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ABSTRACT Ultra-dense networks (UDNs) have been employed to solve the pressing problems in relation to
the increasing demand for higher coverage and capacity of the fifth generation (5G) wireless networks. The
deployment of UDNs in a very large scale has been envisioned to break the fundamental deadlocks of beyond
5G or the sixth generation (6G) networks and deliver many more orders of magnitude gains that today’s
technologies achieve. However, themathematical tool to optimize the system performance under the stringent
radio resource constraints is widely recognized to be a formidable challenge. System-level performance
optimization of current UDNs are usually conducted by relying on numerical simulations, which are often
time-consuming and have become extremely difficult in the context of 6G with extremely high density.
As such, there is an urgent need for developing a realistic mathematical model for optimizing the 6G UDNs.
In this paper, we introduce challenges as well as issues that have to be thoroughly considered while deploying
UDNs in realistic environment. We revisit efficient mathematical techniques including game theory and
real-time optimization in the context of optimizing UDNs performance. In addition, emerging technologies
which are suitable to apply in UDNs are also discussed. Some of them have already been used in UDNs with
high efficiency while the others which are still under investigation are expected to boost the performance
of UDNs to achieve the requirements of 6G. Importantly, for the first time, we introduce the joint optimal
approach between realtime optimization and game theory (ROG) which is an effective tool to solve the
optimization problems of large-scale UDNs with low complexity. Then, we describe two approaches for
using ROG in UDNs. Finally, some case study of ROG are given to illustrate how to apply ROG for solving
the problems of different applications in UDNs.

INDEX TERMS Realtime optimization, game theory, ultra-dense network, clustering, resource allocation.

I. INTRODUCTION
Since 2020, the fifth generation (5G) networks have begun
rolling out in many countries [1]. However, it is predicted
that 5G may have not enough capability to be applied
in services with the requirements of data rate to achieve
terabits per second, latency to be less than hundreds of
microseconds, and connectivity to be more than tens of
million connections per km2 in the near future [2], [3].
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Therefore, the sixth generation (6G) networks have recently
attracted both the industry and academia in some coun-
tries such as Finland, the United Kingdom, Germany, the
United States, etc [4]. Moreover, the vision of 6G net-
works is towards ubiquitous 3D coverage (space, aerial and
underwater environments) [4], intelligent networks (apply
or support artificial intelligence technologies) [4], [5], flex-
ible and reliable networks (movable property or quick
deployment for emergencies) [6], green networks (effi-
cient energy for the sustainable development of wireless
communications) [7].
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Internet-of-Thing (IoT) is one of the most prevalent tech-
nologies in 5G and has so much potential in 6G. In IoT
systems, sensors, vehicles, and devices, which are connected
via Internet links, form many services to adapt human activ-
ities, such as smart city, smart home, automation, environ-
mental monitoring, healthcare, or even remote laboratories,
automated digital contact tracing in the period of Coron-
avirus Disease 2019 (COVID-19) [8]–[11]. According to the
Ericsson Mobility Report, the number of IoT connections
has explosively grown and is forecast to reach 26.4 billion
in 2026 in which Massive IoT technologies will make up
46 percent [12]. Massive IoT deployments are made up of
hundreds to millions of connected IoT devices with low
throughput, very low power, and low latency. Obviously,
the traditional cellular networks have not enough capacity
to connect to all devices in massive IoT scenarios. With
the development of cellular network technology, using ultra-
dense networks (UDNs) is a promising solution for this
issue. In fact, UDNs, which can be seen as a key technol-
ogy for 5G, can serve simultaneously the vast number of
user equipments (UEs) with high density, increase network
capacity, improve the coverage and quality of service (QoS)
with smooth hand-off and low latency [13], [14]. The fun-
damental idea of UDNs is that the base stations (BSs) are
deployed to be as close as possible to UEs to enhance
the quality of transmitted signal and increase the efficient
utilization of the limited spectrum. In addition, decreasing
the distance between transmitters and receivers helps the
networks to be easily integrated with extremely high fre-
quency (EHF) technology which improves considerably the
capacity. In terms of UE connections, UDNs are divided
into two tiers (a macrocell tier and a small cell tier) so that
UDNs are also named multi-tiered heterogeneous networks
(HetNets). In each macrocell, a macro base station (MBS)
characterized by its high power consumption transmits the
signal to UEs in an area with a coverage radius to be up
to several kilometers. Macrocells guarantee the minimum
throughput to serve UEs. In small cells, low-cost small base
stations (SBSs) using low power are deployed with high den-
sities in the coverage of macrocell depending on the density
of randomly distributed UEs. The phrase ‘‘ultra-dense’’ in
UDNs means that the number of small cells is extremely
larger than the number of active users and the number of cells
in the traditional networks. The deployment of the massive
small cells is a breakthrough of UDNs compared to the
traditional cellular networks.

To evaluate the performance of wireless networks, opti-
mization algorithms can be deployed. Optimization can be
seen as a bridge between mathematics and engineering
because it uses mathematical researches for solving realistic
problems in engineering. From an optimization point of view,
the technical issues are handled easily and efficiently by
constructing the optimization problems (OPs) and finding
the methods to solve them. Especially when UDN scenar-
ios are considered, optimization is widely used in resource
allocation, interference management, network deployment,

backhauling, congestion management [15]. In addition, var-
ious objectives of problems in UDNs also need to optimize
such as energy efficiency (EE) maximization, spectral effi-
ciency (SE) maximization, system capacity maximization,
interference minimization, power consumption minimiza-
tion, weighted sum rate maximization [16]. However, using
optimization in realistic applications in UDNs witnesses
many challenges such as creating a suitable model, solving
method, the complexity of the solution, realtime computation.
Realtime optimization in practical scenarios requires that
the processing time for finding the optimal solution has to
be lower than a given time-bound. In UDNs with massive
data, the large amount of BSs, UEs, multiple tiers, designing
a realtime optimization method for an OP is much more
challenging.

The traditional iterative algorithms for solving OPs are
inefficient due to loaded complexity when they are applied in
large-scale systems. Game theory (GT) as a promising solu-
tion is a distributed optimal framework to apply efficiently
in UDNs which has complex interactions between network
elements. Nowadays, the optimization methods imitated the
natural behaviors of animals such as Particle Swarm Opti-
mization (PSO), Genetic Algorithms (GA), Whale Optimiza-
tion Algorithm (WOA), are widely applicable [17]. GT is also
inspired by human games with competition or cooperation
in the relationship of players. All players in a game want
to maximize their interest illustrated as a utility function
by choosing the good strategies. In contrast to traditional
optimization methods which concentrate to achieve only one
objective function, the solution of GT satisfies all rational and
selfish players or no one has any incentive to change its own
strategy. Depending on different criteria, GT has many types:
Non-cooperative game (NCG) and cooperative game (CG)
(conflict), static game and dynamic game (time), complete
information game and incomplete information game (infor-
mation), perfect information game and imperfect information
game (history) [18]. In UDNs as a multi-tier, multi-cell, and
multi-device environment, GT is suitable to apply and control
the elements.

The combination of practical optimization andGT for solv-
ing the problems in UDNs is a promising method. GT divides
the original complex OP into multiple easy sub-OPs which
can be solved by parallelism techniques. In addition, these
sub-OPs might be convex OPs if the utility functions are
thoroughly designed. Accordingly, many powerful program-
ming tools in different programming languages can solve
these convex OPs such as CVX in MATLAB, CVXPY in
PYTHON, CVXR in R, JuliaOPT in JULIA [19]. The main
contributions of this paper are summarized as follows
• We discuss some potential technologies and solutions,
which are open and efficient research directions for
applying UDNswith high-quality network performance.

