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Abstract—This paper is meant as an overview of the recent
object recognition work done on Stanford’s autonomous vehicle
and the primary challenges along this particular path.

The eventual goal is to provide practical object recognition
systems that will enable new robotic applications such as au-
tonomous taxis that recognize hailing pedestrians, personal robots
that can learn about specific objects in your home, and automated
farming equipment that is trained on-site to recognize the plants
and materials that it must interact with.

Recent work has made some progress towards object recog-
nition that could fulfill these goals, but advances in model-
free segmentation and tracking algorithms are required for
applicability beyond scenarios like driving in which model-free
segmentation is often available. Additionally, online learning may
be required to make use of the large amounts of labeled data
made available by tracking-based semi-supervised learning.

I. INTRODUCTION

Object recognition is a key missing component of many
socially relevant robotic systems. Recently, some progress has
been made in this direction using Stanford’s DARPA Urban
Challenge vehicle, Junior [6]], to recognize cars, pedestrians,
and bicyclists in natural street scenes. This paper is an
overview of that work and the primary challenges that lie
ahead.

Junior, shown in Figure [I] is equipped with a Velodyne
HDL-64E S2 rotating 64-beam laser range finder; its measure-
ments are integrated over time while the vehicle is in motion
with a tightly coupled GPS/IMU, the Applanix POS LV 420.
The object recognition algorithms discussed here use just this
depth data; a Ladybug 3 panoramic camera is mounted above
the Velodyne, but so far is used only for visualization of the
results.

Most of the technical results discussed here can be found in
[1Q] or [O]. There are, of course, other valid approaches with
different tradeoffs; these will be briefly discussed in Sectionm

II. LONG TERM VISION
A. Object recognition for autonomous driving

According to the U.S. Department of Transportation, over
30,000 people were killed due to car accidents in the U.S. in
2009 [7]. Autonomous vehicles have the potential to signif-
icantly reduce this number. Additionally, wasted time spent
commuting could be reduced, increasing overall productivity.
Fuel efficiency could be increased by caravaning on highways,
thus reducing CO, emissions.

The recent self-driving car project at Google [11] has
made significant progress towards the long-term vision of

Fig. 1: Junior, the autonomous driving platform.

autonomous vehicles. Their work has shown that, at least so
far, detailed and highly-accurate object recognition is largely
not required; it remains to be seen whether this is true for
the extremely high-reliability systems that are necessary for
real-world use.

Despite this, there are many areas where sophisticated object
recognition methods would be beneficial. Both Google’s and
Junior’s autonomous driving systems are based on building
detailed maps of the world, then localizing to them during
operation. As a result, construction zones present a signifi-
cant challenge. Robust detection of traffic cones, construction
equipment, or workers holding stop signs could significantly
improve handling of these situations. Additionally, polite and
safe behavior in complex intersections, one-lane roads with
bi-directional traffic, etc., may also require advances in object
recognition. Safety could be enhanced by learning behavioral
models of different object types, allowing an autonomous
vehicle to anticipate the actions of bicyclists versus cars at
stop signs, for example. While not strictly necessary, a person
on the street corner hailing an autonomous taxi should be
recognized as such.

B. Object recognition for robotics in general

More broadly, special purpose and general purpose robots
have the potential to revolutionize society similar to the way
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Fig. 2: Confusion matrix results from [10]. This is for the
track classification task, which assumes correct segmentation
and tracking.

computers have. In farming, for example, a generic picking
device could be mass produced, then taught on-site by a
farmer with no expertise in robotics to recognize the type of
fruit it should be harvesting. Similarly, an autonomous tractor
outfitted with a high power laser could be mass produced,
then taught to recognize particular weeds versus crop plants
at farms of widely different types, improving agricultural
efficiency. In construction or manufacturing, generic delivery
robots could be used to pick up raw materials and move
them in to place; first, they must be taught to recognize these
particular raw materials.

III. DESIDERATA

There is, of course, no one “right” list of desired properties
for practical object recognition systems. This list represents the
near- to medium-term horizon of what we feel would enable
a number of socially-useful applications that are currently not
possible.

