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Abstract. Back-in-time debuggers are extremely useful tools for identifying the
causes of bugs. Unfortunately the “omniscient” approaches that try to remember
all previous states are impractical because they consume too much space or they
are far too slow. Several approaches rely on heuristics to limit these penalties, but
they ultimately end up throwing out too much relevant information. In this paper
we propose a practical approach that attempts to keep track of only the relevant
data. In contrast to other approaches, we keep object history information together
with the regular objects in the application memory. Although seemingly counter-
intuitive, this approach has the effect that data not reachable from current appli-
cation objects (and hence, no longer relevant) is garbage collected. We describe
the technical details of our approach, and we present benchmarks that demon-
strate that memory consumption stays within practical bounds. Furthermore, the
performance penalty is significantly less than with other approaches.

1 Introduction

When debugging object-oriented systems, the hardest task is to find the actual root
cause of the failure as this can be far from where the bug actually manifests itself [1].
In a recent study, Liblit et al. examined bug symptoms for various programs and found
that in 50% of the cases the execution stack contains essentially no information about
the bug’s cause [2].

Classical debuggers are not always up to the task, since they only provide access
to information that is still in the run-time stack. In particular, the information needed
to track down these difficult bugs includes (1) how an object reference got here, and
(2) the previous values of an object’s fields. For this reason it is helpful to have pre-
vious object states and object reference flow information at hand during debugging.
Techniques and tools like back-in-time debuggers, which allow one to inspect previous
program states and step backwards in the control flow, have gained increasing attention
recently [3,4,5,6].

The ideal support for a back-in-time debugger is provided by an omniscient imple-
mentation that remembers the complete object history, but such solutions are imprac-
tical because they generate enormous amounts of information. Storing the data to disk
instead of keeping it in memory can alleviate the problem, but it only postpones the
end, and it has the drawback of further increasing the runtime overhead. Current imple-
mentations such as ODB [3], TOD [4] or Unstuck [5] can incur a slowdown of factor
100 or more for non-trivial programs.
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The common strategy for discarding data is to delete the oldest data first, which
inevitably leads to the problem that bugs that have their cause located far enough from
their effect cannot be tracked down anymore [3]. Another strategy to address the mem-
ory problem is to generate less data by only instrumenting parts of the application [4].
In this case, however, the programmer must know upfront where the potential source of
the problem is. This approach produces less data, but it still presents the problem that
the data grows over time making it necessary to discard old data at some point.

In this paper, we attempt to answer the question: How can we make back-in-time
debugging practical, while still preserving all relevant information? Our approach is to
track historical information at the level of the virtual machine, and to keep the tracked
information (i.e., the object flows) in the same memory space as the regular application
objects. A direct consequence of this approach is that information no longer reachable
from the objects of the running application will be automatically garbage collected.

We extend the object memory model of conventional object-oriented virtual ma-
chines (such as Java or Smalltalk VMs) by representing object references as real ob-
jects on the heap. In this way we seamlessly integrate historical execution data into the
object model of the virtual machine. The created object references and their mutual re-
lationships capture side effects and the flow of objects through the system. This design
provides the following benefits:

– The relevance of a datapoint is determined by the reachability of an object in the
memory graph. Which history and how much of it is retained depends on the inter-
connectivity of the objects that capture historical execution data.

– Garbage collection of historical data comes “for free” since we can employ the
usual garbage collector without any modifications to incrementally and efficiently
delete no longer reachable data.

As our evaluation shows (Section 4), how much memory is consumed with our ap-
proach largely depends on the characteristics of the application. In some cases the data
recorded does not grow indefinitely and hence in these cases recording can be turned
on all the time. However, our approach does not guarantee that the virtual machine will
never run out of memory — it only makes it less likely. In case the recorded data contin-
ues to accumulate over time, we run out of memory much later than with conventional
approaches. In the latter case, we provide means to configure the recording to capture
and remember less data, which can lead to a dramatic decrease in memory consumption.

To make back-in-time debugging truly practical, it is important not only to man-
age memory consumption, but also to keep the runtime overhead within reasonable
limits. A slowdown of 100 can make a program unusable even for debugging. Unlike
many other back-in-time debuggers, which rely on bytecode manipulation techniques
and application-level logging, our implementation is at the virtual machine level and
because of that the performance is significantly improved. From our experiments the
worst case scenario led to a slowdown of only a factor of 7 compared to the original
virtual machine.
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The contributions of this paper are:

– An object model for object-oriented virtual machines with an explicit notion of
references to capture and introspect historical execution data for back-in-time de-
buggers.

– An approach to capture past object state and object flow and to incrementally dis-
card no longer relevant information by employing the garbage collector.

– Benchmarks for a modified Smalltalk virtual machine implementing our approach
and an evaluation of the execution overhead and memory characteristics for real
world applications.

Outline. In the following section we describe our approach to incorporate historical
information into a high-level language virtual machine. In Section 3 we discuss our
implementation, in Section 4 we present our evaluation and in Section 5 we discuss the
results. We present the related work in Section 6 and conclude in Section 7.

2 Approach

Most back-in-time debuggers are based on tracing events emitted at the application
level. This technique is commonly based on transforming bytecode to introduce sen-
sors that emit events. We take a radically different approach by modifying the virtual
machine to add the program’s execution history to the object model. The model used to
store the execution history is based on our previous works on analyzing dynamic data
flows in the context of program comprehension [7,8,9].

2.1 The Basis: Representing Object References as Objects

The memory layout of objects in object-oriented virtual machines typically consists
of a header for the class pointer, hash bits, GC flags, size etc. and a fixed number of
fields containing object references and primitive values. In many virtual machines, ob-
ject references are implemented as direct pointers, that is, an object reference is just
the address of that object in memory. Examples are the Sun HotSpot VM, Jikes RVM
(formerly known as the Jalapeño VM [10]), and the Squeak Smalltalk VM [11].