• We develop an amalgamated GT and practical opti-
mization method, relying on real models of UDNs in
realtime contexts. This approach is proposed for a sig-
nificant reduction of the computational complexity and
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processing time of large-scale UDN scenarios. The joint
GT and realtime optimization algorithms can deal with
large-scale problems in wireless networks by exploit-
ing a learning-based method for utilizing the funda-
mental knowledge and advantages of GT and practical
optimization.

• We provide practical case studies of high-performance
UDN deployments, that are applicable to be imple-
mented using the proposed GT optimization techniques
in some scenarios of UDNs.

The rest of this paper is organized as follows. Firstly,
we introduce challenges of the deployment of ultra-dense
small cells in Section II. Then, promising technologies or
solutions for UDNs are described in Section III. Next,
we show the combination of optimization and GT in UDNs in
Section IV. Some case studies and conclusions are described
in Section V and Section VI, respectively.

II. CHALLENGES OF ULTRA DENSIFICATION FOR THE
FUTURE NETWORKS
UDNs as a promising technology in 5G and 6G are used for
achieving a higher density of served UEs, higher capacity,
lower latency, improving coverage with low power BSs, and
having efficient utilization of resources. Despite many advan-
tages, at the same time, some challenges need to be carefully
studied related to ultra densification of elements in networks.

A. INTERFERENCE MITIGATION
Interference and noise always exist in all realistic communi-
cation systems. In UDNs, interference becomes a big obsta-
cle that has to be investigated [20]. Figure 1 illustrates the
interference scenario in one macro cell of an UDN. Interfer-
ence can be separated into two types: inter-tier interference
(e.g. macro-to-small interference marked by I1, small-to-
macro interference marked by I2) and intra-tier interference
(e.g. intra-cell interference marked by I3, inter-cell inter-
ference marked by I4). There are three major reasons for
the interference issue in UDNs. Firstly, when SBSs shared
the same spectrumwere located densely, at the same time, the
overlapping areas between their coverage are expanded. This
leads to an increase in the probability that UEs encounter
extremely serious interference in these areas. Secondly, with

FIGURE 1. Interference cases in an UDN.

the deployment of the low size of small cells, the interference
level is intensified with line-of-sight (LoS) propagation from
adjacent cells. The third reason is that the SBSs in UDNs are
deployed randomly according to the stochastic distribution of
UEs. Hence, interference also has a random property that is
hard to manage.

B. MOBILITY/HANDOVER
In cellular networks, when a mobile UE moves between
two cells, it releases the connection with the old cell and
connects to the new one. Additionally, the network has to
guarantee the continuity of data transmission and recep-
tion in this back-and-forth handover process. Because of
the delay and the miss of connection, it is expected that
the frequency of this process is as low as possible [21].
Unfortunately, the deployment of a bunch of small cells
with dense densities in a small area causes unnecessary and
frequent handover between SBSs and the mobile UEs. Con-
sequently, UEs need more energy consumption for the hand-
off process, and the network performance is simultaneously
declined by high latency, fail handover, and high computing
complexity.

C. ENERGY CONSUMPTION
In [22], the amount of carbon dioxide (CO2) footprint pro-
duced by mobile communications was predicted to witness
growth from 86 to 235 million tonnes between 2007 and
2020. This causes many problems related to health and
environment [23]. In addition, increasing the number of
base stations and UEs in UDNs leads to extremely high
energy consumption. Therefore, applying green networking
into UDNs is essential. The metric which is usually used to
optimize energy consumption in UDNs is EE. EE represents
the efficiency level of power utilization to transmit the signal
to receivers in networks. Several studies are investigated to
optimize EE in different UDN scenarios [24]–[26]. However,
EE is not sufficient since EE can be optimized when data rate
increases faster than power consumption [27].

D. MULTI-HOP RELAY OPTIMIZATION
With wired backhauling, BSs use the total of assigned
resources to serve UEs. Nevertheless, in the ultra densifi-
cation scenario of small cells in UDNs, deploying wired
backhauling to every single SBSs is not feasible. Therefore,
the resource needs to be split up into two actions: the access
from UEs to the network and the relay for transmitting the
backhaul traffic from SBSs to the core network. There are
two kinds of arrangement: fixed access and backhaul and
integrated access backhaul (IAB) [28]. It is importantly noted
that SBSs have to find the multi-hop relay links to transmit
the wireless backhaul traffic to the given gateways due to the
small coverage of small cells [29]. Thus, the routing algo-
rithm for the optimal multi-hop relay links is also a challenge
in UDNs. There are some investigated researches [30]–[33].

VOLUME 10, 2022 13313



B. T. Tinh et al.: Practical Optimization and Game Theory for 6G UDNs: Overview and Research Challenges

E. COOPERATIVE TRANSMISSION
In UDNs, there are many idle SBSs that do not serve any UE
since the number of SBSs is much larger than the number
of active UEs. In many cases, turning on and using these
sleeping SBSs to serve simultaneously any nearby UE along
with its authored SBS is essential to consider [34]. This
cooperation supports to not only increase the desired signal
power but also decline the number of handover processes with
high-speed mobile UEs. On the other hand, when adjacent
small cells vary greatly on the number of UEs, the combina-
tion for creating a new virtual small cell allocates fairly the
load data in some small cells and mitigates the interference
between them. However, more SBSs or virtual small cells
generate more energy consumption and interference with
other small cells. Therefore, cooperative transmission still is
a challenge of the deployment of massive SBSs.

III. POTENTIAL TECHNOLOGIES AND SOLUTIONS FOR
THE ENABLING OF UDNs
With the ultra-dense deployment of network elements, four
main aspects that need to be considered are interference man-
agement, huge data and information exchange, complexity,
energy consumption. In this section, we introduce the promis-
ing technologies as well as potential solutions to deal with the
challenges and the requirements of large-scale UDNs.

A. CLUSTERING
In realistic networks, UDNs with very large numbers of
BSs and UEs are deployed in many geographical areas with
different objectives. This leads to difficulty for the core net-
work to manage, control, and solve complicated problems.
Cell clustering methods help to not only disperse the big
scenario of UDNs to decrease the computational complexity
but localize the different objectives. There are three categories
of cell clustering methods: network-based (static), user-based
(dynamic), and hybrid (semi-dynamic) ones [35]. Network-
based clustering methods divide cells into clusters according
to given targets, and the clusters do not change over time.
Instead of independence to use the same resource, the cells
in a cluster are collaborative to serve UEs. The methods
in [36], [37] create clusters to eliminate strong interference
and save energy, respectively. In other words, with user-based
clustering methods, the BSs in clusters are determined to
dynamically adapt to the changes in the channel state infor-
mation (CSI) of the network so that the elements of the
clusters are updated over time. Examples for the user-based
clustering methods in UDNs were found in [38]–[41] with
the improvements of EE, interference mitigation, spectral
efficiency. The network-based clustering scheme is less flex-
ible with interference, and the user-based clustering one is
more complex with system scheduling and exhaustive infor-
mation exchange. The hybrid clustering methods consider
the tradeoff of these two joint categories [35]. In [42], [43],
measurement BS clusters (MBCs) are formed according to
measurement information and CSI. Then, coordination BS

clusters (CBCs) which are the subsets of the fixed MBCs
are created by cooperative BSs. Furthermore, user clustering
methods considered in [24], [35], [44] are used as the next
stages after the cell clustering methods to minimize the intra-
cluster interference.