« Accurate

« Real-time capable

o Inherently multi-class — For practical application, we
would like to be able to recognize at least on the order
of tens of classes.

o Inherently multi-descriptor — There are many useful
cues in object recognition that come from diverse sources,
including depth sensors, cameras, and radar; it is desirable
to have a learning framework that can incorporate them all
with little pain (e.g., no hand-tuned scaling parameters).

+ Can learn without massive hand-labeled training sets

+ Can add new object classes and descriptors without
relearning from scratch

« Little manual feature engineering required

Fig. 3: Segmentation and tracking failures are the most com-
mon source of object recognition errors. In this example, a
pedestrian gets segmented together with a large stretch of curb,
resulting in a false negative, while a well-segmented car is
correctly identified. Best viewed in color.

IV. OVERVIEW OF EXISTING PROGRESS

We now consider recent object recognition work on Junior
in the context of the desired properties of Section [T}

A. Supervised method

To summarize the current status, the system is real-time,
accurate when given good segmentation and tracking, and
inherently multi-class and multi-descriptor. Learning with-
out massive hand-labeled datasets will be addressed in Sec-
tion [[V-B] and the remaining desired properties require work
or have not yet been shown experimentally.

The laser-based object recognition algorithm used on Junior
is broken down into three main components: segmentation,
tracking, and track classification. Objects are segmented from
the environment using depth information, then tracked with
a simple Kalman filter. Thus, the segmentation and track-
ing methods are model-free, i.e. no object class model is
used during these stages. Classification of tracked objects is
achieved with a boosting algorithm applied across several high
dimensional descriptor spaces which encode size, shape, and
motion properties. This system is described in [10].

Figure [2| shows results for the track classification sub-
problem from [10]. The largest source of errors in the full
object recognition problem is segmentation and tracking; see
Figure [3] Cars and bicyclists actively avoid becoming seg-
mented together with the environment, but this is unfortunately
not generally true for pedestrians and other object classes
that could be of interest. Quantitatively, the method achieved
98.5% track classification accuracy - that is, segmentation and
tracking failures are not included - on a large test set from real
street scenes; qualitatively, when considering the full object
recognition problem, undersegmentation frequently results in
false negatives of objects that get too close to other objects.

Maintaining real-time capability has (for now) dictated that
this system remain feed-forward; that is, more mathematically-
sophisticated methods that jointly consider segmentation,
tracking, and classification do not yet seem real-time capable.
Classifying only pre-segmented objects means that the system



can spend more time on each candidate than, for example, the
sliding window systems prevalent in computer vision.

B. Semi-supervised method

Model-free segmentation and tracking enables a highly ef-
fective method of learning object models without the need for
massive quantities of hand-labeled data. This method, known
as tracking-based semi-supervised learning [9], iteratively a)
learns a classifier, and b) collects new, useful training instances
by using tracking information. For example, the method can
learn to recognize half-occluded bicyclists from unlabeled
tracks that include both unoccluded and half-occluded views.
A video example of object recognition results using this
method can be seen at [1]].

This method has been shown to achieve the relatively high
track classification accuracy of [10]], but with only three hand-
labeled training tracks of each object class. This has the
potential to enable non-robotics-experts to teach robots about
new objects; it is probably impractical to assume non-experts
would have the time or ability to assemble large training sets
by hand. This could be an essential ingredient to adapting
robots to specific tasks at specific work sites.

V. RELATED WORK

Whereas our method relies on model-free segmentation and
tracking, the tracking-by-detection approach involves running
a detector on individual frames, then tracking the resulting
detections. This approach is exemplified in the pedestrian
detection work of [8]. As it is formulated in [9], tracking-based
semi-supervised learning requires model-free segmentation
and tracking; however, it might be possible to use the results
of FlowBoost [2] to achieve similar gains in a tracking-by-
detection framework, though this method requires sparse labels
rather than completely unlabeled data.

