
Practical Parallel Nesting for Software Transactional

Memory

Nuno Miguel Lourenço Diegues

Dissertation for the Degree of Master of

Information Systems and Computer Engineering

Jury

President: Prof. Doctor Lúıs Eduardo Teixeira Rodrigues

Supervisor: Prof. Doctor João Manuel Pinheiro Cachopo

Member: Prof. Doctor João Manuel dos Santos Lourenço

July 2012

Resumo

Os processadores multicore são já comuns na maioria das máquinas. Isto significa que os progra-

madores têm que enfrentar o desafio colocado pela exploração do potencial paralelismo destas novas

arquitecturas. A Memória Transaccional (TM) é uma abstracção que promete simplificar esta tarefa.

No entanto, a TM inibe o programador de poder explorar todo o paralelismo latente na sua aplicação

pois não permite que uma transacção contenha código paralelo. Este facto limita a expressividade da

TM enquanto mecanismo de sincronização. Muitas aplicações contêm operações longas que têm que

ser executadas com semântica atómica. Para mais, estes bocados de código podem requerer escritas

em dados partilhados, o que tipicamente leva à criação de muitos conflitos em mecanismos de controlo

concorrência optimistas como na generalidade das TMs. No entanto, algumas destas operações poderiam

ser executadas mais rapidamente se o seu paralelismo latente fosse usado eficientemente, ao permitir que

uma transacção seja dividida em partes que executem concorrentemente.

Nesta dissertação, ofereço esta flexibilidade adicional através de aninhamento paralelo. Para mais,

proponho superar execuções inerentemente sequenciais, e com muitos conflitos, usando esta nova expres-

sividade de uma TM. Mostro ainda que o uso de um escalonador de transacções é uma solução que

benficia os resultados obtidos com aninhamento paralelo.

Mostro que a implementação destas ideias numa TM com suporte para múltiplas versões e progresso

lock-free supera a performance da versão original em várias aplicações conhecidas até 2.8 vezes. Adi-

cionalmente, mostro que esta solução é também até 3.4 vezes mais rápida que o estado-da-arte existente.

Palavras-chave: Memória Transaccional, Transacções Paralelas Aninhadas, Escalonamento, JVSTM

Abstract

Multicores are now standard in most machines, which means that many programmers are faced with

the challenge of how to take advantage of all the potential parallelism. Transactional Memory (TM)

promises to simplify this task.

Yet, at the same time, TM inhibits the programmer from fully exploring the latent parallelism in his

application. In particular, it does not allow a transaction to contain parallel code. This fact limits the

expressiveness of TM as a synchronization mechanism. Many applications contain large operations that

must be performed atomically. These large sections may entail writing to shared data, which typically

leads to many conflicts in optimistic concurrency control mechanisms such as those used by most TM

systems. Yet, sometimes these operations could be executed faster if their latent parallelism was used

efficiently, by allowing a transaction to be split in several parts that execute concurrently.

In this dissertation, I provide this increased flexibility by using parallel nesting. Moreover, I propose to

overcome inherently sequential highly-conflicting workloads with the new expressiveness provided by TM.

I additionally show that the use of conflict-aware scheduling provides an effective solution to maximize

the benefits of parallel nesting.

I show how the implementation of these ideas in a lock-free multi-version STM outperforms the original

version on several known benchmarks by up to 2.8 times. Moreover, I show that this solution is up to

3.4 times faster than state of the art alternatives.

Keywords: Transactional Memory, Parallel Nested Transactions, Conflict-aware scheduling, JVSTM

Acknowledgements

This document embodies a year of research, surviving the frustrations and commemorating the vic-

tories. But throughout this year, I was never alone, and I owe that to many people.

First and foremost, I would like to thank my thesis adviser, Professor João Cachopo, who guided

me through the uncertainty that surrounds research. His availability led to countless discussions, and

his critical reviews perfected much of my work. Many ideas stemmed from those moments, which were

essential for me to have come this far.

I would also like to thank the members of the Software Engineering Group (ESW) at INESC-ID. In

particular, to all my colleagues in room 635 and to Sérgio Fernandes. They all contributed to fruitful

discussions and helped improve my presentations.

The Portuguese FCT (Fundação Ciência e Tecnologia) kindly granted me with a scholarship in the

scope of the RuLAM project (PTDC/EIA-EIA/108240/2008), for which I am grateful.

To my mother, Lúısa, and my grandmother, Laurinda, I am deeply thankful for all the support that

allowed me to get this far. Your help and guidance started many years ago; it was defining and laid the

foundations for making me capable of surpassing this task.

Finally, I would like to thank Beatriz Ferreira for her ever-lasting patience. Many times did your wise

words shed light over my difficulties. I will never forget your unwearying support, making it easier to

surmount this year.

Lisboa, July 2012

Nuno Diegues

A designer knows he has achieved perfection

not when there is nothing left to add, but

when there is nothing left to take away.

-Antoine de Saint-Exupéry

Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Notation . 2

1.3 Publications . 2

1.4 Outline . 3

2 Motivation and Objectives 5

2.1 Synchronization of Concurrent Operations . 5

2.2 Transactional Memory . 6

2.3 Seeking better performance . 8

2.4 Goals and Contributions of this Work . 10

2.5 Validation . 11

2.5.1 STMBench7 . 12

2.5.2 Vacation . 12

2.5.3 Lee-TM . 13

3 Related Work 15

3.1 Transactional Memory Theory and Guarantees . 15

3.1.1 Correctness Criteria . 16

3.1.2 Operation level liveness . 17

3.1.3 Progressiveness . 18

3.1.4 Permissiveness . 18

3.2 Transactional memory design choices . 19

i

3.2.1 Update Policy . 19

3.2.2 Conflict detection and resolution . 19

3.3 Achieving Nesting by flattening . 20

3.4 Linear Nesting . 20

3.5 Parallel Nesting in TMs . 22

3.5.1 NeSTM . 22

3.5.2 HParSTM . 23

3.5.3 PNSTM . 24

3.6 Discussion of existing Parallel Nesting Implementations 25

4 A naive algorithm 27

4.1 JVSTM . 27

4.1.1 Optimizations to the read-set and write-set . 28

4.1.2 Nesting in the JVSTM . 30

4.2 Parallel Nesting Model . 30

4.3 An initial approach towards parallel nesting . 31

4.3.1 Data-structures and auxiliary functions . 32

4.3.2 The Naive algorithm . 33

5 A lock-free algorithm 37

5.1 Data-structures . 37

5.2 Reading from a VBox . 39

5.3 Writing to a VBox . 41

5.4 Committing Parallel Nested Transactions . 42

5.5 Lock-free commit . 44

5.6 Abort procedure . 46

5.7 Correctness in the Java Memory Model . 47

5.8 Discussion of the Shared write-set design . 48

6 A practical algorithm 51

6.1 Data-structures and auxiliary functions . 51

ii

6.2 Reading a VBox . 54

6.3 Writing to a VBox . 55

6.4 Fallback mechanism . 57

6.5 Committing a parallel nested transaction . 59

6.6 Correctness in the Java Memory Model . 60

6.7 Progress guarantees . 60

6.8 Maintenance of read-sets . 61

6.9 Discussion of the InPlace design . 62

7 Scheduling for Profit 65

7.1 Scheduling transactions . 66

7.1.1 A scheduler for the JVSTM . 67

7.1.2 Serial scheduler . 67

7.2 Using the Serial scheduler . 70

8 Evaluation 73

8.1 Evaluating the different JVSTM-based implementations 73

8.1.1 Vacation . 73

8.1.2 STMBench7 . 75

8.2 Relinquishing the overhead of parallel nesting . 77

8.3 Comparison against the state of the art . 79

8.3.1 Worst-case complexity bounds . 79

8.3.2 Practical comparison . 80

8.3.3 Discussion . 82

8.4 Summary . 84

9 Conclusions 85

9.1 Main Contributions . 85

9.2 The problem of finding latent parallelism . 86

9.3 Future research . 87

iii

9.3.1 Parallel TM . 88

9.3.2 Threads and Transactions . 88

A Using parallelism within transactions 91

A.1 Interfacing with threads and transactions in Java . 91

A.2 Providing support for the API . 94

iv

List of Figures

2.1 Execution of an application both sequentially and parallelized using TM 9

2.2 Execution of an application with conflicts . 10

3.1 Nesting tree in the NesTM . 23

3.2 Nesting tree in the PNSTM . 25

4.1 A transactional location in the JVSTM . 27

4.2 Representation of the actions regarding the read-set maintenance in the JVSTM 29

4.3 Nesting tree and respective state in the original JVSTM 30

4.4 Nesting tree and respective state in the Naive design . 32

5.1 Nesting tree corresponding to an execution in the SharedWS design 38

5.2 Committing strategies in the SharedWS design of the JVSTM 43

5.3 Structures used for nested commit in the SharedWS design 45

5.4 Profiling data of the transactional operations in the Naive and SharedWS designs of the

JVSTM . 48

6.1 Representation of the state maintained in the InPlace design of the JVSTM 52

6.2 Profiling data of the transactional operations in all three designs of the JVSTM 63

7.1 Speedup in STMBench7 using parallel nesting . 65

7.2 Comparison of speedups obtained in STMBench7 with three scheduling strategies 68

7.3 Speedup in STMBench7 with and without scheduling . 70

7.4 Distribution of time spent executing transactions among the working threads in STMBench7 71

8.1 Speedup obtained in the Vacation benchmark using the three parallel nesting designs . 74

v

8.2 Speedup of each parallel nesting design in Vacation . 74

8.3 Speedup obtained by parallelizing the read-write long traversals of the STMBench7 with

the three parallel nesting designs . 75

8.4 Speedup of each parallel nesting design in STMBench7 . 75

8.5 Speedup obtained in STMBench7 with and without parallel nesting, and with and without

scheduling . 76

8.6 Speedup obtained in Lee-TM with embarrassing parallelization of transactions 78

8.7 Throughput in Vacation with parallel nesting comparing three STMs 81

8.8 Throughput in STMBench7 using parallel nesting comparing three STMs 81

8.9 Overhead of each STM in STMBench7 . 82

vi

List of Tables

4.1 Number of reads and read-after-writes in several benchmarks 35

6.1 Number of writes and write-after-reads in several benchmarks 58

8.1 Complexity bounds for the worst-case of transactional operations in parallel nested trans-

actions in the JVSTM, NesTM and PNSTM . 79

8.2 Possible conflicts that may lead to abort in the JVSTM, NesTM and PNSTM 80

8.3 Occurrence of each type of read in STMBench7 using the JVSTM, NesTM and PNSTM . 82

8.4 Occurrence of conflicts in STMBench7 using the JVSTM, NesTM and PNSTM 83

8.5 Percentage of transactions that failed in their first attempt in two benchmarks. 83

vii

Listings

2.1 Concurrent class representing a course whose enrollments are protected with transactions. 7

2.2 Representation of an enrollment in multiple courses as an atomic action. 8

3.1 Example of code that may not be executed properly due to the lack of an appropriate

correctness criterion. 16

6.1 Class representing a block of read entries. 62

7.1 Interface implemented by tasks to run through the scheduler. 68

7.2 Interface implemented by the different scheduling approaches. 68

7.3 Interface implemented by the application worker threads. 69

A.1 Class representing a college course in which students may enroll. 92

A.2 Interface to be implemented by the programmer representing points of parallelism. 92

A.3 Parallelization of the method enrollMultipleCourses from Listing A.1. 93

A.4 Callable generated for parallel execution of a method identified with @ParallelAtomic. 95

A.5 Class representing a parallelization of Listing A.3 after being automatically rewritten by

the bytecode processor. 96

ix

List of Algorithms

1 Read and write operations of the Naive design in the JVSTM 33

2 Commit operation of the Naive design in the JVSTM . 34

3 Read procedure in the SharedWS design of the JVSTM 40

4 Write procedure in the SharedWS design of the JVSTM 41

5 Merge procedure in the SharedWS design of the JVSTM 46

6 Read procedure in the InPlace design of the JVSTM . 54

7 Write procedure in the InPlace design of the JVSTM 56

8 Query procedure for transaction start in the Serial scheduler 71

xi

List of Abbreviations

TM Transactional Memory

STM Software Transactional Memory

HTM Hardware Transactional Memory

CNT Closed Nested Transaction

ONT Open Nested Transaction

RAW Read-after-write

WAR Write-after-read

CAS Compare-and-swap

VBox Versioned Box

Orec Ownership Record

xiii

Chapter 1

Introduction

Up until 2004, multi-processor computers were seen only on research laboratories or as enterprise

servers. For many years, most applications running on common hardware benefited from automatic im-

provements in performance as processors were upgraded with increasing clock speeds. Since then, we have

reached a hard physical limit dictating the decline of Moore’s Law applied to processors’ frequency [47].

As Sutter entitled his article in [58], “The Free Lunch is Over”, in the sense that programmers can no

longer expect their applications to become faster in the way they used to.

This led to a paradigm shift: The manufacturers of these chips adopted a strategy in which newer

processors have more transistors rather than a higher clock speed. This had the consequence of including

more cores in each chip, thus bringing parallel architectures to common devices that are now capable of

executing multiple threads simultaneously. Thus, programmers can no longer use sequential programs to

explore all the computing power of modern processors; for that to happen, every core must be executing

code in parallel. This has spurred the interest on easing the development of concurrent programs for

shared-memory multi-processors. As a matter of fact, concurrent programming has been used for many

decades, but it is only now that it is becoming an increasing trend affecting the daily life of programmers

beyond a niche of researchers.

The dominant approach to protect concurrent accesses to shared data has traditionally relied on

locking. Yet, decades of using blocking synchronization has not made it simpler, and in fact, resulted in

a body of research that identifies many difficulties in building complex applications with locks [48, 49].

Furthermore, the paradigm in which the locking approach became popular has changed. It is expected

that the current trend of multi-core processors leads to scenarios with hundreds of cores available in a

single machine. In this new paradigm, programmers must explore fine-grained locking to be able to take

advantage of many cores. Yet, this leads to an increased complexity: The blocking nature of locking may

lead to issues such as deadlocks and convoying, which are more likely to happen with fine-grained locking

and high degrees of concurrency.

This motivated the exploration of non-blocking algorithms that provide stronger progress guarantees.

It is possible to avoid the use of locks by resorting to constructions based on instructions that manipulate

memory atomically. However, this approach has been acknowledged as complex and difficult [34, p. 420].

Alternatively, Transactional Memory (TM) was proposed as an efficient and easy to use non-blocking

construction, which avoids the pitfalls of mutual exclusion locks. Yet, TM is not exempt from limitations.

1

In particular, the characteristics of the application’s workload influence greatly the performance gains

that we may obtain when synchronizing accesses to shared data with TM. The emphasis of this work lies

in exploring parallelism within transactions to overcome some of these limitations. As we shall see, this

may be achieved by using parallel nesting.

1.1 Thesis Statement

This dissertation’s thesis is that it is possible to explore more parallelism from TM-based applications

if the TM system is extended both with efficient, light-weight algorithms to support parallel nesting and

with a conflict-aware transaction scheduler that helps the application programmer decide when to use

parallel nesting.

In particular, I claim that it is possible to implement a practical parallel nesting algorithm that

is sufficiently efficient so that its overhead does not hinder the performance gains obtained from the

extracted parallelism. As we shall see, the existing state of the art parallel nested algorithms are not able

to fulfill this claim in some applications.

Moreover, because parallel nesting introduces overhead and may not be beneficial all the time, it

cannot be used blindly. Yet, I claim that making programmers the sole responsible for deciding when to

use parallel nesting is not viable in general. Instead, I defend that it is better to assist programmers in

their work by delegating the decision of using parallel nesting to an automatic scheduler embedded in

the TM system.

1.2 Notation

Throughout this dissertation I refer to transactions using Ti where the value of i may vary to represent

different transactions. I also refer to transactional locations using either x, y or z.

To describe an execution involving one or more transactions, I shall use the following notation for the

operations occurring within the transactions, where we assume that each operation executes atomically:

• Wt(x, k) means that transaction t writes the value k to the transactional variable x.

• Rt(x, k) means that transaction t reads the transactional variable x and finds the value k.

• Ct(res) means that transaction t attempted to commit and either succeeded (when res = ok) or

failed (when res = fail).

• St(t1, t2, ..., tn) means that transaction t spawns the parallel nested transactions t1, t2, ..., tn.

When presenting source code, I show it in the Java programming language. I use a different font when

referring to classes, methods and fields.

1.3 Publications

Part of the contents of this thesis were also presented in the following workshops:

2

1. Lock-free algorithm for parallel nesting presented in Chapter 5 and in the respective subsections: N.

Diegues, S. Fernandes and J. Cachopo. Parallel nesting in a lock-free multi-version software trans-

actional memory. In the 7th ACM SIGPLAN Workshop on Transactional Computing, TRANSACT,

2012.

2. Overview of Chapters 5, 6 and 7: N. Diegues and J. Cachopo. Digging parallelism out of a highly-

conflicting workload. Abstract and presentation in the 1st Workshop on Transactional Memory,

WTM, 2012.

3. Comparison of the main results obtained in this thesis with the state of the art, part of which is

included in Chapter 8: N. Diegues and J. Cachopo. On the design space of Parallel Nesting. In the

4th Workshop on the Theory of Transactional Memory, WTTM, 2012.

Other parts of this document are also available in technical reports:

1. Extended version of the related work presented in Chapter 3: Nuno Diegues and João Cachopo.

Review of nesting in transactional memory. Technical Report RT/1/2012, Instituto Superior

Técnico/INESC-ID, January 2012.

2. Article under submission corresponding to Chapters 6 and 7: Nuno Diegues and João Cachopo. Ex-

ploring Parallelism in Transactional Workloads. Technical Report RT/16/2012, Instituto Superior

Técnico/INESC-ID, June 2012.

1.4 Outline

The remainder of this dissertation is organized as follows:

• Motivation: Chapter 2 addresses the challenges of locking and introduces Transactional Memory as

an alternative. It also motivates for parallel nested transactions and summarizes the contributions

of this work.

• Related Work: Chapter 3 presents a brief overview of the related work. Namely, the guarantees

and properties provided by Transactional Memory, as well as various design decisions and nesting

models that exist in the literature.

• A naive algorithm: Chapter 4 proposes an initial solution to parallel nesting. It also identifies the

inherent problems that arise from such solution.

• A lock-free algorithm: Chapter 5 extends the initial solution with a lock-free algorithm for parallel

nesting that improves over some challenges identified earlier. This entails a thorough description of

each operation of the algorithm.

• A practical algorithm: Chapter 6 tackles the challenges that were not taken into account previously.

In addition to that, it also improves over new problems that were created by the lock-free algorithm.

The description of the algorithm is complemented with an evaluation in terms that compare the

three alternatives proposed for parallel nesting.

3

• Scheduling for Profit: Chapter 7 introduces the interesting coupling between parallel nesting and

scheduling. It comprehends an overview of the related work on scheduling in TM. Additionally,

three alternatives are presented for transaction scheduling, among which one is explained in more

detail along with its evaluation.

• Evaluation: Chapter 8 provides a comprehensive evaluation of three alternative designs for parallel

nesting in the JVSTM. Furthermore, it shows results in which parallel nesting takes advantage of

scheduling and surpasses a baseline result using only top-level transactions. Finally, it presents an

analysis and evaluation in which the JVSTM with support for parallel nesting is compared with

two state of the art TMs (also with support for parallel nesting).

• Conclusions: Chapter 9 summarizes the work described in this dissertation, the results achieved,

and what are its main contributions. It also presents some open issues related to this work and

ways to explore them.

• Using parallelism within transactions: Appendix A discusses the relation between threads and

transactions. In particular, it describes how the parallel nesting mechanism is exposed to the

programmer.

4

Chapter 2

Motivation and Objectives

To understand why parallel nesting is of interest to TM, it is important to address the reasons that

make TM an adequate choice for synchronization over the alternatives in the first place.

So, in this chapter I begin by describing shortly the inherent difficulties of synchronizing accesses to

shared data in Section 2.1. Next, I present TM as an appealing alternative to address these challenges in

Section 2.2. After, I delve into the limitations of TM that motivate the dissertation statement provided

earlier in Section 1.1.

I end this chapter by stating the goals of this work, as well as the challenges that make it difficult to

reach those goals, in Section 2.4.

2.1 Synchronization of Concurrent Operations

The synchronization of concurrent programs has been traditionally achieved by resorting to blocking

synchronization techniques such as locks, semaphores, monitors, and conditional variables. Despite their

popularity, they are not free from many pitfalls.

A usual scenario, upon which I shall build the examples, involves concurrent objects, meaning that

their methods may be called in such a way that the invocation intervals overlap each other. Typically such

objects contain some state that is thus protected by some mutual exclusion lock. However, if we consider

an operation that requires manipulating several of these objects without allowing intermediate states to

be observed, it follows that we cannot simply rely on the individual lock acquisition that takes place

inside the object. That is, the lock that protects each object is not enough for preventing inconsistent

states for the outer operation. As a result, traditional techniques usually resort to additional locking that

guarantees none of the objects may change while that bulk action takes place. This solution, however,

is prone to deadlocks. Depending on the strategy used for the multiple lock acquisition, it may happen

that concurrent threads acquire one or more of the locks each and remain indefinitely trying to acquire

the rest.