B. RESOURCE ALLOCATION (RA)
In UDNs, many access points (APs) (MBSs, SBSs, relay
nodes, radio remote heads (RRHs)) and many UEs share the
limited available signaling resources. Also, one or more of
the requirements about Energy Efficiency (EE), power con-
sumption, interference, throughput, quality of service (QoS),
fairness, priorities, and computational complexity may be
considered as the criteria to evaluate the performance of
an UDN [16]. Therefore, to optimize the network perfor-
mance, efficient resource allocation methods are essential in
UDNs with high computational complexity, significant sig-
naling overhead, and flexible handovers. There are two kinds
of manageable resources: fundamental resources (power,
spectrum, time, and space) and comprehensive resources
(available channels, backhaul/fronthaul capacity, computing
capability, etc). In [45], Lin et al. proposed a three-stage
sequential solution based on the joint clustering and resource
block allocation in user-centric UDNs to maximize the sum
rate. In [46], a RA method is developed to maximize the
system EE in UDNs integrating NOMA and beamforming.
To mitigate the interference in UDNs while guaranteeing the
SINR requirement, a power control algorithm based onMean
Field Game was proposed by Zhang et al. [47]. It improves
both EE and spectrum efficiency (SE) compared to UDNs
without traffic offloading.

C. MILLIMETER WAVE (mmWave)
In UDNs, the distances between transmitters and receivers
become smaller than ever to improve the channel links and
the densities of serving users. However, this leads to over-
whelming interference in the networks. Therefore, using very
high-frequency bands is necessary for the interfering signal
to drop quickly according to the distance increase. Apart
from inter-cell interference mitigation, using high frequency
causes an increasing spectrum that is directly proportional
to the capacity. In addition, the sub-3GHz spectrum became
extremely crowded by a lot of available wireless communi-
cation systems. MmWave technology uses frequency bands
between 30 and 300GHz for the signal interchange so that the
available spectrum resources are 200 times wider than ones
of the conventional cellular networks [48]. In addition, the
very small wavelengths of mmWave help to easily integrate
multiple antenna arrays in both transmitters and receivers to
achieve further channel gain by narrowing the beams [49].
MmWave band is essential to be used in UDNs to achieve
high data rates, mitigate path loss and interference thanks to
narrow pencil beams [49], [50]. In [51], authors appreciated
that both EE and SE increase when applying mmWave tech-
nology in UDNs. Authors in [52] proposed a method to solve
the joint problem considering time RA, user association, and
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mmWave beamforming. In [53], usingmmWave communica-
tion improve the average service delay in a cellular network.

D. TERAHERTZ (THz) COMMUNICATIONS
With the explosive growth of global wireless connections
and global mobile data traffic, and the revolutionary appli-
cations such as virtual/augmented reality, Internet of Every-
thing (IoE), autonomous driving, 5G networks are not enough
capabilities of data rates and latency to adapt [54]. THz
communication is one of the most promising technologies
for 6G and beyond [55], [56]. THz systems, which trans-
fer the information using THz band (0.1-10 THz), provide
the applications with ultra-wide bandwidth, ultra-high data
rates, and the computing power is expected to approach
the processing power of the human brain [54]. Similar to
mmWave, THz waves witness a significant decrease in the
power in propagation. However, THz waves are robust to
atmospheric effects [56], and the multi-band ultra-massive
multiple-input multiple-output (UM-MIMO) using massive
nano-antenna arrays helps it to overcome this distance prob-
lem [57]. In [58], Jornet and Akyildiz proposed a propagation
model for THz-based electromagnetic wireless nanonetworks
in nanotechnology applications which are communications
between nano-machines. In [59], a framework using the joint
of THz communications andmassive antenna technologywas
proposed to design and analyze the performance of the hybrid
beamforming architecture in a DenseTeraNet which mimics
an UDN. The summary of THz-enabled ultra-fast small cell
and 3D network modeling is provided in [60].

E. MASSIVE MULTIPLE-INPUT MULTIPLE-OUTPUT
(mMIMO)
UDNs require that the densities of small cells have to be
larger than these of UEs [61]. In reality, it is impossible
to build commercial networks with the number of BSs to
be greater than the number of UEs. Thus, using multiple
access techniques is essential in UDNs. In addition, the
requirements of boosting multiplexing and diversity gain are
strict standards in 5G and beyond 5G (B5G). Therefore,
mMIMO technology (also known as large-scale antennas or
very large MIMO) which integrates massive low-power and
cheap antenna arrays in BSs solves these problems. In the
mMIMO-based BS, the number of antennas is much larger
than the number of active devices so that one BS can serve
many UEs in the same resource without cross-talk interfer-
ence between UEs [14]. The very high frequency in mmWave
or THz technologies is essential to pack hundreds or thou-
sands of antennas into a compact area. Therefore, mMIMO
BSs using very high frequency have small sizes and are easily
deployed in different locations. In addition, mMIMO systems
also have other benefits: interference mitigation, simple sig-
nal processing, capacity increase, reduction of latency, and
ultra-high reliabilities [14]. In [62], authors discussed the
benefits and challenges of using mmWave mMIMO-based
wireless backhaul in 5G UDNs. Furthermore, optimization

methods were proposed to improve EE in strong interference
environments in mMIMO-based UDNs.

F. INTELLIGENT REFLECTING SURFACE (IRS)
In wireless communications, physical phenomenons such as
reflection, diffraction, and scattering are the opportunities for
transmitting the signal to receivers even though they make
the signal processing and computing more complex. The
very high-frequency signal in mmWave or THz technologies
which are potential to UDNs are easily blocked by even thin
obstacles. To tackle this problem, IRS technology, which is
used for reflecting the signal to receivers, becomes more
attractive. An IRS known as passive beamforming is a planar
array that combines a bunch of low-cost passive reflecting
elements. Each element controlled by a smart controller has
the capability of independently inducing a reflecting signal
with a certain amplitude and a phase on an incident sig-
nal [63]. IRSs can be attached to surfaces that are in LoS with
APs like walls, glasses, ceiling, etc., to create smart reflecting
radio environments [56]. Therefore, IRS is a solution for
significantly channel gain improvement, network coverage
improvement, boosting spectral efficiency, low cost of imple-
mentation, lower power consumption, co-channel interfer-
ence mitigation [56], [64]. In [63], [65], IRS is considered
in one cell wireless system where a multi-antenna AP serves
single-antenna users. In [66], Hashida et al. proposed an
IRS-aided cellular network with cooperative IRSs and BSs to
communicate with aerial users, and this network outperforms
the conventional system without IRSs for inter-cell interfer-
ence mitigation. In addition, IRS-enabled cellular networks
are considered with the different objectives for maximizing
the number of users, minimizing the transmit power, or max-
imizing the weighted minimum rate of all users in [67], [68].

G. CELL-FREE mMIMO
Cell-free mMIMO is a promising transmission technology
where a large number of distributed APs connected to a
centralized processor to serve UEs coherently. In cell-free
mMIMO, each UE is served by surrounding APs which
combine to form a virtual mMIMO BS, and one AP can
join multiple virtual BSs to serve UEs [69]. Thus, there
is no clear cell boundary between small cells like conven-
tional cellular networks. Because of user-centric full cooper-
ation among APs, the implementation of cell-free mMIMO
makes UDNs more robust to inter-cell interference [70].
In [71], [72], the authors combined cell-free mMIMO and
mmWave in UDN environments to evaluate the effect of
shadowing correlation and radio frequency beamforming
schemes. In [73], the authors proposed a CSI compression
mechanism to avoid the upload overhead and improve SE in
cell-free mMIMO UDNs.