In the proposed object model we add a level of indirection by representing object
references by so-called alias objects. We chose the term alias to discern it from an
object reference, the concept it represents.

Figure 1.a illustrates the typical approach where an object reference is represented
by a pointer, and Figure 1.b shows how in our object memory model the object reference
is substituted by an alias object. Thus, the pointer stored in field 1 points to the alias and
the alias has a pointer to the actual object. Aliases cannot be nested, that is, the object
reference of an alias is always a direct pointer to a non-alias object. Aliases cannot only
substitute reference values but also the undefined value and primitive values. In this
case field 1 contains the primitive value (e.g., tagged pointer for small integers).
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Fig. 1. (a) Typical object format with references as direct pointers and (b) proposed
extension with references being optionally represented by alias objects.

Aliases have the following key properties that distinguish them from common objects:

– Transparency. Aliases are completely invisible at the application level. This means
that the semantics of the language are not altered. For instance, method lookup, field
access, or primitive operations are performed as if the actual object were referenced
directly. To make the information of an alias accessible at the application level we
use the concept of Mirrors [12].

– Optionality. The conventional direct pointer reference model (Figure 1.a) is still
supported. This allows the recording of aliases to be switched on only when re-
quired (Section 2.2).

– History. Apart from the object pointer, an alias carries information about the ob-
ject reference it represents. Through the relationship with other aliases, two main
dimensions of object-oriented runtime behavior are captured: historical object state
(Section 2.3) and object flow (Section 2.4).

Representing aliases directly as conventional objects allocated on the heap simpli-
fies the internal object model of the virtual machine and allows us to use the standard
garbage collector without needing to adapt it. For the same reason, many virtual ma-
chines represent classes and methods as internal objects.

2.2 Capturing Object References

In order to track object flow and reconstitute program states, we create an alias object
whenever an object is:

1. allocated (referred to as allocation alias),
2. passed as parameter (parameter alias),
3. returned from a method invocation (return alias),
4. read from a field (field read alias),
5. read from an array (array read alias),
6. written into a field (field write alias), and
7. written into an array (array write alias).
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The rationale is to capture all situations in which an object is made visible in a
method invocation (1-5) or wherever a side effect is produced (6,7). Furthermore, we
also capture the initialization of fields with the undefined value (referred to as init alias).
By representing exceptions as objects, an allocation alias is created when an exception
is thrown. Like this, also the propagation of exceptions is captured and can be traced.

Figure 2 illustrates the relationships among the entities Alias, MethodInvocation, and
Value. With Value we refer to any type of value of the language (namely, objects, arrays,
and primitive values, including the undefined value). A MethodInvocation represents a
frame on the execution stack and also is a real object on the heap.

In contrast to other back-in-time debugging approaches, which typically collect and
store data centrally as a trace of events, aliases are part of the object model. Like events,
aliases capture historical execution data, but instead of ordering them in a temporal trace
they are attached to object references. For example, in the case of writing to a field the
alias objects are directly pointed to from the corresponding field of the object. For each
value there can exist many aliases, whereas an alias always points to exactly one value.

Parameter aliases are referred to from the method invocation in which they replace
the pointer to the actual parameter objects. The context of an alias is used to navigate
to the method invocation in which the alias was created. To model the call stack, each
method invocation holds onto its caller. In case of object allocation, return value, field
read and array read, the aliases are used on the operand stack of the method invocation
the same way as the objects they point to would be.

MethodInvocation

contextreference values 
and primitive values

AliasValue
value

origin
0..1 * 0..1

0..1

predecessor

caller 0..1

*

*field or array
element

target parameter

1

*

1

Fig. 2. Conceptual object model with aliases capturing historical execution data.

The predecessor of a field write alias is the field write alias of the value previously
stored in the field (respectively the array write alias previously stored in the slot of the
array). Only field and array write aliases have a predecessor.

The origin of an alias is the alias that was used to create the alias. For instance, the
origin of a field read alias always is a field write alias because going back one step in the
flow of an object from a field read alias always leads to the field write alias. Any alias
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can be the origin of potentially many other aliases. Allocation aliases and init aliases
are the only aliases without an origin.

In the following two sections we discuss the predecessor and origin relationships
among aliases in more depth. Those two orthogonal relationships among aliases are
key to our approach as they capture object state changes and as they track the flow of
objects.

2.3 Remembering Historical Object State

An important historical dimension to capture is how the state of an object evolves. This
allows a back-in-time debugger to answer the question: What were the previous values
of a field and where in the control flow were they assigned? More precisely, we want
to capture data that allows us to later determine which value was stored in a field of an
object (or at a specific index of an array) at a particular point in time.

Figure 3 illustrates an example of a person object with the attribute name. When the
object is allocated at the point in time t1, the field is initially undefined. Later, at t2, the
string “Doe” is written into the field and at t3 it is renamed to “Smith”.

:Person field-write@t2

field-write@t3

init@t1

"Doe"

person = new Person() t1
...
person.name = "Doe" t2
...
person.name = "Smith" t3

"Smith"

null
predecessor

predecessor

value

value

value

name

name

name

Fig. 3. Capturing historical object state through predecessor aliases.

In our model, the initial undefined value is captured by an alias of type init and all
subsequent stores into the field are captured by aliases of type field write (or array write
respectively). In the example the field first points to the alias of null, then to the alias of
“Doe” and lastly to the alias of “Smith”. The key idea is that each alias keeps a reference
to its predecessor, that is, to the alias that was stored in the field beforehand. In this way,
the alias pointed to from a field is the head of a linked list of aliases that constitute the
history of that field.