Whereas there are techniques to avoid deadlocks, such as establishing some total order among the

elements to lock, they are hard to apply in practice. In the past, when highly scalable applications were

rare and valuable, these hazards were avoided by dedicating teams of expert programmers to develop

5

these algorithms. Today, when highly scalable applications are becoming commonplace, the conventional

approach is just too expensive. As claimed by Herlihy and Shavit: “The heart of the problem is that

no one really knows how to organize and maintain large systems that rely on locking” [34, p. 418]. In

practice, the association between locks and data is established mostly by convention and is not explicit in

the program. Ultimately, this ordering convention exists only in the mind of the programmer, and may

be documented only in comments as shown in [49]. “Over time, interpreting and observing many such

conventions spelled out in this way may complicate code maintenance” [34, p. 418].

The issues do not concern only deadlocks: Overall, locking, as a synchronization discipline, has

many pitfalls for the inexperienced programmer [48]. Two other common problems with lock-based

synchronization are priority inversion and convoying. Priority inversion occurs when a lower-priority

thread is preempted while holding a lock needed by higher-priority threads. Convoying may also occur

when a thread holding a lock is descheduled, perhaps by exhausting its scheduling quantum, by a page

fault, or by some other kind of interrupt. While the thread holding the lock is inactive, other threads

that require that lock will queue up, unable to progress.

However, the fundamental flaw is that locks and conditional variables do not support modular pro-

gramming: The process of building large programs by gluing together smaller programs. Creating software

on top of modules that synchronize access to shared data with locks may entail finding out internal locks

that are acquired as well as their order. Unfortunately, not only is this impractical, but it also breaks

the abstraction that was supposedly provided by the modules.

2.2 Transactional Memory

One of the alternatives for synchronization between concurrent units of work is the Transactional

Memory abstraction. The programmer is responsible for identifying, in his program, atomic blocks

that the TM runs within transactions. As originally proposed, a transaction is a dynamic sequence of

operations executed by a single thread that must appear to execute instantaneously with respect to other

concurrent transactions [33]. The purpose is that this set of operations is seen as an indivisible action,

so that transactions appear to execute sequentially in a one-at-a-time order. Despite this traditional

definition, there is no obstacle preventing a transaction from being executed in parallel in several threads.

In this work I explore the decoupling of a transaction from a single thread due to parallel nesting.

Operations enclosed in transactions are given the illusion of no concurrency. If a transaction fails, it

is as if it never ran (no partial executions). A failed transaction may be retried, depending on the nature

of the failure, to achieve exactly-once execution wherever possible. Summarizing, transactions offer:

• Atomicity: Either the whole transaction is executed (when it successfully commits) or none of it is

done (when it aborts), often referred to as the all or nothing property.

• Consistency: Every transaction starts from a consistent view of the state and leaves the system in

another consistent state, provided that the transactions would do so if executed sequentially.

• Isolation: Individual memory updates within an ongoing transaction are not visible outside the

transaction. When the transaction commits, all memory updates are instantaneously made visible

to the rest of the system.

A transaction typically works in three phases:

6

• Start: This event may have different purposes depending on the TM implementation. A common

operation is to set up data structures that are used later on for bookkeeping.

• Accessing data: During the transaction itself, accesses performed to shared data may have to resort

to the TM system. Some systems may be completely transparent, as in the case of Hardware

Transactional Memory (HTM), whereas others may require the use of explicit calls to the TM

in use. In any case, the TM ensures that writes are registered (in the write-set) and reads are

consistent (and possibly also registered in the read-set).

• Commit: Attempts to consolidate the tentative changes, recorded during the accessing phase,

making them globally visible. Depending on the system, the writes may already be in-place or still

be in buffers before this phase. This operation may fail in which case it discards all its tentative

changes.

Additionally, two transactions are said to conflict if there is no equivalent sequential execution ordering

of the two transactions that explains the result of each individual operation that is part of the transactions.

At a lower level, conflicts may be detected in different ways depending on the TM characteristics. For

instance, if two operations belonging to different transactions access the same base object and at least

one of them is a write, this may be seen as a conflict. Another way is to ensure that a transaction’s read

set is disjoint from concurrent transactions’ write sets.

As explained, in this paradigm, the programmer is responsible for identifying code whose result in

the system must be seen as taking effect all at once. In the following examples this boils down to

marking methods with some artifact that identifies that piece of code as an atomic action. This is merely

illustrative: Depending on the implementation, the programmer may be left with a more burdensome

task of starting and committing transactions that encapsulate the atomic actions.

In Listing 2.1, I show an example in which a university course is represented with a maximum capacity

and currently enrolled students. The mutable shared state is the list of students that may be modified

concurrently by multiple users enrolling in the same course. The lack of synchronization in the concurrent

manipulation of the shared structure could lead to the loss of enrollments or exceeding the maximum

capacity. Therefore, I have annotated the enrollStudent method with the @Atomic annotation that

demonstrates a possible way of indicating to the TM system which methods must be run transactionally.

The enrollment of a student is now seen as an indivisible operation so that other threads cannot see any

intermediate state of the operation.

class Course {

final int capacity;
List<Student> enrolledStudents;

@Atomic
boolean enrollStudent(Student std) {
if (enrolledStudents.size() < capacity) {
enrolledStudents.add(std);
return true;

} else {
return false;

}
}

}

Listing 2.1: Concurrent class representing a course whose enrollments are protected with transactions.

7

@Atomic
void enrollMultipleCourses(Student std, List courses) {
for (Course course : courses) {
if (!course.enrollStudent(std)) {
TM.abort();

}
}

}

Listing 2.2: Representation of an enrollment in multiple courses as an atomic action.

Still on the same example, Listing 2.2 shows the enrollment in multiple courses, which allows the

student to build his own schedule for the semester with an all-or-nothing semantics: If one of the courses

is full, he will probably need to pick an alternative and rethink the whole schedule. Consequently, I

marked the enrollMultipleCourses as an atomic action, which is successful only if all the individ-

ual enrollments succeed. More importantly, deciding on this method’s atomicity did not interfere with

the previous decision regarding enrollStudent. It is in this sense that transactions compose: The pro-

grammer need not know the internals of the method being called. In practice, when enrollStudent

is called from within enrollMultipleCourses, a nested transaction may be created, as explained in

Section 2.3 and further detailed in Chapter 3.

The initial proposal for transactional memory introduced it as an abstraction that programmers could

use for lock-free synchronization in their applications [33]. In that work, the authors presented designs

for extensions to multiprocessors’ cache coherence protocols. Later, Shavit and Touitou evolved the

same concept solely to software in [55]. Yet, it was very restrictive as the programmer had to identify

static transactions, that is, transactions that access a pre-determined sequence of locations. These issues

were first overcome in DSTM [32], a Software TM providing a slightly more relaxed progress guarantee,

obstruction-freedom, which shall be described in Section 3.1.2.

A lot of promising work has been delivered on Software Transactional Memory (STM). Although

hardware implementations are more efficient, its practicality is far more complicated. As we shall see,

most of the work regarding nesting models has been performed on STMs. Consequently, that is where I

turn my attention to in this work.

2.3 Seeking better performance

When a programmer parallelizes an application, his sole intent is to obtain better performance than

if the application ran sequentially. Yet, the synchronization of accesses to shared data by the parallel

tasks, while ensuring correctness of the application, also yields difficulties in obtaining the intended

improvements in performance.

When resorting to the traditional mutual exclusion mechanisms, performance may be hindered by

sequential bottlenecks induced by the blocking phenomenon that takes place when the tasks contend for

the same locks. Consequently, the programmers attempt to reduce the granularity of the locks, at the

cost of an increased difficulty in programming the application and reasoning about its correctness.

Rather than relying on mutual exclusion to synchronize the access to shared data, TM starts out

from the premise that parallel tasks seldom contend for the same data. More specifically, it explores

concurrency as much as possible while preserving correctness. Figure 2.1(a) shows the sequential execution

of an application in a machine with four processors labeled from 1 to 4. To take advantage of the

8

T0 T1 T2 T3 T4

P4

P3

P2

P1 application

(a) Sequential execution.

T0 T1 T2 T3 T4

P4

P3

P2

P1 A

B

C

D

C

(b) Parallelized execution with TM.

Figure 2.1: On the left, an application is executed sequentially whereas on the right it is parallelized in
four transactions (A to D) to take advantage of the four processors available. Dashed transactions are
aborted due to conflicts whereas non-dashed have committed successfully.

available processors, it is possible to explore the parallelism in the application, which could result in the

identification of four concurrent tasks that are labeled A to D in Figure 2.1(b). In this case, these tasks are

synchronized using TM, for which reason these tasks are run within transactions. For the TM system to

ensure correctness, it has to abort transactions that incur in conflicts, as exemplified with the transaction

in task C. Yet, the overall execution time yields improvements over the sequential execution, without the

programmer being burdened with reasoning about the way the data is being accessed by these tasks.

Yet, when the application’s workload is write-dominated, in the sense that most transactions perform

at least some writes, this may result in a highly-conflicting execution. If that is the case, the optimistic

concurrency model used by most TMs cannot overcome a logical barrier in terms of performance: Ulti-

mately, if all the active transactions at some point conflict with each other, the time that takes to execute

all of them successfully in parallel will not be less than the time it would take to execute them one at a

time in a single-core machine. In practice, the single core would actually be faster due to the TM system

overhead and cache invalidation concerns on the multicore. I exemplify this situation in Figure 2.2(a),

in which it is visible that all the transactions are contending for the same data between time T0 and T1

such that they are producing conflicts and only one transaction is able to commit.

It is in this context that I attempt to answer the following question in this dissertation: Is there

any way TMs can overcome this inherent limitation that challenges its optimistic concurrency control

mechanism? One possible way is to reduce the amount of work that has to be repeated when a transaction

restarts. This strategy has been approached by checkpointing [59] and restartable transactions [11]. In

common, they attempt to make the most out of a situation in which conflicts already happened. In

this dissertation I depart from those ideas and propose to explore the inner parallelism of transactions,

allowing us to take full advantage of the underlying hardware.

My claim is that the parallelization of transactions can increase the performance in terms of through-

put and latency. In the previous scenario of conflicting transactions, the solution would be to run one of

the contending transactions at a time. But, in this case, each of these transactions would be parallelized,

thus reducing their time to complete and without incurring in conflicts between any two transactions.

This approach is expected to produce better results when top-level transactions conflict with high prob-

ability (such as the scenario presented) whereas the parallelization of each task does not incur in that

problem.

Note that running one top-level transaction at a time in the solution proposed is a simplification: We

9

T0 T1 T2 T3 T4

P4

P3

P2

P1 A

B

C

D

BB

DD D

C

(a) Using only top-level transactions.

T0 T1 T2 T3 T4

P4

P3

P2

P1

(b) Using parallel nested transactions.

Figure 2.2: Execution of four transactions (A to D) in four processors. Dashed transactions are aborted
due to conflicts whereas non-dashed have committed successfully.

may very well run other concurrent transactions to fill up all the cores if needed, but the point is that

there will be less of those, thus causing less conflicts.

In Figure 2.2 I show the application of this technique to the same scenario. Each task has now been

further parallelized into smaller tasks. Note that each task is still meant to run with the properties of a

single transaction, despite the fact that it is now executed in smaller tasks concurrently. The expectation

is that the time it takes to execute the critical path of the set of parallelized transactions will be less than

the time it takes to execute each of the top-level transactions sequentially as seen in Figure 2.2(a). But

how can we achieve this while respecting the fact that each sub-task is still part of a transaction that

itself contains other sub-tasks?

To start with, the parallelization of a transaction requires the TM structures to be thread-safe. This

means that the state maintained by a single transaction must be safely accessible by multiple threads.

This suffices for the case in which the sub-tasks of a transaction are disjoint-access parallel 1. I refer to

this scenario as an embarrassingly parallelization of a transaction, which I address in Section 8.2.

If the parallelization is not embarrassingly, then the parallel sub-tasks must be synchronized. This is

also represented in Figure 2.2(b), where we may see that some of the smaller tasks are still conflicting and

being re-executed. Using the TM model, each thread running a sub-task encapsulates in a transaction the

code that it is running to allow detection and resolution of conflicts (even against other sub-tasks). Be-

cause these transactions exist in the context of top-level transactions, they are called nested transactions.

This idea may be repeated to explore further parallelism at different levels of nesting. Consequently, this

requires an efficient parallel nesting algorithm that supports unbounded nesting depths.

2.4 Goals and Contributions of this Work

The main goal of this dissertation is to advance the state of the art in STM research, by designing

and implementing a parallel nesting algorithm that supports unlimited depth and without incurring into

excessive overhead that precludes the benefits of the parallelism being explored. The starting point for

this work is the current design of a lock-free multi-version STM and its implementation, the JVSTM [24],

which has support for linear nesting only. Another important goal is to preserve the progress guarantee

1Meaning that they do not have any intersection among their footprints that may cause a conflict.

10

of the underlying TM.

As we shall see in the following chapter, there have been few TM implementations that address parallel

nesting. So far, I have described why parallel nesting should be taken into consideration: The promise of

unveiling more concurrency in scenarios where that may lead to an increase in performance is tempting.

But if that is the case, then what exactly has been delaying the use of nested parallel transactions in

practice?

Providing parallel nested transactions entails not only the challenges of nesting but also the need to

make sure that parallel nested transactions synchronize their actions when necessary. On the first case,

there is a concern regarding additional work that may need to be performed in the transactional operations

(such as accesses and commit) when the nesting depth increases. The issue about the synchronization is,

of course, an additional source of overheads that may entail significant costs on the use of parallel nested

transactions.

The actual challenges shall be clear as I present the TM implementations that provide parallel nesting

in Section 3.5 and onwards. Above all, the most important point to retain, beyond the particularities of

what makes it hard, is that using parallel nested transactions should provide a performance gain. When

the programmer takes specific care to identify parts of the program to parallelize, he is expecting to

obtain a speedup in the execution of his program. Therefore, the difficulty is in providing a design and

implementation of parallel nested transactions in which executing concurrent parts of an atomic block of

the application do not end up being more costly than executing them one at a time sequentially.

To reach the aforementioned goals, my contributions are as follows:

• I provide a more flexible TM in which it is possible to parallelize transactions as opposed to the

traditional perspective that has seen transactions as a sequential set of instructions. The parallel

nesting algorithm proposed in this dissertation for that purpose also provides support for unbounded

nesting depth.

• I show that this parallel nesting algorithm can improve the performance obtained with TM in some

highly-conflicting workloads. I also present results that compare it with two state of the art parallel

nesting algorithms showing considerable gains.

• I also show that the benefits obtained are substantially increased when a conflict-aware scheduler

is used.

• Finally, I show that these results may be obtained without affecting the normal execution of the

underlying TM when no parallel nesting is used. Moreover, the progress guarantee of lock-freedom

of the underlying STM is preserved, thus making it the only lock-free TM with support for parallel

nesting. Additionally, it is also the first parallel nesting algorithm with support for multi-versions.

2.5 Validation

To confirm the validity of my contributions in this dissertation, I conducted an evaluation that uses

three well-known benchmarks as case studies and examples of highly-conflicting workloads. I changed

those benchmarks to explore the parallelism of some of their transactions and therefore obtain better

performance, as claimed in my thesis statement. In the next sections I present these benchmarks, as well

as the parallelization that I performed in each one of them.

11

All the results presented in this dissertation were obtained on a machine with four AMD Opteron

6168 processors (48 cores total) with 128GB of RAM, running Red Hat Enterprise 6.1 and Oracle’s JVM

1.6.0 24. The results were also obtained from the average of five runs, each one starting a new JVM, and

executing without other significant processes in the machine.

2.5.1 STMBench7

STMBench7 [30] is a highly customizable benchmark, with three different workloads that vary the

percentage of read-only transactions: read-dominated (90%), read-write (60%), and write-dominated

(10%). Besides that, we may also control a series of other parameters such as one that includes long,

highly-conflicting transactions in all the workloads. This benchmark adapts the OO7 [12] benchmark’s

data structure. STMBench7 implements a shared data structure, consisting of a set of graphs and indexes,

which models the object structure of complex applications.

The benchmark measures how many operations per second it executes. It supports many different

operations, varying from simple to complex. Both short traversals and short operations access a small

part of the graph of objects, most of the time using the indexes to short cut the path. These operations

are very fast, executing in average under one millisecond on a modern processor.

On the other hand, long traversals sweep most of the graph of objects. The execution of one of these

traversals is in the range of seconds (rather than milliseconds as in short traversals). I explore new

parallelism in STMBench7 by parallelizing the following read-write long traversals: t2a, t2b, t2c, t3a, t3b,

t3c, and t5. These operations traverse the graph of objects and perform changes in some of the nodes.

Therefore, I create new sub-tasks to explore multiple paths concurrently within the transaction.

There are also structural modifications that change the structure of the graph of objects. Contrarily to

what is claimed in the paper of the benchmark, these operations degenerate significantly the structure of

the graph, as they tend to delete more objects than they add. In my evaluation I always use STMBench7

with structural modifications disabled, and long-traversals enabled.

Moreover, I modified STMBench7 to execute a given number of operations instead of executing as

many as possible for a given time. Otherwise, two executions with the same parametrization could yield

very different results, because of long traversals extending the time to execute the benchmark.

2.5.2 Vacation

The Vacation benchmark from the STAMP suite [43] implements a travel agency. The system is

implemented as a set of trees that keep track of customers and their reservations for various travel items.

A client performs a set of operations batched in a session. Each session of a client is considered to be an

atomic action, and the benchmark measures how long it takes to process a given number of sessions.

This benchmark has three different transactions that perform different clients’ requests. In each

case an operation is performed multiple times on (possibly) different parts of the objects in the system.

Therefore, I parallelized the cycles that repeat the operation for the several requests that compose the

session. This means that a transaction can now process multiple requests concurrently in each session.

The benchmark allows parametrizing the level of contention for the objects of the graph. In my

12

evaluation I consider two scenarios: High contention, which uses 1% of the graph of objects; and low

contention, which uses 90% of the graph of objects.

2.5.3 Lee-TM

Lee-TM [4] implements Lee’s routing algorithm for automatic circuit routing and it measures how

long it takes to lay down tracks on a circuit board. Each track is laid down in its own transaction, to

ensure that tracks do not overlap in the board. Consequently, this benchmark has only one atomic block

identified.

In some boards, laying multiple tracks concurrently may not yield better performance because the

tracks are inherently conflicting. Laying down a track consists of an expansion phase and a write-

back phase. The first one takes most of the execution time of a typical transaction in Lee-TM. So, I

parallelized the transaction that lays down the track by creating sub-tasks in the expansion phase, such

that the expansion is performed concurrently in different directions.

13

Chapter 3

Related Work

In this chapter I provide an overview of the concepts related to this dissertation. I have selected the

most relevant properties and systems to present in this overview. An extended version of this related

work has been provided in a technical report [16].

In Section 3.1, I begin by presenting several properties that define a TM. It is relevant to understand

and to compare them as my work shall build on some of them. Then, in Section 3.2, I describe design

choices that have been addressed in the related work and that typically characterize a TM implementation.

Then I turn my attention to systems that provide some form of nesting. I divided these depending on

the nesting model used. In Section 3.3, I begin with flattening as the simplest approach to achieve nesting

and some TMs that use it. In Section 3.4, I continue by presenting linear nesting and implementations

of that model. Then, I center the discussion in parallel nesting, for which I present the state of the art

in Section 3.5.

I conclude this chapter by discussing the weaknesses of the parallel nesting implementations in the

state of the art.

3.1 Transactional Memory Theory and Guarantees

The intense research on TMs has resulted in both practical implementations and theoretical assertions

regarding TM. In the next sections I present some of these properties, upon which the implementations

are built. In Section 3.1.1, I describe the various correctness criteria that may be used to establish what

are the acceptable executions of transactions.

Then, I describe progress guarantees at the level of operations within transactions in Section 3.1.2.

In Sections 3.1.3 and 3.1.4, I introduce two progress guarantees (and their variants), that may be used

to characterize a TM system as a whole.

Some of these concepts are used later to characterize both existing work and the solution that I

propose.

15

3.1.1 Correctness Criteria

From a user’s perspective, a TM should provide a semantics similar to that of critical sections:

Transactions should appear to execute sequentially. Yet, a TM implementation would be inefficient if it

never allowed transactions to run concurrently. Reasoning about the correctness of a TM implementation

implies stating if a given concurrent execution respects that correctness criterion.

Linearizability [35] was initially proposed as a safety property devised for concurrent objects. Here,

linearizability means that every transaction should appear as if it took place at some single, unique point

in time during its lifespan. Although it has been used for reasoning about TM correctness, linearizability

does not entirely suffice as an appropriate correctness criterion for TM. Note that a TM transaction

is not a black box operation on some complex shared object, but instead it is an internal part of an

application: The result of every operation performed inside a transaction is important and accessible to

a user. Therefore it is also important to define what exactly happens in each operation of a transaction.

Yet, linearizability only accounts for the execution of the transaction as a whole.

On the other hand, serializability [50], which originated in the database transactions, states that

the result of a history of transactions is serializable if all committed transactions in it receive the same

responses as if they were executed in some serial order, i.e., without concurrency between transactions.

Usually, it is said that such a serialization explains the concurrent sequence of operations of that execution.

However, serializability does not state any behavior regarding accesses performed by live transactions

(specifically, about transactions that may abort). As we will see, such accesses may render harmful if the

correctness criterion does not safely prevent them from returning erroneous results.

In [28], Guerraoui and Kapalka argue that these previously described correctness criteria used for

other purposes (databases, concurrent objects, etc...) do not fit the needs of TM. In particular, none of

them captures exactly the requirement that every transaction, including not yet completed ones, accesses

a consistent state, i.e., a state produced by a sequence of previously committed transactions. Whereas

a live transaction that accesses an inconsistent state can be rendered harmless in database systems by

being aborted, such a transaction might create significant dangers when executed within a general TM.