H. UNMANNED AERIAL VEHICLES (UAVs)
UAVs known as drones are aircrafts that are remotely con-
trolled by human operators or autonomous programs to per-
form some given tasks. In wireless communications, using

VOLUME 10, 2022 13315



B. T. Tinh et al.: Practical Optimization and Game Theory for 6G UDNs: Overview and Research Challenges

UAVs as flying BSs in terrestrial cellular networks is a
promising solution in 5G and B5G [74], [75]. The flying BSs
can provide LoS connections, can be dynamically adjusted
to suit the communication environment, boost spectral effi-
ciency and user quality of experience, enhance the capac-
ity and coverage of cellular networks with the characters
of low cost and controllable mobility [76], [77]. In the
UAV-assisted cellular networks, UAV-BSs can work alone
or assist traditional fixed BSs by improving the coverage
(UAV-mounted flying relays) or offloading an excessive load
of data exchange [74]. To overcome the unusual traffic chal-
lenge of unexpected events, a resilient UDN using UAVs
as flying BSs is designed to serve an acceptable QoS [78].
In [79], the authors introduced two sub-channel access
schemes in the UAV-aided UDNs to decrease the interference
from adjacent UAVs. In [80], a link-adaptive constellation
division multiple-access technique was proposed to be used
in UAV-aided mmWave-based UDNs to cancel intra-beam
interference andmitigate adjacent-beam interference. In [81],
Chen et al. proposed a Deep Q-Network based RA to maxi-
mize the EE in UAV-aided UDNs.

I. DEEP LEARNING (DL)
DL which is a powerful branch of machine learning is
inspired by the human brain with many node layers [82].
Each neural network combined multiple layers of nodes with
an activation function, and weights are used for connecting
layers. In the training process, backpropagation phases cal-
ibrate these weights replied on training data. This trained
neural network consists of dominant features of training
data. Then, in the testing process, new input data is passed
through this neural network to generate the output. The
interesting thing is that the testing time is extremely lower
than the training time, or DL reduces the online testing time
by increasing the offline training time. Therefore, DL is a
powerful tool in realtime systems such as object detection
or recognition, self-driving cars, virtual assistance, human
behavior analysis [82]. Clearly, in wireless communica-
tion, a trained neural network cannot offer a better solution
compared with a known optimal algorithm with a model.
However, we cannot always form models for optimization
problems in UDNs or it is too complex or impossible to
solve. In these situations, DL is a suitable alternative option.
In [83]–[85], authors proposed DL-based approaches to
estimate channel state information (CSI) which is hard to
model because of stochastic and time-varying characteristics.
This can support avoiding excessive feedback overhead in
UDNs since the processors at core networks can predict
CSI without feedback from UEs to control BSs to transmit
effectively.

IV. PRACTICAL OPTIMIZATION AND GAME THEORY FOR
LARGE-SCALE MODELS OF UDNs
In large-scale systems of 6G, almost all services require
real-time computing and ultra-reliable low-latency commu-
nications (URLLC). Therefore, within time-varying wireless

channels, multi-tier and dense environments, distributed,
and self-organizing optimal algorithms have an important
role [86]. In this section, we present an introduction of GT,
which is a powerful distributed framework, and realtime opti-
mization. In addition, the combination of them for solving
effectively the problems of UDNs is also described.

A. GAME THEORY
GT is used as a mathematical tool to understand and model
cooperative or competitive situations which have multi-
ple rational and selfish decision-makers. Several models of
games are designed for different situations to be suitable with
the relationships as well as the state of players. There are four
fundamental criterias to classify games. Firstly, depending on
the cooperation level, games can be divided into CGs and
NCGs. Secondly, if the players sequentially take their actions,
these games are called as sequential games (or extensive
games) and called simultaneous games where the actions of
players are chosen simultaneously. Thirdly, when each player
fully knows the actions of the others in their turn, these games
are perfect information games and are imperfect information
games, vice versa. Fourthly, games are called as complete
information games if all players know all information of
games (such as strategies, payoffs, etc), and called as incom-
plete information games if one or more players know the
part of the information [87]. Generally, every game combines
three main components that are players, possible actions,
and payoffs of actions. The strategy of a player maps the
instant information of the game to its action. Each player only
cares about itself, tries to maximize its payoffs by choosing a
strategy that instructs to act depending on its own available
knowledge. A Nash equilibrium (NE) is usually used as a
solution of a game. The NE profile consists of strategies of
all players with the condition to be that each strategy brings
the maximum payoff to each player. Intuitively, nobody has
an incentive to deviate from their strategy if an equilibrium
profile is played. A game can havemore than one NE solution
so Pareto efficiency (PE) is used for evaluating the perfor-
mance of NE [88]. In the following contents, we denote
matrices and vectors as uppercase bold and lowercase bold
letters respectively, sets as calligraphy font letters and scalars,
functions as no-bold letters.

To form mathematical definition, we assume that a game
have N players with si, ui denoted the strategy and the utility
function of player i (0 < i ≤ N ), respectively. Let Si denote
the set of possible strategies of player i so we have si ∈ Si.
Let s−i and S−i be respectively the strategies and the set of all
possible strategies of all players except player i. Therefore,
we have s−i = 〈s1, . . . , si−1, si+1, . . . , sN 〉, s−i ∈ S−i, the
strategy profile s = (si, s−i) which consists all strategies of
all players.

• NE definition: Given the strategies s−i of all players
except player i, the best response s∗i strategy of player
i is defined as a strategy that satisfies (1). There may be
more than one best response of s−i so we denote the set
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of these best responses as BR(s−i) (s∗i ∈ BR(s−i)) [88].

ui(s∗i , s−i) ≥ ui(si, s−i), ∀si ∈ Si. (1)

Intuitively, with the best response s∗i , player i does the
best in his capability to maximize his interest (the pay-
off). In the NE profile, strategies of all players are their
best responses, and as a result there is no player who
wants to change his or her strategy to get lower payoffs.
Therefore, we can say that the equilibrium is established.
A NE satisfies the following condition as [18]

s∗i ∈ BR(s−i), ∀0 < i ≤ N . (2)

• PE known as Pareto optimality: With player i, the strat-
egy si strictly dominates s′i if

ui(si, s−i) > ui(s′i, s−i), ∀s−i ∈ S−i. (3)

The strategy profile s Pareto-dominates s′ if any strategy
si ∈ s strictly dominates s′i ∈ s′. In other words, all
players strictly prefer s to s′. Thus, a strategy profile is
Pareto-optimal if there is no strategy profile that Pareto-
dominates it. A Pareto optimal NE sp satisfies the con-
dition in (4) [18], [88].

ui(sp) > ui(s∗), ∀0 < i ≤ N , ∀s∗ ∈ S∗, (4)

where s∗ and S∗ are the NE and the set of NEs, respec-
tively. When Pareto efficient strategy profile is played,
there is no player who can get more payoff by changing
its strategy without harming the payoff of other players.

B. REALTIME OPTIMIZATION
In general, an OP can be expressed as:

min
x∈F

f (x) (5a)

s.t. gi(x) ≤ 0, i = 1, . . . ,m, (5b)

hj(x) = 0, j = 1, . . . , l, (5c)

where f (x) is the objective function, gi(x) and hj(x) are the
constraint functions for creating the feasible set F , x is the
vector of variables. There are two types of OPs: convex and
non-convex OPs. Because of no formal assurance of finding
the optimal solution in non-convex problems, the solving
methods and software lack efficiency [89], [90]. Mean-
while, there are many powerful methods as well as program-
ming to solve convex problems such as linear programming
(LP), quadratic programming (QP), quadratically constrained
quadratic programming (QCQP), semi-definite programming
(SDP), or Simplex Method, Interior-point Method, Lagrange
duality method etc. [17], [91], [92]. However, almost all opti-
mal problems in wireless communications are non-convex.
Thus, non-convex problems need to be transformed into
convex problems which provide an acceptable approximate
solution to the original problems [89], [93], [94].

