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Abstract. This paper examines the positioning accuracy of a GSM beacon-
based location system in a metropolitan environment. We explore five factors 
effecting positioning accuracy: location algorithm choice, scan set size, 
simultaneous use of cells from different providers, training and testing on 
different devices, and calibration data density. We collected a 208-hour, 
4350Km driving trace of three different GSM networks covering the Seattle 
metropolitan area. We show a median error of 94m in downtown and 196m in 
residential areas using a single GSM network and the best algorithm for each 
area. Estimating location using multiple providers’ cells reduces median error to 
65-134 meters and 95% error to 163m in the downtown area, which meets the 
accuracy requirements for E911. We also show that a small 60-hour calibration 
drive is sufficient for enabling a metropolitan area similar to Seattle. 

 
 

1 Introduction 

While several research and commercial efforts now exist for WiFi beacon-location [6, 
9, 25, 27], little research exists on how beacon-location extends to the most 
ubiquitous mobile computing platform today: the mobile phone. Mobile phones are an 
attractive platform for emerging location-aware applications [19, 20] with an 
estimated 2 billion subscribers world-wide as of 2005–about ten times as many as the 
total number of mobile PCs in-use [22, 24]. Specifically, the GSM family of 
technologies, which includes W-CDMA, has more than 1.5 billion subscribers, which 
is more than the total number of Internet users world-wide [23, 24]. In addition, 
mobile phones have long battery life, constant connectivity, and are usually at hand 
and powered on.  

This paper examines the feasibility of a client-side, beacon-based GSM location 
system and whether the methods from the WiFi literature can be retargeted to GSM 
phones in a metropolitan setting. Our approach differs from operator-provided 
network-based GSM location solutions in that the phone can position itself in a 
privacy-observant manner and can use cell towers from all network operators to 
compute location without requiring assistance from the network operators. The 
approach also uses the existing hardware in mobile phones without requiring any 
additional hardware. 



There are several important differences between WiFi and GSM. First, the range of 
a GSM cell can be up to 35Km, which is 70 times larger than WiFi’s maximum range 
of around 500m. Second, the deployment of GSM networks is stable and planned 
compared to the more ad hoc deployment of WiFi access points. Third, GSM operates 
in a licensed frequency band and is thus less prone to interference caused by other 
electronic devices such as cordless phones and microwaves. To study the effect these 
differences have on accuracy, coverage, and calibration overhead, we collected an 
extensive 208-hour, 4350Km driving trace of three major GSM networks covering the 
Seattle metropolitan area: AT&T, Cingular, and T-Mobile.1 Collecting such a large 
trace was necessary to assess the algorithms’ accuracies without introducing 
significant experimental error, as we will describe in Section 2.2. For each GSM 
network, we sampled the radio environment at 1Hz throughout our drive. Each 
sample from each device on each network contained up to 7 different cell IDs with 
their associated signal strengths, network provider ID, and area ID. 

Our contributions are the following:  
• We characterize the accuracy of three published positioning algorithms: a simple 

centroid algorithm that does not model radio propagation, fingerprinting, and  
Monte Carlo localization with a Gaussian Processes signal propagation model. 
Our experiments show that we can achieve a median accuracy of 94m in 
downtown and 196m in residential areas. For GSM, choosing a good algorithm 
can result in up to 388% improvement in position accuracy, which is in stark 
contrast to past wide-area analyses of WiFi positioning algorithms where the 
choice of algorithm was comparatively irrelevant since accuracy only varied 20% 
across different algorithms [4]. 

• We show that using cross-provider GSM beacons can significantly improve 
positioning accuracy compared to only using cells from a single provider, 
achieving median accuracy of 65-134 meters. In the downtown Seattle area, this 
technique meets the E911 positioning requirements for network-based solutions. 

• We show that cross-device operation is possible with only 6-8% degradation in 
accuracy for the centroid algorithm and 57%-63% for Gaussian Processes on 
devices with completely different radios and antennas. 

• We also show that a small 60-hour calibration drive is sufficient for enabling a 
metropolitan area similar to Seattle. 

• We have publicly released our GSM positioning toolkit [13] with the algorithmic 
implementations described in the paper along with tower location traces, 
allowing researchers at other institutions to experiment with new positioning 
algorithms. This data contains information about all three major GSM providers 
in the USA as well as WiFi scans over the 208 hours of data collection. 

The rest of the paper is organized as follows: Section 2 presents our data collection 
methodology and the positioning algorithms, Section 3 characterizes the accuracy of 
the algorithms under various conditions, Section 4 discusses the implications of our 
findings, Section 5 presents related work, and Section 6 discusses future work and 
concludes. 

                                                            
1 Cingular recently acquired AT&T Wireless, but many AT&T-identified towers still existed at 
the time of this study.  



2 Methodology 

This section describes our data collection methodology, the trace characteristics, and 
the positioning algorithms. 