Suppose that in some program there are two shared variables x and y related by the invariant x < y,

and consider the fragment of code shown in Listing 3.1. Assuming that initially x = 5 and y = 10,

consider the following concurrent execution of transactions T1 and T2 (recall the notation introduced in

Section 1.2):

RT1
(x, 5) WT2

(x, 0) WT2
(y, 4) CT2

(ok) RT1
(y, 4) (3.1)

In such an execution, transaction T1 read some inconsistent state where the invariant x < y is not

respected and the lower bound of the cycle ends up being greater than the upper bound limit. Depending

on the execution environment, the consequences may vary, but nevertheless are not acceptable.

To eliminate this problem, the opacity correctness criterion [28] requires (1) that transactions that

commit look as if they executed sequentially (equivalent to serializability) (2) that aborted transactions

int lowBound = x, upBound = y;

for(; lowBound < upBound; lowBound++)
array[lowBound] = lowBound;

Listing 3.1: Example of code that may not be executed properly due to the lack of an appropriate
correctness criterion.

16

are given the illusion of no concurrency, i.e., they must also observe consistent states all the time and (3)

that operations executed by an aborted transaction must not be visible to any other transaction. The

algorithms that I propose in this dissertation satisfy the opacity criterion to avoid the hazards described.

3.1.2 Operation level liveness

Opacity may be trivially achieved in a TM implementation that aborts every transaction before

performing any transactional read or write. Despite its uselessness, it motivates the formalization of

progress conditions that capture the scenarios in which a transaction must commit or may be aborted.

A simple progress condition that requires a transaction to commit if it does not overlap with any other

transaction may be implemented using a single global lock. As a result, transactions will be running one

at a time, thus ignoring the potential benefits of multiprocessing and yielding zero concurrency [38]. The

objective is to have positive concurrency in which at least some transactions make progress concurrently.

To achieve progress at the level of transactions, it is important to formalize which guarantees should

be provided at the level of operations that constitute a transaction. In [34], Herlihy and Shavit present

these guarantees, which I briefly summarize next. Starvation-freedom states that all threads eventually

progress when trying to grab some lock. Deadlock-freedom only requires that some thread manages

to grab the lock and consequently it may happen that a specific thread never manages to do so.

A non-blocking program is said to be wait-free if it ensures that every thread finishes its task in a

finite number of steps even if it faces arbitrary delays of concurrent threads. Such events may take place

due to blocking for I/O or adverse scheduling by the operating system. Lock-freedom only ensures that

the system as a whole makes progress: A specific thread may never make progress in face of concurrent

threads progressing. The JVSTM [24], which I describe in Section 4.1 and use as the basis of my work,

provides lock-freedom as the progress guarantee of its operations.

Yet, there is weaker non-blocking guarantee: Obstruction-freedom guarantees that one thread

makes progress if it executes in isolation for sufficient time: a transaction Tk executed by thread pi can

only be forcefully aborted if some thread other than pi executed a step (low level operation) concurrently

to Tk. Although it was initially presented as a synchronization mechanism [31], obstruction-freedom has

also been used to classify the progress guarantees of a TM system [32, 27]. Formally, if fits in the zero-

concurrency category as a transaction is guaranteed to commit only if it faces no contention (theoretically

allowing no concurrency).

Like stronger non-blocking progress conditions such as lock-freedom and wait-freedom, obstruction-

freedom ensures that a halted thread cannot prevent other threads from making progress. Unlike lock-

freedom, obstruction-freedom does not rule out livelock: interfering concurrent threads may repeatedly

prevent one another from making progress. Compared to lock-freedom, obstruction-freedom admits

substantially simpler implementations that are more efficient in the absence of synchronization conflicts

among concurrent threads.

To cope with the possibility of livelock, Herlihy et al [32] proposed that modularized mechanisms

could be used to enforce a given policy that seeks to avoid livelocks: Contention managers. These may

be queried to decide if a transaction is allowed to abort another one or if it should abort itself instead.

17

3.1.3 Progressiveness

Some of the most efficient TM implementations internally resort to locking despite providing a lock-free

illusion to the programmer. To capture the guarantees provided by these TMs, Guerraoui and Kapalka

proposed progressiveness [29], in which a transaction encountering no conflicts must always commit:

• Single-lock progressiveness: A transaction can abort only if there is a concurrent transaction. One

TM implementation providing this guarantee has been briefly addressed above (using a global lock).

• Weak progressiveness: A transaction can abort only if a conflict with a concurrent transaction arises

in an access.

• Strong progressiveness: Stronger than weakly progressive as it requires that, among a group of

transactions whose accesses conflict on a transactional variable, at least one of the transaction does

not abort.

Strong progressiveness is the most interesting guarantee. In particular, it means that two independent

transactions progress without interfering with each other. Moreover, it does not allow spurious aborts

because aborts have always to be explained by some conflict. Finally, it ensures progress for transactions

that perform only one transactional access. These may be relevant in TMs with strong atomicity, which

wrap non-transactional accesses in single-operation transactions.

3.1.4 Permissiveness

A TM is permissive with regard to a correctness criterion C (where C may be opacity for example)

if it never aborts a transaction unless necessary for maintaining safety according to that criterion. Note

that a TM may be seen as an online algorithm in the sense that, on each operation that it executes, it has

to decide on its influence on the overall correctness of an incomplete transaction with operations that may

yet be performed. Ensuring C-permissiveness may yield a very expensive algorithm complexity wise. As

a matter of fact, it has been shown that it is impractical to achieve permissiveness deterministically [26].

Therefore, an alternative notion has been suggested in the literature: Probabilistic C-permissive-

ness [26] in which some randomization takes place that eventually leads to the acceptance of C-safe

histories by the TM. The underlying idea builds on the following example: if Tk and Ti access the same

transactional variable where Tk writes and Ti reads, even if Tk commits first (but after the concurrent read

took place), Ti may still commit if its serialization point is before Tk’s. For this to be possible, transactions

may adaptively validate themselves by maintaining a possible interval of serialization. At commit time,

they randomly choose a point within that interval to serialize themselves, allowing transactions to commit

probabilistically in the past, or in the future.

On a slightly different setting one may also use multi-version-permissiveness: a relaxation in which

only read-write transactions may abort and in which case it has to conflict with a concurrent read-write

transaction [51]. Therefore, read-only transactions must always commit. This guarantee suites TMs that

maintain multiple versions of transactional variables. However, it has been shown that single version

TMs may also be mv-permissive [6]. The JVSTM is an example of an mv-permissive STM.

18

3.2 Transactional memory design choices

Among the TM systems that have been proposed, many different design decisions were promoted.

To start with, a TM can be implemented either in hardware or software, as well as in various hybrid

approaches that dynamically switch between hardware and software execution modes. However, they all

have common issues that have been solved very differently across the literature. Here, I present only a

few of them, which are building blocks for understanding the algorithms that I describe in my work. I

provide a more extensive list of these design choices, as well as how many published STM systems are

characterized according to them, in a technical report [16].

3.2.1 Update Policy

The update policy establishes how the system manages both stable (valid when the transaction had

started) and speculative values (attempting commit) of the transactional shared variables. The former

are used when the transaction aborts whereas the latter are used in case it commits.

One possible strategy is called lazy (also known as deferred) update, in which all writes performed

within a transaction are buffered until commit time. These writes may be stored as values in a set or

applied to some tentative copy of an object. On commit, these buffered writes are publicized, meaning

that they are written to the proper address corresponding to the transactional variable. Conversely, if

the transaction aborts, it suffices to discard the local tentative writes.

On the other hand, there are eager (also known as direct) updates that are directly applied to the

transactional variable instead of some shadow copy or temporary buffer. A transactional variable whose

value belongs to a transaction that has not yet committed, must be somehow marked as tentative by the

TM system. This bookkeeping is crucial for concurrent transactions to act correctly when accessing this

tentative value. To return the global state to a consistent one when a transaction aborts, the overwritten

values must be logged in what is usually referred to as an undo log. This way, upon abort, they may be

retrieved and rewritten in the global state, whereas on commit it suffices to clean the undo log.

3.2.2 Conflict detection and resolution

To detect conflicts, each transaction needs to keep track of its read-set and write-set. On one hand,

lazy conflict detection and resolution (also referred to as late, optimistic, or commit-time) is based on

the principle that the system detects conflicts when a transaction tries to commit, i.e., the conflict itself

and its detection occur at different points in time. To do so, one possibility is to have a committing

transaction Ti to ensure that no write-set of a recently committed transaction Tk intersects with Ti’s

read-set. A transaction Tk is recently committed with regard to Ti if it committed after Ti started and

before Ti committed. If there is an intersection, there is a read-write conflict, which leads the transaction

attempting commit to abort. This strategy promotes more concurrency (by causing less conflicts) because

a read-write conflict may not be troublesome if the reader transaction commits before the writer. However,

conflicts are detected late, which may result in fruitless computation.

On the other hand, eager conflict detection and resolution is based on the principle that the system

checks for conflicts during accesses, i.e., the system detects a conflict directly when it occurs. A mixed

invalidation scheme has been proposed [56] to combine eager write-write detection and lazy read-write.

19

Despite how conflicts are managed, one may perform the conflict detection at different granularities.

The most fine-grained one registers memory addresses in the read and write-sets and performs verifications

by comparing the memory words. The major drawback is the extensive overhead regarding the fine-

grained mapping that is created to cover all the addresses. An advantage is that this strategy avoids

false sharing. There is a midterm that requires less time and space, by using cache line granularity, but

risks having false sharing which may lead to unnecessary aborts. This strategy is usually applied to HTM

systems that can leverage on existing cache coherence mechanisms.

There is an alternative that promotes object granularity, in which the sets maintain the objects whose

field(s) are read or written. This strategy may also yield false sharing if two concurrent transactions access

different fields in the same object. There is room for different granularities besides the ones mentioned

as the conflict detection may employ more than one memory word or cache line.

3.3 Achieving Nesting by flattening

After going through some important properties of TM, I now delve into nesting of transactions. As we

have seen, nesting of transactions is a requirement to support software composability. The simplest way

to provide it is by flattening transactions into the outermost level. Although simple to achieve, some TM

implementations have not provided support even for this model [25, 40, 15, 53, 22, 36, 20]. A possible

implementation of such model is for a transaction to maintain a counter with the depth of nesting. This

way, instead of creating a nested transaction, the counter is incremented. When a commit is reached, the

counter is decremented. The actual commit is only performed when the counter corresponds to the top

level.

In this setting, the code that conceptually belongs to a nested transaction is actually behaving as

if it were in the top-level transaction. Therefore, all the bookkeeping performed during the accesses is

maintained in the top-level transaction’s structures. Both DSTM [32] and RSTM [41] are examples of

TMs that provide flattening to support composability of transactions.

In DSTM, a transaction may release objects that it has read, effectively removing them from its

read-set. Once an object has been released, other transactions accessing that object do not conflict

with the releasing transaction over the released object. The programmer must ensure that changes by

other transactions to released objects will not violate the linearizability of the releasing transaction: A

transaction may thus observe inconsistent state. Clearly, the release facility must be used with care;

careless use may violate the correctness criterion.

3.4 Linear Nesting

Almost all recent related work in nesting builds on the model presented by Moss and Hosking [46].

The linear nesting model imposes that a transaction may have only one nested transaction active at a

given time (meaning that it is executing). Conversely to flattening, an atomic action enclosed in the

control flow of an active transaction Ti will effectively create a nested transaction Tk. The parent of Tk is

Ti. The definition is recursive in the sense that a nested transaction is merely a more specific term for a

general transaction. Therefore, a nested transaction may also be the parent of another nested transaction.

A top-level transaction may now be easily defined as a transaction without a parent.

20

The set of transactions created (both directly and indirectly) by a top-level transaction constitute

a nesting tree (which includes that root transaction as well). Moreover, when Tk, a linear nested

transaction, attempts to read variable x, it must obtain the value it previously wrote to x. If Tk never

wrote to x, then it repeats the same procedure as if it was its parent Ti instead. Otherwise, if Tk has no

parent, and thus is top-level, it obtains the globally known value.

As we shall see, we may define two types of nested transactions [46]: Closed and open. However,

regardless of its type, a nested transaction accessing a variable will always obtain the most recent value

known by itself (in case it has written to it) or by its ancestors. What differs between closed and open

nested transactions is what happens when they attempt to commit, and when its ancestors abort.

From a high level point of view, a Closed Nested Transaction (CNT) preserves the isolation of the

nesting tree, whereas an Open Nested Transaction (ONT) escapes the enclosing transaction and makes its

actions globally known at the end of its execution. This means that an ONT requires possibly expensive

measures if an ancestor aborts after the ONT’s commit. Therefore an ONT is more suitable for situations

in which its ancestors seldom abort.

In more detail, a CNT commit results in the merge of its read-set and write-set with its parent’s.

This type of nesting is provided in NOrec [14], LogTM [44] and McRT-STM [54]. On the other hand,

ONTs, which have been provided in Atomos [13] and XModules [2], allow a committing inner transaction

to release isolation immediately: The commit is partially performed as if it was a top-level transaction.

This means that the writes are made globally visible and both its read-set and write-set are discarded.

However, one of its ancestors may yet abort, in which case the ONT’s write-set “escaped” the control

of the abort mechanism and was made visible incorrectly. The workaround depends on the TM design.

One example may require the nested transaction to propagate an undo-set to its parent [45].

It is not straightforward how some applications can deal with ONTs [2]. The major problem is that

opacity is broken because some other transaction may read a value publicized by a transaction that

aborts. Moreover, it is also difficult to deal with states in which an ONT commits values that depend on

some state that was written by one of its ancestors but is not yet committed. For instance, consider that

y = 2 ∗ x where x and y are shared variables in our program. Consider the history:

WT1
(x, 1) ST1

(T2) RT2
(x, 1) WT2

(y, 2) CT2
(ok) (3.2)

In execution (3.2), T2 is an open ONT and variables are initialized to 0. By the moment that T2 commits,

any concurrent transaction that reads x and y will see an inconsistent state where y = 2 and x = 0 until

T1 commits. This leakage of uncommitted state is traditionally avoided by the following rule of thumb:

An ONTs’ footprint (i.e., the union of read-set and write-set) should not intersect with its ancestors’

footprint. This approach was proposed as a way to increase concurrency and decrease false conflicts [44]

(in the sense that, to the application logic, those conflicts were not relevant). The DSTM’s eager release

mechanism presented in Section 3.3 is another way of achieving a similar goal.

A common motivation for open nested transactions is based on part of an atomic action that has a very

high chance of conflicting with concurrent transactions. For instance, if all transactions in some program

have to increment some statistical counters, this indirectly causes one transaction only to succeed, which

is the one that manages to commit without its accesses being invalidated. Therefore the usual proposal

is that the changes on the counters are encapsulated in an open nested transaction.

21

3.5 Parallel Nesting in TMs

The linear nested transactions that I have presented in the previous section may be represented in a

tree structure: Each transaction is a node; the parenthood relations are established by directed edges from

the child to the parent transaction; and the root is a top-level transaction. Given this representation,

in linear nesting, only one of the branches of the tree may be active at a given time. Conversely, in

parallel nested transactions, we may have an arbitrary number of branches in the nesting tree with active

transactions because a parent may have multiple nested transactions active at any given time.

Note that reading a variable in parallel nested transactions works in the same way as for linear nested

transactions as previously described in Section 3.4. However, the fact that we may now have parallel

siblings and different branches of the nesting tree active at a given time make the implementations more

complex in practice: In linear nesting a nested transaction can always assume that the write-sets of its

ancestors will never change during the nested transaction lifetime whereas for parallel nested transactions

that is not true due to concurrent nested commits.

Next, I describe the most relevant STMs that have parallel nested transactions and in which this

difficulty, and other concerns, will be addressed. I provide a more complete list and description of the

existing systems in [16].

3.5.1 NeSTM

The Nested STM (NeSTM [7]) is based on the McRT-STM [54] as a blocking, eager conflict detection,

word-granularity TM with undo logs for writes and a global version clock for serializability. In the original

TM, each address is mapped, using a hashing function, to a variable that acts either as a lock or as a

storage for a version number. The former contains the address of a structure with information about the

transaction holding the variable whereas the latter contains the global clock version corresponding to the

last write applied to the address that is mapped by the variable. Moreover, every transaction is uniquely

identified by an identification number.

In the extension of this system to support parallel nesting, the authors argue that the most important

point is that it should not interfere with the performance of workloads in which nesting is not used.

They were also driven by the intent of keeping the memory footprint as close to constant as possible,

regardless of the nesting depth in use. Also, the assumption that no other transaction could access a

locked variable in the original system is no longer true: due to the parallel nested transactions, other

transactions can correctly access the locked object as long as they are descendants of the owner. To allow

this, the ownership information was always made available in the lock to query the ancestor relationship

at any time. Similarly, the version number must also be visible at all times to serialize the conflicting

transactions. Consequently, the lock variables now reserve some bits to identify the transaction owning

it, whereas the rest is used for the version number, allowing invisible readers despite the current lock

mode. This leads to two practical consequences: There is a maximum number of concurrent transactions

at a given time and the transaction identifier overflows several orders of magnitude faster than normal.

At transaction start, the global clock is used to timestamp the transaction. Reading a variable X

causes an abort if X was written since the transaction started. This may cause unnecessary aborts in

cases such as: Ti did not perform any access, Tk commits values, Ti reads one of the values written by

Tk and, thus, aborts.

22

A

D

B
previous owner

E

...

...

...

new owner

Figure 3.1: Nesting tree in which TA is the top level transaction. In this example a transactional variable,
say X, was held by TB . When TD attempts to acquire the ownership of X, it is able to do so because
TB is an ancestor of TD. Some branches were omitted to simplify the example.

When writing a value, the transaction attempts to acquire the lock corresponding to the variable and

then it validates the object: The transaction attempting to write, as well as its ancestors, must not have

a timestamp smaller than the object’s timestamp, in case they read it previously. To reduce the work

needed for this validation, only transactions that were not ancestors of the previous owner of the object

must go through the check. In Figure 3.1, I present an example in which the nested transaction TD

attempts to acquire the lock corresponding to a variable that was previously owned by TD’s ancestor. In

this case, the validation process will be performed only for TD and TC due to the optimization described.

Yet, this mechanism yields considerable costs in terms of computation at high depth levels. Given that the

nested commit procedure requires validating the reads across the transaction and its ancestors followed

by the merge of the sets into the parent, this set of actions must be atomic in the algorithm. This is

meant to prevent concurrent siblings from committing simultaneously and breaking serializability. In

practice it was solved by introducing a lock at each transaction and make nested transactions acquire

their parent’s lock in mutual exclusion with their siblings.

Moreover, NeSTM is subject to livelocks: If T1 writes to X and T2 writes to Y , they will both have

acquired the ownership of those variables. Consider that the first transaction spawns T1.1 and the second

one spawns T2.1. Now, if both of these nested transactions Y and X, respectively, they will abort because

those variables are owned by non-ancestors in each case. However, they will have mutually blocked each

other unless one of their ancestors aborts as well and releases the corresponding variable. The authors

placed a mechanism to avoid this in which they count consecutive aborts and heuristically abort the

parent as well.

3.5.2 HParSTM

The Hierarchy-based Parallel STM (HParSTM [37]) is based on Imbs’ STM [36], thus obeying opacity

and progressiveness. The novelty of this work is that it allows a parent to execute concurrently with

its children nested transactions. The advantage of this approach is that it allows more nodes in the

transactional tree to be active in computations and requires less depth of nesting due to useless parents

standing-by.

23

The same protocol used for top-level transactions is extended for nesting by replicating most control

data structures. The baseline STM design promotes a mixed invalidation strategy with visible readers,

lazy lock acquisition and write-back at commit time. To achieve this, it uses a global structure where

doomed transactions are registered: When a transaction is writing-back at commit-time, it invalidates

those objects’ active readers by dooming them in the aforementioned global structure. Any transaction

has to check that it does not belong to the doomed transactions prior to commit.

Moreover, this information is also scattered across the shared objects, which have a forbidden set

associated to them: if T1 read X and T2 wrote X and Y followed by commit, it not only adds T1 to the

global doomed set, but also to the forbidden set of X and Y . If T1 attempts to read Y it will fail to do

so, as otherwise, that would be an inconsistent view state. This procedure is used by nested transactions,

except that they must ensure that these invalidation sets contain neither its id or any of its ancestors’.

The extension performed for nesting parallel transactions also synchronizes merges in a parent transaction

by concurrent siblings (and the parent’s execution itself) with mutual exclusion.

3.5.3 PNSTM

The Parallel Nesting STM (PNSTM [9]) provides a simple work-stealing approach with a single global

queue into which the programs’ blocks may be enqueued for concurrent transactional execution. Moreover,

each transactional object is associated with a stack that contains all the accesses (both reads and writes)

performed by active transactions. This allows transactions to determine eagerly and in constant time if

a given access to an object conflicts with a non-ancestor’s access.

To achieve constant time queries for eager conflict detection, a set of transactions is represented by a

memory word that has each bit assigned to a transaction (called a bitnum). This way, when Ti accesses

a variable last accessed by Tj , a conflict is detected by operating on both transactions’ bit vectors and

deciding if one of them is ancestor of the other using bitwise operations: Assuming veci is the bit vector

corresponding to Ti, we have a conflict when:

veci ∧ (veci

⊕
vecj) 6= 0 (3.3)

In Fig. 3.2 I present an example where these operations are used to validate accesses to a variable

X by various transactions of a nesting tree. Each transaction in the tree has a corresponding bitnum to

identify it, which refers to a position in a memory word whose bit is set to one. In this example, the

access by transaction TD creates a conflict because the last access to that variable was performed by a

non ancestor of TD. This is visible in the bit vectors in the access stack.