To solve the problems inUDNs, themathematical formulas
treated as the objectives and constraints are used for forming
OPs defined in problem (5) in a given scenario. Most of

these problems are non-convex and complex. In UDNs as
large-scale models with a large number of BSs and UEs, the
non-convex OPs become extremely complex and quite chal-
lenging to solve [16], [89], [95]. It is a long journey between
the optimization theory and the optimization applied in real-
istic systems [19], [96]. On the other hand, realtime optimiza-
tion is very crucial in UDN-enabled models since UDNs are
applied in 5G and B5G which strictly require low processing
time. The systems using realtime optimization algorithms
have trouble or even fail if the processing time exceeds
the timing constraint (deadline time limit). Therefore, real-
time OPs have to consider both two sub-problems: finding
the optimal feasible point and satisfying timing constraint
[19], [97]. Both the available computing capability of proces-
sors and the complexity of the OP need to be simultaneously
considered to design solving method.

C. REALTIME OPTIMIZATION AND GAME THEORY FOR
UDNs (ROG-UDN)
GT and optimization are used in many different applications
in UDNs such as power allocation, spectrum allocation, inter-
ference management, user association, offloading, effective
capacity, physical layer security, edge caching, etc. A sum-
mary of recent approaches of optimization and GT in UDNs
is provided in Table 1 with LD denoted leader, FL denoted
follower, CHs denoted cluster heads, and ANs denoted access
nodes. In these given UDNs, GT with a variety of game mod-
els can be used for describing the relationship between the
network elements, the information being available to them,
and their objectives in different applications. There is no clear
boundary between GT and optimization since the solution of
a game (NE) is defined from OPs. Clearly, we can rewrite (1)
as follow

s∗i = argmax
si∈Si

ui(si, s−i), ∀0 < i ≤ N . (6)

Therefore, GT and optimization can join together to effec-
tively solve a problem. Figure 2 shows two different
approaches for solving a distributed OP in UDNs. The first
approach is that the given problem is modeled by a game
model after determining the relationship, knowledge, and
objective of players. The game is divided into multiple sub
OPs which are solved to obtain the solution. Secondly, an OP
is designed to describe the given problem. This OP is usually
very complex and even is a non-convex. Then, the OP is
transformed into a gamewith multiple convex sub-OPs which
is easy to find the solution.

Using GT, the complexity of an OP which is one of the
key factors for real-time optimization becomes lower. The
complex OP can be divided into several sub-OPs for every
player in the game. This method can use parallel computing
for solving so that it is suitable to apply in real-time applica-
tions with large-scale models like UDNs [89]. In addition,
original non-convex OP can be automatically transformed
into several convex OPs for every player in the game if
the utility functions are well defined. Therefore, the joint of
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TABLE 1. A summary of surveyed approaches of optimization and game theory in UDNs.

FIGURE 2. Solving a problem using game theory and optimization.

optimization and GT is a promising method for large-scale
UDN-enabled models with massive data, a large amount of
BSs, UEs, multiple tiers.

V. SOME CASE STUDIES OF ROG-UDN
In this section, we give typical case studies using clustering,
game theory, and optimization to solve some problems in

UDNs. The descriptions emphasize the process of designing
system models as well as forming the game models. Case
studies are arranged according to the process of serving UEs.
Firstly, we begin with Case Study 1 and Case Study 2 generat-
ing BS-UE associations. After that, a game-based cell cluster-
ing method for cooperative transmission is described in Case
Study 3. Then, Case Study 4 presents resource allocation
(both sub-channel allocation and power allocation) for one-
tier networks. Finally, power allocation based on Stackelberg
game for two-tier networks in a sub-channel is presented in
Case Study 5. The computing platform which uses the CVX
and CVXPY tools [124], [125] in MATLAB and PYTHON
for solving convex OPs is used for extracting the results. The
processing unit is with a PC having CPU @3.70GHz and
32GB memory.

A. CASE STUDY 1: HUNGARIAN ALGORITHM
In this case study, we investigate BS-UE associations using
the well-known Hungarian algorithm. Pairing a BS and a UE
is an efficient approach for saving network resources and
reducing the mobile data traffic of UDNs. The channel model
from the BSs to the UEs is represented as

√
βi,kgi,k , where√

βi,k is the path loss and large-scale fading of the association
of the ith BS to kth UE, while gi,k ∈ CN (0, 1) presents the
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small-scale fading. The path loss from BS to UE is estimated
as 128.1+ 37.6 log10 R [dB], where R be the distance in km.
The signal received at UE k by BS i is

yk =
√
βi,kgHi,kxi,k︸ ︷︷ ︸

desired signal

+

M∑
j 6=i

K∑
p=1

√
βj,kgHj,kxj,p︸ ︷︷ ︸

interference

+nk , (7)

where xi,k is the information from BS i intended to UE k and
nk is the additive white Gaussian noise (AWGN) at UE k . The
signal-to-interference (SIR) of BS i and UE k link is given by

SIRi,k =
βi,k |gi,k |2∑M

j 6=i
∑K

p=1 βj,k |gj,k |
2
. (8)

By following matrix represents, an associating problem
is with M BSs to be matched with K UEs. The BSs are
with different rows, the UEs are with different columns. The
entries of the matrix represent the SIR of the communication
link of the BS associated with the row is matched with the UE
associated with the column.

BS\UE 1 2 . . . K
1 SIR1,1 SIR1,2 . . . SIR1,K
2 SIR2,1 SIR2,2 . . . SIR2,K
. . . . . . . . . . . . . . .

M SIRM ,1 SIRM ,2 . . . SIRM ,K

Thus, a UE is to be assigned to a BS so that the total
SIR of K UEs in the network will be maximum. To sum up,
an association BS-UE problem can be expressed as

max
xi,k

M∑
i=1

K∑
k=1

SIRi,kxi,k (9a)

s.t.
M∑
i=1

xi,k = 1, k = 1, . . . ,K , (9b)

K∑
k=1

xi,k = 1, i = 1, . . . ,M , (9c)

where

xi,k =

{
1, if the kth UE is assigned the ith BS,
0, if the kth UE is not assigned the ith BS.

The restrictions of (9b) and (9c) are represented that the kth
UE will be assigned only by one BS and the ith BS will be
done by one UE.

To solve the associated problem (9), an efficient Hungarian
algorithm can be proposed in Algorithm 1.

To evaluate the performance of the associated problem in
the scenarios of UDNs, we consider a circular cell network
with radius 500 m, where M BSs and K UEs are randomly
distributed location in the cell. There areM = {50, 100, 150}
BSs and K = {10, 30, 50} UEs in the considered network.
The average execution time for performing Algorithm 1 in
three different models are at {0.75, 1, 3.5} s. The results of
BS-UE association are illustrated in Figure 3.

Algorithm 1 Hungarian Method for BS-UE Association
1: Input: SIR matrix SIRmaxprob.
2: Convert to minimization problem with SIRminprob =
{SIRi,k =

∣∣SIRi,k −max(SIRmaxprob)
∣∣ | i =

1, . . . ,M and k = 1, . . . ,K }.
3: Add dummy columns/rows to form a square matrix
SIRminprob with size max(M ,K )×max(M ,K ).

4: Get modified matrix:
5: Subtract the smallest number in each row of SIRminprob

from all numbers in that row.
6: Subtract the smallest number in each column of
SIRminprob from all numbers in that column.

7: Repeat
8: Draw lines through rows and columns to cover all

zeros in modified matrix with minimum number of lines
nmin.

9: if nmin < max(M ,K ) then
10: From the elements that are not covered by any line,

subtract the lowest number from these elements.
11: Add this lowest number to elements crossed by any

two lines
12: end if
13: Until nmin = max(M ,K ).
14: Obtain the optimal association from zeros.
15: Output: The association matrix X = {xi,k | i =

1, . . . ,M and k = 1, . . . ,K }.

