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Practical methods to extract the generalized dimension D, and the largest Lyapunov exponent
from experimental data are proposed and tested on examples.. The measured values agree well with
known values. In applications to chaotic signals, convergence of dimension is investigated for
varying the delay time and the embedding dimension.

The quantitative characterization of chaotic irregular motion has been achieved
by measurements of the metric entropy, the dimensions and the spectrum of Lyapunov
exponents. Recently much progress has been made in understanding the infinite
hierarchical series of dimension D, through the fluctuation of scaling properties (“f-
@ spectrum”),”® and the same formalism for the series of Renyi entropy K, and g¢-
order Lyapunov exponent (“%-y spectrum”)”® has been proposed. Therefore, it is
important to develop efficient methods which can extract these dynamical invariants
from experimental data. However, the straightforward way of extracting the
generalized dimensions from the original definition is not practical in general. In this
paper we present practical methods of extracting the series of dimensions Dy and the
largest. Lyapunov exponent from experimental data, which are applicable to high-
dimensional systems. We also discuss the dependence of convergence of the
attractor’s dimension on parameters of reconstructing phase space, i.e., the delay time
and the dimension of phase space.

We describe the dynamical system by a set of differential equations dX/dt =F(X)
where X is a d-dimensional vector obtained from a single scalar time series by using
a delay time 7" ; X(¢8)=(x(¢), x(t+ T), -, x(t +(d—1)T)).® Suppose now that d-
dimensional phase space is uniformly partitioned to boxes of size ¢, and N points
{X:}L1 in a time sequence are given by sampling from X(¢) every 4¢. One can estimate
the invariant probability measure p: associated with box 7 by N:/N (where N; is the

number of points falling within box 7) provided N is large enough. The g-order

dimension is given by D¢=1/(g—1)lim.-o[log(Z:»:%)/loge]. However, determining
N; from the box counting algorithm is ineffective in computing especially for high-
dimensional systems. To bypass this difficulty we introduce the individual correla-
tion function proposed by Cohen et al.” The individual correlation function at data
point X; is

Cxr) =3 Z0(r =1 X,— X, M

where 0 is the Heaviside function. Let us consider the assumption”
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where Z; is the center of box 7 and Z;,. are all the points falling within box 7. This
means that the individual correlation function of the center of the box is the geometric
mean of the individual correlation functions of Z:;.. Hence,

{Calr)y=] H Cz. ,,(r)"]””‘< 2 Cr7)?. @)

The equality holds Cz.(7)=Cz(r) for all k. For sufficiently small 7, using the
relation (3),
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We thus obtain the exponent

yg=—L lmlog<Cz(r)"“>’
g—17-0 logr

(5)

where angular brackets are the ensemble average for all possible points. Equation
(5) gives the upper bound of D,. We expect that v, is a good approximation for Dy
in most cases which we are interested in. For g=1, it is easy to see that vi=lim,.o

[<logCz(7)>/logr]. Furthermore, one can obtain the f-e spectrum via the pair of
formulas (in Ref. 1))

alg)=—{la=1)Dd],

f@)=qalq)—(q—1)D,. (6)

Our method was tested on some dynamical systems to see the consistency with true
values. The numerical results are listed in Table I. The accuracy of our method
was always within a few percent for positive ¢’s. For negative ¢’s the accuracy was

Table . Generalized dimensions. All examples were calculated with 20000 points and
2000 reference points.

System Other methods Our method
Loisti Do=0.538 Do=0.5670.04
( Of'-g 5129’;3" Da=0.37775--- Da=0.391+0.03
a=o D-w=0.75551-- D=0.7690.07
Cirel Do=1" Do=0.99%0.03
‘,r‘lfle "l‘gp D..=0.6326--- Du=0.65%0.03
with golden mean D-=1.898" Dow=195%02
Do=1.28 Do=1.27%0.02
(Hef‘ﬁ e 2 Di=126 Di=1.26£0.02
a=2s 0=0 D=122° D.=1.23+0.02
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less than the positive ¢’s and error bar was .

10~20% around D-. in some cases. But
we expect that larger N makes the error
much smaller.

When the generalized dimensions are
measured from experimental data, it is
important to choose the best delay time
and the best embedding dimension.
Unsuitable choice sometimes leads to in-
correct results. However, only a few
authors have discussed this point.® We
studied the dependence of convergence of