2.1 Data Collection 

Our data collection hardware consisted of an IBM Thinkpad T30 laptop with a WiFi 
card, two GPS units, three Sony Ericsson GM28 GSM modems and three Audiovox 
SMT5600 phones (also known as the HTC Typhoon phones), shown in Figure 1. The 
GSM phones and GSM modems were fitted with SIM cards from each of the three 
GSM network providers in the area: AT&T, Cingular, and T-Mobile. A second, 
identical setup provides redundancy in the event of equipment failure. In all, we used 
12 GSM devices to collect GSM traces and 4 redundant GPS units to provide ground 
truth for location.  

Our data collection software is implemented in C#. It records the attached cell ID 
as well as observed signal strength in dBm for up to 7 GSM cells for each of the 
modems and the phones, independently once every second for the phones and the 
maximum scan rate of once every three seconds for the modems. Readings from each 
GPS unit are recorded once a second. For ground truth of location, we use the latitude 
and longitude values from the readings that meet the following criteria: valid GPS 
lock with 5 or more satellite and a low horizontal dilution of precision (HDOP). 

A dense calibration trace allows us to characterize the best-case positioning 
accuracy of a GSM-based location system and perform sensitivity analyses. To collect 
such a trace, we put our data collection setup in a car and drove every publicly 
accessible street in the Seattle metropolitan area as shown in Figure 2. External 
antennas for the GSM modems and GPS units were placed on the car roof to improve 
signal reception. We drove over 208hrs, or 4350Km, and collected over 24GB of 
traces over a period of three months. The complete trace contains 6756 unique cells 
across the three network providers. During this effort, we had one laptop failure due 
to rain and one car accident. 
 

Figure 1. Our GSM/WiFi data 
collection device: one WiFi card, 
two GPS units (left), and three Sony 
Ericsson GM28 GSM modems 
(center) are connected to an IBM 
Thinkpad T30 laptop. The modems 
require external antennas (bottom) 
and we have modified them to be 
powered via USB hubs. Three 
Audiovox SMT5600 phones, one for 
each network provider, are shown 
on the right,  

 



 
Figure 2. Dotted-line area and street highlights show the roads driven during our GSM 

trace collection spanning an 18Km x 25Km region of the Seattle metropolitan area. The three 
solid rectangles outline the test areas: Downtown with high cell tower density and Residential,  
two neighborhoods with lower cell density. 

 
The calibration trace is used to train the three positioning algorithms. To measure 

the accuracy of these algorithms, we selected three test neighborhoods and collected a 
second complete test trace in each neighborhood two weeks after the training trace 
was collected. Downtown Seattle was chosen as one test neighborhood as it had the 
highest tower density at 66 cells/Km2. In addition, we selected two residential 
neighborhoods with lower cell tower densities. On average, these neighborhoods had 
26 cells/Km2 or 39% of Downtown’s cell density. In our results, the data for the two 
low-density neighborhoods have been combined. Table 1 summarizes the properties 
of the training and the test traces. 

 

Table 1. Properties of the collected training trace and two testing traces 

 Training Trace Testing Traces 
Name  Downtown Residential 
Duration 208hr 70min 169min 
Distance 4350Km 24Km 89Km 
Dimension 25.0 x 18.6Km

 
2.7 x 2.3Km 

  
   2.6 x 4.1Km 
+ 4.6 x 5.5Km   

Area Greater Seattle Downtown Seattle Ravenna + East Bellevue 
Avg. Cell Density 28 cells/Km2 66 cells/Km2 26 cells/Km2 

DDoowwnnttoowwnn

RReessiiddeennttiiaall

RReessiiddeennttiiaall

2255..00 KKmm

1188..66  KKmm  



2.2 Training Area Size 

A valid question to ask is why the algorithmic evaluation requires collecting training 
traces from a much larger area than the regions tested. The answer is that the training 
data must be large enough to cover the complete cells of all towers seen in the testing 
traces. If the training data does not meet this constraint then we risk artificially 
inflating the measured accuracy of the algorithms by not letting them make mistakes 
they might otherwise make. For example, an algorithm sensing a tower located on the 
border of the testing area should be allowed to err by estimating the phone’s position 
to be in the part of that tower’s cell that is outside the testing area. Indeed, by 
shrinking the training area to match the size of the testing area we found that we could 
artificially inflate the accuracy up to 41% for some algorithms. Therefore, we were 
careful to collect a wide-scale training trace of the entire greater Seattle area 
extending well beyond the boundaries of all our testing areas. 

2.3 Positioning Algorithms 

In this paper, we measure the performance of three positioning algorithms from the 
research literature: a centroid algorithm that does not model radio propagation [9], a 
radio fingerprinting algorithm [3], and Monte Carlo localization with a learned 
Gaussian Processes signal propagation model [5, 14]. While a wide variety of radio-
based location algorithms have been published, we chose these three as they are 
representative of the spectrum of positioning algorithms and vary in complexity and 
expected accuracy. 

All our algorithms have been implements in a C# location toolkit that runs on 
Microsoft Windows Mobile Smartphones, PDAs, and PCs running Windows. On an 
HTC Typhoon phone, our toolkit can poll GSM readings and calculate its location 
four times per second using the centroid algorithm and the cell tower maps size for 
the 6756 cells we observed in Seattle occupy only 44KB of compressed data. 