B. CASE STUDY 2: K-MEANS AND GAME THEORY
Different from paired-association algorithm in Case Study 1,
K-means algorithm is a popular approach for clustering prob-
lem with multi-association. From that, we exploit K-means
algorithm for two clustering cases of UDN scenarios. Firstly,
we investigate the network model where the number of BSs
(M ) is much larger than the number of UEs (K ). Secondly,
we consider the case ofK � M . In the first case, we provide a
K-means algorithm for clustering a UE supported by multiple
BSs in a cooperative communication network. In the last case,
we focus on a K-means clustering for grouping multiple UEs
based on a coverage network of a BS.

For an instant, we investigate a constrained K-means clus-
tering with the SIR performance as defined in (8) forK � M .
Therefore, a UE can be served (clustered) by a BS within its
coverage if and only if the SIR of the link between the UE and
the BS must be greater than a given threshold. An efficient
constrained K-means clustering can be found in [92]. From
that, two types of association constraints are provided as

• Must-link constraints (i, k) ∈ Lmust indicate that the
kth UE has to be served in BS i with satisfied a SIR
constraint.

• Cannot-link constraints (i, l) ∈ Lnot imply that the lth
UE should not be placed in cluster i.

Then, Algorithm 2 where we propose a constrained
K-means clustering algorithm to identify the optimal number
of UE-BS clusters is used to obtain results.
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FIGURE 3. BS-UE associations using the Hungarian algorithm with
different numbers of BSs and UEs (Red triangles mark BSs. Blue dots
mark UEs that are connected to BSs by straight lines.).

For a simulation, we consider a circular cell network with
radius 500 m, where M BSs and K UEs are randomly dis-
tributed in the cell. By using CVXPY tool on the considered

Algorithm 2 Constrained K-Means Algorithm for BS-UE
Clustering
1: Input: The UEs’ and BSs’ locationsUEloc,k , BSloc,i. The

maximum number of BSs available to be deployed is
Mmax . The maximum number of iterations is set to Nmax .
Set Jclus = Mmax , the set of UEs served by mth BS
Km = �.

2: Repeat
3: Repeat
4: The BSs’ locations BSloc,i will set as the centroid
{θ

(0)
i }, i = 1, . . . , Jclus.

5: Update index set of users:
6: for k = 1 to K
7: Compute the number of assigned (i, k) with

satisfied SIR constraint, [SIRi,k ]
Km
k=1, m = 1, .., Jclus.

8: end for
9: Assign appropriate UEs into the cluster with the

largest SIR performance.
10: Update the centroids:
11: The updated centroid will be the BS location with

nearest distance
12: argmin{‖BSloc,i− θi‖}, θi = 1

Km

∑
k∈Km

UEloc,k ,
m = 1, .., Jclus.

13: Until The cluster members do not change or the pro-
cedure reaches to Nmax .

14: Set M∗ = Jclus. Set Jclus = Jclus − 1.
15: Until There is no feasible solution with regard to the

assigned value Jclus in or Jclus = 0 when the number of
randomly initial sets of centroids is fixed.

16: Output: M∗, M∗
= {1, . . . ,M∗}, Km = {1, . . . ,Km},

and BSloc,i (m = 1, ..,M∗).

TABLE 2. The average executive time results in different network models.

processing unit for implementing Algorithm 2, the cluster-
ing results and execution times under scenarios of M =

{20, 50, 80}BSs andK = {100, 500, 800}UEs are illustrated
in Figure 4 and Table 2. Similarly, forM � K , centroids are
the UE locations, and the roles of BSs and UEs are swapped.
However, the number of centroids cannot be decreased unlike
the K � M scenario. Therefore, Algorithm 2 can be used to
obtain a clustering result with the constraint of BS-UE dis-
tances and without considering to choose the optimal number
of centroids.

C. CASE STUDY 3: COOPERATIVE TRANSMISSION -
COALITION GAME
With the very high density of small cells in UDNs, the
inter-cell interference is a big challenge. In this case study,
we consider cooperative transmission to deal with this kind
of interference. Cooperative transmission forms SBSs, which
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FIGURE 4. BS-UE clustering using constrained K-means algorithm (Red
triangles mark BSs. Blue dots mark UEs that are connected to BSs by
straight lines.).

extremely interfere with each other, into clusters described
in Figure 5. In a cluster, there is no intra-cluster interference
since the SBSs shake hands together to transmit the signal.

FIGURE 5. Cooperative transmission in an UDN.

Therefore, each SBS has an incentive to consider whether or
not it cooperates with other SBSs to form a coalition to serve
their UEs. This problem is modeled by a cooperative game.

Let B = {1, 2, . . . ,B} and U = {1, 2, . . . ,U} to be the set
of all SBSs and UEs, respectively. In this case study, inactive
SBSs which are serving no UE are also considered together
with active SBSs since theymay join clusters to cooperatively
boost the performance of serving UEs. Both SBSs and UEs
are equipped with one omni-directional antennas per UE.
Additionally, we denote C = {C1, C2, . . . , CC } to be the
set of all clusters. Each cluster combines SBSs which are
cooperating with each other to serve their UEs. Thus, SBSs
in cluster Ci = {1, 2, . . . ,Ci} transmit cooperatively signals
to UEs in their small cells, and we denote the set of these
UEs as UCi = {1, 2, . . . ,UCi}. For simplicity, we adopt two
assumptions as follows

• All the SBSs in C use the power of Pmax to transmit the
signal to each UE.

• In a cluster, there is no intra-cluster interference since all
SBSs serve only one UE at any time, and UEs are served
in the same duration of time slot.

Therefore, the signal-to-interference-plus-noise ratio (SINR)
of UE u served by cluster Ci is expressed by

γu =

∑
b′∈Ci |hu,b′ |

2Pmax∑
Cj∈C\Ci

∑
b∈Cj |hu,b|

2Pmax + σ 2
u
, (10)

where hu,b′ combining path loss and small-scale fading
(Rayleigh fading) represents the channel response from SBS
b′ to UE u, and σ 2

u is the power of AWGN at UE u.
The collection of SBSs which join cooperatively clusters

to serve their UEs is formed as a coalition game GAME =
〈PL, v〉 with non-transferable utility (NTU) where PL = B is
the set of players (SBSs), and v(C) ⊆ RC is a set of payoff
vectors [126]. Each cluster Ci ∈ C is the coalition whose value
is each element v(Ci) of the set v(C). To avoid an overhead
increment of complexity and CSI data exchange, we limit
the number of SBSs in each cluster by Nmax. The value of
a coalition Ci is defined as

v(Ci) =
1
UCi

∑
u∈UCi

BW log2(1+ γu), (11)
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whereUCi is the number of UEs served by SBSs in Ci, andBW
is the channel bandwidth. The preference condition is defined
that SBS b prefers to leave coalition Cj to join coalition Ci
denoted by Ci �b Cj if

v(Ci ∪ {b})+ v(Cj \ {b}) > v(Ci)+ v(Cj). (12)

Intuitively, SBS b decides to cooperate with a coalition for
increasing the sum of utility values. There are two kinds of
operation for changing players between the coalitions are
used [118].
• Split and merge: The operation of SBS b ∈ Cj leaving Cj
to join Ci can be expressed as{

Ci, Cj
}
→
{
Ci ∪ {b}, Cj \ {b}

}
. (13)

• Swap: If one or two of coalitions Ci and Cj has the
number of SBSs equaling Nmax, and SBS b′ ∈ Ci prefers
Cj to Ci while SBS b ∈ Cj prefers Ci to Cj, then they swap
their positions as{

Ci, Cj
}
→
{
Ci ∪ {b} \ {b′}, Cj ∪ {b′} \ {b}

}
. (14)

To extract the set of clusters C, we use Algorithm 3.