Looking into the past. To go back in time, a selected process can be put into a state
in which it “sees” the system as it happened to exist at a certain point in the past. Like
this, accessing a historical value of a field is straightforward because when accessing a
field (or array), the historical value is returned directly — just like the current value is
normally returned.
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Figure 4 shows pseudocode for the implementation of field access in the virtual
machine. In case the current process has an activated back-in-time view, the predecessor
list of the currently referenced alias is traversed backwards to the alias that was present
in the field at the selected point in time.

if process.timestamp not defined then
return x.f

else
alias := x.f
while alias.timestamp > process.timestamp and alias.predecessor is defined
alias := alias.predecessor

return alias
end if

Fig. 4. VM implementation of field access x.f with back-in-time capability.

In the example of Figure 3, accessing person.name at timestamp t3 directly returns
the alias of the string “Smith” whereas at t1 an alias of the undefined value is returned.

With this model previous object state can be accessed very quickly (depending on
the number of state changes of the field, which is typically a small number). Compared
to other approaches, which need to reconstitute previous object state from a log or
database, this is significantly faster (see Section 4).

2.4 Remembering the Flow of Objects

In addition to the historical object state dimension discussed above, we want to cap-
ture how objects propagate at runtime. The goal is to answer the second key question,
which is: How was this object passed here? This means, for any object accessible in
the debugger, we want to be able to inspect all origins up until the allocation of the ob-
ject. This also allows us to find out where a particular value of a variable comes from.
Furthermore, we also want to track the flow of the undefined value and any primitive
values. Tracking the undefined value is important as null pointer exceptions can be hard
to debug.

The way we track the flow of objects is similar to that of tracking past object states
discussed above. In our model, all transfers of object references in the system are cap-
tured by the creation of aliases (when recording is turned on). Each alias in the system
originates from an existing one, except for the allocation and init aliases, which are cre-
ated when instantiating a class. Therefore, to capture how an object is passed through
the system, each alias maintains a link to the alias from which it originates.

Figure 5 illustrates the flow of an account object in an execution trace (represented
as a tree of method invocations where the callee points to the caller). A point represents
an alias. An arrow from one alias to another shows the origin of the alias. Note that the
actual flow of the object reference is opposite to the direction of the origin arrows.

Each alias is created in the context of the method invocation in which the object
reference becomes visible. This means that for return values this is the calling method
rather than the returning method. The parameter aliases are created at the callee site.
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By means of the origin link of an alias we can track back how an object was passed
to a method invocation in which a failure occurred. This helps one to understand how
and why a possibly incorrect object reference has been propagated — even and espe-
cially if its flow spans the whole program execution and goes through fields and arrays.

allocation

field-write field-read

parameter
field-read

return

return

class Bank {
  Account openAccount() {
    return new Account();
  }
}

class Person {
  void createAccount(Bank bank) {
    this.account = bank.openAccount();
  }
}

class Person {
  void printOn(Stream stream) {
    stream.print(this.account);
  }
}

class Company {
  void pay(Money money, Person person) {
    person.payAccount().deposit(money);
  }
}

running/completed method invocationLegend alias originalias

Fig. 5. Flow of an Account instance through an execution tree.

Introspecting object flows. Aliases are completely invisible at the application level
because they forward all messages to the actual objects. Therefore, we have to provide
other means to access object flow information than to send messages to an alias in-
stance. We employ the concept of Mirrors [12] to introspect aliases. For each object
reference that is represented by an alias instance, a mirror can be obtained through a
primitive. A mirror is an object that provides an interface to access for example the
origin and the predecessor of an alias, which in both cases returns a new mirror of the
corresponding alias. In the same way we can access the method invocation context of
an alias to get information about where in the control flow the alias was created. Our
prototype implementation of the enhanced debugger uses this mechanism to navigate
backwards in time.
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2.5 The Effect of Garbage Collection

The upper part of Figure 6 illustrates the same execution trace and object flow illus-
trated by Figure 5. The currently active call stack is highlighted on the right side. The
method invocations and the aliases are nodes in the memory graph, whereas the caller
and origin arrows are the directed edges in this graph. The effect of a garbage collection
is illustrated in the lower part of Figure 6.

active 
invocation

allocation

field-write field-read

parameter
field-read

return

allocation

field-write

field-read

return

return

return

running/completed method invocationLegend alias originalias

(1)

(2)

(3)(4)

garbage collection

sn
ap

sh
ot

 2
sn

ap
sh

ot
 1

Fig. 6. Flow of an object through an execution tree and the effect of garbage collection.

In this example, the following objects survive the garbage collection:

– The current call stack is preserved since the active invocation (1) is considered a
root object.

– The return alias (2) of the invocation payAccount() is not deleted since it is referred
to from the operand stack of the active invocation pay().

– The invocation of payAccount() (3) is also preserved as it is the context of a field
read alias and the field read alias is the origin of the return alias (2).
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– The corresponding field read alias originates in a much earlier executed branch of
the call tree where the account instance was written to a field after it was returned
from the method invocation openAccount() (4).

The branch of the object flow (the field read and parameter aliases in the middle of
the execution tree) does not survive the garbage collection. The reason is that no other
object flow exists that would make a connection to the alias and invocation sub-graph.
Also, many method invocations do not survive as they are not subject to relevant object
flows and as they are not in the caller chain of a relevant invocation.