There are two phases to analyzing the positioning accuracy of an algorithm. First, a 
training trace containing time-stamped GSM and GPS measurements is used to build 
a model that is specific to that algorithm. In the second phase, the algorithm uses the 
GSM measurements in an independent testing trace to estimate its position, and 
outputs latitude/longitude values in its position estimate. Positioning error is 
computed by calculating the distance between the positions estimated by the 
algorithm and the ground truth positions provided by GPS. We used the Haversine 
Formula of distance between two points over the earth as the distance metric [21]. 

2.3.1 Centroid Family 
The centroid algorithm [9] is very fast to compute and, in its basic form, does not 
employ a radio propagation model. Given a lookup table of <Cell ID, Latitude, 
Longitude> entries, the centroid algorithm estimates the phone’s position to be the 
geometric center of all the cells that are seen in a measurement. Weighting by the 
received signal strength observed in the scans is an extension that can offer a small 
improvement in accuracy. Our experiments used the centroid algorithm in its basic 
form without any modeling of radio propagation. 



 
Centroid is the only algorithm we consider that depends on having an estimate of 

the true tower positions. Because the true cell tower positions are not publicly 
available in the USA, the training phase estimates tower positions by averaging the 
places where the highest signal strengths in each cell was observed. Figure 3 shows 
map of the estimated tower positions for two of our test areas. To evaluate our tower 
placement accuracy, we randomly selected six cell towers and physically visited these 
towers to precisely verify their true location. In this test, we found an average error of 
56m and a maximum error of 76m. These values are reasonable estimated lower 
bounds for position error in the centroid algorithm. 

2.3.2 Fingerprinting  
Radio fingerprinting is a positioning method that assumes the radio beacons and 
associated signal strengths observed at a particular location is stable over time. The 
training phase constructs a search index mapping radio fingerprints to locations. In 
testing, upon seeing a similar radio fingerprint the algorithm can use the index to 
deduce the phone’s position. The RADAR system [3] is an example of this technique 
applied to WiFi positioning in laptops. Fingerprinting has also more recently been 
used with GSM radio signatures for server-side, wide-area positioning [10, 28] and 
indoor location and floor estimation [12].  

The fingerprinting algorithm does not create a map of estimated tower positions 
nor does it model radio propagation. Instead, it creates a search index of radio 
fingerprints to latitude/longitude coordinates. To position a device, the algorithm uses 
the constructed index and calculates the Euclidean distance in signal strength space 
between the current fingerprint and all available fingerprints in the index [4]. It then 
selects k fingerprints with the smallest Euclidean distance as potential indicators of 
the current location. The location of the device is estimated as an average of the 
latitude and longitude coordinates of the best k matches. The accuracy of the location 
estimate is highly dependent on the density of the set of collected fingerprints. The 
indoor WiFi and GSM localization papers cited above collected fingerprints at a 
density of around one fingerprint per square meter. This paper investigates how well 

          Downtown      Residential (cropped) 
 

 
 

Figure 3. Cell location map for the three network providers; each dot represents the estimated 
location of a cell. The left map shows Downtown with an average density of 66 cells/Km2. The 
right map shows a cropped Residential region with an average cell density of 26 cells/Km2. 



fingerprinting works with sparser calibration and less uniformly distributed set of 
GSM fingerprints at a metropolitan scale. We also characterize the effects of several 
practical factors on positioning accuracy. 

2.3.3 Monte Carlo Localization with Gaussian Processes Signal Models 
Gaussian Processes-based Monte Carlo localization uses a radio propagation model 
and Markov localization to predict the phone’s position. The idea is to build a sensor 
model to predict the signal strength at each location and then use this information to 
compute the likelihood of measurements. The phone’s position is estimated using a 
Bayesian particle filter. 

This approach is like fingerprinting, except it uses an abstract parametric model of 
the signal environment instead of building a direct search index of the calibration data 
itself as is done with fingerprinting. To model the signal propagation, we use 
Gaussian Processes, which are nonparametric models that estimate Gaussian 
distributions over functions based on the training data [14]. In order to achieve fast 
execution we pre-process the signal propagation function to a grid with 15m grid-
cells. The computation of the signal propagation can then be implemented simply by a 
look-up function in the maps of the cell towers. With the predicted signal strength, we 
can compute the likelihood of an observation given the phone is at a particular 
location. 

To represent the posterior probability distribution about the position of the phone, 
we apply standard Monte-Carlo localization called particle filtering [5]. In Monte-
Carlo localization, the belief about the phone’s position is represented by a set of 
random samples. Each sample consists of a state vector of the underlying system, 
which is the position of the mobile phone, and a weighting factor. The weight is the 
likelihood of the measurement at the particle’s location. The posterior is represented 
by the distribution of the samples and their importance factors. This particle filter 
algorithm used by our system is also known as sequential importance sampling [1]. 

3 Results 

This section presents analyses that explore the effects of five factors on positioning 
accuracy: algorithm selection, scan set size, simultaneous use of cells from different 
providers, training and testing on different devices, and calibration drive density. 
Because our goal is to characterize the positioning accuracy of GSM, we have 
anonymized the names of the three network providers and we will refer to them as 
Provider A, B, and C. For single-provider results, we report the median values among 
the three providers. 