Algorithm 3 Coalition Game Algorithm for Clustering SBSs

Input: The channel matrix H , the power of AWGN σ 2, the
channel bandwidth BW , the maximum power to each UE
of SBSs Pmax, the set of players PL.

Output: The optimal set of all clusters C
1: Initialization: Initialize a random partition C(0)
2: Assign l ← 0
3: while C(l) change do
4: for b ∈ B do
5: Given b ∈ Cj
6: for b′ ∈ Ci (Ci ∈ C \ Cj) do
7: if |Ci| = Nmax then
8: Assume C(tmp)← swap SBS b and SBS b′

9: if C(tmp) �b C(l) then
10: C(l)← C(tmp)
11: end if
12: else
13: Assume C(tmp)← SBS b joins Ci
14: if C(tmp) �b C(l) then
15: C(l)← C(tmp)
16: end if
17: end if
18: end for
19: end for
20: C(l+1)← C(l)
21: l ← l + 1
22: end while

For a simulation, a network covers an area with hexagon
radius of 1000 m which includes 50 SBSs and 30 UEs
with uniform distribution. Each SBS has one antennas with
Pmax = 30 dBm and the bandwidth of 20MHz. Figure 6 illus-
trates the implementation of clustering SBSs using coalition

FIGURE 6. Clustering BSs using coalition game (Red triangles mark SBSs.
Blue dots mark UEs which are connected to SBSs by straight lines. Black
lines between SBSs mean that they are in the same cluster.).

game with the maximum number of 3 SBSs being clustered
in each cluster. For large-scale models, three scenarios are
also performed for {200, 400, 600} SBSs and {70, 100, 200}
UEs by spending {125, 350, 840} ms of our processing unit,
respectively.

D. CASE STUDY 4: RESOURCE ALLOCATION (RA) - NCG
GT is a distributed computational tool to solve effectively RA
problems in UDNs with lower complexity. In this case study,
a method that combines a sub-channel allocation (SCA) pro-
cess and a power allocation (PA) process is used for RA
to optimize network throughput. A NCG is built to provide
optimal power to each SBSs. We consider a multi-cell down-
link transmission system using orthogonal frequency division
modulation (OFDM) in an UDN where SBSs, SUEs are ran-
domly high-density distributed. It is assumed that macrocells
and small cells use two separated spectrum resources. There-
fore, there is no inter-tier interference. Small cells use the
same spectrum resource of N orthogonal sub-channels with a
bandwidth of BW per sub-channel to transmit downlink data
to UEs. Thus, inter-cell interference is only taken into account
in this case study.

We denote B = {1, 2, . . . ,B} to be the set of active
SBSs which are serving at least one UE u ∈ U where
U = {1, 2, . . . ,U} is the set of UEs. One UE associates with
only one SBS, and one SBS can serve multiple UEs with the
number limited by N in different sub-channels. Ub represents
the cluster of UEs which are served by SBS b, and as a result
we have U = ∪

b∈B
Ub and Ub ∩ Ub′ = ∅,∀b 6= b′. The SINR

of SUE u served by SBS b in sub-channel n is expressed by

γu =
|h(n)u,b|

2p(n)u,b∑
b′∈B\b

∑
u′∈Ub′

a(n)u′,b′ |h
(n)
u,b′ |

2p(n)u′,b′ + σ
2
u

, (15)
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where p(n)u,b is the desired transmit power using at SBS b to
serve UE u, p(n)u′,b′ represents the interference power using at

SBS b′ to serve its UE u′, h(n)u,b is the channel response between
SBS b and UE u in sub-channel n, σ 2

u is the power of AWGN
at UE u, a(n)k,i = {0, 1} denotes an assignment with the value
of 1 meant that UE u served by SBS b in sub-channel n, and
vice versa. Using Shanon formula, we have the limitation of
achieved throughput of UE u authorized by SBS b in sub-
channel n as

Tpu = BW log2 (1+ γu) . (16)

The RA method is decomposed into two processes.

1) THE SCA PROCESS
Firstly, UEs connect to the nearest SBSs (also known as
SUEs), and the number of UEs served by a SBS is limited
by N . In small cell b, sub-channel n is allocated to UE u
which has the maximum channel gain [107]. Given b ∈ B
and n ∈ {1, 2, . . . ,N }, this is described mathematically as

u∗ = argmax
u∈Ub

|h(n)u,b|. (17)

Then, we assign a(n)u∗,b = 1 and a(n)u,b = 0,∀u ∈ Ub\u∗ with the

constraint
N∑
n=1

a(n)u,b = 1 which means that each UE authorizes

only one sub-channel.

2) THE PA PROCESS
The objective is to maximize the network throughput. The PA
is described by an OP as follows

max
P

N∑
n=1

∑
u∈U (n)

BW log2 (1+ γu) (18a)

s.t. 0 ≤ p(n)u,b ≤ P
(n)
max, ∀p

(n)
u,b, (18b)

BW log2 (1+ γu) ≥ Tpmin, (18c)

where P is a matrix of the transmit power of SBSs in all
sub-channels, P(n)max is the maximum transmit power of each
SBS in sub-channel n, U (n) represents the set of UEs served
in sub-channel n. (18b) represents that the power in each
sub-channel does not exceed P(n)max. (18c) indicates that the
minimum throughput of each UE equals to Tpmin to guarantee
the QoS. Clearly, OP (18) is a non-convex and very complex
OP with massive SBSs and UEs in UDNs. After the SCA,
OP (18) can be divided into |N | PA sub-OPs corresponding to
different orthogonal sub-channels since there is no intra-cell
interference in each small cell. Each sub-OP corresponds to a
PA problem where each small cell serving only one UE. The
sub-OP of sub-channel n can be expressed as follows

max
p(n)

∑
u∈U (n)

BW log2 (1+ γu) (19a)

s.t. 0 ≤ p(n)u,b ≤ P
(n)
max, ∀p

(n)
u,b ∈ p

(n), (19b)

BW log2 (1+ γu) ≥ Tpmin, ∀u ∈ U (n), (19c)

where p(n) denotes the vector of the transmit power of
SBSs serving UEs in U (n). In consideration of small
cells corresponding to self-interested players, we model
OP (19) as a NCG denoted by the normal form GAME =〈
PL, {P i}i∈PL, {Tpi}i∈PL

〉
. PL is the set of players (i.e., small

cells), P i = {pi|0 ≤ pi ≤ P(n)max} represents the set
of possible transmit power strategy of the player i, Tpi
denotes the utility function (i.e., throughput) of the player i
defined as (16) with UE u to be served by player i. A strat-
egy profile is a vector denoted as p = (p1, p2, . . . , pB)
in the joint strategy space of all players. The optimal
profile p∗ = (p∗1, p

∗

2, . . . , pB)
∗ is the NE profile to be

expressed as

p∗i = argmax
pi∈Pi

Tpi, ∀i ∈ PL. (20)

Each OP in (20) is convex with one variable pi. To extract the
solution, we use Algorithm 4.

Algorithm 4 Iterative PA for Extracting the NE Profile in a
Sub-Channel
Input: The channel matrix H , the power of AWGN σ 2,

the bandwidth of each sub-channel BW , the maximum
transmit power in each sub-channel of SBSs P(n)max, the
minimum throughput Tpmin, the set of players PL

Output: The vector of optimal transmit power of all players
p∗ in sub-channel n

1: Initialization: Initialize p
2: while the convergence is not reached do
3: for i = 1 : B do
4: update the best respond power of player i according

to the convex OP

p∗i (p−i) = argmax
pi∈Pi

Tpi,

where p−i is the set of the power of players except
player i

5: end for
6: end while

For a simulation, we assume the coverage of a hexagon area
with the radius of 1000m. The SBSs and UEs are uniformly
distributed with the numbers of 50 and 30, respectively. The
spectral resource is divided into 5 orthogonal sub-channels
with 4 MHz per sub-channel. The maximum power of SBSs
is 30 dBm. The PYTHON code generated by CVXPY is
used for solving the convex OPs in Algorithm 4. Table 3
shows the network performance and the execution time for
implementing Algorithm 4. For an instance of 50 SBSs and
30 UEs, the result shows that the average throughput of UEs
equals to 15 Mbps, the minimum throughput of UEs equals
to 2 Mbps and the processing unit spends 2.5 s for solving the
problem.
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TABLE 3. The average network performance and executive time results in
different network models.