dimension on the delay time T and embed-
Fig. 1. The er:nbedding dimension df as a function ding dimension @ in details for the most
of delay time 7. The dotted lines ar'e de=3 familiar dimension Ds.
and d.T=0.485. The latter was obtained by
using least square methods. Let us consider the Lorenz system as
an example. With varying d, for d<d.
estlmated dimension is smaller than 2.06 (true dimension D: of the Lorenz system is
2.06 in Ref. 9)). And for d>d. the dimension converges to a limiting value which is
independent of the dimension of phase space. We consider that D. converges when
the estimated dimension becomes uniform within 2.06=0.05 as 4 increases. In Fig. 1
we plot dc vs T for an attractor with 10000 data points and 150 reference points.
There are two factors which determine convergence of D, The first is
topological properties of a projection of an attractor. In small dimensional phase
space the dimension of an image is equal to the dimension of phase space. In order
to obtain the true dimension Whitney’s embedding theorem shows that one must
embed an m-dimensional attmactor to 2m+1-dimensional phase space (see, e.g., Ref.
10)). But this condition may be too strong. For a Lorenz attractor the minimum d.
is 3, i.e., the minimum integer which is greater than the attractor’s dimension. The
second is connected with the choice of the delay time. When one chooses too small
time delays, two vectors X(¢) and X(¢+ T') are strongly correlated and the projection
of an attractor to X(#)X(¢+ T)-plane is suppressed to the diagonal line of the plane.
However, even for small time delays, a sufficient number of vectors which are linearly
independent of each other can be obtained when the embedding dimension is large
enough. Because there exists some characteristic time length 7 at which two
vectors X(¢) and X(¢+ 7¢) become uncorrelated. If dT is greater than m7T., then
vectors spanning phase space contain z-+1 independent vectors. Therefore, the
curve in Fig. 1 is approximated well by two curves, d.7 =constant and d.=3.
Another basic. quantity to characterize chaotic behaviors is the Lyapunov
exponents which represent the exponential growth rate of nearby orbits. Wolf et al.
have proposed a method to estimate the largest exponent.!? However, the method
has a deficiency of orientational problem. Because one has to successively replace
nearby orbits, minimizing the orientational change. When the dimension of the
- attractor is high, it becomes difficult to find such replacement orbits satisfying the
orientational condition. Two of the present anthors have proposed the Jacobian
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estimation method which can estimate a set of Lyapunov exponents.'? However, the
applicability of the method is restricted to relatively low dimensional attractors, e.g.,
up to 3~5 dimensions. We present here a new method to' extract the largest

Lyapunov exponent which is easy to implement and has less limitation even for high

dimensional attractors.

We note the distance of two different points x, ¥ on the attractors by dis(x, ¥) and
the flow of the system by f*. If one chooses y as the nearest point of x, then fy
approaches the most unstable direction with increasing ¢. Therefore, dis(f'z, f%y)
exponentially grows with increasing ¢, and one obtains

-k (i tny

where angular brackets are the ensemble average with respect to x. Equation (7)
approximates the largest Lyapunov exponent for suitable ¢.

However, Eq. (7) converges very slowly since the discrepancy between the
position y and unstable manifold of x causes an error for estimating the exponent. In
- some cases Eq. (7) does not converge because dis(f’z, /%) cannot be greater than the
extent of the attractor. Therefore, we take another equivalent expression of Eq. (7)

Alt, r)=iz_<ln/1(t, ™, (8)

where A(t, r)=dis(f***z, f**"y)/dis(f'z, f*v), and v is the nearest point of z. In Eq.
(8) the ensemble average is taken for all possible points of . Equation (8) converges
more rapidly than Eq. (7). Figure 2 shows an example of Eq. (8) for the Lorenz
equations. We plot A vs ¢ for 7=0.3 with different dimensions of phase space and a
numerical result based on Eq. (7) by a dotted line for comparison. In Fig. 2 we can
find a plateau which gives an estimation of the largest Lyapunov exponent. The
obtained value is in good agreement with the known value. The results of other
examples are summarized in Table II. The present algorithm has less limitation as
compared with the other methods, thus it is expected to work well even for high
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Fig. 2. The largest Lyapunov exponent of the Lorenz system for a special chaotic attractor (c=16,
=40, b=4) with different dimensions of phase space d=5, 6. For comparison, estimated values
based on Eq. (8) for d=4 and the numerical results A=1.37 by the original definition are shown by-
dotted lines.
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Table II. The largest Lyapunov exponent. 4 is the embedding dimension and D« is
the Lyapunov dimension.

System : . Other methods Our method

Henon map B A=0.41£0.05
A=0417

(a=14, b6=0.3) . d=3

Lorenz equations A1=1371® A=1.37%0.06

(0=16, b=4, r=40) ) d=b

Roessler equations A=0.067+0.005
A=0.069 :

(a=56=02, c=5.7) | d=5

Mackey-Glass equations A=0.0025£1X 10" A=0.0021£5x10~*

(a=0.2, 5=0.1, c=10, Diy=14.45--- J=20

T =150) o

" dimensional attractors such as the Mackey-Glass attractor Whose‘ Lyapunov

dimension'? is 14.45 as shown in Table II. Moreover, it may be worth noting that the
estimation of g-order Lyapunov exponents A;'¥"® is straightforward by simple
modification of Eq. (8)

At r)=iz_%ln</1(t, )% . , (9)

One can obtain %-y spectrum from the series of Ag’s.

In conclusion, we showed that it is possible to estimate the upper bound of the
infinite series of dimensions D, and the largest Lyapunov exponent from time series
by using ensemble average, and investigated the convergence of D, for varying time

delays. The upper bound v, is a good approximation of D4 in most cases. We hope

that the new algorithms have wide applicability to extracting experimental values of
dimensions and the largest Lyapunov exponent.

The authors would like to thank Dr. M. Matsushita for stimulating discussion
and suggestions.
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