Figure 7 shows memory statistics from the execution of the Squeak bytecode com-
piler. In regular intervals we measured how many aliases have been allocated in total
(solid line) and how many of those aliases still exist in memory (dashed line) over time.
The effect of the garbage collection over the whole execution is a reduction of data by
70%. Both statistics in Figure 7 show the same run of the compiler, but with different
garbage collector settings. On the left side, there are fewer GC cycles. For instance be-
tween 50ms and 120ms there is no GC activity and therefore both lines increase at the
same rate. On the right side, between almost all sample steps there is a GC cycle.
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Fig. 7. Garbage collection discards 70% of the aliases in a run of the compiler. The right
side shows the same execution but with a flatter curve due to more GC activity.

3 Implementation

We have extended the Smalltalk Squeak VM [11] with the recording capability and
representation of the execution history in the object model as described in Section 2.
The majority of the Squeak VM is implemented in a subset of Squeak Smalltalk, named
Slang. The Slang source code is then translated to C to compile and link with the low-
level, platform-specific C code. The Squeak VM implementation closely follows the
specification given in the Smalltalk-80 Blue Book [13], except for the object memory
format. Like most modern virtual machines, Squeak implements references as direct
pointers rather than using an object table.
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We implemented aliases as real objects of a new class Alias that has the fields value,
context, origin and predecessor as illustrated in Figure 1 and Figure 2. In addition, Alias
has an integer field that encodes information like the timestamp and the type of the alias
(one of the 8 types described in Section 2.2).

Representing aliases as ordinary objects in memory has the advantage of simplify-
ing the implementation. Most importantly, no changes to the object memory layout and
to the garbage collector are necessary. The two main changes to the virtual machine
are to allocate and initialize aliases, and to forward message sends to the actual target
object in case the object is aliased. Aliases are created in the bytecode routines (e.g.,
read and write aliases), on method invocation (parameter and return aliases) or when
instantiating a class. There exist a few exceptional classes for which no aliases are cre-
ated to simplify the implementation where aliasing is not important. Those classes are
Process, Semaphore, MethodContext, BlockContext, and CompiledMethod.

Since method invocations are already represented as objects in Squeak (instances of
the class MethodContext), to implement the model as illustrated in Figure 2, no further
changes were required.

To optimize performance and space we implemented Alias as a compact class. That
is, the object header of its instances consists of only a single 32-bit word and contains
the index of its class in the compact classes table. This spares one word per alias in-
stance, but more importantly, it allows the virtual machine to check whether an object
is an alias or a real object by looking at the object header alone. The efficiency of this
check is especially important because not every object reference is represented as an
alias and hence this check has to be performed very frequently.

To generate the different kind of aliases when tracing is enabled, we extended var-
ious bytecode routines (e.g., the store and fetch bytecodes), the method invocation be-
havior, and the class instantiation primitives. Small modifications had to be applied to
many other primitives and bytecode routines that operate on the actual object rather than
on the alias. In those cases the receiver and objects popped from the operand stack need
to be unwrapped, for instance in arithmetic operations or the jump bytecode routines.

Overall, about 200 methods of the Slang implementation were modified or created.
In comparison, the core of the virtual machine is implemented with about 750 methods
(not counting platform specific code directly written in C and plugin code). Half of our
changes were necessary due to the need of unwrapping aliases. Other parts of the virtual
machine, for instance the memory format, method lookup, and the garbage collector, are
not modified.

At the application level only very few extensions in system classes are required to
support recording, to allow the user to control recording, and to introspect the execu-
tion history. First, the class Alias has to be loaded. It implements no methods and cannot
be instantiated by the user. Second, the class Process is extended to allow the user to
control recording at runtime. We added a field to Process which specifies the record-
ing mode as well as the timestamp of its back-in-time point of view. At runtime, the
behavior of the virtual machine then depends on these settings of the active process.

In addition, we implemented the class AliasMirror, which can be loaded to introspect
the execution history. Mirrors are used by the graphical debugger, which we modified
to be capable of moving backwards in time and to navigate backwards in the flow of
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objects. The debugger accesses information about the flow or history of an object by
requesting a mirror for the reference through which the object is made visible in the
selected method invocation. There is no need to traverse the heap or perform a lookup
in a trace to get the flow or history of an object, since this information is available
through direct object references. A mirror on an object reference is created by the virtual
machine through a primitive call. Using a mirror on an alias, the fields of the alias can be
accessed. This behavior is implemented with a set of primitives in the virtual machine
because any direct access to the alias would be performed on the actual object rather
than on the alias instance.

4 Evaluation

In this section we evaluate our implementation from the point of view of the execution
overhead (Section 4.1) and of the memory usage (Section 4.2). All experiments were
performed on a MacBook Pro, 2.4GHz Intel Core 2 Duo, 4GB RAM, with Mac OS X
10.5.2.

4.1 Execution Overhead

Setup. To evaluate the execution overhead, we compare the performance of the
modified Squeak virtual machine to the original virtual machine by means of several
standard benchmarks. As a reference, we first executed the benchmarks in an original
Squeak virtual machine (version 3.9-10), which we compiled using gcc 4.0.1. Then,
we executed the same benchmarks using our modified virtual machine, which had been
compiled under identical conditions. First, we took the benchmarks with the recording
of historical data being turned off, and second with recording turned on. For each of the
three cases the five benchmarks were executed 30 times, and before each execution we
forced a full heap garbage collect.

Overview. The results of this comparison are shown in Table 1. The first three
columns show the results of the benchmarks executed on our modified virtual machine
without historical data recording, that is, no aliases are created. The remaining columns
to the right show the results obtained from running the benchmarks with recording
turned on. These overheads include the time that is needed to allocate and initialize
alias instances, the additional time to forward message sends from aliases to normal
objects and the additional time spent in the garbage collector.