E. CASE STUDY 5: PA IN A TWO-TIER NETWORK -
STACKELBERG GAME
The fundamental structure of an UDN consists of two tiers
that are a macro cell and small cells overlaid in this macro
cell. If UEs go out the coverage of small cells, they need
to be served at least the minimum constraint of throughput.
Therefore, it is essential to propose an efficient method for
controlling power between these two tiers. Stackelberg game
is one of the extensive form games where players do not
choose simultaneously their actions. In a duopolistic setting
Stackelberg competition, players as leaders begin the game
by choosing their actions. Then, players as followers observe
the actions of leaders and choose their own suitable actions.
In this case study, a Stackelberg game is built for power allo-
cation with a MBS (leader) and SBSs (followers) in an UDN.
We assume that after sub-channel allocation, each small cell
serves only one UE in a given sub-channel. In addition, each
BS is equipped with one antenna while the MBS has many
antennas to serve multiple UEs using the same resources.

Let B = {1, 2, . . . ,B}, U = {1, 2, . . . ,U}, and M =

{1, 2, . . . ,M} to be the set of all active SBSs, SUEs, and
MUEs, respectively. The MBS is equipped with T antennas
to serve MUEs with one omni-directional antenna per UE.
sm ∈ C denotes the instant desired symbol of MUE m ∈M
transmitted from the MBS with the power of E{smsHm } =
pm. Before transmitting, each symbol sm is multiplied by
a beamforming vector wm ∈ CT×1 to steer exactly the
beam of this symbol to MUE m with the requirement of
forcing no interference between MUEs. A effective method
for designing wm is finding the null space of channel matrix
HM\m,0 ∈ C(M−1)×T from the MBS to MUEs except MUE
m using the singular value decomposition (SVD). Each row
hm′,0 ofHM\m,0 is the channel vector from theMBS toMUE
m′. The total transmitting signals x at MBS is the sum of M
precoded signal as

x =
∑
m∈M

wmsm. (21)

The received signal ym of MUE m and the received signal yu
of SUE u served by SBS b is respectively expressed by

ym = hm,0wmsm︸ ︷︷ ︸
desired signal

+

∑
b∈B

hm,bsb︸ ︷︷ ︸
interference from SBSs

+nm, (22)

yu = hu,bsb︸ ︷︷ ︸
desired signal

+ hu,0x︸ ︷︷ ︸
interference from MBS

+

∑
b′∈B\b

hu,b′sb′︸ ︷︷ ︸
interference from other SBSs

+nu, (23)

where nm ∼ CN (0, σ 2
m) is AWGN of UE m.

hu,b =
√
βu,bgu,b is the channel response with βu,b be the

path loss and large-scale fading, and the small-scale fading
gu,b ∼ Rayleigh(1). The SINR of SUE u and MUE m are
respectively written as

γu =
|hu,b|2pb∑

m∈M |hu,0wm|2pm +
∑

b′∈B\b |hu,b′ |
2pb′ + σ 2

u
,

(24)

γm =
|hm,0wm|2pm∑

b∈B |hm,b|
2pb + σ 2

m
. (25)

Since a MBS transmits the power to be much more than that
of each SBS and the power change of a SBS has negligible
effect on MUEs, we approximate the interference of each
MUE as [107]

I (ρλ) = E

[∑
b∈B

|hm,b|2pb

]
= Pmax

SBSE

[∑
b∈B

|hm,b|2
]
, (26)

where Pmax
SBS is the maximum transmit power of each SBS.

We have that |g|2 ∼ Exp(1/2) and the probability density
function of d is f (d) = e−ρλπd

2
2πρλd where d denotes the

distance of an association, λ is the density of SBSs, and ρ
represents the active proportion of SBSs [107]. Thus, γm can
be approximated as a function of pm.

1) PA FOR THE LEADER (MBS)
To extract the optimal PA for the beams of MBS, we solve the
convex OP as follows

max
pM

∑
m∈M

BW log2 (1+ γm) (27a)

s.t.
∑
m∈M

pm ≤ Pmax
MBS , (27b)

pm ≥ 0, ∀m ∈M, (27c)

BW log2 (1+ γm) ≥ Tpmin, ∀m ∈M, (27d)

where pM is a vector of all pm,∀m ∈ M, Pmax
MBS is the

maximum transmit power of the MBS in the given sub-
channel, and Tpmin is the minimum throughput to serve each
MUE.

2) PA FOR THE FOLLOWERS (SBSs)
After obtaining the optimal action of the leader, the followers
substitute it into (24). The utility function of each follower b
authorized SUE u is defined as

Tpb = BW log2 (1+ γu) . (28)

We build a NCG with the normal form GAME =〈
B, {Pb}b∈B, {Tpb}b∈B

〉
to find optimal PA for SBSs to max-

imize the network throughput where B is the set of players
(i.e., SBSs), Pb = {pb|0 ≤ pb ≤ Pmax

SBS } represents the set of

13324 VOLUME 10, 2022



B. T. Tinh et al.: Practical Optimization and Game Theory for 6G UDNs: Overview and Research Challenges

possible transmit power strategy of player b. Algorithm 4 is
used for obtaining the solution because this game is the same
with the NCG in Example 4.

We build up a two-tier UDN with a 16-antenna MBS
located at the center of the hexagon area of radius 1000 m
and 3 MUEs. In small-cell tier, independent homogeneous
poisson point processes (PPP) are used for modeling the
locations of SBS over the macro cell with the density of the
SBSs, λ = 40 BS/km2 and active proportion ρ = 50 %.
The distance between two any SBSs is at least 100 m (i.e.
the radius of each small cell is 50 m). In addition, each
active small cell have only one small UE in its coverage. The
maximum power of each MBS and each SBS is 30 dBm and
50 dBm, respectively. Furthermore, the minimum capacity of
each UE served with the bandwidth of 20 MHz is 0.1 Mbps.
CVX package in MATLAB is used as a programming tool to
solve the convex OPs in Example 5. The capacity at 3 MUEs
equals to 0.1 Mbps, 0.1 Mbps, and 0.27 Mbps, respectively.
The minimum capacity of SUEs is 2.147 Mbps.

VI. CONCLUSION
This work has investigated and proposed some potential
approaches for 6G UDNs to deal with the challenges of the
deployment of large-scale networks. Due to very high densi-
ties of network infrastructures, the optimization problems of
UDNs have become very large and complicated under a lim-
ited resource with a stringent constraints of small execution
time. The strict requirements of time processing in the next
generation of wireless networks have led to smart system pro-
cessing and realtime optimization in UDNs and have become
more important than ever. To address this research challenge,
we have developed some GT schemes for dealing with many
players in multi-tier networks under competition and coop-
eration policies. By designing reasonable utility functions for
games and low-complexity optimization algorithms, complex
OPs have been transformed to convex OPs that can be easily
solved in many different ways and by powerful programming
tools. A novel amalgamation of GT and realtime optimization
has been proposed to produce many effective approaches for
fast and exact achieving solutions of the large-scale problems
of UDNs. The proposed ROG-UDN will be a potential topic
in the future of wireless communication systems.
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