√
T(γ̂ − γ)

d−→ N
(
0, Ĵ−1Î Ĵ

)

whereÎ andĴ are defined in Equation (4.28). As in the proof of theorem4.2 the matriceŝI andĴ
can be consistently estimated respectively byÎT andĴT as defined in Equations (4.29) and (4.30).

Proof of Theorem 5.1.
Let us denote bỹΣU(p,q) the value taken bỹΣu for given ordersp andq. The true value ofp

andq is denoted byp0 andq0. The difference between the information criterion for given values of
the ordersp andq, and the true valuesp0, q0 is equal to

log
(
detΣ̃U(p,q)

)
− log

(
detΣ̃U(p0,q0)

)
+[dimγ(p,q)−dimγ(p0,q0)]

(logT)1+δ

T
. (A.13)

First, consider the case wherep < p0 or q < q0. In this case, asT grows to infinity, eventually
detΣ̃U(p,q) > detΣ̃U(p0,q0) because of the left-coprime property while the penalty term is shrink-
ing to zero. As a result, (A.13) would become positive asT → ∞. So eventually we must have
p≥ p0 andq≥ q0.

Next, to discuss the case where thep≥ p0 andq≥ q0, we can start by writing the residuals of
the second step estimation as

Ũt = Φ̃(L)Yt −
(
Θ̃(L)− IK

)
Ût

= Φ̃(L)Yt −
(
Θ̃(L)− IK

)
Π̂ (nT)(L)Yt

=
[

Φ̃(L)−
(
Θ̃(L)− IK

)
Π̂ (nT)(L)

]

Yt

=
[

Φ̃(L)−
(
Θ̃(L)− IK

)
Π̂ (nT)(L)

]

Ψ0(L)Ut

=
[

Φ̃(L)−Θ̃(L)Π̂ (nT)(L)+ Π̂ (nT)(L)
]

Ψ0(L)Ut

=
[(

Φ̃(L)−Φ0(L)
)
+Φ0(L)−Θ̃(L)Π̂ (nT)(L)+

(

Π̂ (nT)(L)−Π0(L)
)

+Π0(L)
]

Ψ0(L)Ut

=
[(

Φ̃(L)−Φ0(L)
)
+
(
Θ0(L)−Θ̃(L)

)
Π0(L)−Θ̃(L)

(

Π̂ (nT)(L)−Π0(L)
)

+
(

Π̂ (nT)(L)−Π0(L)
)

+Π0(L)
]

Ψ0(L)Ut

=
[(

Φ̃(L)−Φ0(L)
)
Ψ0(L)+

(
Θ0(L)−Θ̃(L)

)
−Θ̃(L)

(

Π̂ (nT)(L)−Π0(L)
)

Ψ0(L)+
(

Π̂ (nT)(L)−Π0(L)
)

Ψ0(L)+ IK
]

Ut

=
[(

Φ̃(L)−Φ0(L)
)
Ψ0(L)+

(
Θ0(L)−Θ̃(L)

)
−χ(L)+C(L)+ IK

]
Ut , (A.14)

whereχ(L) = Θ̃(L)
(
Π̂ (nT)(L)−Π0(L)

)
Ψ0(L) andC(L) =

(
Π̂ (nT)(L)−Π0(L)

)
Ψ0(L).

For the case wherep = p0 andq = q0 and from the results of Theorems4.1and4.2, it follows
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that with an obvious abuse of notation8 ‖(Φ̃(L)−Φ0(L))Ψ0(L)‖= Op(T−1/2), ‖(Θ0(L)−Θ̃(L))‖=
Op(T−1/2), ‖χ(L)‖ = Op(nTT−1/2) and‖C(L)‖ = Op(nTT−1/2). Using the above representation
of the residuals̃Ut , we get

Σ̃U(p0,q0) =
1
T

T

∑
t=nT+1

UtU
′
t +Op(nTT−1),

Also, if p≥ p0 andq≥ 0, if we rewrite (A.14) as

Ũt =
[
Θ̃(L)

(
Θ̃(L)−1Φ̃(L)−Π0(L)

)
Ψ0(L)−1−χ(L)+C(L)+ IK

]
Ut , (A.15)

we can see that even ifp > p0 and q > q0, in which case the VAR and MA operators are not
identified, the estimated infinite VAR representation is converging to the trueΠ0(L) and as a result
‖Θ̃(L)−1Φ̃(L)−Π0(L)‖ = Op(T−1/2) and

Σ̃U(p,q) =
1
T

T

∑
t=nT+1

UtU
′
t +Op(nTT−1) (A.16)

for p≥ p0 andq≥ q0.
It follows that if nT = O(log(T)1+δ 1) with δ 1 < δ , then the dominating term in (A.13) is the

penalty term so asT → ∞ with probability one ˆp→ p0, q̂→ q0.

Proof of Theorem 5.2.The proof is very similar to the proof of Theorem5.1.

8For example, by‖(Θ(L)−Θ̃(L))‖2 we mean∑K
i=1 ∑K

k=1 ∑q
j=1(θ ik, j − θ̃ ik, j )

2.
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BOUBACAR MAÏNASSARA, Y., AND C. FRANCQ (2011): “Estimating structural VARMA models with
uncorrelated but non-independent error terms,”Journal of Multivariate Analysis, 102, 496–505.

BOX, G. E. P.,AND D. A. PIERCE (1970): “Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models,”JASA, 65, 1509–1526.

BROCKWELL, P. J.,AND R. A. DAVIS (1991):Time series: theory and methods, Springer Series in Statistics.
Springer-Verlag, New York, second edn.

CHEN, B., J. CHOI, AND J. C. ESCANCIANO (2012): “Testing for fundamental Vector Moving Average
representations,” University of Rochester.

COOPER, D. M., AND E. F. WOOD (1982): “Identifying Multivariate Time Series Models,”Journal of Time
Series Analysis, 3, 153–164.

DAVYDOV, Y. A. (1968): “Convergence of Distributions Generated by Stationary Stochastic Processes,”
Theory of Probability and its Applications, pp. 691–696.

DEISTLER, M., AND E. J. HANNAN (1981): “Some Properties of the Parametrization of ARMA Systems
with Unknown Order,”Journal of Multivariate Analysis, 11, 474–484.

42



DOORNIK, J. A. (1999):Object-Oriented Matrix Programming Using Ox, 3rd ed.Timberlake Consultants
Press and Oxford, Oxford, U.K., www.nuff.ox.ac.uk/Users/Doornik.

DOUKHAN , P. (1995):Mixing - Properties and Examples, no. 85 in Lecture Notes in Statistics. Springer-
Verlag.

DROST, F. C. (1993): “Temporal Aggregation of Time-Series,” inEconometric Analysis of Financial Mar-
kets, ed. by J. Kaehler, and P. Kugler, pp. 11–21. Physica-Verlag, New York.

DROST, F. C., AND T. E. NIJMAN (1993): “Temporal Aggregation of GARCH Processes,”Econometrica,
61(4), 909–927.

DURBIN, J. (1960): “The Fitting of Time Series Models,”Revue de l’Institut International de Statistique, 28,
233.

FLORES DEFRUTOS, R., AND G. R. SERRANO (2002): “A Generalized Least Squares Estimation Method
for VARMA Models,” Statistics, 36(4), 303–316.
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L ÜTKEPOHL, H., AND H. CLAESSEN (1997): “Analysis of Cointegrated VARMA Processes,”Journal of
Econometrics, 80, 223–239.
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