Note that using a memory word for this representation allows performance improvements but limits

the maximum number of transactions on the system at all times. To work around that, the authors

of PNSTM introduced the concept of epochs, such that a transaction identifier only has meaning when

paired with the corresponding epoch. Moreover, the system would be limited to a given maximum number

of concurrent transactions. The authors claim that no more parallelism would be attained over that limit

if it is larger than the maximum number of worker threads. Consequently, they build on that assumption

and provide some ways of reusing identifiers and making it harder to reach the limit.

When a transaction commits, it leaves behind traces in all the objects it accessed, namely the stack

frames stating its ownership. To avoid having to go through all the objects in the write-set by locking

24

A

CB

D

Access Stack of variable X

 Access Stack
growth direction

1 0 1 1

1 1 0 0

1 0 0 0

TD

TB

TA

Conflict

Ok

Ok

bn: 1st

bn: 2nd bn: 3rd

bn: 4th

Figure 3.2: Nesting tree in which transactions are identified by bit nums according to the PNSTM. The
access stack for variable x is shown when TA, TB , and TD access x in that order. Note that the last
access creates a conflict.

and merging the frame with the previous entry, PNSTM does that lazily. This may lead to false conflicts

when some transaction accesses an object and finds an entry in the stack that corresponds to an already

committed but not yet reclaimed transaction. The authors show that it is possible to avoid it by resorting

to a global structure maintaining data about all committed transactions and some lazy cleaning up.

3.6 Discussion of existing Parallel Nesting Implementations

Providing nesting models along with inner parallelism may unveil yet more concurrency in our pro-

grams. We have seen that the NeSTM presented many of the difficulties that come up when providing

nested parallelism, but some of them (which may break opacity) were solved only heuristically. On the

other hand, the HParSTM design informally proved some guarantees that I have described but their

authors did not present any evaluation. It is likely that some of the global structures they used inhibit

scalability as it breaks the disjoint-access parallelism property and are intensively used for conflict detec-

tion. Finally, the PNSTM provided an efficient algorithm but it regards all accesses as writes, thereby

precluding some read-read potential concurrency. Moreover, their algorithm did not take into account

any way to shrink the stack of accesses in transactional variables.

There are also some parallel nesting implementations that center their attention into how parallel

nesting will actually be used by the programmer with seamless integration of thread creation and trans-

action nesting. For instance, the SSTM [52] explored a unique perspective in which nested transactions

may interfere with each other’s outcome. However, their algorithm is not provided in a detailed manner

and is more interested on how to make use of the underlying runtime of choice. The CWSTM [1] also

took into account the composition of atomic and parallel blocks in the language. In addition to that, it

was the first one to show an algorithm that was independent of the nesting depth, but it did not provide

any implementation or evaluation.

All these STMs are lock-based and single-version. In this dissertation I propose a parallel nesting

algorithm for a lock-free multi-version TM, the JVSTM. Moreover, the JVSTM uses a lazy write-back

strategy. This strategy has been pointed out as an obstacle for a parallel nesting algorithm independent

of the nesting depth [1]. However, the lazy write-back nature also allows for interesting gains by permit-

ting more concurrency. Consequently, there is a trade-off as we necessarily have to perform work with

25

complexity proportional to the nesting depth, if we want to preserve the benefit of the lazy write-back

nature. In Section 4.3 I explain why we cannot escape that complexity. In the final solution provided

in Chapter 6 I tackle the overheads of the parallel nesting algorithm so that the constants behind the

complexity bound are small enough to make it practical for use.

26

Chapter 4

A naive algorithm

In this chapter I lay out an initial algorithm for parallel nesting. Given that it is based on existing

work, I begin by presenting the underlying STM used in this dissertation, the JVSTM, in Section 4.1. As

a consequence of this existing work, all the implementations that I used in this dissertation were written

in the Java programming language.

To understand fully the algorithms that provide parallel nesting, I introduce its model in Section 4.2.

Then I provide an initial solution to the problem in Section 4.3. This solution gives an insight into the

design decisions that arise when creating a parallel nesting algorithm. In the end of this chapter, I identify

some challenges that I address in Chapter 5, where I improve over this initial algorithm.

4.1 JVSTM

The Java Versioned STM [24] is a word-based, multi-version STM that was specifically designed to

optimize the execution of read-only transactions: In the JVSTM, read-only transactions have very low

overheads, and never contend against any other transaction. In fact, once started, the completion of

read-only transactions is wait-free in the JVSTM. To achieve this result, JVSTM uses the concept of

Versioned Box (VBox) to represent transactional locations. Each VBox holds a history of values for a

transactional location, by maintaining a list of bodies (VBoxBody), each with a version of the data. The

access to VBoxes is always mediated by a transaction, which is created for that sole access if none is

active at that moment.

I show a representation of these concepts in Figure 4.1. The VBox, corresponding to a transactional

location, points to a history of three values, among which the value 2 is the most recent. This value was

VBox

body
version:

value:

6

1

previous:

version: 19

previous:

value: 2

version:

value:

4

0

previous:

Figure 4.1: A transactional location representing a counter and its versions in the JVSTM.

27

written to the VBox during the commit of a top-level transaction, in a process called write-back. During

this process, a global clock is incremented and used to timestamp the new versions being written-back.

A read-only transaction always commits successfully in the JVSTM because it reads values in a version

that corresponds to the most recent version that existed when the transaction began. Thus, all reads are

consistent and read-only transactions may be serialized in the instant they begin, i.e., it is as if they had

atomically executed in that instant. This means that, in the previous example, a read-only transaction

that started on version 17 and attempts to read that VBox, will obtain the version 6 with value 1.

Read-write transactions, however, must be serialized when they commit. Therefore, they are validated

at commit-time to ensure that values read during their execution are still consistent with the current

commit-time, i.e., that values have not been changed in the meantime by another concurrent transaction.

Transactions mediate all accesses to VBoxes because they need to record each transactional access in

their local logs: Reads are logged in a transaction’s read-set, whereas writes are logged in a transaction’s

write-set. Both logs are used at commit time: If the read-set is still valid, the tentative writes logged

in the write-set are written back, producing a new version for each of the boxes written and effectively

publicizing the new values.

There is a global queue of ActiveTransactionsRecords in which transactions enqueue to obtain

their order of commit. A transaction only reaches this point if it validated against all past committed

transactions as well as against transactions enqueued before it but not yet committed. After the enqueue,

a transaction is guaranteed to commit and that happens with the help of other transactions waiting for

their turn to commit, resulting in a lock-free algorithm [24].

4.1.1 Optimizations to the read-set and write-set

The JVSTM is thoroughly described in [24]. Yet, the version that I started with contains further

optimizations. In particular, some optimizations were performed to avoid the overheads of maintaining

read-set and write-set, which is of great relevance to the algorithms that I provide in this dissertation.

Read-write transactions have to register their reads for late validation, and writes for write-back. The

general idea is that this should be made as lightweight as possible, as it accounts for the bulk of the work

that is performed during the execution of a read-write transaction.

A read-set was previously maintained as a HashMap that mapped VBoxes to the VBoxBody read

at that time. Consequently, each read operation entailed an insertion in the map that caused allocation

of memory in the inner workings of the HashMap. Therefore, the new approach reuses the read-sets in

transactions that execute in the same thread. This strategy is represented in Figure 4.2. Each thread

that executes transactions in the JVSTM keeps a thread-local pool of arrays. These arrays are available

for reuse as part of the read-set of the transaction. When the transaction starts, it fetches one of these

arrays, and populates it with the VBoxes read during the execution. If it runs out of space, it fetches

another array from the pool. When the pool is empty, it allocates a new array and uses it.

At the end of the transaction, the arrays used are returned to the pool. As a result, the most frequent

case is that no allocation is required for read-sets during the execution of a transaction. Finally, only

references to the VBoxes read are registered: The validation simply checks if the most recent VBoxBody

of a VBox read has a version that is smaller or equal to the starting timestamp of the transaction.

Therefore it is not needed to maintain a mapping of VBox to the VBoxBody read.

28

execute
 tx

 create
new array

execute
 read

remove array
 from pool

return arrays
used to pool

no

start tx

read-set
 full?

abort or commit tx

finish
 tx

read VBox

 pool
empty?

yes

yes

no

continue
execution

(slowest path)

(slow path)

Figure 4.2: Partial representation of the states representing the actions related to the read-set mainte-
nance throughout an execution of a transaction. The states in the fast-path are shadowed.

The write-set was similarly maintained as a HashMap, but in this case it mapped VBoxes to Objects,

which represented the values tentatively written. Once again, the concern is that a write would entail

allocations and resizes of the map. However, the same strategy used before is no longer adequate to the

write-set: When a transaction reads a variable, it has to check if it ever wrote to it previously, in which

case it is in the presence of a Read-after-write (RAW). If the write-sets were optimized the same way

as the read-sets, this would require traversing the arrays of the write-set on every read. Consequently, a

different strategy was required.

This time the rationale for a change is to find a way to avoid looking up the write-set on as many

reads as possible. The solution is to perform the writes in the VBoxes themselves, for which reason a

new field (tentVal) was added to them, representing a tentative value. The idea is that in the normal

(and fast) case, a transaction is able to write to the VBox in the tentVal slot. To do so, another

field was added to the VBox: The owner field contains an Ownership Record (Orec) that represents the

transaction controlling the VBox. This way, a transaction has to acquire ownership of the VBox first to

be able to write in the tentVal. If a transaction fails to write in this fast manner, it resorts to the

traditional write-set with the HashMap.

This optimization to the write-sets is shown in Figure 4.3, which corresponds to a partial execution

of transactions TA and TB :

RTA
(x, 10) WTA

(x, 20) RTB
(y, 3) WTB

(y, 4) RTB
(x, 10) WTB

(x, 20) (4.1)

Initially, TA performs its write to VBox x in the tentative slot, because it is able to change the owner

of that VBox to its Orec. Similarly, TB writes to y in the tentVal slot. However, once it attempts to

write to x, it is not able to do so in-place, because VBox x is currently owned by a transaction indicated

as alive by its Orec. Therefore TB performs its write in the plain old write-set. The transaction that

commits successfully will perform the write-back that entails creating the new body versions, including

the writes performed in-place. Consequently, VBoxes written in-place are registered in a simple list,

referred to as ws-inplace in the transaction structure.

29

VBox: Y

body
version:

value:

6

2

previous:

version: 19

previous:

value:

version:

value:

4

1

previous:

status:

Orec
Alive

4tentVal:

owner:

3TB
start: 24
orec:
ws-inplace:
write-set:
read-set:

{ Y }
 { X: 20 }
{ Y, X }

VBox: X

body
version:

value:

1

0

previous:

version: 11

previous:

value:
20tentVal:

owner:

10start: 15
orec:
ws-inplace:
write-set:
read-set:

{ X }
 { }
{ X } status:

Orec
Alive

TA

Figure 4.3: Representation of the state maintained in the JVSTM with the optimizations.

4.1.2 Nesting in the JVSTM

The original design of the JVSTM implements a linear nesting model, in which a thread that is

executing a transaction may start, execute, and commit a nested transaction (which itself may do the

same), effectively forming a nesting tree with only one active branch at a time. The leaf of that active

branch represents an active nested transaction that is guaranteed to be the only one accessing and

modifying the read-set and write-set of that nesting tree.

Overall, the existing approach was meant to simplify the algorithm and make it easy for the JVSTM

to obtain nesting with the least overheads possible and still coping with the optimizations described

above. Yet, this simple model does not allow the decomposition of long transactions into concurrent

parts, which I provide as one of the major contributions of this dissertation in Section 4.3 and improve

in Chapter 5.

4.2 Parallel Nesting Model

I have briefly introduced parallel nesting in Section 3.5 based on previous work regarding TM im-

plementations that provided it. Yet, I provided mostly intuitions because there has not been a specific

attempt to define them more formally for parallel nested transactions. Consequently, I now present those

intuitions more carefully so that they serve as the basis for my work, with the model of closed nesting

described by Moss [46] underlying it.

Two nested transactions are said to be siblings if they have the same parent. In parallel nesting,

siblings may run concurrently. In this model, each top-level transaction may unfold a nesting tree in

which a transaction performs transactional accesses only when all its children are no longer active.1

1This restriction simplifies the model and does not impose any significant limitation to the expressive power of
the parallel nesting model, because a transaction that needs to execute concurrently with its children may spawn
a nested transaction to execute its own code.

30

In a closed nesting model, a nested transaction maintains its own read-set and write-set, much in

the same way of a top-level transaction. Yet, given the compositional nature of transactions, reading a

transactional location within a nested transaction must always access the value that was most recently

written to that location among the following: (1) the sequence of operations performed by the transaction

reading, (2) by all of its ancestors, and (3) by its siblings that committed before the read.

However, each read must take the following in consideration: When a nested transaction Ti finds

out a write in its ancestor Tk private write-set it is not necessarily guaranteed that it is safe to read it.

Consider the following execution:

WTk
(x, 1) STk

(Ti, Tj) RTi
(x, 1) WTj

(x, 2) CTj
(ok) RTi

(x, ?) (4.2)

In this example, the last read performed by Ti would find the value 2 for x in Tk but returning it

would break the correctness criterion (assuming opacity described in Section 3.1.1). The alternatives are

to return the value 1 if the TM is multi-version or to abort Ti. This example unveils another important

point in parallel nesting: In addition to the requirements imposed by opacity (described in Section 3.1.1),

the concurrent executions of a set of siblings must be safe with regard to their parent, in the sense that

those executions must be equivalent to some sequential ordering. This concept may described as opacity

on a level-by-level basis (similarly to level-by-level serializability [60]).

The set of ancestors of a transaction with parent T is composed by adding T to the set of ancestors

of T . A top-level transaction has no parent, and, therefore, its ancestor set is empty. A closed nested

transaction commits by publicizing its footprint into the parent. This may be achieved by merging its

read-set and write-set with its parent’s read-set and write-set, respectively. The merge of the write-set

overwrites possible duplicates when the nested transaction commits writes to locations that its parent

had also written to. If it aborts, it may rollback only the atomic action corresponding to itself rather

than the whole top-level transaction, depending on the conflict that caused the abort.

4.3 An initial approach towards parallel nesting

A simple design for implementing closed nesting is to maintain a read-set and a write-set on each

nested transaction. Then, when a nested transaction commits, both its read-set and write-set are merged

into the parent’s respective sets, overwriting any previous writes of the parent for the same transactional

locations. Overall, this is the design used by the original JVSTM to implement its linear nesting model,

and a similar approach may be used for implementing parallel nesting together with synchronization of

siblings and validation of commits to respect the correctness criterion.

Using this idea, I created an initial algorithm that provides support for parallel nesting in the JVSTM.

In the remainder of this dissertation, I shall refer to this algorithm as the Naive algorithm. Next, in

Section 4.3.1, I describe some data-structures and functions used in this algorithm. Then, I present the

transactional operations in Naive, in Section 4.3.2.

31

A

D E

write set

x:

B C
write set

clock: 1

clock: 1

clock: 0

version value

1 5

y: 0 6

x: 0 0
write set

y: 0 1
committed

committedmaxVer: 0

maxVer: 0

Figure 4.4: Representation of a nesting tree where some parallel nested transactions have performed
transactional writes on VBoxes x and y with Naive write-set design.

4.3.1 Data-structures and auxiliary functions

To better understand the algorithm, I begin by presenting the data-structures that it uses. In Fig-

ure 4.4, I show a representation of the nesting tree that is generated by the following execution:

SA(B, C) WB(y, 6) WC(x, 5) CC(ok) SB(D, E) WE(x, 0) CD(ok) WE(y, 1) (4.3)

This nesting tree shows that each transaction that is alive has a corresponding private writeSet. A

writeSet maps each VBox written to a WriteEntry, which contains: (1) the version in which the

write exists; and (2) the tentative value written.

The version that exists in each write is used to enforce consistent reads of tentative values in the

nesting tree. For that, every transaction maintains a nestedCommitClock (shortened to clock in the

Figure), which is a number representing the latest version that has been committed into the transaction

by its children. This means that, when a transaction starts, its nestedCommitClock is set to zero, and

it is incremented whenever one of its children commits. That is why the clocks of A and B have been

incremented in Figure 4.4.

Nested transactions also keep the maxVersionOnParent (shortened to maxVer in the Figure),

which is a timestamp obtained when a transaction starts by reading the nestedCommitClock of its

parent. This timestamp is used to restrict a nested transaction from reading tentative writes committed

in the nesting tree after the transaction started.

Moreover, all transactions maintain a startingVersion that limits the versions that they can read

from globally consolidated bodies in VBoxes. A nested transaction always uses the startingVersion

of its root ancestor.

Finally, a nested transaction also contains a mapping of VBox to VBoxBody called bodiesRead,

similarly to a top-level transaction. This is possible because a WriteEntry extends the structure

of a VBoxBody, and therefore nested read-after-writes and normal reads are registered both in the

bodiesRead.

In the following description of the algorithm, I also resort to the abortUpTo(tx, conflicter)

32

function, which causes the execution of the algorithm to stop and leads to the abort of tx as well as its

ancestors up to conflicter (including).

4.3.2 The Naive algorithm

In Algorithm 1, I present the read and write operations of the Naive parallel nesting algorithm. The

Write operation registers the new WriteEntry in the private writeSet, timestamping it with its

current nestedCommitClock (lines 30-31).

The Read operation starts by using Lookup to check for a possible RAW (line 18). If none is found,

it reads a globally consolidated body, which may cause an early abort due to a W-R conflict with another

top-level transaction (line 23). In that case, the whole nesting tree has to abort.

Lookup verifies if tx owns a write to vbox. Note that the Lookup function is recursive: In its first

invocation tx = requester, meaning that it is checking for a RAW in the write-set of the transaction

performing the read. If none is found, it invokes Lookup again if tx has a parent (lines 13-14).

Algorithm 1 Algorithms for the read and write operation of the Naive design.

1: Lookup(tx, vbox, maxVersion, requester):
2: writeEntry ← tx.writeSet.get(vbox)
3: if writeEntry 6= NONE then
4: if writeEntry.version > maxVersion then
5: // eager W-R conflict detection; abort up to given ancestor
6: abortUpTo(requester, tx)
7: end if
8: if tx 6= requester then
9: requester.bodiesRead.put(vbox, writeEntry)

10: end if
11: return writeEntry
12: end if
13: if tx.parent 6= NONE then
14: return Lookup(tx.parent, vbox, tx.maxVersionOnParent, requester)
15: end if
16: return NONE

17: Read(tx, vbox):
18: writeEntry ← Lookup(tx, vbox, tx.nestedCommitClock, tx)
19: if writeEntry = NONE then
20: body ← vbox.body
21: value ← body.value
22: if body.version > tx.startingVersion then
23: abortUpTo(tx, TOP)
24: end if
25: tx.bodiesRead.put(vbox, body)
26: return value
27: end if
28: return writeEntry.value

29: Write(tx, vbox, value):
30: newWriteEntry ← (value, tx.nestedCommitClock)
31: tx.writeSet.put(vbox, newWriteEntry)

33

When a write entry is found, a check must be performed to ensure a consistent read (line 4). For

that, the argument of the function, maxVersion, is used: The WriteEntry being read should not

have a version larger than maxVersion, otherwise the requester is aborted, as well as every ancestor

of requester up to tx (including). Note that Lookup is invoked with the maxVersionOnParent

that matches the tx passed in the first argument (line 14). Line 8 avoids registering the RAW for later

validation in the case of the first recursion of Lookup.

Finally, the commit operation (shown in Algorithm 2) ensures that the read-set has no stale entries

(lines 3-12), and then it merges the footprint into the parent (lines 13-20). Reads performed over writes

of the parent need not be propagated anymore, and thus are removed (line 6). Moreover, every write

propagated has its version changed to match the timestamp acquired from the parent (lines 16 and 18).

Note that this procedure is performed in mutual exclusion with concurrent siblings (lines 2 and 22).

In such a naive approach, however, the commit of a nested transaction performs work proportional to

O(R+W), where R and W are the sizes of the read-set and write-set of the committing nested transaction,

respectively. Whereas the propagation of the write-set may be implemented in a more efficient way, a

TM with a lazy write-back cannot avoid the cost of validating its read-set, as claimed by [1]. Thus, the

component of the cost corresponding to R cannot be eliminated in this approach.

Yet, in this design there is a more important challenge to address, which is the cost of the read

operation. To read the value of a VBox, the read operation not only needs to check the write-set of the

current transaction, but it must also check recursively the write-set of each of the transaction’s ancestors

until a write is found, returning a globally committed value from the VBox if no tentative write is found.

This means that a read made on a nested transaction at depth d has, in the worst case, to check the

private write-sets of d transactions. Only when we are in the case of a read-after-write (i.e., we are

reading from a VBox that was written to before) may the cost be lower, because the algorithm stops

Algorithm 2 Algorithm for the commit operation in the Naive design.

1: Commit(tx):
2: tx.parent.lock()
3: for (vbox, entryRead) in tx.bodiesRead.entries() do
4: newEntry ← tx.parent.writeSet.get(vbox)
5: if newEntry = entryRead then
6: tx.bodiesRead.remove(box)
7: continue
8: end if
9: if newEntry 6= NONE then

10: abortUpTo(tx, tx.parent)
11: end if
12: end for
13: for (vbox, entryRead) in tx.bodiesRead.entries() do
14: tx.parent.bodiesRead.put(vbox, entryRead)
15: end for
16: commitVersion ← tx.parent.nestedCommitClock + 1
17: for (vbox, writeEntry) in tx.writeSet.entries() do
18: writeEntry.version ← commitVersion
19: tx.parent.writeSet.put(vbox, writeEntry)
20: end for
21: tx.parent.nestedCommitClock++
22: tx.parent.unlock()

34

looking as soon as a write is found. So, to have a better idea about the average cost of a read operation

in this design, we need to know how often reads correspond to read-after-write operations.