The most important numbers are shown in the two ∆ columns, which indicate the
execution overhead of the benchmarks compared to the reference run of the unmodi-
fied standard virtual machine. The column time is the runtime of the benchmark and
%GC indicates how much of this time is consumed by the garbage collector. The last
two columns of the table show how many alias objects respectively method invocation
objects are created (k indicates that both figures are given in 1000 objects). The figures
in Table 1 are computed using the arithmetic mean of the 30 runs of each benchmark.
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Recording OFF Recording ON
Benchmark ∆ time[s] %GC ∆ time[s] %GC aliases methods
Tiny benchmark (bytecodes) 1.02 1.03 0.0 2.26 2.29 16.1 13773 k 8 k
Tiny benchmark (sends) 1.20 1.39 0.0 2.06 2.39 7.1 7881 k 11406 k
STones80 (low-level) 1.12 0.51 5.6 1.53 0.70 8.4 21600 k 4960 k
STones80 (medium-level) 1.27 0.38 0.4 6.43 1.91 46.0 59478 k 17077 k
Squeak macro benchmark 1.16 0.38 2.0 6.91 2.23 60.7 5532 k 669 k
Average 1.15 0.74 1.6 3.84 1.91 27.6 21653 k 6824 k

Table 1. In comparison with the original VM, the execution overhead of the modified
VM averaged 15% when recording is disabled and the average slowdown when record-
ing is turned on is 3.84 (see column ∆).

Benchmarks. We used five different benchmarks1. The first two rows show the re-
sults of two Tiny benchmarks, which measure how many bytecodes and message sends
can be executed per second. The bytecode benchmark is based on a bytecode-heavy
implementation of the “Sieve of Eratosthenes” whereas the message send benchmark
is based on a send-heavy recursive calculation of Fibonacci numbers. The second and
third rows show the results of the STones80 benchmarks, which are available for many
different Smalltalk dialects. Whereas the low-level version mainly involves arithmetic
operations, array operations, and object allocation, the medium-level version also per-
forms recursive calls, collection and stream operations. The last row of Table 1 shows
the results of the Squeak macro benchmark, which measures decompiling and then re-
compiling methods.

Discussion. The results of the benchmarks taken with disabled recording averaged
15%. These numbers are a good indication of the performance penalty caused by our
virtual machine modifications. When recording is turned off, no aliases are allocated
and hence no message sends have to be forwarded and no additional time is spent in the
garbage collector. Interestingly, the overhead of the Tiny bytecodes benchmark is very
low with an overhead of only 2%, while the overheads of the other benchmarks average
between 12% and 27%. To find out whether this difference is significant or whether
our modifications have no measurable influence on the performance of the bytecode
benchmark, we performed the following statistical analysis.

We formulate the null hypothesis H0 that the average runtime of the Tiny bytecode
benchmark is not slower when executed on our modified VM (M ) compared to the
original VM (O), formally: µO ≥ µM . The alternative hypothesis H1 postulates that
the average runtime of the benchmark is slower when being executed on our modified
VM compared to the original VM, formally: µO < µM .

To test the hypotheses we apply the independent one-sided two-sample t-test [14]
with an α value of 1% and 58 degrees of freedom. The variance requirement is fulfilled
and both data sets are normally distributed (verified with the Kolmogorov-Smirnov

1 The Tiny benchmarks can be found in the standard Squeak distribution. The STones80 and the
Squeak macro benchmarks can be found in the Benchmarks package on http://map.squeak.org/
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test). We calculated a t value of -16, which means that we can clearly reject the null
hypothesis H0 and accept the alternative hypothesis H1 (the t distribution tells us that
the probability that t ≤ −2.4 is 1%). Therefore, we can conclude that the 2% slowdown
of this benchmark is due to our modifications of the VM. Using the same method, we
can draw the analogous conclusion for all other benchmarks. This result is not surpris-
ing as those runtimes are clearly distinct from the reference runtimes.

In the case of recording switched on, particularly noticeable are the big differences
between the overheads of the first three low-level benchmarks compared to the other
higher-level benchmarks. The overheads of the medium-level STones80 benchmark
(factor 6.43) and the Squeak macro benchmark (factor 6.91) are more than three times
as big as the overheads of the low-level benchmarks. One reason for this is that those
benchmarks spend a significant percentage of their runtime in the garbage collector
(46.0% and 60.7%). The high pressure on the garbage collector cannot be explained
entirely by the higher rate by which alias and method invocation objects are created
(31 million aliases/s for medium-level STones80 and 2.5 million for the macro bench-
mark). For instance, the low-level STones80 benchmark produces 30.7 million aliases/s
but incurs a relatively low overhead. Rather, it is likely that the high pressure is due to
the different memory usage characteristics, e.g., how fast aliases can be garbage col-
lected.

Summary. These benchmarks suggest that a significant overhead incurs because of
the additional pressure on the garbage collector, which depends on the characteristics of
memory usage. (Memory usage characteristics are further discussed in Section 4.2.) In
turn, instantiating and initializing aliases seems to contribute not as much as the garbage
collector to the overhead.

Without much optimization effort the overhead of our implementation when record-
ing is switched off is just 15%. This suggests that with more aggressive performance
optimizations a virtual machine enhancement for capturing execution history could po-
tentially be incorporated into a standard distribution. This would allow users to switch
recording on and off as required without needing to recompile code and restart the ap-
plication with a different virtual machine.

4.2 Memory Usage

To further evaluate the practicality of our approach, we also investigated the charac-
teristics of larger applications with respect to the amount of memory consumed. Of
particular interest is whether the retained historical data increases steadily over time, or
whether the amount of data is bounded by an upper value.