The boosting algorithm we use was specifically designed to
work well with diverse, high dimensional descriptor spaces.
One alternative approach from the SVM literature is multiple
kernel learning (MKL), first given an efficient implementation
in [3], in which an SVM uses multiple kernels to intelligently
combine different descriptor spaces into its classifications. An
advantage of boosting here is that the math of combining
predictions over the course of a track using a discrete Bayes
filter [10] depends on the classifier outputting a log odds
estimate, which boosting produces. El

VI. CHALLENGES AND OPPORTUNITIES
A. Segmentation and tracking

The primary challenge evident from the results in [10] and
[9] is in developing fast, effective algorithms for model-free
segmentation and tracking. The object recognition algorithms
discussed in this paper are only applicable to cases where
model-free segmentation and tracking is at least somewhat
reliable. This is not the case in, for example, the cluttered

'While the margin output from SVMs would likely be effective in practice,
it is not a log odds estimate in the way the output from boosting or logistic
regression is; see 3.
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Fig. 4: The laser-based classifier can produce large quantities
of automatically labeled training data for a more economical
vision-based classifier to learn from. Best viewed in color.



indoor environments that a household robot such as Willow
Garage’s PR2 would commonly operate in. Additionally, while
there are many cases in which simple depth segmentation
works in street scenes, there are many that do not. A hailing
pedestrian could probably be robustly recognized, but only if
he was not touching a bush or lamppost.

B. Online learning

Tracking-based semi-supervised learning has presented an
additional challenge: it is easy enough to acquire millions
of training instances that it may be necessary to consider
new, online algorithms that are designed for it. Currently,
the boosting algorithm of [10] and [9] requires all training
examples to be loaded into main memory during the learning
process. There are a number of tricks one could apply to
alleviate this problem, such as random projections or hashing
to compress the descriptors, but ultimately it seems that online
learning algorithms will be desirable. To put rough numbers
to the problem, less than ten hours worth of unlabeled data
frequently results in exceeding 32GB of RAM to store the
inducted training examples.

To consider lifelong learning, and especially learning using
the data made available from fleets of robots, it will probably
be necessary to use constant space, linear time training algo-
rithms. The good news is that we can now consider algorithms
that might fail miserably with small amounts of training data,
but have the desired online properties and work acceptably
with large amounts of training data.

C. Bootstrapping

The impact of object recognition methods that use laser
range finders is currently limited due to the high price (tens
of thousands of dollars) of the sensors. For indoor applica-
tions, the economical (~$150) Microsoft Kinect is an exciting
development, but is inapplicable to outdoor and longer-range
systems. It might be possible, however, to bootstrap a more
economical camera-based object recognition system using
large quantities of automatically labeled objects produced from
a single laser-based system.

Two decades ago, statistical machine translation became
viable for the first time, at least partly due to the discovery
of a new source of large quantities of labeled data - the
French and English records of the proceedings of Canadian
Parliament [4]; today, related methods are socially relevant in
the form of online translation engines. One could imagine a
similar situation in which extremely large quantities of labeled
images produced by a single, expensive laser-based method
could make certain vision-based applications viable.

Currently, the largest category of failures in Junior’s object
recognition are false negatives due to undersegmentation. For
the task of building large sets of labeled images, these types
of errors are less serious than false positives or false negatives
that are directly caused by content of the object. Figure {4
shows an example of collecting overhead views of pedestrians
automatically by using object recognition on Junior, then
projecting these detections into the external camera above.

While this system is not completely free of bias - seated
pedestrians, for example, cannot be recognized because they
cannot currently be segmented - it is likely to produce data
that is complete enough to be of some use.

D. Automated descriptor tuning

In our recent work, all descriptors have been hand-tuned.
This task is tedious, time consuming, and probably would not
be done by non-robotics-experts, but is an important part of
achieving good performance. When our hypothetical farmer
buys a new robotic picking device, he will need to train it
to recognize the particular fruit that he grows, and this may
require variations on the existing descriptor set to do well.

As a result, there is a need for a method which will tune
these parameters automatically. Automated feature selection
has been well-studied in the machine learning literature, but
for robotics applications we need one in particular that will
respect the real-time operation of the system as well as the
final accuracy, ideally while considering the caching structure
of the descriptor pipeline.
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