To assess this, I ran several benchmarks with varying workloads, and counted the total number of

reads performed and, of those, how many were read-after-write operations. In these results I do not

take into account the reads performed by read-only transactions. In Table 4.1 I show the results that I

obtained, where the last column shows the percentage of read operations that are read-after-writes. The

majority of the workloads tested contain very few read-after-writes—that is, a read operation will almost

always have to pay the cost of doing O(d) operations, where d is the depth of the nesting tree. So, the

worst case of the read operations is also its average case.

[benchmark]-[workload] reads (∗103) raws (∗103) %
bench7-r-notrav 8000 31 0
bench7-rw-notrav 9000 34 0
bench7-w-notrav 5000 19 0
bench7-r 83000 45 54
bench7-rw 109000 65000 59
bench7-w 127000 71000 56
lee-mainboard 507000 3 0
lee-memboard 281000 2 0
lee-sparselong 67000 0 0
lee-sparseshort 1000 0 0
vac-reservations 84000 0.2 0
vac-deletions 33000 600 1.8

Table 4.1: Total number of reads and read-after-writes (raws) performed in STMBench7 (with vari-
ous workloads), in Lee-TM (with various boards), and in Vacation of the STAMP suite (with various
workloads).

35

Chapter 5

A lock-free algorithm

In the last chapter I described some of the challenges that may prevent parallel nesting from yielding

performance benefits. One of the major challenges is the read operation in a parallel nested transaction,

which may turn out to be an expensive operation in the average case.

To tackle the problem of the high cost of the read operation on a nested transaction, I propose a

different design: Make all the transactions within a nesting tree maintain their write entries in a single

shared structure, stored at the top-level transaction. The underlying motivation for this design is that this

allows for a one-time, depth-independent check to answer the question raised when a nested transaction

attempts to read a VBox: Does any ancestor have a private write entry for that VBox?

In Section 5.1, I present the data-structures used in this algorithm. Then, I describe the operations

that compose this algorithm from Section 5.2 to 5.6. After that, I explain the implementation of this

algorithm in the Java Memory Model, in Section 5.7. Finally, I discuss the challenges solved and new

ones posed by this algorithm, in Section 5.8. I also described this algorithm in an article accepted in

TRANSACT 2012 [18].

5.1 Data-structures

This algorithm reuses some of the structures presented in Naive. In particular: Every transaction

maintains a write-set (now called privateWriteSet); the nestedCommitClock; the starting-

Version; and the bodiesRead. Moreover, the reification WriteEntry is used once again, but with

more contents.

In the previous Naive design, putting a value in a VBox entailed buffering it in the private write-set.

In this new design I perform an additional step to ensure that it is possible to answer the read-after-write

question in a single operation regardless of the nesting depth.

Besides inserting the new tentative value in the private write-set of the transaction, writing to a

VBox also entails making this write available to all transactions that belong to the same nesting tree.

The shared data structure that allows this is the sharedWriteSet (a ConcurrentHashMap), which,

similarly to the privateWriteSets, allows associating write entries to VBoxes. But, whereas the

private write-sets of each transaction map a VBox to a single tentative write, the sharedWriteSet

37

A
write set

x: 15 version 1
x: 5 version 0

B C D
committed

ancestor
versions

A: 0

write set

y: 2 version 0

x: A 1 15
owner

version
value

next

A 0 5

y: C 0 2

shared write set

Figure 5.1: Nesting tree corresponding to the execution (5.1).

maps each VBox that has been written in the nesting tree to all the write entries that were tentatively

written to it in that nesting tree.

Figure 5.1 details the sharedWriteSet structure by representing the state corresponding to execu-

tion (5.1). In this example there are two VBoxes written, mapped to their respective write entries.

WA(x, 5) SA(B, C, D) WB(x, 15) WC(y, 2) CB(ok) RD(x, 5) (5.1)

Figure 5.1 also shows that transaction D has a structure called ancestorVersions,1 which is used

to ensure consistent reads of the versions available in the sharedWriteSet. A nested transaction

creates its ancestorVersions as follows: When a nested transaction is spawned, it computes the

new map by adding the parent’s current nestedCommitClock to the parent’s ancestorVersions to

obtain its own ancestorVersions. The ancestorVersions represent the restrictions that a nested

transaction has on the view of the nesting tree’s write entries that it may read.

To provide an overview of how the ancestorVersions is used to ensure consistent reads, consider

once again execution (5.1). Assume that D is a read-only parallel nested transaction. When D attempts

to read VBox x, it must obtain one of the write entries present in its ancestor’s private write-set. In

this event, the write entry obtained is restricted by the maximum version that D may ever read from A,

given by the mapping contained in its ancestorVersions: It states that D can read entries owned

by A with version up to 0 (including it). Therefore, in this example, it reads the entry corresponding to

version 0, with value 5.

On the other hand, when the read-write transaction C tries to read VBox x, it will behave differently.

Being a read-write transaction means that its linearization point takes place at the time of commit

and not at the time of start, which is what happens for read-only transactions. But, given that C’s

ancestorVersions is equal to D’s (because they were spawned simultaneously), C can read at most

version 0 also. As version 0 is no longer the most recent for VBox x on the write-set of ancestor A, that

means that C will not be able to commit and thus aborts eagerly.

All of this is possible only because the sharedWriteSet contains reifications of write entries with

1Every parallel nested transaction has its own ancestorVersions but Figure 5.1 omits some of them for
simplicity of presentation.

38

some metadata associated to them. In addition to the version and value, the WriteEntry now also

contains:

• owner: The transaction that currently owns the write.

• next: A pointer to a previous version written to this VBox in the same nesting tree.

5.2 Reading from a VBox

As we have seen before, the read operation may return a tentative write performed by a transaction

in its nesting tree (thus being a RAW), or a globally consolidated value committed by some top-level

transaction. The previous section described that the tentative writes of a nesting tree are now all placed

in the same structure, the sharedWriteSet. This means that, in this algorithm, a read has to first

look into the sharedWriteSet (instead of several private write-sets), and only then will it read some

VBoxBody (if it was not a RAW).

The set of write entries applied to a VBox, available in a sharedWriteSet, forms a linked list in

which the most recent write entry is at the head of the list. The key point in this structure is that we can

rely on the following invariant: While traversing the write entries of a VBox during a read operation, as

soon as we reach a write entry that may be read, then it is guaranteed that no other entry further down

the list has to be read instead of that one.

Instead of having a depth-dependent lookup, this new design has a lookup that depends on how many

writes contend for the same VBox in a given nesting tree. This means that this design moved from a

worst-case O(d) lookup, where d is the depth of the nesting tree, to O(n) where n is the number of

transactions in a nesting tree and d ≤ n. This worst-case applies to a lookup to a VBox x by a nested

transaction T when all other transactions in T ’s nesting tree also wrote to x after T did so.

Yet, I claim that the use case for parallel nested transactions is that the sub-transactions that compose

it must have somewhat disjoint accesses so that the work may be effectively parallelized. Typically, a

transaction does not write arbitrarily to transactional variables without performing some reads.2 There-

fore, it is reasonable to assume that, to parallelize a transaction without having many conflicts among its

parallel nested transactions, the nested transaction’s read-set and write-set must not intersect that often.

This relationship between the read-set and write-set leads to the conclusion that if the nested transactions

do not conflict that much and are, therefore, able to run in parallel efficiently, then each VBox will have

very few writes contending for it. Consequently, the length of the linked list of write entries for a given

nesting tree is often very short despite the depth of the nesting tree, making the average-case O(k) where

k ≪ d, n.

As I explained in Section 4.3, I claim that looking up the value of a VBox, for which there is no write

in the nesting tree, is the common case. Contrarily to the Naive design, this operation is very cheap in

this new design: The list of write entries is empty and the lookup returns immediately. There is also the

case when there are some writes, but these still required looking into different write-sets in the Naive

design. Now, the traversal of those writes may also be considerably faster because the most recent write

entry is at the top of the list, and therefore most lookups in a read-after-write scenario are satisfied with

that entry and end quickly because they need not check the rest of the list due to the invariant.

2I shall address this point again, in Section 6.1

39

In Algorithm 3, I present the functions used to perform a read in a parallel nested transaction.

The GetBoxValue function is the starting point, which first checks for a possible RAW (using get-

AncestorWrite). If there is none, then it uses readFromBody to obtain a consolidated value from

the VBox.

This algorithm differs from Naive’s read operation in the getAncestorWrite when the shared-

WriteSet is used. While iterating over the write entries for the given VBox, the transaction may find

entries that belong to other branches of the nesting tree. In other words, some of those write entries will

not be owned by an ancestor of the nested transaction and, therefore, cannot be read.

The iteration over the write entries stops when a transaction T attempting the read finds a previous

write entry belonging to an ancestor of T in lines 12-21. Line 14 checks that the version of the write entry

cannot be greater than the maximum version that T can read from the ancestor that owns that entry.

Recall that this information is stored in the ancestorVersions that is created for each transaction

Algorithm 3 Algorithm to retrieving the value of a VBox in the SharedWS design for a read-write
transaction.
1: GetBoxValue(tx,vbox):
2: value ← getAncestorWrite(tx, vbox)
3: if value = NONE then
4: value ← readFromBody(tx, vbox)
5: end if
6: return value

7: getAncestorWrite(tx,vbox):
8: iterWriteEntry ← tx.sharedWriteSet.get(vbox)
9: while iterWriteEntry 6= null do

10: // is the owner an ancestor of mine?
11: ancestorVersion ← tx.ancestorVersions.get(iterWriteEntry.owner)
12: if ancestorVersion 6= NONE then
13: // it is an ancestor, but can I read that version?
14: if iterWriteEntry.version ≤ ancestorVersion then
15: tx.bodiesRead.put(vbox, iterWriteEntry)
16: return iterWriteEntry.value
17: else
18: // eager W-R conflict detection; abort up to given ancestor
19: abortUpTo(tx, iterWriteEntry.owner)
20: end if
21: end if
22: iterWriteEntry ← iterWriteEntry.next
23: end while
24: return null

25: readFromBody(tx,vbox):
26: body = vbox.body
27: if body.version > startingVersion then
28: // eager W-R conflict detection; abort up to top-level
29: abortUpTo(tx, TOP)
30: end if
31: tx.bodiesRead.put(vbox, body)
32: return body.value

40

upon its start.

Note that, once the getAncestorWrite loop reaches a readable write entry in line 15, i.e., one that

respects the restrictions stated earlier, the algorithm never iterates any further. This is based on the

invariant described in this section. This is the algorithm for read-write transactions, and therefore it uses

eager conflict detection (lines 18-19).

Read-only transactions have a slightly different behavior: The iteration does not stop necessarily,

either successfully or with an abort, if a write entry belonging to an ancestor is found; instead, the

iteration stops only when an entry respects both restrictions of ownership and versioning and never

aborts because ultimately it reads a VBoxBody of a globally committed version.

5.3 Writing to a VBox

At the start of function setBoxValue in Algorithm 4, a check is made for a write-after-write situ-

ation, in which the transaction overwrites a value it had previously written (lines 2-7). That represents

the fast path, which requires only an update to the value of the already existing write entry. If that is not

the case, the algorithm proceeds to create a new write entry containing the aforementioned data (owner,

version and value) in line 9. An additional parameter is added that serves the purpose of connecting the

write entries of a given VBox in a linked list as described above.

Algorithm 4 Algorithm to perform a write of a value to a VBox in the SharedWS design.

1: SetBoxValue(tx,vbox,value):
2: writeEntry ← tx.privateWriteSet.get(vbox)
3: if writeEntry 6= null then
4: // fast path if the transaction already owns a write entry
5: writeEntry.value ← value
6: return
7: end if
8: previousWriteEntry ← tx.sharedWriteSet.get(vbox)
9: newWriteEntry ← (tx, tx.nestedCommitClock, value, previousWriteEntry)

10: tx.privateWriteSet.put(vbox, newWriteEntry)
11: // 1st write on this vbox on this tree?
12: if previousWriteEntry = null then
13: // attempt CAS to enqueue the 1st write
14: previousWriteEntry ← tx.sharedWriteSet.putIfAbsent(vbox, newWriteEntry)
15: if previousWriteEntry = null then
16: // succeded
17: return
18: else
19: // another write succeeded
20: newWriteEntry.next ← previousWriteEntry
21: end if
22: end if
23: // try to place the new entry on the head, CAS until succeed
24: while tx.sharedWriteSet.replace(vbox, previousWriteEntry, newWriteEntry) = false do
25: previousWriteEntry ← tx.sharedWriteSet.get(vbox)
26: newWriteEntry.next ← previousWriteEntry
27: end while

41

The insertion of the new write entry is performed at the head of the list of write entries. This is

effectively performed by setting the next field of the new write entry to what is expected to be the first

entry until the atomic insertion on the ConcurrentHashMap returns positively. Between lines 11 and

22 the insertion is attempted as if this write is the first one making it into that list. Lines 23-27 perform

the insert when another one has already taken place previously, to the same VBox, in the nesting tree of

the transaction.

5.4 Committing Parallel Nested Transactions

The commit procedure in nested transactions is responsible for validating the execution and for

propagating, into the parent, the sets of records collected by the nested transaction during its execution,

effectively making them visible to the siblings of the committing transaction and serializing it.

Conceptually, the validation requires that the reads performed during the execution (read entries)

still correspond to the most recent versions of the VBoxes read. A nested transaction may collect two

different types of reads in its bodiesRead structure: (1) top-level reads, which are obtained via the

readFromBody method and return a value of a VBoxBody that has been committed by some top-level

transaction; and (2) nested reads, which are obtained via the getAncestorWrite method and return a

value of a WriteEntry that represents a tentative value of an ancestor. In this sense, both VBoxBody

and WriteEntry represent a value that was written to a VBox, but whereas the former is consolidated,

the latter is tentative. Therefore, the WriteEntry extends a VBoxBody so that a transaction collects

both in the same bodiesRead, which represents its read-set. Note that read-only transactions do not

have to perform any validation, neither in top-level nor in nested. Yet, nested read-only transactions

may need to collect the read-set, when they have a read-write ancestor. Only if the nesting tree is

entirely composed of read-only transactions can we avoid collecting read-sets as in top-level read-only

transactions. Also note that it makes no sense for a read-only transaction to spawn nested read-write

transactions.

The validation of a nested transaction T iterates over its read-set. For each read entry r on some VBox

x it verifies that, if T ’s parent, A, has a write entry w for x, then it must be that r = w. Otherwise, T

fails its validation because r was outdated by w. If w already existed at the time of r then the invariant of

the shared structure states that the obtained r would have been exactly w, in which case this validation

would have succeeded. This is once again a consequence of the fact that the read lookup has to return

the write entry belonging to the closest ancestor, if any exists.

After validating, the commit procedure has to merge both the read-set and write-set into the parent’s

corresponding sets. But not all of the records collected in the read-set have to be propagated. Considering

a read entry r, obtained from an ancestor A, r will have to be validated upon every commit only until

the commit that merges the records into A (including). Using the execution in Figure 5.1, if B had read

VBox X prior to writing to it, it would obtain the write entry owned by A with value 5. Then, upon

B’s commit, the read entry associated with that access would not have to be propagated to A. On the

other hand, if B had read VBox Z that was never written in this nesting tree, the access would result in

reading a top-level VBoxBody that was already consolidated by a top-level commit. Therefore, this read

entry would have to be propagated to A upon B’s commit.

Merging the write entries entails updating the owner of the entries as well as its version. To obtain

the new version during a commit procedure, nested transactions proceed in a similar fashion to what

42

happens at top-level, by grabbing their commit order on the parent queue of NestedRecords rather

than on a top-level queue of ActiveTransactionsRecord. This procedure is described in more detail

in Section 5.5. In the end, the write entries that belonged to the committing transaction will be owned

by its parent, and have a new version. This version corresponds to the order obtained in the enqueue on

the parent.

Now, recall that the structure presented to manage the write entries of a given VBox in the nesting tree

was associated with the aforementioned invariant: Whenever a transaction iterates over the write entries

of a VBox looking for a potential read-after-write, as soon as it finds a readable entry, it is guaranteed

not to have to look down any further in the list. Consider once again the execution used earlier (5.1) but

where B also writes to VBox y:

WA(x, 5) SA(B, C, D) WB(x, 15) WC(y, 2) WB(y, 17) CB(ok) CC(ok) RD(x, 5) (5.2)

If we assume the simple merge of write entries in which the committing transaction updates the

owner and version of each entry that it owns, the result of the execution will break the invariant. This

is illustrated in Figure 5.2, where we may see the state of the write entries before any of the nested

transactions commit: The entry at the head of the list of y belongs to B as it was the one that most

recently wrote to it with value 17. When applying a naive merge procedure, the resulting shared structure

for that VBox y ends up with version 1 on top of version 2. Therefore, if transaction A now attempted

to read y, the algorithm would retrieve the value 17 rather than 2.

The problem in this case is that the order in which the concurrent writes are performed is not the

same order in which the transactions commit. Therefore, we have to consider the merge in a more careful

way. Suppose that some parallel nested transaction T is committing into its parent A. The merge of

a write entry w for VBox y, belonging to the committing transaction T , iterates over the list of write

entries for y in that nesting tree, stopping when it finds w. In this case, it updates the entry version

and owner of w. However, if the iteration finds an entry w′ owned by A (parent of T), then w′ will be

conceptually overwritten by w: Any sibling of T that starts after T ’s commit will always read w instead

of w′. If during the merge of w, the iteration finds w′ before w, we are in the case in which the invariant

would be broken. That is avoided by updating the contents of w′ to correspond to the merge of w, by

changing its value to the value of w and the version to the commit version obtained. Note that it is not

needed to change the owner as it is already A. The next section shall delve into the details of how these

changes are performed in a lock-free manner.

y: B 0 17

C 0 2

y: B

1 17

2 2
a) Prior to commits b) Naive merging

A
0

0C

A

y: B

2 2

0 2
c) Corrected merging

A
0

C

171

Figure 5.2: Representation of the sharedWriteSet prior to commit of B and C, and after, according
to execution (5.2). The merge in the commit is shown when using a naive merge procedure as well as
when using the corrected merge procedure.

43

A possible problem with this merging strategy is that it could be erasing some versions from the

nesting tree, as the algorithm is physically overwriting entries that are logically overwritten by commits.

In that case, it could be breaking the semantics of nested read-only transactions that resort to the logically

overwritten values (older versions) to ensure that they always commit. However, I can demonstrate that

the versions physically overwritten in the merge procedure are guaranteed to no longer be read ever again.

Consider once again the execution that led to Figure 5.2, but now using the corrected merging strategy.

Let us assume that some other read-only nested transaction children of A, named D, needed the write

entry committed by C with value 2 and version 1 on A and could never be satisfied with the write entry

committed by B with value 17 and version 2. Then, D must necessarily have version 1 for A in its

ancestorVersions. This means that D was spawned after the commit of B but before the commit of

C. However, this is a contradiction because between both commits A was never in execution: B and C

were active at the same time, which means that A would proceed its execution only after both its children

(B and C) committed successfully. This renders impossible the chance of D being spawned between the

commits of B and C and reading 1 on A’s nestedCommitClock.

5.5 Lock-free commit

So far I have omitted how the actual synchronization of the commit of sibling parallel nested trans-

actions to their parent is performed. I adapted the algorithm for top-level commits to be also used in

nested commits: Now each transaction contains a queue that provides a committing order to concurrent

siblings. In the original JVSTM, this idea was used for top-level commits and therefore there existed

only one global queue.

Each committing nested transaction T performs the validation described in the previous section and

proceeds to obtain its order in the queue of the parent by using a Compare-and-swap (CAS) to add a

new entry to it. If that fails, then at least some other sibling of T , let us name it S, did so, and therefore

T must check that S’s write-set does not intersect with T ’s read-set (in which case T aborts by having

failed the incremental validation). Note that when a transaction obtains its place in the parent’s queue

it is guaranteed to be valid to commit.

Consider the following execution:

WA(x, 1) SA(B, C) WC(x, 0) WB(x, 14) CB(?) CC(?) (5.3)

I show the structures used to commit transactions in Figure 5.3, corresponding to execution (5.3).

In particular, I show the NestedRecords enqueued in A’s queue, representing the commit of both B

and C. As hinted in the description of the JVSTM in Section 4.1, there is a helping mechanism to make

the top-level commit procedure lock-free. I also used this idea so that sibling nested transactions that

are concurrently attempting to commit, first attempt to help commit previously enqueued siblings. This

ensures that there is always global progression: As long as there are active transactions attempting to

commit, there will always be one committing at a time, even if the underlying threads are allowed to fail

silently. This happens because a transaction will always ensure that other siblings that are first in the

commit order have already committed successfully before performing its own commit.

The NestedRecords enqueued for commit contain the information required for the helping mech-

44

Awrite set
x: 1

B C

x: B 0 14
owner

version
value

next

A 0 1

shared write set

write set
x: 14

write set
x: 0

committed: false
commitVersion: 1
write set: { x: 14 }

committed: false
commitVersion: 2
write set: { x: 0 }

queue:

queue:
 null

queue:
 null

clock: 2

C 0 0

Figure 5.3: Structures used for nested commit in the SharedWS design corresponding to execution (5.1).
Note that clock in A is the nestedCommitClock.

anism. Namely, the write-set to be merged into the parent, the commitVersion obtained when

the object was enqueued successfully, and the committed flag stating whether this commit has been

performed. Using Figure 5.3 as an example: C will only execute its own commit once B’s commit has

been flagged as true. B’s commit may be performed by itself, as well as by any of its siblings attempting

to commit concurrently (such as C). In this case, I say that C is a helper.