We expected this characteristic to be dependent on the type of application. For ex-
ample, in applications with persistent objects that undergo many state changes, this is
obviously not possible as all previous object states are retained until the objects them-
selves are garbage collected. In contrast, in applications where objects are used only
temporarily it is possible that long running programs can be recorded without running
out of memory.
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To study different types of memory usages we chose the following three programs:

– A program that allocates a large number of temporary objects that get garbage col-
lected after some time. We selected the Squeak bytecode compiler which we ran on
1000 classes. We expected that the history of objects generated to represent tokens,
AST nodes and intermediate representation objects can be garbage collected after
the bytecode of a class has been successfully emitted.

– A program with a stable number of objects that undergo a large number of state
changes. We selected a gas tank simulator shipped as a Squeak demo. Each molecule
in the tank is represented by an object and on each GUI update the position of the
molecules, their velocities and directions are recalculated and changed. Since all
previous positions of the molecules are remembered, we expected a lower effect of
the garbage collector in comparison to the bytecode compiler.

– A program with an existing object graph that is heavily accessed and modified.
We chose a commercial web content management system (CMS). The history of
modifications of the object model and the behavior leading to it cannot be discarded
after some time because the object model of the CMS is completely kept in memory.

Bytecode Compiler. Figure 8 shows virtual machine statistics taken from sampling the
execution of the Squeak bytecode compiler. We compiled 1000 classes from the Squeak
Smalltalk system which took 652 seconds when recording was turned on (compared to
168s when recording was disabled). In total the execution produced more than 2 billion
aliases (solid line in Figure 8) and 443 million method invocations (not shown). On av-
erage, 3 million aliases are created per second. The actual number of aliases in memory
was relatively low at an average of 2.9 million (notice the different scales of the left
and right Y-axes). The maximum amount of memory allocated by the virtual machine
was 317MB.

The temporal development of the number of regular objects (excluding alias objects)
is similar to one of the number of aliases. The reoccurring pattern of growth and decline
is caused by incremental and full garbage collect cycles.

The analysis of this application showed the expected behavior. The historical data
kept in memory does not grow without limit because the compiling history of a class is
discarded after the bytecode has been generated and emitted.

Gas tank simulation. Figure 9 shows the analysis of the following usage scenario of
the gas tank simulation. First we started one instance of the simulator and paused it
after the sample step #5. Then we started a second simulator with twice the number of
molecules. The higher rate of aliases allocated from this time on is reflected in Figure 9.
At step #10 we quit the second simulator and resumed the first one.

Quitting the second simulator has a big effect on the number of aliases retained
in memory (see decline between steps #10 and #11). Since the objects of the second
simulator are not accessible anymore, the remaining execution history is garbage col-
lected. The same happens after quitting the simulator at the end of the analysis, where
the number of aliases in memory drops to zero.
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Fig. 8. Compiling 1000 classes (X-axis) produces more than 2 billion aliases, however,
the number of aliases in memory stays below 6 million. Please note that because of the
large differences between the number of allocated aliases (solid line) and the aliases
and objects in memory (dashed and dotted lines), we use two scales: one for the solid
line to the left and one for the dashed and dotted lines to the right.

A striking difference to the case of the bytecode compiler is that the number of
aliases in memory grows with respect to the number of aliases allocated over time. As
Figure 9 shows, the ratio is constantly 22% in the first half of the analysis up until the
event where the second simulator instance was quit. This means, that for this application
78% of the aliases are garbage collected but the rest adds up in memory and eventually
the virtual machine will run out of memory for long runs.

The execution history retained by our approach allows one to revert the state of
objects that are currently accessible (or that are accessible through a past field reference
of an accessible object). In case of the simulator this means that we can move back in
time as long as the simulator user interface has not been closed. For instance we can
set the point of view of its GUI process to a past point in time. This has the effect that
the molecules are displayed where they were positioned at that time, and that also all
settings of the simulator are reverted to their previous states. To find out how a position
was calculated, we can follow back the flow of the corresponding point object to where
it was allocated.
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Fig. 9. Analysis of a gas tank simulator shows that 22% of the aliases allocated are
retained in memory (19 samples with an interval of 3s each).

Content Management System. Figure 10 illustrates an analysis of a user session in
Cmsbox2, a commercial web content management system. The session consists of 26
user actions such as login, editing content, drag and drop, copy and paste elements,
publish page etc.

We chose Cmsbox as a case study, because it stores all objects in memory rather
than in a database, which makes it a worst case scenario for our approach. Indeed, as
the figure shows, the aliases do increase steadily over time, the main reason being that
more objects are added and retained in the model and in memory.

This experiment shows the limits of our approach. However, as described in Sec-
tion 5.1 we can limit the effect of this phenomenon through selective recording of
aliases.

5 Discussion

Memory consumption and performance can be further tuned by adjusting the level of
detail of information gathered. We now look at several ways this can be done, and we
discuss difficulties, limitations and potential optimizations of our implementation.

2 http://www.cmsbox.com/
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Fig. 10. Analysis of a user session in a Content Management System. After 26 requests,
24% of the allocated aliases are still in memory.

5.1 Capturing and Remembering Less Data

Depending on the usage of the back-in-time debugger, for instance in a testing or pro-
duction environment, it can be necessary to further decrease memory consumption
and lower the execution overhead. A common solution to reduce the amount of data
recorded is to not instrument all code, for instance by excluding libraries and framework
code. The effect is that in the code that is out of scope, no side effects are captured and
the links of objects being passed through this code are lost.

We experimented with an alternative approach that is not based on structural scoping
but on tuning how fast recorded data is discarded. In particular, in our implementation
the user can change the behavior of the virtual machine by (a) disabling tracking of
predecessor aliases, (b) disabling tacking of origin aliases, and (c) selecting which types
of aliases are created. By default, all predecessor and origin aliases and all types of
aliases are recorded.