3.1 Effect of Algorithm Selection on Positioning Accuracy 

We evaluated the positioning error for each of the three algorithms described in 
Section 2.3 using the test traces collected from the test areas. Table 2 shows the 
median and 90th percentile error for each algorithm grouped by the test areas. All 



three algorithms performed better in the higher tower density area, Downtown, than 
the lower tower density area, with the median error ranging from 94-232 meters 
compared to 196-760 meters.  

Since the centroid algorithm does not model signal strength and assigns equal 
weight to each cell, the position estimate can be greatly affected by the density and 
the placement of the cells resulting in the worst position estimates. The fingerprinting 
algorithm performs much better than centroid, achieving a 94m median error in 
Downtown and 277m in Residential. One reason for this decrease in error is that 
Downtown has more obstructions due to large buildings than the Residential area. 
These obstructions actually prove advantageous because they help form unique 
fingerprints to allow the algorithm to differentiate between nearby locations. The 
more open space coupled with the lower cell density in the Residential area results in 
less unique fingerprints, thereby increasing the positioning error. 

The Gaussian Processes algorithm models signal strengths with continuous 
functions, and therefore is not able to capture the sharp changes in signal strengths 
due to obstructions as well as fingerprinting, resulting in slightly worse accuracy in 
Downtown. In the more open environments, however, it models the sparse training 
data sufficiently to produce the best accuracy in the residential areas.  

Positioning error from WiFi localization techniques has been shown to be highly 
dependent on access point density. Moreover, the use of complex positioning 
algorithms only provide a 20% improvement in accuracy compared to the simple 
algorithms such as centroid [4]. With the much larger cell sizes of GSM, we found 
that algorithmic improvements can improve positioning accuracy by 247%- 388%. 

3.2 Effects of Scan Set Size 

At any given time, a GSM device may be within range of a large number of GSM 
cells. A client-side location system, however, may be limited in the number of nearby 
cells it can sense. For many models of mobile phones, normal user-level application 
are not allowed any information about which cell tower the phones are associated 
with or the observed signal strength. The Series 60 phones [26] (e.g. Nokia 6600 and 
N92) allow user programs to find out the ID and observed signal strength of the single 
cell with which the phone is currently associated. Other devices, such as the GSM 
modems and phones we used in our study, provide information about the cell the 
phone is associated with, as well as six other nearby cells (making a total of seven). In 
this experiment, we investigate what effect the size of this set has on position 

Table 2. Median and 90th-percentile positioning errors (in meters) for Centroid, 
Fingerprinting, and Gaussian Processes algorithms in the two test areas 

 Downtown (higher density) Residential (lower density) 

 50% 90% 50% 90% 
Centroid 232 574 760 2479 
Fingerprinting 94 291 277 984 
Gaussian Processes 126 358 196 552 

 



accuracy for all three algorithms. We vary the number of cells between one and seven 
by sorting the observed cells by signal strength and using only the n strongest. 

Figure 4 shows sensitivity analysis of positioning error versus the number of cells 
available for both Downtown and Residential. Both the fingerprinting and Gaussian 
Processes algorithms improve in accuracy as more cells are used for positioning, for a 
50% and 37% improvement in Downtown, respectively. The additional cells, 
regardless of signals strengths, provide information that help differentiation among 
similar measurements and help improve the position estimates. 

Centroid also exhibits the same trend in areas of high cell density, showing 
improved accuracy with more cells in Downtown. However, as cells become sparser 
and distant in the Residential area, the cells with weak signal strengths contribute to 
increased positioning error. This trend is evident in Figure 4, where surprisingly, 
using only 1-2 cells gives the best accuracy, and using 5 or more cells produce the 
worst positioning accuracy.  

3.3 Effects of Using Towers From Multiple Providers 

Once associated with a cell tower, GSM devices only monitor cells from that tower’s 
network, even though cell towers from other providers may be closer and have 
stronger signals. Up to this point, all of the results have reflected this limitation: our 
AT&T phone estimates its location using the AT&T training data, the T-Mobile 
phone estimates its location using the T-Mobile data, etc. We now consider what 
would happen if a GSM phone could scan for cells from all available networks. 
Ideally, it would increase both the number of nearby observable cell towers and the 
number of strongly observable towers, thus providing an opportunity to improve 
positioning accuracy. 
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Figure 4. Median positioning error as a function of the N cells with the strongest signal 
strengths for the Downtown and Residential test areas. FP stands for fingerprinting and GP 
stands for Gaussian Processes. 

Downtown Residential



  
To evaluate its effectiveness, we simulate a cross-provider device by combining 

measurements from the three network providers: AT&T, Cingular, and T-Mobile that 
were collected within 5 seconds of each other, and use them to estimate location. 
Because each GSM device gets information for up to 7 nearby cells on its network, 
our simulated device will hear up to 21 nearby cells. This raised a concern that 
accuracy improvements may only be due to the magnitude of the scan set. To measure 
this effect, we first limit our simulated cross-provider device to only use the strongest 
7 cells it hears across the three networks. We then evaluate the positioning accuracy 
when all available cells from all providers are used.  