As described in the previous section, committing a transaction entails merging the write-set, whose

procedure I have explained. Now, consider that C helped the commit of B before B managed to do it

by itself. Therefore, B’s write to x with value 14 has been merged into A successfully by C. After this,

C proceeds to its own commit, which will merge a write of 0 to x.

However, B may still be conducting his own commit concurrently to the commit of C because B may

not have noticed yet that its commit was finished by C. Therefore, both B and C may manipulate the

contents of the same write entry in x, with different intents. Recall that the merge procedure may entail

changing w, a write entry that is being committed, or w′, a write entry that belongs to the parent and is

about to be overwritten by the merge of w. In this specific case, the merge made by C would fall in the

latter case and thus change the contents of the write that was originally produced by B, which B itself

would be trying to change.

To ensure correct execution of the lock-free helping in the merge procedure, changes to the version and

value of write entries have to be performed atomically. Therefore, the actual structure of the WriteEntry

contains a reference to another object (called VersionValue), which contains the version and value.

This way, the merge procedure uses a CAS to change a VersionValue object to another one, when

performing changes in those fields.

Algorithm 5 shows the merge procedure of a single write-entry during the commit of a parallel nested

transaction. Note that this algorithm may be executed by the transaction committing as well as by a

sibling that is awaiting its turn for commit and thus performs helping as explained earlier. In any case,

the tx argument represents the transaction whose writes are being merged and the commitNumber is

the version acquired when tx enqueued in its parent for commit. The merge iterates through the entries

associated to the VBox that was written (lines 2-3). Lines 4-18 perform the normal merge of the write

entry in which only the owner and version are changed. Lines 19-27 take care of the case in which an entry

belonging to the parent of the committer is found. In this case, the entry found must be overwritten.

To avoid unnecessary failed CASes of late helpers, in both cases a CAS is attempted only if the version

of the entry is smaller than the version that the commit will produce.

45

Algorithm 5 Algorithm to perform the merge of a WriteEntry to a VBox in the commit of a parallel
nested transaction.
1: MergeWrite(tx,commitNumber,vbox,writeEntry):
2: iterWriteEntry ← tx.sharedWriteSet.get(vbox)
3: while iterWriteEntry 6= null do

4: if iterWriteEntry = writeEntry then
5: // the committing writeEntry was found first, thus apply the normal write-back
6: oldVersionValue ← iterWriteEntry.versionValue
7: if oldVersionValue.version < commitNumber then
8: iterWriteEntry.owner ← parent
9: newVersionValue ← (commitNumber, oldVersionValue.value)

10: iterWriteEntry.CASversionValue(oldVersionValue, newVersionValue)
11: previousWriteEntry ← tx.parent.privateWriteSet.get(vbox)
12: if previousWriteEntry = null then
13: tx.parent.privateWriteSet.putIfAbsent(vbox, iterWriteEntry)
14: else if previousWriteEntry.versionValue.version < commitNumber then
15: tx.parent.privateWriteSet.replace(vbox, previousWriteEntry, iterWriteEntry)
16: end if
17: end if
18: break

19: else if iterWriteEntry.owner = tx.parent then
20: // found entry that is meant to be overwritten, thus re-order the write entries
21: oldVersionValue ← iterWriteEntry.versionValue
22: if oldVersionValue.version < commitNumber then
23: newVersionValue ← (commitNumber, writeEntry.versionValue.value)
24: iterWriteEntry.CASversionValue(oldVersionValue, newVersionValue)
25: end if
26: break
27: end if

28: iterWriteEntry ← iterWriteEntry.next
29: end while

Note that writes to VBoxes performed by other nested transactions cannot delay the commit proce-

dure, which changes only already existing write entries. The helping procedure of the commit is wait-free:

Each helper is guaranteed to finish in a finite number of steps regardless of concurrent actions in the same

nesting tree because the operations performed during the helping never have to retry and are bounded

by the size of the read-set and write-set to merge.

5.6 Abort procedure

When a transaction aborts, every write that it performed will still be in the sharedWriteSet. This

could lead to transactions reading write entries of a transaction that was no longer active and had actually

aborted. However, the algorithm guarantees that no transaction T can ever read the write entries of an

aborted transaction A, unless T itself is doomed to abort. Consider the following partial execution where

A is a top-level transaction:

WA(x, 1) SA(B) RB(x, 1) ... CB(ok) CA(fail)

46

When A aborts, its write to x remains in the sharedWriteSet. Suppose now that, when re-

executing, A does not write to x because its control flow was different. Yet, in practice, the write of A

to x is still in the sharedWriteSet. Thus, when B re-executes, it will find the stale entry belonging

to the aborted A. However, that entry cannot be read by B.

The implementation of my algorithms ensures that never happens. The ancestorVersions main-

tains a mapping of objects representing the transactions to versions. Therefore, when B re-executes,

his ancestor A will be represented by a different object than the one in the write left from the aborted

execution of A. Thus, when B checks if that write belongs to an ancestor, the comparison between both

objects representing A will return false.

Moreover, there is a guarantee that no ABA problem can ever happen in which the address of the old

A would be released and reused in some different transaction which would get this ghostly write entry

out of the blue. This is provided by the garbage collector of the Java runtime: As long as one of those

aborted write entries exists, the aborted transaction is still referenced and therefore its reference can

never be re-used by some other transaction.

Due to memory usage concerns, the algorithm actually cleans the aborted transactions to allow the

garbage collector to release the memory. Regarding the write entries, I attempt a single physical delete

from the lock-free linked list that is associated with the VBox of the write entry w in the shared structure

of the nesting tree. To do so, I find the entry b in the list that is placed before w and change its next

pointer to point to the next of w. There is no need for a compare and swap as the only transaction that is

ever going to change b’s next, is the transaction that owns w. It may happen that b now points to another

w′ (that was the next of w) that was concurrently deleted by another aborting transaction. Consequently

this action actually reverts that delete and, instead of having 2 successful concurrent deletes, we end up

with only 1 actual physical delete. However, as shown, having aborted entries in the list is guaranteed

to never harm correctness. Moreover, these structures are private to each top-level transaction (and

its nested transactions), meaning that upon its completion, they are all discarded. This results in a

best-effort strategy of saving memory while remaining correct.

5.7 Correctness in the Java Memory Model

The description done so far of the algorithms is not enough to assess their correction when implemented

in Java, because of the relaxed memory model of Java: There need to exist some visibility guarantees of

the memory operations to ensure that they behave as expected. In the following I explain how I used the

Java Memory Model [39] synchronization primitives to ensure the correct behavior of the algorithms. In

particular, which variables are volatile.

I use volatile in the nestedCommitClock, available in every transaction, so that a nested trans-

action that starts with version v, is guaranteed to view all changes to the writes that were performed up

to, and including, the commit with version v. This happens because the committing transaction writes

to nestedCommitClock after propagating the write entries to the parent, and a new transaction reads

nestedCommitClock before starting.

I also use volatile in the version of the VersionValue. When a write entry is merged into

the parent during a nested commit, both its value, owner and version may change. This volatile

guarantees that a concurrent nested transaction always has consistent views of those three fields. Changes

47

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

depth

naive
sharedws

(a) Read operation.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

depth

(b) Write operation.

 100

 1000

 10000

 100000

1 2 4 8 16

tim
e

(m
ill

is
ec

on
ds

)

depth

(c) Commit operation.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

threads

(d) Read operation.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

threads

(e) Write operation.

 100

 1000

 10000

1 2 4 8 16

tim
e

(m
ill

is
ec

on
ds

)

threads

(f) Commit operation.

Figure 5.4: Average time for transactional operations in a conflicting workload in the Vacation bench-
mark using the Naive and SharedWS designs. In the upper row an increasing nesting depth is used in
every transaction, whereas the lower row uses always one level of nesting but with an increasing number
of siblings. Note that the labels in the first figure apply to all the others.

to the value and version are made by CASing a new VersionValue in the WriteEntry. Because

the value is written before version (in the constructor of VersionValue), and version is always

read before value, then those two fields are always seen consistently. The algorithm allows a transaction

to see a state in which the version and value are new, but the owner is stale. But this view can

never cause a problem: A transaction that sees that view is concurrent to the committer transaction (or

else the nestedCommitClock would have ensured visibility of the owner), and therefore it will not

be able to read the write entry because the stale owner will never be its ancestor. When a concurrent

transaction sees an up-to-date owner, it is guaranteed to see the corresponding (or a more up-to-date)

version and value, because of the happens-before relation between the write of version (during

commit) and its read.

5.8 Discussion of the Shared write-set design

To provide objective data about the effectiveness of this design, I profiled the average time that a par-

allel nested transaction takes to read, to write, and to commit during the execution of the Vacation. In

Figure 5.4, I present the results obtained. Similar results were obtained when profiling several workloads

both in the STMBench7 benchmark and in the Lee-TM benchmark. To obtain these results, I forced

each top-level transaction to spawn a child and to execute all of its code within the child transaction. I

also profiled the execution using the Naive design presented in Section 4.3.

Figure 5.4(a) shows that the performance of the read operation in the SharedWS design is independent

of the nesting depth, leading to a better performance relatively to the Naive design. This happens even

at one level of depth, as in that case the Naive design already has to check two different write-sets.

On the contrary, as shown in Figure 5.4(c), the time to commit still increases with the depth in both

approaches. In Figure 5.4(f), the SharedWS obtains slightly better results due to the parallel commit of

the lock-free algorithm that hides some of the overheads of the commit.

48

Where the SharedWS design stops being on par with the expected results is on the performance of

the writes, as shown in Figure 5.4(e). When the number of siblings increases, the cost of writing increases

as well. The result in this case was expected to be similar to what is obtained with a single sibling and

increasing depth, as shown in Figure 5.4(b). The difference observed is a consequence of the concurrent

nature of the data structure underlying that design:3 With multiple siblings, their actions have to be

correctly synchronized, which is especially costly for modifications. Moreover, these structures may entail

resize operations that are particularly expensive when paired with the sychronization costs. When we

have just one nested transaction, however, the optimizations made by the Java runtime remove all the

synchronization costs, leading to a performance on par with the Naive design.

The SharedWS solved the challenge regarding the cost of the read operation. In particular, it made

the read independent of the depth in the average case. However, this was accomplished at the expense

of making the write operation more costly. Because a transaction typically reads more than it writes, I

claim that the SharedWS design is better than the Naive design with regard to parallel nesting. This

shall be more clear in Chapter 8, where I evaluate both designs in known benchmarks.

3I tested both with Doug Lea’s ConcurrentHashMap and with Cliff Click’s NonBlockingHashMap, but the
results were similar.

49

Chapter 6

A practical algorithm

Although the SharedWS improved over the initial solution, there are still some open issues. Namely,

the write operation is more costly than before, and the commit procedure is still expensive. In the

following work in this dissertation I seek to improve on this design and present an alternative that does

not suffer from the problems identified for the SharedWS design.

Recall that transactional locations, represented by VBoxes, point to a history of all the versions for

that location that may still be readable by some active transaction in the system. I propose to extend

this design such that transactions perform their writes on these locations rather than having to maintain

some private mapping of each location written to its new value (regardless of being a private write-set

per transaction or per nesting tree). This idea is similar to the optimization described in Section 4.1.1

to the write-sets of top-level transactions. This new design is called InPlace.1

Next, I present the structures used in this algorithm. Then, I describe in detail the transactional

operations from Section 6.2 to Section 6.5. I explain the implementation of this algorithm in the Java

Memory Model, in Section 6.6. In Section 6.7, I discuss the progress guarantees of the InPlace algorithm.

Section 6.8 explains how parallel nesting can deal with the read-set optimizations in the JVSTM. Finally,

in Section 6.9, I compare this algorithm with the other two alternatives proposed, with regard to the

challenges identified in parallel nesting.

6.1 Data-structures and auxiliary functions

In this new design a VBox contains both permanent and tentative versions. The permanent versions

have been consolidated via a commit of some top-level transaction, whereas the tentative versions belong

to an active top-level transaction or any of its children that form a nesting tree.

To illustrate this new design, consider the following execution:

WA(y, 7) SA(B, C) WB(x, 10) SB(D, E) WD(y, 8) CD(ok) WE(x, 15) (6.1)

1Its implementation is available in the branch jvstm-lock-free of the following Git repository: http://groups.
ist.utl.pt/esw-inesc-id/git/jvstm.git/

51

http://groups.ist.utl.pt/esw-inesc-id/git/jvstm.git/
http://groups.ist.utl.pt/esw-inesc-id/git/jvstm.git/

VBox x
permanent

tentative

A

D E

B C

shared write set

x: E 15 B 10

y: B 8
owner

value previousversion

0

1

0

orec:

value:

O5

15

previous:

orec:

value:

O2

10

previous:

version: 15

previous:

value: 0owner:

status:

Orec O2

Alive

owner:

status:

Orec O5

Alive

VBox y

permanent

tentative

orec:

value:

O4

8

previous:

version:

value:

0

5

previous:

version: 19

previous:

value: 6

nestedVer: 0

nestedVer: 0

committed

owner:

status:

Orec O4

Alive

nestedVer: 1

orec:

value:

O1

7

previous:

A 7 0

Figure 6.1: Representation after the execution (6.1) when using the InPlace design. The structures
used in the SharedWS design are also shown, to illustrate what changes with the new design. To simplify
the presentation, I omit the ownership record O1, which would point to transaction A, as well as O3 that
would point to C.

Figure 6.1 shows the state after this execution when using the new algorithm. I also depict the

sharedWriteSet structure that I was using in the previous design, and how the new algorithm changes

it to accommodate the tentative writes in-place. In this case, the tentative writes of the represented

nesting tree have been moved from the shared write-set of that nesting tree to the tentative values of

the corresponding VBoxes. But the shared write-set continues to exist as a fallback mechanism to store

tentative writes. The difference is that I expect it to be empty most of the time. This strategy is detailed

in Section 6.4.

Figure 6.1 also depicts that the tentative writes no longer point directly to their current owner.

Instead, I use the concept of Orecs (short for ownership records [57]) that provide a level of indirection

to a reification of the ownership. As we will see in Section 6.5, this allows the algorithm to propagate the

write-entries at commit time independently of the size of the write-set, thus addressing another challenge

identified earlier. As shown in Figure 6.1, an Orec contains:

• owner: The transaction that is being represented by this Orec.

• status: Identifies whether the transaction is still running, has aborted, or has committed. In the

latter case, it contains the timestamp acquired when incrementing the global glock in the top-level

commit of the owner of this Orec.

• nestedVer: Timestamp acquired in a nested commit into some parent by incrementing the parent

nestedCommitClock. This value only makes sense when paired with the owner. It is used

to ensure that reads on tentative entries are consistent. A similar field already existed in the

WriteEntry of the SharedWS design. Looking back into Figure 6.1, we may see that O4, originally

owned by D, now represents B. This happened because D already committed into B. Consequently,

O4’s nestedVer field now contains the timestamp 1 obtained from the clock in B.

52

A VBox always points to a tentative write object (even if it is a placeholder). The reification of a

tentative write is an InPlaceWrite and it resembles the WriteEntry of the SharedWS design. It

contains: (1) the orec that owns this write; (2) the tentative value; and (3) a pointer to the previous

tentative write to the same VBox in that nesting tree.

Some of the structures maintained in each parallel nested transaction are also similar to what was

described for SharedWS in Section 5.1. Namely, the ancestorVersions, the startingVersion,

and the nestedCommitClock. Additionally, a parallel nested transaction holds the following fields:

• globalReads: Read-set that maintains the VBoxes from which the transaction read permanent

values.

• nestedReadSet: Read-set used for reads that obtain values from tentative writes in the same

nesting tree. For each VBox read in this manner, a reification of the in-place tentative write that

was read is registered.

• rootAncestorWriteSet: Shared write-set that maintains VBoxes and the values written to them

by a top-level transaction. This structure is allocated by a root transaction, and the nested trans-

actions in the same nesting tree only hold a pointer to it. In this design, this structure is used in

the fallback mechanism when the transaction cannot write in-place to some VBox.

• boxesWritten: Maintains the set of VBoxes that were written in-place by the transaction. This

is used in the commit of the root top-level transaction, which is responsible for the write-back that

consolidates the new versions in the VBoxes.

• orec: The ownership record that this transaction uses when it gains control over VBoxes to write

to their tentative slot.

• committedChildren: The transactions that have committed into this transaction (and thus are

its children). This field is used at commit time of a transaction, to access the structures of its

children.

Given this description of the data structures used by the new parallel nested transactions, I may

now describe in detail, in the following sections, the transactional operations performed by a nested

transaction.

A key aspect of this implementation of parallel nesting for the JVSTM is that the algorithms described

affect only the nested transactions. This means that the operations of a top-level transaction remain the

same as in [24], and that the few changes in the original algorithm of the JVSTM affect its performance

only if parallel nesting is being used. Thus, the original performance is not affected by the extension that

I performed. In particular, read-only transactions preserve their optimizations and fast paths.

Finally, in the following descriptions of the algorithms, I resort to the aforementioned abortUpTo(tx,

conflicter) function. I also use:

• lowestCommonAnc(tx, other) that returns the deepest transaction in the nesting tree that is

ancestor of both tx and other.

• sameNestingTree(tx, other) returns true if tx and other are transactions of the same

nesting tree.

53

• executeAsTopLevel(tx) has the same effect as calling abortUpTo(tx, TOP). In addition to

that, it repeats the code encapsulated in tx, but in the scope of the root ancestor of tx.

6.2 Reading a VBox

Algorithm 6 Reading from a VBox.

1: GetBoxValue(tx,vbox):
2: wInplace ← vbox.tentative
3: status ← wInplace.orec.status
4: // check if it is possible that this is a RAW
5: if status = COMMITTED ∧ status ≤ tx.startingVersion then
6: value ← readFromPermanent(vbox)
7: tx.globalReads.add(vbox)
8: return value
9: end if

10: if sameNestingTree(tx, wInplace.orec.owner) then
11: // there may exist a previous write to be read
12: while wInplace 6= null do
13: orec ← wInplace.orec
14: nVer ← orec.nestedVer
15: owner ← orec.owner
16: if owner = tx then
17: return wInplace.value
18: end if
19: if tx.ancestorVersions.contains(owner) then
20: if nVer ≥ tx.ancestorVersions.get(owner) then
21: abortUpTo(tx, owner) // eager validation
22: end if
23: tx.nestedReadSet.put(vbox,wInplace)
24: return wInplace.value
25: end if
26: wInplace ← wInplace.previous
27: end while
28: end if

29: // no InPlaceWrite may be read, check the fallback write-set
30: value ← rootAncestorWriteSet.get(vbox)
31: if value 6= NONE then
32: tx.nestedReadSet.put(vbox,value)
33: return value
34: end if
35: value ← readFromPermanent(vbox)
36: tx.globalReads.add(vbox)
37: return value

Just like in the SharedWS algorithm, in this case the read operation may also obtain a value from

a tentative value, or a global value from a VBox. I show the pseudo-code for the read operation in

Algorithm 6.

In lines 1-9 the algorithm tests for a fast path that allows it to decide if there is any chance that a write

may have been done to the VBox in this nesting tree. If it finds that to be impossible, then a globally

consolidated value is returned. To reach such conclusion, it needs to verify the following condition: The

transaction controlling the VBox has committed before this transaction started. The information required

54

for this is present in the Orec, namely, the status field. If there was a write in the VBox, performed

in this nesting tree, then there would be an Orec in the write whose status was Alive.

If the fast path is not used, then the algorithm checks if the VBox is being controlled by the nesting

tree (line 10). In that case, it iterates over the writes in the tentative list of the VBox until one of the

following conditions is verified:

1. The owner of the write entry being iterated is the transaction attempting the read, in which case

no further verification is needed to read it (lines 16-18).

2. The owner of the write entry being iterated is an ancestor. When this happens, the transaction may

read that entry if it was made visible to it after this nested transaction started (lines 19-25). This

is required this because, if this nested transaction ever attempted to read a stale version, it would

be guaranteed to fail the validation at commit-time, as there is already a more recent version. This

happens because the serialization point of the transaction takes place at commit-time (assuming it

performs writes). If the maximum version readable from that ancestor is outdated, this transaction

causes a chain abort such that the nested transactions up to that ancestor restart with the most

recent versions on their ancestorVersions map.

The algorithm presented here dictates that once a nested transaction finds a tentative write that

it may read, it stops and returns that value. This relies on the same invariant described for the read

operation of the SharedWS design in Section 5.2.

6.3 Writing to a VBox

Algorithm 7 presents the pseudo-code of the write operation under parallel nesting. When accessing

the VBox, it fetches the tentative write at the head (line 2). By reading the Orec in the first field of

the tentative write entry, it is able to tell whether that VBox is currently owned by the transaction.

Otherwise, after line 7, the algorithm repeats until one of the following conditions is verified:

• The VBox owner has finished before this transaction started, in which case this transaction attempts

to acquire ownership of the tentative write at the head of the list of that VBox (lines 11-21). To

do so, a CAS is attempted, to change the ownership of the first tentative write. If the CAS fails,

the algorithm repeats. If the previous owner had finished, but after this transaction started, then

no transaction in this nesting tree (and particularly the one attempting the write) will ever be able

to write to that VBox in-place. In that case the algorithm proceeds to lines 33-38, in which this

write operation causes a conflict and aborts the transaction. This restriction is what allows me to

maintain the fast path presented in line 4 of the read operation in Algorithm 6.