For example by not tracking predecessors, we can reduce the consumed memory but
still benefit from being able to inspect object flows. By means of such configurations
we can provide the same functionality as the following two debugger extensions that
have been proposed recently. They are specialized to a particular debugging task and
hence only need to track a fraction of the whole execution history.

Reverse watchpoint, an approach proposed by Maruyama et al., analyses the ex-
ecution and moves the debugger to the last write access of a selected variable by re-
executing the program from the beginning [6]. This technique automates the task of
finding where a variable was erroneously written and then moves the debugger to that
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point. With our approach, finding where a variable was written means to move one step
back in the object flow from a field read alias to its origin, which is the field write alias.
If we want to gather exactly this information, we can disable predecessors, and restrict
the recording to create only field write and array write aliases. The effect is that for
each field the most recent write alias is available with the execution stack in which it
was created. When writing to a field, the previous write alias of the field or array can be
discarded immediately because it is not referenced as a predecessor or origin alias.

Our benchmarks show that with this minimal configuration, we achieve a very low
execution overhead that is only insignificantly higher than the base slowdown of 15%,
which the virtual machine incurs when recording is turned off completely. In com-
parison, Maruyama report a slowdown of their technique of about 400% [6]. Figure 11
shows that with this reduced configuration only a fraction of the aliases are remembered,
compared to the aliases remembered using the standard configuration as illustrated in
Figure 10.
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Fig. 11. Comparison of the number of aliases retained in memory with the default con-
figuration compared to the configuration where only the last write alias of each field
and array slot is remembered (same run of the CMS as in Figure 10).

Origin tracking of null values, proposed by Bond et al., is a very efficient tech-
nique to track the method in which an undefined values originates to support debugging
the well-known problem of null pointer exceptions [15]. We can do the same by only
tracking aliases of type undefined, which again incurs a similar overhead to the config-
uration discussed above. In comparison, the approach of Bond et al. adds an overhead



20 Adrian Lienhard, Tudor Gı̂rba and Oscar Nierstrasz

of only 4%. The low overhead is made possible by only tracking undefined values,
which allows for “value piggybacking”, a technique to store origin information directly
in pointers (in this case in null pointers).

5.2 Remembering Control Flow Dependencies

With the default configuration our approach retains information about the flow of ob-
jects and previous states of objects. In contrast, conventional back-in-time debuggers
typically record and store the complete execution history (until they run out of mem-
ory). While our approach records the same data, it discards most of it within a very
short time and only remembers what is relevant for the object flow and historical states
of objects that are accessible at the current point of execution. To provide enough con-
text, with each alias, the method invocation where it is used is retained, including the
execution stack with all target objects and objects passed as parameters.

Still, depending on the kind of bug, it is possible that relevant information is miss-
ing. In particular, no links between aliases exist to represent the fact that the value of
a variable influences the value of another variable. For example, in the statement “if x.f
then y.f = 1” there is no dependency link between the field read alias x.f and the field
write alias y.f. In case the value of y.f turns out to be incorrect because of the unexpected
execution of a branch, it is possible that x.f has already been discarded. However, this
does not happen if x is the target object of the method or one of its parameters. In this
case it is referenced from the method invocation which in turn is referenced as the con-
text of the field write alias stored in y.f. (How exactly aliases and method invocations
refer to each other is illustrated in Figure 2.)

We decided not to explicitly capture such control flow dependencies because we
believe that the most difficult bugs in object-oriented programs are caused by subtle in-
consistencies in object graphs and by the propagation of unexpected object references.
However, it would be possible to extend our approach to also include dependency re-
lationships among aliases. Each alias would need to maintain a list of other aliases it
depends on, similar to the predecessor and origin relationships. The dependence infor-
mation could be computed by an intra-procedural static analysis. An inter-procedural
analysis would not be necessary since this dependency is indirectly captured by the link
of an alias to the target of the invocation in which it is created (alias → context →
target).

5.3 Limitations and Potential Optimizations of the Implementation

Not freed memory. Using our back-in-time debugger we noticed a couple of times
that parts of the history were unexpectedly not garbage collected. The reason turned
out to be that the program execution in those cases produced subtle side effects on
global state. The effect is that the part of the execution history that produced the side
effect is not garbage collected as long as the global state that was modified exists. We
observed three cases of this problem: singletons, caches and writing to a log console
(strings passed from the application are stored in the console stream and hence retain
links to the execution history where they originate). While in some cases this can be
the desired behavior (in case of the cache or singleton), it may be undesired in other
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cases (the console). To remedy the undesired cases we can simply disable recording of
the appropriate methods or classes. The real difficulty, however, is to first find the cause
of such a problem. What is missing are high-level views to inspect and navigate the
recorded data.

Capturing non-word size data. A limitation of our implementation is that the his-
tory of values stored as non-word data are not captured. For instance, in a byte array
where four bytes are stored per word, we cannot use the approach of exchanging a value
with an alias indirection because the alias pointer requires 4 bytes. Typically this is not
problematic since Squeak uses non-word fields in most cases to represent internal data
of objects only, such as float objects, large integer objects, or strings.

Potential optimizations of our implementation. As our benchmarks show, the
slowdown is mainly caused by the additional garbage collector activity. An optimization
of the garbage collector to better cope with the special characteristics of our virtual
machine would improve the performance but is not straightforward to realize.

A different optimization that would also improve the performance of the virtual ma-
chine when tracing is turned off is to use different sets of bytecode routines. The current
implementation uses conditionals in bytecode routines and primitives to execute code
depending on the tracing state of the current thread. Implementing two sets of byte-
code routines would allow the virtual machine to switch jump tables when recording is
toggled.