Table 3 shows the effect on positioning accuracy when each algorithm uses only 
cells from a single provider, the top 7 strongest cells across providers, and all possible 
cells. For Centroid, the increased ratio of nearby towers is the most significant with 
the strongest 7 cells, which shows an improvement of 11-30% compared to a single 
provider. Increasing the number of cells reduces the improvement. 

Surprisingly, fingerprinting performs much worse when cells from multiple 
providers are used. A closer inspection shows that one of the network providers, 
Provider A, added new cells to the downtown area (or renamed existing cells) during 
our 3-month calibration drive. Because we drove the downtown area during the first 
month, we did not observe these new cells with strong signal strengths at their true 
location. Rather, we observed them with weak signal strengths kilometers away, 
resulting in skewed position estimates produced by fingerprinting and centroid. 
Gaussian Processes is more resistant to this effect because the models only contain 
information about these cells at weaks signal strengths, limiting their impact during 
the tests drive when these cells were observed at strong signal strengths.  

For Gaussian Processes, using the strongest 7 cells across providers improves the 
median error by 27-40% compared to a single provider. Using all the available cells, 
it further improves the median error for a total improvement of 45-55%, achieving a 
median error of 65m for Downtown and 134m for Residential. 

The cross-provider accuracy improvement is more significant towards the tail end 
of the distribution, as evident in the more vertical curves in the Cumulative 
Distribution Function (CDF) shown in Figure 5. When all available cells are being 
used, Gaussian Processes achieves 136m at the 90th percentile in Downtown 
compared to 308-907m for the three individual providers. Specifically, the 67th 
percentile error is 88m and the 95th percentile is 163m, which is within the E911 
requirements of 100m and 300m, respectively, for network-based solutions.  

Table 3. Cross-provider median positioning error in meters when 1) using only cells 
from a single provider, 2) using the top 7 strongest cells across providers, and 3) using 
all available cells across providers 

  Downtown Residential 
  Single 

Provider
(7) 

Cross-
Provider 

(7) 

Cross-
Provider 

(all) 

Single 
Provider

(7) 

Cross-
Provider 

(7) 

Cross-
Provider 

(all) 
Centroid 187 166 170 647 456 574 
Fingerprinting 94 153 245 277 313 297 
Gaussian Processes 126 87 65 196 147 134 
 



3.4 Effects of Training on One Device and Testing on Another 

Our results thus far have all been presented based on a single GSM device: the HTC 
Typhoon phone. Moreover, we used the same device to gather data for both testing 
and training. A practical question is if other GSM devices, including another HTC 
Typhoon phone, can be used to achieve comparable positioning results using the same 
calibration data. For simple algorithms such as centroid, the only algorithmic 
requirement is that the device observes a similar set of cell towers as the HTC 
Typhoon. For other algorithms, the device must observe similar towers, and its signal 
strength values would have to correlate well with the HTC Typhoon. Given a strong 
correlation, a transformation function could convert the device’s signal strength 
values to those reported by the HTC Typhoon.  

We compared the common cells seen, and the signal strength values for those cells, 
among three GSM devices: a duplicate HTC Typhoon phone, a HTC Tornado phone, 
and a Sony Ericsson GM28 modem. These devices represent GSM units that have 
different radio and different antenna designs. All devices report a signal strength 
value with each observed cell.  

Table 4 shows the average number of common towers seen per scan between each 
device and the reference device, and the Pearson correlation coefficient for the signal 
strength values of these common cells. Even though the HTC Tornado has a different 
antenna and the modem has both a different radio and antenna, all devices exhibit 
strong signal strength correlation that are statistically significant to the 0.001 level.  

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000
Positioning Error (meters)

Provider A
Provider B
Provider C
Cross-Provider (Strongest 7 Cells)
Cross-Provider (All Cells)

 
Figure 5. CDF of positioning error for the Gaussian Processes algorithm in Downtown 

using 1) cells from a single provider, 2) the top 7 strongest cells across multiple network 
providers, and 3) all available cells from multiple network providers. 



 
Given that a linear transformation function can map the signal strength from one 

device to another, we now explore the effect of training and testing on different 
devices. Because the handoff behavior are different on different GSM devices due to 
radio and antenna design, techniques such as fingerprinting that do exact pattern 
matching of signal strengths should see the most degradation.  

Table 5 shows the median error when we train on the data from the HTC Typhoon 
phone and test on the GM28 modem after applying a linear transformation function 
for the observed signal strengths. These accuracy numbers are conservative because 
the phone and the modems had completely different radio and antenna designs, with 
the modems using roof-mounted antennas.  

The Gaussian Processes algorithm had the best accuracy in both Downtown and 
Residential, with median accuracy of 206m and 307m, and degradation of 63% and 
57%, respectively. Fingerprinting performed the worst in Downtown at 366m, and has 
the largest increase in error in both Downtown and Residential compared to training 
and testing on the same device. This is likely due to the modems switching over to 
different cells at slightly different times than the phones when they moved across cell 
boundaries. Centroid was the most robust with the least degradation at 6-8%.  
 

 

Table 4. Similarity between different GSM devices and the reference HTC Typhoon 
phone, showing the number of cells that are the common when two different devices scan 
at the same time. Pearson correlation coefficient and significance are shown for the 
signal strengths of these common cells between each device and the reference phone. 