• The VBox is owned by an ancestor of this transaction (lines 22-32). This is true if the current owner

is present in the ancestorVersions of this nested transaction. In this case, the transaction

attempts to enqueue a new in-place tentative write by performing a CAS on the head of the list of

that VBox. If this CAS fails, then some other transaction in this nesting tree succeeded, in which

case the algorithm is repeated.

• We are left with two alternatives: Either the VBox is controlled by another nesting tree, or by a

different branch of this nesting tree. In the former case, the algorithm proceeds to lines 37-38, to

55

Algorithm 7 Writting a value to a VBox.

1: SetBoxValue(tx,vbox,value):
2: orec ← vbox.tentative.orec
3: // check for a write-after-write
4: if orec.owner = tx then
5: wInplace.value ← value
6: return
7: end if

8: while true do
9: wInplace ← vbox.tentative

10: orec ← wInplace.orec
11: if orec.status 6= ALIVE then
12: if orec.status ≤ tx.startVersion then
13: // attempt to acquire ownership
14: if wInplace.CASowner(orec, tx.orec) then
15: wInplace.value ← value
16: tx.boxesWritten.add(vbox)
17: return
18: end if
19: continue // a concurrent tx acquired the ownership, start over
20: end if
21: break // not enough version, use the fallback mechanism

22: else if tx.ancestorVersions.contains(orec.owner) then
23: // belongs to an ancestor
24: newW ← (value, tx.orec, wInplace)
25: if vbox.CASinplace(wInplace, newW) then
26: tx.boxesWritten.add(vbox)
27: return
28: end if
29: continue // another tx in same nesting tree succeeded, start over
30: end if
31: break // out of options, fallback
32: end while

33: if sameNestingTree(tx, orec.owner) then
34: // will eventually be able to write in-place
35: abortUpTo(tx, lowestCommonAnc(orec.owner))
36: end if

37: // will never be able to write in-place
38: executeAsTopLevel(tx)

the fallback mechanism. In the latter case, this transaction aborts due to a write-write conflict

(lines 34-35).

Even though it would be possible to support concurrent writes in-place from different top-level trans-

actions (or their nesting trees), that would require polluting the fast path with additional verifications.

This is particularly relevant for the algorithm for top-level transactions [24]. Moreover, as pointed out

earlier with regard to Table 6.1, I do not expect write-write concurrency to be very frequent without

yielding read-write conflicts that would preclude that concurrency in the first place.

56

I additionally inhibit concurrent writes in the same nesting tree, as a nested transaction is able to

acquire ownership of a VBox only if the VBox belongs to an ancestor (or to no active transaction at that

time). The reason behind this decision is that allowing concurrent writes in the same nesting tree would

force the algorithm to do additional work at commit-time, so that the invariant mentioned in Section 6.2

for faster reads is maintained. This additional work was responsible for much of the complexity of the

commit procedure in the SharedWS design.

Note that this does not preclude any practical concurrency as there should not be any significant

contention for writing to the same VBox. The rationale presented above for top-level transactions applies

also to nested transactions in the same nesting tree. Moreover, recalling the motivation provided in

Section 2.3, one of the reasons behind using parallel nesting in the first place is that we are expecting

to move to a less conflicting workload by exploring a different scheduling approach. Consequently, the

inner parallelization of a transaction should be such that we do not incur in write-write contention for

the same variables, thus making the costs of a possible trade-off of not having concurrent writes in the

same nesting tree, negligible.

Finally, there is one theoretical concern that was not addressed in Algorithm 7. Consider the following

execution:

SA(B, C) WB(x, 1) WC(y, 5) WB(y, 2) WC(x, 6) (6.2)

Siblings B and C are writing to the same variables alternately. Accordingly to what I presented, this

execution is impossible: When B writes to y, it aborts because that VBox is controlled by C. Thus, in

practice B releases the ownership of x and re-executes.

However, C may attempt to write to x before B releases the ownership of x. This leads to C

aborting as well due to a second conflict. This scenario may be repeated indefinitely leading to a livelock.

Therefore the algorithm has to safeguard from such situation. For that, the algorithm uses an exponential

back-off when a nested transaction restarts due to a W-W conflict, such that the livelock is ruled out

probabilistically.

6.4 Fallback mechanism

In the event of write-write concurrency in the same VBox, a fallback mechanism is used, allowing

transactions to proceed in an alternative way to writing in-place. At this point it is important to recall

briefly how top-level transactions address this same problem. Their writing procedure is a lightweight

version of what was presented for parallel nested transactions: A top-level transaction attempts to control

the VBox (in case it was not a write-after-write) if the current owner has committed before it started;

otherwise, it resorts to the private write-set that maintains a mapping from transactional locations to their

tentative values in the transaction. Being able to write in-place in the VBox is cheaper than maintaining

the mentioned mapping, for which reason this algorithm also yields benefits for the top-level transactions.

More importantly, they also benefit from the fast path in the read procedure. This same idea was also

implemented in the top-level transactions of the early designs presented in this dissertation, thus making

the comparison between the various designs for parallel nesting fair.

Therefore, when a parallel nested transaction traverses all the tentative writes in a VBox to read

57

it, without success, it still needs to check the private write-set of the root (top-level) transaction of its

nesting tree (lines 29-34) in Algorithm 6. It may have happened that the root transaction, prior to the

execution of its children, attempted to write to that VBox without success, having thus had to fallback

to the private write-set. Otherwise, the nested transaction is sure that it is not in the presence of a

read-after-write and fetches the global value.

So, this mechanism is needed because only one nesting tree may use the in-place tentative location

of a box at a given time. Thus, if more than one nesting tree writes to the same box, only one of them

will be able to use the box; all the others will have to use their shared write-set to store their tentative

values. Consequently, when the write procedure determines that the VBox is currently controlled by

another nesting tree (or simply by another top-level transaction), a more drastic measure is taken. In

that case, the executeAsTopLevel function is called (line 38 of Algorithm 7). In that event, the

nested transaction is aborted (as well as any of its nested transaction ancestors) and the code that it

encapsulates is re-executed in the scope of the root top-level ancestor. In particular, the specific write

that caused this fallback will necessarily be performed by the top-level transaction in its private fallback

write-set (the rootAncestorWriteSet).

I expect that this fallback mechanism is rarely used, and so the the rootAncestorWriteSet will

be empty in the normal case. So, as long as different nesting trees do not contend for writing to the same

VBox, transactions will be able to follow the fast path of the new write algorithm, thereby making writes

faster. In practice, I expect this to be the common case.

Table 6.1 presents the total number of writes and, of those, the total number of Write-after-read

(WAR) operations that were collected from several benchmarks. These results show that, typically, a

transaction writes to transactional variables that it read before. Therefore, if two top-level transactions

(and their possibly existing underlying nesting trees) write to the same variable, they will most likely

have already read it. If that is the case, they will cause a read-write conflict and only one will be able

to commit. Because conflicts should be rare, or otherwise the parallelization is not effective, I claim that

successful transactions will most of the time have executed the fast path.

test writes (∗103) wars (∗103) %
bench7-r-notrav 6158 6158 100
bench7-rw-notrav 6646 6646 100
bench7-w-notrav 3967 3967 100
bench7-r 46267 46267 100
bench7-rw 65107 65107 100
bench7-w 74744 74744 100
lee-mainboard 160 160 100
lee-memboard 148 148 100
lee-sparselong 16 16 100
lee-sparseshort 8 8 100
vac-reservations 0.3 0.3 100
vac-deletions 1684 1526 91

Table 6.1: Total number of writes and write-after-reads (wars) performed in various workloads of the
STMBench7, the Lee-TM, and the Vacation benchmarks.

58

6.5 Committing a parallel nested transaction

At commit-time we are left with two tasks: To ensure that all the reads are still up-to-date, and to

propagate the read-set and write-set of the transaction to the parent. This design tackled the challenges

identified in the SharedWS with regard to the write operation. However, the new nested write operation

may lead to a stalled thread preventing the system from progressing. Because the JVSTM with the

InPlace design is no longer lock-free, I now present a commit procedure that avoids the complexities

of the lock-free commit in the SharedWS and thus is more efficient in general.

Before validating and merging the footprint, the committing transaction acquires a commit lock asso-

ciated with the parent. After validating with success, it increments the parent’s nestedCommitClock,

and reads it to obtain the new timestamp for its writes. This timestamp is useful once its writes are

propagated to the parent and visible to other transactions.

The validation of a transaction Ti is performed by accessing directly the VBoxes that were read and

looking into their tentative writes. Assume Ti read a global value from VBox x because there was no

tentative write from its nesting tree at the time that it could read. Then, validation of Ti at commit

time fails if there exists a tentative write in x that Ti is able to read, unless it is owned by Ti. Such fail

is a read-write conflict. Similarly, this verification is extensible for reads that obtain values tentatively

written in the nesting tree. In this case, the verification stops when it finds the tentative write that was

read, which means that there is no newer value for the VBox. Once again, this is correct only because I

ensure the invariant in the order of tentative writes that was described earlier.

Regarding the merging of the write-set, I sought to make it as lightweight as possible. In this design,

every write of a nested transaction is performed in-place. This means that each of the VBoxes written

has an InplaceWrite pointing to the Orec of the nested transaction that did the write. To merge the

write-set, a transaction T that is committing changes the nestedVer of its Orec to have the timestamp

read from the parent’s clock. Finally, it suffices to change the owner in T ’s Orec to point to the parent

of T and to propagate that Orec to the parent. Because commits may take place at different nesting

depths, in practice T has a list of its committed children (the committedChildren field). This way, T

can access every Orec propagated to it, in addition to its own, so that it updates and propagates them

recursively to its parent when it commits.

The reads must also be merged into the parent. To do this, I use the committedChildren field,

because it allows accessing the reads performed by those children. Consequently the read-set ends up

being scattered among the nesting tree. At commit-time, this results in the validation procedure of a

transaction traversing different read-sets of the children in addition to its own. The slight overhead of

having a one-time level of indirection for accessing the different read-sets is far overcome by the benefit

of not having to perform work proportional to the size of the read-set at each commit.

The complexity of the commit procedure is now bounded by O(#children + size(readSet)) rather

than O(size(writeSet) + size(readSet)). The component regarding the read-set is also less expensive in

this new algorithm: It consists of validating it only, contrarily to also propagating it to the parent during

the commit. Therefore, there is less room for contention to the same commit locks given that the time

within those has been largely shortened. Recall that the lazy write-back nature of the underlying STM,

which allows further concurrency, also dictates that some work proportional to the size of the read-set

must be executed at each nested commit [1].

In the event of an abort, the transaction simply changes the status field of the Orecs that it

59

controls to an Aborted value. After this, the write entries at the head of the VBoxes controlled by

the transaction are effectively ignored, because concurrent transactions see that their owner has aborted.

There is, however, a caveat. Consider the following execution:

WA(x, 1) SA(B) WB(x, 2) ... CB(fail) (6.3)

After the abort of B, if some concurrent top-level transaction (or a nested transaction in its nesting

tree) attempts to write to x, it will find that an aborted transaction is controlling it. Therefore, it will

be able to acquire control over x. However, A was still supposed to control x, except that its child B

wrote to it and then released the control, due to its abort. Thus, the aborting nested transaction must

delete its writes from the tentative lists, but only when those writes were performed when an ancestor

was already controlling the VBox.

In practice, this entails iterating over the VBoxes written and checking, for each VBox, if there exists

an InplaceWrite w that is not owned by the aborting transaction, and that is owned by a transaction

that is alive. If that is the case, w’s value and orec are assigned to the first InplaceWrite in the

tentative list. Moreover, between changing the value and the orec, the orec’s owner field is written

with its own contents, for reasons that shall become clearer in the next section. Finally, the aborting

transaction changes the status of its Orecs.

6.6 Correctness in the Java Memory Model

Similarly to what I presented in Chapter 5, I describe now the details in the implementation of this

design in Java that depend on its Memory Model. Once again, I use volatile in the nestedCommit-

Clock, for the same reasons as in the SharedWS algorithm.

Then, I also use volatile in the owner of the Orec. This ensures that concurrent nested transac-

tions always see a nestedVer of the Orec consistent with its owner: The commit is the only operation

that changes those fields in the Orec, and it always changes the nestedVer before the owner, whereas

another transaction reading or writing to a VBox always reads the owner before the nestedVer. This

latter read creates a happens-before relation with the write of the owner during commit or abort. This

same reasoning applies for consistent views of value and owner.

6.7 Progress guarantees

The STM underlying this work, briefly presented in Section 4.1, is lock-free, which means that a

thread cannot prevent all other threads from progressing, as the system as a whole must make progress.

This is no longer true when we take into account the parallel nested transactions spawned in the scope

of a nesting tree. Suppose that Ti, a nested transaction, writes to x and stalls indefinitely. Now, if Tk, a

sibling of Ti, attempts to write to x, it will create a write-write conflict and restart. In this scenario Tk

will never be able to write to x and is therefore prevented from progressing. Consequently, the nested

write operation is no longer lock-free in this design.

60

For this reason, I simplified the commit procedure by using locking. Therefore, the commit operation

of a parallel nested transaction may delay its siblings. Note, however, that the commit of parallel nested

transactions at different nesting levels or nesting trees proceed independently. Additionally, the read

operation of a parallel nested transaction executes in a bounded number of steps and independently of

concurrent transactions, thus being wait-free.

Therefore, the JVSTM with support for parallel nesting is no longer lock-free, because both the

write and commit of parallel nested transactions may prevent the system from progressing. This is

motivated by the fact that the blocking algorithm provides better performance, and still allows top-level

transactions to continue to execute in a lock-free manner and to proceed with their validation in parallel.

In particular, this means that there is no lock that must be acquired at commit-time, and for which top-

level transactions contend. A parallel nested transaction may never prevent other transactions (nested

or not) from progressing unless they have a common ancestor, meaning that they belong to the same

nesting tree.

6.8 Maintenance of read-sets

The algorithms that I described are tightly coupled with the way the JVSTM was designed in the

first place. In Section 4.1.1, I explained how the latest version of the JVSTM deals with the read-set

and write-set. Yet, so far, I have not delved into the details of how the parallel nesting algorithms may

take advantage of the read-set optimizations. Briefly, the optimization relied in the maintenance of a

pool of arrays per thread that would be reused throughout different transactions. The benefit is that this

decreases drastically the repeated allocation of new memory for read-sets in each transaction.

Adapting this idea directly to parallel nested transactions is not straightforward: The read-set must

survive the execution of a parallel nested transaction so that its ancestors may validate it during their

commit procedure. Consequently, the root top-level transaction ends up being responsible for cleaning up

the read-sets used by its children. However, that top-level transaction is executing in a different thread

and has no access to the thread local storage of the threads that executed its children. So, the problem

is that the read-sets are meant to be reused in the same threads, but now more than one thread may

be using them, and more importantly the thread that cleans up a read-set may be different from the

thread that is responsible for it. One way to work around this would be to use a global pool of arrays

for read-sets. Yet, there is an alternative that maintains the decentralized nature of the optimization

described earlier.

For this, I created a new reification for a block of read entries, the ReadBlock class that I present in

Listing 6.1. In its essence, a ReadBlock encapsulates an array of VBoxes. Therefore, a parallel nested

transaction now maintains a set of ReadBlocks instead of a set of VBox[].

Each thread also maintains a thread-safe counter that is publicly accessible through its ReadBlocks

(because it is passed to their construction). This counter plays two roles: (1) it ensures a happens-before

relation between the release of used blocks and their reuse; and (2) it helps create a fast-path when a

thread attempts to reuse arrays to augment its read-set because it states how many free blocks there are

in the pool.

With this solution we may have a thread with a pool of several blocks, each one with a reference to

the counter of free blocks in the pool of that thread, and the blocks of this thread may also be in use by

61

public class ReadBlock {

protected boolean isFree;
protected final VBox[] readEntries;
protected final AtomicInteger numberFreeBlocks;

public ReadBlock(AtomicInteger numberFreeBlocks) {
this.isFree = false;
this.readEntries = new VBox[BOXES_PER_BLOCK];
this.numberFreeBlocks = numberFreeBlocks;

}

}

Listing 6.1: Class representing a block of read entries.

other threads. To augment a read-set, a transaction checks the counter of the thread:

• If it is over 0, it seeks through the pool for a ReadBlock whose isFree variable is true and uses

it by setting that variable to false. Lastly it decrements the counter of the thread.

• If it is 0, the transaction creates a new ReadBlock pointing to the counter of the thread, adds it

to the pool of the thread and uses it.

Note that only the thread that owns the pool may set isFree variables to false and add new ReadBlocks

to the pool. This last detail is relevant because this way the pool need not be thread-safe.

To allow the thread owner of a set of ReadBlock to reuse them, a transaction (running either in

that thread or another one) iterates through the blocks and sets their isFree variables to true. Then

it increments the counter of the thread owner (accessible through any of the blocks) with the number

of blocks freed. The only volatile write performed is the increment in the counter, which guarantees

visibility of the isFree field of the blocks when the thread owner reads the counter in the next augment

procedure.

6.9 Discussion of the InPlace design

In this section, I look into the performance of the transactional operations of all the algorithms

presented. In Figure 6.2 I present the profiling data of the transactional operations for the three designs.

Namely, in Figures 6.2(a) and 6.2(d) we may see that the read operation with the InPlace design is able

to achieve better performance while remaining independent of the nesting depth. This is an improvement

over the SharedWS design due to the fast path enabled by the metadata stored in-place in the VBox.

Let us now look into Figures 6.2(b) and 6.2(e) regarding the write operation. This operation was the

most important driver for the creation of a new algorithm beyond the SharedWS. We may see that this

new design allows much cheaper write operations that are independent of both the number of siblings

and the depth.

Finally, Figures 6.2(c) and 6.2(f) show that the commit procedure benefits from the new complexity

bound, particularly with the increasing depth. Although the time to commit still increases as the depth

increases, it happens at a much slower rate. This is an important fact given the blocking nature that I

employed in the nested commits in the InPlace design.

62

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

depth

naive
sharedws

inplace

(a) Read operation.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

depth

(b) Write operation.

 100

 1000

 10000

 100000

1 2 4 8 16
tim

e
(m

ill
is

ec
on

ds
)

depth

(c) Commit operation.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

threads

(d) Read operation.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

tim
e

(n
an

os
ec

on
ds

)

threads

(e) Write operation.

 100

 1000

 10000

1 2 4 8 16

tim
e

(m
ill

is
ec

on
ds

)

threads

(f) Commit operation.

Figure 6.2: Profiling data of the transactional operations updated from Figure 5.4 with the InPlace

design.

63

Chapter 7

Scheduling for Profit

So far, I have addressed the main objective of this dissertation: The development of an efficient

algorithm for parallel nesting that allows a programmer to explore parallelism within atomic actions.

This is useful in the case of highly-conflicting workloads, in which top-level transactions conflict with

high probability, whereas sub-tasks exploring parallelism in each transaction have fewer conflicts.

However, the parallel nested algorithms are more complex (and costly) than the top-level algorithms.

Thus, there are some overheads inherent from exploiting parallel nesting, meaning that it may not always

be profitable to use that approach. In particular, parallel nesting is useful only if we have processors

available to execute the sub-tasks. These sub-tasks are identified by the programmer, but deciding when

to use them is a more difficult responsibility to handle.

In Figure 7.1, I show an example of this situation, where I use all three workloads in STMBench7. In

the dashed lines, we may see the normal execution with top-level transactions, which obtains very small

performance gains and most of the time even slowdowns, due to the disruption created by read-write long

traversals.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

Sp
ee

du
p

threads: top(nested)

r-top
rw-top
w-top

r-par-nest
rw-par-nest
w-par-nest

Figure 7.1: Speedup of the three workloads available in STMBench7 relative to the corresponding se-
quential execution of a top-level transaction. The dashed lines use only top-level transactions and thus
the thread count is the multiplication of the threads available in the horizontal axis.

65

I also show the executions that resort to parallel nesting (InPlace algorithm) in those traversals. This

means that I parallelized the top-level transactions used in some of the operations of the benchmark. The

labels in the thread count show the number of nested transactions spawned by each top-level transaction

in the case of the parallel nested approach. Parallel nesting starts out with improvements while using a

single top-level transaction (and an increasing number of children), but after that it drops considerably

in the most conflicting workloads. This exemplifies the claim that parallel nesting is not always a better

approach. For this reason, I propose to use a transaction-aware scheduler coupled with the TM, which

allows deciding automatically when to use parallel nesting. In this chapter I further motivate its need

and show the advantages obtained with its use.

In Vacation and Lee-TM all transactions are parallelizable, spawning the same number of children

each. In such cases, it is easy for the programmer to reason about how many threads he wants executing

top-level transactions, because he knows how many threads each one of those will require (for the nested

parallelism). STMBench7 differs from both of the previous benchmarks because it has several types of

operations, of which I parallelized only some long traversals. Moreover, each of these operations spawns

a different number of children. So, it becomes much more difficult for the programmer to decide how

many threads he wants for top-level transactions in a given machine.

Regardless of this particularity, I regard STMBench7 as an example of a more general application, for

which it makes sense to use parallel nesting with transaction-aware scheduling. Next, in Section 7.1, I

briefly present related work in transaction scheduling. Then, I describe some alternatives for an embedded

scheduler in the JVSTM in Section 7.1.1. I continue by explaining in more detail the inner workings of

the scheduling strategy used in Section 7.1.2. Finally, I explain how to use the scheduler to improve the

results obtained with parallel nesting, in Section 7.2.