The memory consumption of our implementation could be slightly optimized by
distinguishing between field/array write aliases and the other types of aliases. Field
write and array write aliases require the predecessor field to hold onto historical state,
whereas the other aliases do not need this field. Using two different classes of aliases
would be simple to implement and would save one word per non-historical alias in-
stance.

6 Related Work

Logging-based approaches. The most common approach to implementing back-
in-time debuggers has been to create a trace log of the program execution. ZStep95 is a
reversible debugger for Lisp that provides animated views but does not address perfor-
mance and scalability issues [16]. Lewis proposed ODB [3], a back-in-time debugger
for Java, and Hofer proposed Unstuck [5], a similar proof of concept implementation
for Squeak Smalltalk. Both approaches have in common that they keep the log history
in memory and hence can only record and store the complete history for a short period
of time. ODB allows one to set a fixed limit on the number of events and it then discards
older events when the limit is reached.

A more scalable approach has recently been proposed by Pothier et al. [4]. Their
back-in-time debugger, TOD, addresses the space problem by storing execution events
in a distributed database. While this approach has the benefit that no data is lost, its
drawback is that it requires extensive hardware power, which is not available for many
developers today. To cope with the data generated by a CPU-intensive program, 10
database nodes in a server cluster are required. Also, the approach has a performance
overhead of a factor 113 in the worst case, which is approximately the same as the one
of ODB for the same benchmark [4].
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In comparison, the performance of our approach is about one order of magnitude
better. On the one hand, this is because our approach is implemented at the virtual
machine level, whereas all previously mentioned approaches are based on bytecode
instrumentation. On the other hand, as our approach stores historical data directly in
the application memory, it does not require any additional logging facility to gather
and store data. As a side effect, our representation of historical information is also
very space efficient. For example, there is no need to assign identifiers to objects or to
serialize objects since they exist in memory and can be referred to directly by pointers.

Outside of research, back-in-time debuggers have unfortunately not been widely
adopted yet. An example of a commercial back-in-time debugger is Omnicore’s Code-
Guide3. It is also based on bytecode instrumentation and its execution history, which
is kept in memory, is limited to the few last thousand events. An interesting aspect of
CodeGuide is that only methods containing breakpoints and methods close to them in
the control flow are instrumented to keep the runtime overhead low.

Related to logging-based back-in-time debugging is query-based debugging. In those
approaches the user formulates a query in a higher-level language that is then applied
to the logged data [17,18,19,20]. Queries can test complex object interrelationships and
sequences of related events. Approaches exist that execute the query at runtime, which
can improve performance because no history has to be stored [21]. Our approach, like
other back-in-time debugging approaches, does not support querying for complex rela-
tionships in the history, but in return it incurs a much smaller execution overhead.

Replay-based approaches. A different approach for implementing back-in-time
debuggers is to replay the debugged program until a desired point in the past. To op-
timize the time required to reach a particular point in the past, many approaches take
periodic state snapshots, for instance Bdb [22] and Igor [23]. The main advantage of
replay-based approaches over logging-based approaches is their low performance over-
head (roughly 2 times for Bdb and 4 times for Igor). The disadvantage of those kinds of
approaches is that moving backwards in time can be very slow because the program has
to be partly re-executed. This issue has been addressed in a recent publication by Xu et
al. [24]. Our approach can access past object state almost instantly because it only needs
to look up the appropriate alias in the predecessors chain (as described in Section 2.3).
An open issue of replay-based approaches is that of deterministic replay, which cannot
be guaranteed by all approaches if the program depends on external resources or if it is
multithreaded.

The approach of taking (incremental) memory snapshots and replaying has also
been used in the Leonardo virtual machine [25], a virtual machine based approach for
assembly-like languages that features reversing program state. Similar to our approach,
programs slow down by a factor of 6 in the worst case. However, the Leonardo virtual
machine does not support inspecting object flows and it does not provide a strategy to
discard data.

3 http://www.omnicore.com/



Practical Object-Oriented Back-in-Time Debugging 23

7 Conclusions and Future Work

In this paper we tackle the problem of how to make back-in-time debugging practical
by (1) keeping memory consumption within reasonable bounds by only keeping track
of still-relevant past data, and (2) reducing the run-time overhead by implementing
recording at the virtual machine level. Our approach does not store all data, but instead it
focuses on remembering the history of the objects that are still referenced in the current
program state. Our solution makes use of the garbage collector to release the objects
that are not referenced anymore in the program and that are not relevant anymore in the
program’s history.

Benchmarks have shown significant improvements over existing approaches. First,
the memory consumption is confined to an upper bound limit in the best case, or grows
slowly in the worst case. However, for the worst case scenario, we can configure the
recording to capture and remember less data, which can lead to a dramatic decrease in
memory consumption (e.g., 55 times fewer aliases when just remembering the last field
write alias). Second, performance is in the worst case 7 times slower than a regular exe-
cution. Furthermore, the modified virtual machine with tracing switched off introduces
only modest overhead (e.g., in our benchmarks, it introduces an average of 15%) as
compared with a regular one.

The results we obtained are very promising and we envision several paths to im-
prove them. First, we want to provide more control for adjusting the level of detail
depending on the static structure. For instance, we can gather more data in code that is
young and hence is more likely to have defects. Second, we want to experiment with
instrumentation mechanisms that can be adapted at runtime. For example, we can in-
crease the recording detail when an error is detected for the followup runs, or we can
decrease recording detail when memory gets low. Lastly, we want to further investigate
the effectiveness of our approach, for instance to identify potential limitations of its
usability due to missing control flow dependencies.
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