Devices Radio Antenna Average # of 
Common Cells

Signal Strength 
Correlation 

Correlation 
Significance 

HTC Typhoon 
(reference) 

Same Same 7.000 1.000 .000 

HTC Typhoon 
(duplicate) 

Same Same 6.484 0.828 <.001 

HTC Tornado 
 

Same Diff. 5.018 0.789 <.001 

Sony Ericsson  
GM28 Modem 

Diff. Diff. 4.283 0.874 <.001 

 

Table 5. Cross-device median positioning error and % change when training with the 
trace collected on one device (the HTC Typhoon phones) and testing on another device 
(the Sony Ericsson modems) 

 Downtown Residential 
 50% (meters) % change 50% (meters) % change 
Centroid 245 5.6% 818 7.6% 
Fingerprinting 366 289% 803 190% 
Gaussian Processes 206 63% 307 57% 



3.5 Effects of Reducing Calibration Drive Density 

We characterized the tradeoff between calibration drive density and positioning error 
by simulating a sparser driving pattern from our comprehensive data set. In contrast to 
prior experiments on WiFi density that effectively simulate devices with slower 
scanning rates [4], we are interested in spatial thinning that simulates the effect of 
driving fewer streets. Understanding this effect is useful to estimate the resource and 
cost necessary to calibrate a GSM-based positioning system to support accuracy 
requirements of the intended applications. Simple algorithms that do not model signal 
propagation characteristics only require the location of the cell towers, which can 
potentially be supplied by the GSM network providers. More sophisticated 
algorithms, however, rely on calibration data to improve positioning accuracy, but it 
is unclear how much calibration is necessary.  

To simulate these sparse drives, we super-impose a virtual street grid pattern on 
our dense calibration trace and filter measurements that do not fall on the virtual street 
grid. By varying the width between the virtual streets, varying levels of driving 
density can be simulated. In order to reduce systematic error due to the interaction of 
the virtual and real grids, we use five random offsets for each grid width. We then 
average them for each width to estimate the positioning error given the level of 
density being simulated. 

Figure 7 shows the median error versus the percentage of data dropped using our 
simulated street grids for Downtown. With centroid, using only 20% of the density 
produces statistically equivalent positioning accuracy as our full drive density. Both 
fingerprinting and Gaussian Proccesses algorithms show slight, but gradual 

 
Figure 6. Example of a generated, virtual street grid that simulates a drive density equivalent 
to 10% of the full training trace. 



degradation as the amount of data decreases, because the quality of the radio models 
degrades with less calibration. All three algorithms had median positioning error 
above 200m when only 10% of the density is used. Although a comprehensive drive 
still produces the best positioning error, less dense drives can still produce similar 
accuracy without the added expense. For the Seattle metropolitan area, 30%, or 60 
hours of driving is sufficient to calibrate a GSM-based positioning system without a 
significant loss in accuracy. More sophisticated street selection can further reduce the 
amount of calibration required. 

4 Discussion 

We have presented a variety of results to show how three location estimation 
algorithms performed using GSM traces from three neighborhoods. By using data 
from different devices and by simulating varying scan-set sizes and training trace 
densities, we modeled the algorithms performance in a variety of situations. Table 6 
show a high-level summary of these results. From this table, we can draw a number of 
conclusions about when and where these algorithms are the most appropriate.  

A number of mobile phones, including the popular Series 60 phones [26], only 
provide information about a single tower at a time. For these devices, as well as 
phones with constrained storage and computation capability, the best algorithm is the 
centroid. The centroid algorithm uses very few resources, and is extremely robust to 
the quality of the training set. Our data showed the centroid to be the most resistant to 
sparse training data as well as training data collected on a different device. This 
simplicity comes at the cost of being the least accurate in areas with both high and 
low tower densities. 
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Figure 7. Median positioning error as a function of the calibration drive density, 
simulating the effect of driving fewer streets. Dropping 70% of the data still provides 
comparable median error to the full calibration drive. 



 
For mobile phones with more storage and processing power and the ability to scan 

for multiple cell towers at a time, the Monte Carlo localization with Gaussian 
Processes model probably offers the best overall mix of accuracy and practicality. It 
was the most accurate in the residential neighborhoods and was close to the best 
algorithm in downtown. It was also robust to single cells positioning as well as cross-
device training data.  

Fingerprinting was the most accurate in the high-density urban area and performed 
well in the low-density area as well. The fingerprint training sets consume large 
amounts of storage, but with optimized indexing the relevant fingerprints can be 
accessed quickly. However, fingerprinting was the most fragile of the algorithms, 
requiring dense training data collected on similar, if not identical, mobile phones. It 
was also the most fragile to the addition of new cells during the calibration drive. 

The most worrisome results in this study are the sensitivities we measured to cross-
device accuracy degradation. Although we tested a particularly dramatic cross-device 
scenario (phone versus modem) with completely different antenna configuration 
(internal versus vehicle roof-mounted), the error increase was higher than we would 
like to see. We believe more research, both at the hardware and algorithmic levels is 
warranted to understand and mitigate the errors in this area. 

Our data also shows that if future mobile phones support the ability to scan for 
towers across service providers, the Gaussian Process algorithm becomes the clear 
winner. While the Centroid and Fingerprinting showed no benefit from additional 
tower data, the Gaussian Process algorithm saw up to a 50% reduction in median 
error. Perhaps more importantly, the 95th-percentile error showed an even more 
pronounced drop, improving by over 70% in our downtown test area. 

5 Related Work 

The most common location technology today is the Global Positioning System (GPS). 
Although GPS is effective in open environments, it does not work well when the GPS 
receiver is indoors or in dense urban areas. The research community generally agrees 
that many location-enhanced mobile applications require another technology to 

Table 6. Summary of the characteristics of the three positioning algorithms 

 Storage 
Required 

(for Seattle, 
compressed) 

CPU 
Usage

Accuracy 
(Dense 

Towers)

Accuracy 
(Sparse 
Towers)

Required 
Density 

of 
Training 

Data 

Requires 
Same-
Device 

Training 
Set 

Benefits 
from 

Cross-
Provider 
Scanning

Tolerant 
of Phones 
Exposing 

Single 
Cell 

Centroid
 

Low  
(44KB) 

Low 232m 760m Low No Yes Yes 

Finger-
printing 

High 
(188MB) 

Med. 94m 277m High Yes No No 

Gaussian 
Processes 

Med. 
(80MB) 

High 126m 196m Med. No Yes Yes 

 



augment or replace GPS to meet coverage and accuracy needs. GSM and WiFi-based 
location techniques are common ways to overcome the shortcomings in GPS. 

The four papers most related to this work are follows: LaMarca et al [9] presents 
an overview of Place Lab, with experiments that are appropriate to study WiFi 
positioning accuracy, but not sufficient for characterizing GSM. Trevisani and 
Vitaletti [15] studies single cell-ID location in mobile phone networks that compares 
the accuracy and coverage of operators’ location systems in different cities, Laitinen 
et al [10] analyzes the positioning accuracy of a server-side fingerprinting approach in 
both urban and suburban environments. Otsason et al [12] explores client-side indoor 
GSM location and floor differentiation. Our work characterizes the wide-area 
positioning accuracy for three classes of algorithms and investigates the effects of 
several practical issues such as cross-device positioning and calibration drive density. 
We also present a novel cross-provider positioning technique that significantly 
improves positioning accuracy. 

The E911/E112 initiatives in the US and Europe specify requirements on 
localization accuracy for mobile phones placing emergency calls. These initiatives 
have catalyzed a market for network operator-provided location capabilities and 
services like AT&T Wireless’ friend-finder and Sprint-NexTel’s fleet management 
tools. Operators calculate mobile phone positions using hybrid network-client 
techniques like Assisted GPS (AGPS) where the network data links provide aiding 
information to a limited in-phone GPS chip, or network-only techniques like 
enhanced observed time difference (EOTD), angle of arrival (AOA), and time 
difference of arrival (TDOA) [15]. AGPS is more accurate than network-only 
techniques and extends the coverage of standalone GPS to operate in areas with 
limited GPS reception, such as urban canyons and some indoor environments 

Beacon-based location with WiFi positioning is also a well-studied problem by the 
Place Lab project and other researchers [4, 6, 9, 10, 11] and has been commercialized 
by Microsoft Virtual Earth [25] and SkyHook Wireless [28]. They have demonstrated 
that the WiFi beacon approach is viable and can result in a good indoor-outdoor 
location system with high coverage and sufficient accuracy for many mobile 
applications. Metrics including coverage, accuracy, beacon density, mapping and 
calibration drive overhead, and performance have all been evaluated. Median 
accuracy of the approach is 15m-60m with nearly 100% coverage in urban areas. 
Wide-area beacon-based approaches complement the many indoor positioning 
systems that provide high precision in indoor environments but require specialized 
hardware or have high installation costs. Examples of these systems include Cricket 
[ 15], Active Badge [ 16], and Active Floor [ 17]. 

A related but distinct class of research to the work in this paper is the problem of 
learning places using mobile devices carried by the user. These place-learning 
systems do not provide real-time navigation or fulfill the “dot-on-a-map” application 
scenarios. Instead, they provide the ability to recognize previously visited destinations 
by using metrics like GPS dropout [2], cell handoff patterns [8], or radio signatures 
[7] to match previously learned places. 



6 Conclusions 

This paper examined the positioning accuracy and the practical challenges in 
deploying a GSM beacon-based location system in a metropolitan environment. To do 
this, we collected data over a larger area than past WiFi beacon-based location 
projects because the range of GSM cells are up to 70 times larger than WiFi access 
points. We collected an extensive 208hr, 4350Km trace covering the Seattle 
metropolitan area. 

Our results show that existing GSM devices can achieve a positioning accuracy 
with a median error of 94-196 meters using cells from a single provider. We have 
observed that the positioning accuracy varies significantly across algorithms, by a 
factor of almost 4x, compared to past characterizations for WiFi that have a maximum 
variation of 20%. 

Our analysis on calibration drive density suggests that 30% of our dataset was 
sufficient to provide comparable positioning accuracy – suggesting that 60hrs of 
driving can cover a metropolitan area similar to the size of Seattle. Our results show 
that cross-device positioning is possible with only 6-8% degradation in accuracy for 
the centroid algorithm and 57%-63% for Gaussian Processes on devices with 
completely different radios and antennas. We believe more research, both at the 
hardware and algorithmic levels is warranted to understand and mitigate the errors in 
this area. 

Finally, we have identified an opportunity to significantly improve accuracy by 
scanning cells across all available providers, for a median error of 65-134m, which is 
a factor of 3-4x of the published accuracy for WiFi. 

Acknowledgements 

We thank James Howard for developing the data logging software and David Sherrick 
for collecting the GSM traces. We also thank the anonymous reviewers for their 
comments.  
 
References 
1. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on Particle Filters for 

Online Non-Linear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal 
Processing, 50(2):174–188, 2002. 

2. D. Ashbrook, T. Starner, “Using GPS to Learn Significant Locations and Predict 
Movement across Multiple Users”, Personal and Ubiquitous Computing 7 (2003) 275–286 

3. P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-Based User Location and 
Tracking System”, in Proceedings of IEEE INFOCOM 2000, Vol. 2: 775-784 

4. Y. Cheng, Y. Chawathe, A. LaMarca and J. Krumm, “Accuracy Characterization for 
Metropolitan-scale WiFi Localization”, in Proceedings of Mobisys 2005. 

5. D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localization: Efficient 
Position Estimation for Mobile Robots”, in Proceedings of AAAI, 1999. 



6. A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and L. E. Kavraki, 
“Practical Robust Localization over Large-scale 802.11 Wireless Networks,” in 
Proceedings of Mobicom, 2004. 

7. J. Hightower, et al, “Learning and Recognizing the Places We Go", in Proceedings of 
Ubicomp, pp. 159-176, Sep. 2005. 

8. K. Laasonen, M. Raento, and H. Toivonen. “Adaptive On-device Location Recognition”, 
in Proceedings of the Second International Conference on Pervasive Computing. Volume 
3001 of Lecture Notes in Computer Science., Springer-Verlag (2004) 287–304 

9. A. LaMarca, et al, "Place Lab: Device Positioning Using Radio Beacons in the Wild," in 
Proceedings of the Third International Conference on Pervasive Computing, May 2005. 

10. H. Laitinen, J. Lahteenmaki, T. Nordstrom, “Database correlation method for GSM 
location”, IEEE 53rd Vehicular Technology Conference, 2001. 

11. J. Letchner, D. Fox, and A. LaMarca, "Large-Scale Localization from Wireless Signal 
Strength", In Proceedings of the National Conference on Artificial Intelligence (AAAI-05). 

12. V. Otsason, A. Varshavsky, A. LaMarca, E. de Lara: “Accurate GSM Indoor 
Localization,” in Proceedings of Ubicomp 2005: 141-158. 

13. Privacy-Observant Location System, http://pols.sourceforge.net/ 
14. A. Schwaighofer, M. Grigoras, V. Tresp, and C. Hoffmann. “GPPS: A Gaussian Process 

Positioning System for Cellular Networks”, in Proceedings of NIPS 2003. 
15. E. Trevisani and A. Vitaletti. “Cell-ID Location Technique, Limits and Benefits: An 

Experimental Study.” In Proceedings of WMCSA 2004. 51—60. 
16. N. B. Priyantha, A. Chakraborty, H. Balakrishnan. “The cricket location-support system.” 

In Proceedings of Mobicom 2000, pp. 32-43 
17. R. Want, A. Hopper, V. Falco, J. Gibbons. “The Active Badge Location System.” ACM 

Transactions on Information Systems 10, 1 (1992), 91-102 
18. M. D. Addlesee, A. Jones, F. Livesey, and F. Samaria. “The ORL Active Floor.” IEEE 

Personal Communications 4, 5 (1997), 35-41. 
19. T. Sohn, et al, “Place-Its: A Study of Location-Based Reminders on Mobile Phones.” In 

Proceedings of Ubicomp 2005. 
20. I. Smith, et al, “Social Disclosure of Place: From Location Technology to Communication 

Practice.” In Proceedings of Pervasive 2005.  
21. R.W. Sinnott, “Virtues of the Haversine”, Sky and Telescope, vol. 68, no. 2, 1984, p. 159 
22. Computer Industry Almanac Press Release. “Mobile PCs In-Use Surpass 200M.” June, 

2005. http://www.c-i-a.com/pr0605.htm 
23. Computer Industry Almanac Press Release. “Worldwide Internet Users will Top 1 Billion 

in 2005.” Sept 2004. http://www.c-i-a.com/pr0904.htm 
24. GSM Association Press Release. “Worldwide cellular connections exceeds 2 billion.” Sept 

2005. http://www.gsmworld.com/news/press_2005/press05_21.shtml 
25. Microsoft Virtual Earth. http://virtualearth.msn.com 
26. Series 60 Phone Platform. http://s60.com 
27. Skyhook Wireless. http://www.skyhookwireless.com 
28. US Wireless. http://web.archive.org/web/20031124182802/http://uswcorp.com 