7.1 Scheduling transactions

There has been some work that explored scheduling of transactions as opposed to the use of Contention

Managers [32] as a way to handle conflicts. The latter are merely reactive, in the sense that they act

upon a conflict detection, and decide on the outcome of the conflicting transactions by declaring which

one must abort. On the other hand, scheduling acts pro-actively, by attempting to run concurrently

transactions that do not conflict with each other.

Yoo and Lee [61] proposed Adaptive Transactional Scheduling, in which threads maintain a notion

of contention: When a threshold is reached in a thread, it is declared to be under high contention,

and the transaction that it is executing is placed in a queue of transactions, which are then executed

sequentially. All transactions end up being placed in this queue as long as the system is considered to be

under contention.

CAR-STM [19] uses a serialization technique that guarantees that if two transactions conflict with

each other, one of them is executed by the thread of the other such that it is guaranteed not to conflict

with the same transaction in its re-execution. Also similarly, Steal-on-Abort [5] allows a thread to steal

conflicting transactions from concurrent threads.

On a different fashion, Shrink [21] provides a technique that uses the previous accesses in the same

thread to predict the footprint of the next transaction. Thus, it is able to estimate heuristically if the

next transaction will conflict with an active concurrent transaction.

66

7.1.1 A scheduler for the JVSTM

In this section I describe the conflict-aware scheduler that I created, based on the aforementioned

related work. I do not seek any novelty in the scheduler itself, but rather, combine the related work to

create a scheduler within the STM to further improve the results obtained with parallel nesting.

I used and compared three alternatives for scheduling transactions, which I briefly describe next. In

all of them, the general idea is to register the conflicts that lead to aborts, such that for each transaction

we know which other transactions may create conflicts when ran concurrently. Take into consideration

that in the JVSTM, when a conflict takes place, then one of the transactions in the conflict has necessarily

committed, given the lazy write-back nature. The three alternatives follow:

1. Wait: This approach was based on earlier work [8] that proposed to use a conflict-aware scheduler

together with the JVSTM to increase the performance when there were more tasks than physical

cores. Its name comes from the fact that a worker thread that requests a task from the scheduler

may have to block and wait even if there are available tasks. This happens because the scheduler

concluded that all the available tasks had conflicted in the past at least once with the tasks currently

being executed.

2. Wait-relaxed: In this alternative I changed the Wait approach slightly. Whenever the Wait

scheduler was queried for a transaction start, it acquired a lock over the list of available tasks,

as well as over the list of tasks being executed. This could potentially represent a sequential

bottleneck in the execution of transactions, particularly when the length of transactions is short.

Therefore, I provided a more relaxed scheduler in which a transaction could be allowed to execute

even if there was a conflicting transaction already in execution. Note that this does not harm

correctness in any way, but may ultimately cause aborts. This relaxation is the consequence of the

lack of synchronization that I employed to relinquish some of the potential overhead of the Wait

scheduler. In practice, I expected that most of the time the scheduling decisions were similar to the

ones of the Wait approach, while paying less for synchronization.

3. Serial: This last alternative departs more radically from the previous two. Here I used some of

the concepts mentioned in the related work, such as the serialization technique. The general idea

is that, instead of waiting in the scheduler until an available task is executable without predictable

conflicts, the worker threads offer their tasks to each other as they predict the conflicts in the

scheduler. This way I create a serial execution of tasks in queues in the workers.

In Figure 7.2 I show the results obtained with each of the three alternatives for scheduling in a write-

dominated workload in STMBench7 and compare them to the sequential execution. I also show a normal

execution without any scheduling, whose performance we have seen in Figure 7.1 to be very poor. From

this data we may see that the Serial scheduler is the one performing better. Even though the difference

is small most of the time, it is more consistent. Moreover these results were quite similar with the other

workloads of the STMBench7. Next, I shall explain in more detail the inner workings of this approach

and its integration with the JVSTM.

7.1.2 Serial scheduler

The previous work [8] that I used to create the Wait scheduler, was dependent on the application:

The scheduler was built in the application being parallelized and synchronized with the TM. However, in

67

 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6

1 2 3 6 12 24 48
Sp

ee
du

p

threads

no-schd
serial
wait

wait-relaxed

Figure 7.2: Write-dominated workload of the STMBench7. The results shown use either plain execution
(no-schd) or one of the scheduling alternatives proposed. The speedup is computed relatively to the
sequential execution without scheduling.

my work, I embedded the scheduler in the TM system, such that it need not be aware of the particularities

of each application. In this section, I describe the integration of the scheduler in the JVSTM as well as

the specific approach employed in the Serial variant.

I assume that the application has several different tasks that it may execute concurrently and that

these are distinguishable from each other. That is, a runtime task that corresponds to some source code

is different from a runtime task that corresponds to other source code. Two runtime tasks are equal if

they correspond to the same source code. For example, in the specific case of STMBench7, all the tasks

are mapped to unique identifiers provided by an enumeration.

Being able to identify the tasks is what allows the scheduler to maintain the conflict history between

them. Therefore, I created an interface that must be implemented by tasks that are to be executed

through the scheduler, shown in Listing 7.1. This simple interface merely requires the task to provide

the aforementioned identifier.

public interface SchedulerTask {

public int getTaskId();

}

Listing 7.1: Interface implemented by tasks to run through the scheduler.

The scheduler needs to act upon three different moments of the control flow of a transaction. These

are represented by the Scheduler interface shown in Listing 7.2.

public interface Scheduler {

public SchedulerTask getNextSchedulerTask();

// Returns true if the transaction may run with inner parallelism
public boolean startTx(int startingTx, Object work, SchedulerWorker runner);

public void conflictTx(int abortingTx, int commitNumberOfConflicter);

public void finishTx(int finishingTx);

}

Listing 7.2: Interface implemented by the different scheduling approaches.

68

With this interface, we may easily implement the different scheduling approaches as well as one in

which the tasks are executed normally without any scheduling. When the transaction starts, the Serial

scheduler implementation registers the identifier of the task in the set of executing tasks. This query to the

scheduler takes place during the start of a transaction in the JVSTM. When a transaction in the JVSTM

finishes (either by committing or aborting), the scheduler is informed and removes the transaction from

the set of executing tasks. Note that the JVSTM calls these operations in the scheduler only when it is

dealing with read-write transactions. Read-only transactions never conflict and consequently are always

profitable to run concurrently, thus requiring minimal scheduling.

If a conflict happens, the JVSTM also informs the scheduler. In this case, the identifier of the

transaction that caused the conflict is necessary because the scheduler maintains a table of conflicts

between the uniquely identified transactions of the application. This table is populated when a conflict

happens between two transactions. But we only have easy access to the application identifier of the

transaction that is aborting; the identifier of the transaction that caused the conflict is not readily

available. This happens because the versions of the VBoxBody in which conflicts are detected only map

to identifiers of runtime transactions in the JVSTM and not to the transactions of the application in

terms of source code.

To work around that difficulty, I extended the metadata kept by the JVSTM, which already allows the

garbage collector to keep track of all the versions and timestamps used in the past. When a transaction

commits (thus producing versions of VBoxBodies), it stores in the metadata maintained for the garbage

collection, not only the global timestamp acquired in the JVSTM, but also the identifier provided in the

start of the transaction that came from the application. This way, the scheduler is able to use that

information to map the timestamp of the conflicting version of a VBoxBody to the identifier of the task

that created it. After that, it uses the identifiers of both transactions to increment their likelihood of

conflict in the metadata maintained by the scheduler.

There is room for improvement in terms of the maintenance of the conflict likelihood between two

transactions. In particular, some of the related work has already studied some possible strategies. Yet, I

did not explore those any further as it was outside the scope of my work.

Before, I did not detail completely the implementation of the startTx method in the Serial

scheduler. Actually, the scheduler only registers that the transaction is running if it is able to tell

that there is no conflicting transaction running at that moment. For that, it uses the set of executing

transactions and the conflict table. Otherwise, it puts the task, attempting to execute, in a thread-safe

queue of the worker thread that is running the conflicting transaction. For that to be possible, the set of

executing transactions actually contains a representation of the worker threads that are carrying those

executions. This enqueue effectively serializes the transaction and avoids the conflict. It is for this reason

that I refer to this scheduler as Serial.

For this to be possible, the worker threads in the application must implement the following interface:

public interface SchedulerWorker {

public void acceptTask(Object work);

}

Listing 7.3: Interface implemented by the application worker threads.

69

Finally, when the worker threads query the scheduler for the next task, the Serial implementa-

tion first verifies if the thread doing the request was given any work in the meantime (by using the

Thread.currentThread()). In that case, it returns that task for execution. Otherwise, it fetches the

immediate next task in the set of tasks to execute. This entails that the application provides the JVSTM

with the tasks to be executed, so that its scheduler can distribute them to the worker threads.

7.2 Using the Serial scheduler

In this section I provide a more detailed evaluation of the strategies used for scheduling. This is

important so that, later in Chapter 8, it is possible to understand which benefits come from the scheduler

and which come from the inner parallelization of transactions, separately. Then, I conclude by explaining

how to take advantage of the scheduler to further explore parallel nesting.

I used the Serial scheduler in the workloads of STMBench7, and show in Figure 7.3 the speedup

relative to a sequential execution. Note that I am not yet using any inner parallelism; this experiment is

meant to assess the benefits obtained from the scheduler itself.

The scheduling itself provides an increase of 12% of performance in the read-dominated workload,

and 20% in both read-write and write-dominated workloads. These values refer to the best performance

obtained without scheduling, which in the read-write and write-dominated workloads actually means

using only 1 thread. The most important conclusion is that the performance obtained with the scheduler

is more or less stable on 1.2 speedup beyond 6 threads, conversely to the normal execution that generally

yields slowdowns.

Considering the behavior of the scheduler, its give-away mechanism is inherently creating some se-

quential critical paths composed of the transactions that would otherwise conflict with each other if ran

concurrently. The predictable consequence of having under-usage of processors is visible in Figure 7.4,

where I present how much time each thread executed transactions during a write-dominated workload

in the STMBench7. In particular, the right Figure contains a much more erratic distribution due to the

usage of the scheduler when compared to the execution in the left figure that did not use scheduling;

note that the vertical axis is significantly different in both graphics. As a matter of fact, it is relevant to

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 3 6 12 24 48

Sp
ee

du
p

threads

r-no-schd
r-serial

rw-no-schd
rw-serial

w-no-shcd
w-serial

Figure 7.3: Performance obtained in various workloads of the STMBench7 with and without scheduling.

70

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 5 10 15 20 25 30 35 40 45

se
co

nd
s

ex
ec

ut
in

g

different threads

(a) Without scheduling.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45

se
co

nd
s

ex
ec

ut
in

g

different threads
(b) With scheduling.

Figure 7.4: Distribution of the time spent executing transactions among the working threads in a write-
dominated workload of the STMBench7 with long traversals.

take into account that there is more execution time spent in transactions that conflict and abort in the

scenario without scheduling.

So far, we have seen that parallel nesting cannot always provide positive results, as shown in Figure 7.1

in the beginning of this chapter. On the other hand, we now have a scheduler that was able to improve

the performance obtained in STMBench7. Yet, this resulted in having part of the available processors

being idle for the execution of those workloads. This result was expected: If the workload is inherently

conflicting, the transactions will contain some sequential critical paths free of conflicts that will lead to the

successful execution. These critical paths necessarily impose an under-usage of the available processors if

they are fewer than the processor count, which is by far the case in highly-conflicting scenarios. Therefore,

the idea is that I may now explore these available resources to apply parallel nesting and improve the

results even further.

I describe the general idea in Algorithm 8. When the scheduler is queried for the start of a new

transaction, it iterates through the transactions that it has scheduled and that have not yet finished. For

each transaction under execution, the scheduler estimates if it is predictable that the new transaction

creates a conflict (lines 3-8). To do so, it uses the data collected so far regarding conflicts.

If a possible conflict is predicted, the scheduler forces the current thread to drop this transaction and

serializes it in the queue of the thread that is executing the transaction that was likely to enter in conflict

Algorithm 8 Algorithm to schedule a transaction in Serial.

1: RequestStart(tx):
2: txStats ← conflicts.get(tx)
3: for scheduledTx ← scheduledTxs do
4: if txStats.conflictsWith(scheduledTx) then
5: scheduledTx.executingThread.acceptTask(tx)
6: return false
7: end if
8: end for
9: tx.useParNest ← (scheduledTxs.size() - 1) < MAX THREADS

10: newExecution ← makeExecution(txStats, currentThread())
11: scheduledTxs.add(newExecution)
12: return true

71

(line 5). Next, the scheduler returns false, meaning that it did not schedule the transaction in the current

thread.

Otherwise, the transaction is accepted for execution. In this case the scheduler estimates if it is worth

to use parallel nesting in this transaction. Line 9 establishes whether the scheduler allows parallel nesting

in the current transaction, or if it should execute only as a sequential top-level transaction. Note that

giving permission to execute with parallel nesting does not mean the transaction will actually do so.

For that to happen, the transaction source code must have been augmented with parallel nesting by the

programmer who identified the inner parallelization. This heuristic retrieves the number of transactions

currently executing, which is an estimate of the current usage of the underlying processors. However, this

is an under-estimate: If each execution taking place was allowed to use parallel nesting, and effectively

does so, then the number of threads in use would be above the number of executions. This simple

estimate was sufficient to prove the point that I sought when coupling the scheduler with parallel nesting,

regardless of the room for improvement.

72

Chapter 8

Evaluation

In this chapter I present a twofold evaluation. First, in Section 8.1, I evaluate the implementation

of the three parallel nesting algorithms that I presented in this dissertation and show that InPlace

is the one that performs best. I also extend my contribution by addressing the particular scenario

of embarrassingly parallelization of a transaction in Section 8.2. Then, in Section 8.3, I compare the

performance of the InPlace implementation with two other implementations representing the state of

the art in parallel nesting algorithms. A more detailed comparison is available in an article accepted in

WTTM 2012 [17].

8.1 Evaluating the different JVSTM-based implementations

I begin by comparing implementations of the three algorithms proposed for parallel nesting in the

JVSTM. We have already seen some promising data in Figure 6.2 in Section 6.9, regarding the performance

of the corresponding transactional operations. Here, I complement that evaluation by assessing the

behavior of each approach in terms of throughput in representative benchmarks.

The objective is to confirm the theoretical expectation that the InPlace variant is able to outperform

both the Naive and SharedWS variants. The next two sections address that by providing an evaluation

in Vacation (Section 8.1.1) and in STMBench7 (Section 8.1.2).

8.1.1 Vacation

The Vacation benchmark of the STAMP suite represents the typical scenario that I motivated for

earlier: Under high contention, it becomes increasingly hard to obtain improvements in terms of perfor-

mance by adding more threads (and having a corresponding number of available processors). That is

clear in Figure 8.1(a), where we may see that the nonest approach with only top-level transactions is

unable to scale properly.

In this case, however, I was able to parallelize the transactions that compose the workload of the

benchmark, and, therefore, use parallel nesting to run fewer top-level transactions at a time with each

one spawning an increasing number of parallel nested transactions. When comparing the results of the

73

 0

 2

 4

 6

 8

 10

 12

 14

1(1) 1(2) 1(4) 1(8) 1(16) 2(16) 3(16)

sp
ee

du
p

threads

nonest
naive

sharedws
inplace

(a) High contention on reservation creation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1(1) 1(2) 1(4) 1(8) 1(16) 2(16) 3(16)

sp
ee

du
p

threads

nonest
naive

sharedws
inplace

(b) Low contention on reservation creation.

Figure 8.1: Speedup of the various parallel nesting designs relative to the sequential execution in the
Vacation benchmark. The approach of using only top-level transactions is also shown as nonest.
The threads used are shown as the number of top-level transactions and number of nested transactions
that each one may spawn. In the nonest approach, the number of top-level transactions used is the
multiplication of those two numbers, so that the overall number of threads used is the same in all
approaches.

different proposals described in this dissertation, we see that InPlace is able to obtain the best results

with up to 2.8 times better performance than top-level transactions.

On the other hand, Figure 8.1(b) exemplifies a workload with low contention. In this case, the nonest

is already achieving reasonable performance as the thread count increases. Thus, applying the parallel

nested transactions does not yield any extra performance. As a matter of fact, we may actually see that

there is some overhead from executing the transactions with some nesting.

In Figure 8.2, I specifically evaluate the overhead of executing with parallel nesting in the Vacation

benchmark. The workload was executed with an increasing nesting depth with the various parallel nesting

designs, and I measured the speedup relative to an execution without nesting. The nesting trees formed

used a branching factor of one, thus taking no advantage of parallel nesting, and enabling me to assess

the overhead of the algorithms. It is visible that the Naive design increases significantly its overhead as

the depth is increased. On the other hand, both SharedWS and InPlace maintain their performance

independently of the depth, with the latter presenting on average 5% of overhead in performance relative

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16

sp
ee

du
p

depth

naive
sharedws

relaxed

Figure 8.2: Speedup of each parallel nesting design in Vacation with a single thread. Each plotted
execution uses an increasing nesting depth in which each top-level transaction creates a nesting tree with
a branching factor of one. The speedup is computed relatively to the execution without nesting, thus
making the overhead of nesting visible.

74

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

t2a t2b t2c t3a t3b t3c t5 tx

sp
ee

du
p

traversal

naive
sharedws

inplace

Figure 8.3: Speedup of the read-write long traversals of the STMBench7 relative to its sequential execu-
tion. The three parallel nesting designs were used to explore the inner parallelism of the traversals with
up to three threads each. The tx execution refers to a combined mix of all the read-write long traversals.

to top-level execution. These results were similar in an experiment using 16 threads, and varying the

nesting depth.

Of course, the overhead of using parallel nesting is not typically only 5%. We have other sources of

overhead besides the extra complexity of the parallel nesting algorithms. For instance, the overhead of

creating tasks and synchronizing on those tasks’ completion, which depend largely on the granularity of

the tasks. I shall address this with more detail in Section 9.2.

8.1.2 STMBench7

I now explore the performance of each design in STMBench7. Conversely to Vacation, not all

transactions in STMBench7 have latent parallelism. Thus, in Figure 8.3, I start by presenting the

speedup obtained for each one of the transactions that I parallelized.

The read-write long traversals available in this benchmark are particularly troublesome for obtaining

an increase in performance in workloads that contain them. As explained in Section 2.5, these traversals

access most of the object graph of the benchmark, both with read and write accesses. This precludes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16

sp
ee

du
p

depth

naive
sharedws

relaxed

Figure 8.4: Each plotted execution uses an increasing nesting depth in which each top-level transaction
creates a nesting tree with a branching factor of one in STMBench7 with write-dominated workload. The
speedup is computed relatively to the execution without nesting, thus making the overhead of parallel
nesting visible.

75

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

Sp
ee

du
p

threads: top-level (nested)

top
top-schd
par-nest

par-nest-schd

(a) Read-dominated workload.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

Sp
ee

du
p

threads: top-level (nested)

top
top-schd
par-nest

par-nest-schd

(b) Read-write workload.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

Sp
ee

du
p

threads: top-level (nested)

top
top-schd
par-nest

par-nest-schd

(c) Write-dominated workload.

Figure 8.5: Different workloads of the STMBench7 with long traversals with four combinations: (1)
normal execution with top-level transactions; (2) the first case with the serial scheduler; (3) using parallel
nesting; and (4) using parallel nesting and the serial scheduler.

76

much of the possible concurrency, as TMs have to detect conflicts in most concurrent accesses with these

traversals. Therefore, I exploited the inner parallelism in each of those traversals and show the resulting

performance relatively to an execution of those traversals with a top-level transaction only. Traversals

t2b, t2c, t3b, and t3c are particularly large in terms of their footprint, which allows the InPlace design

to widen the benefits attained relatively to the other two designs. In particular, some slowdowns are

visible with both Naive and SharedWS. Traversal t5 proved to be difficult to parallelize: None of the

designs was particularly helpful in this case. Besides the individual results, I also present the results for

a combined mix that I created with these traversals only (under the label tx).

Furthermore, I repeat the same experience as in the last section to assess the overhead of each design.

For that, I executed the write-dominated workload with long traversals in STMBench7 and present the

results in Figure 8.4. Recall that, similarly to Figure 8.2 in the last section, the benchmark is executed

with a variable nesting depth that I created by modifying the benchmark. In this experience the InPlace

design has an average of 8% overhead.

Finally, I present the results corresponding to the execution of all the workloads in STMBench7

with long traversals enabled. Here, I use the Serial scheduler and the InPlace design, which has

been shown to perform best. Each plot in Figure 8.5 corresponds to a different workload and shows

the speedup obtained in different situations. The intermediate steps of either the scheduler and parallel

nesting alone serve to assess how each component is contributing to the final result. Then, we may see

that the best results obtained when comparing to the baseline approach with top-level transactions only

is approximately 2 times better throughout all the workloads. These results confirm the thesis posed in

this dissertation in yet another known benchmark.

8.2 Relinquishing the overhead of parallel nesting

Despite the overhead identified and quantified in the previous section, my expectation was that the

newly explored parallelism (with fewer conflicts) could mask that overhead. That expectation proved to

be correct for both Vacation and STMBench7 benchmarks.

When applying the same strategy to the Lee-TM benchmark, however, it generally yielded slowdowns:

I parallelized the only transaction identified in Lee-TM by creating parallel transactions in the expansion

task, but that code was too quick and executed many times. Therefore the overhead of managing,

validating and committing parallel nested transactions was supplanting the benefit that could be achieved

with that parallelism.

But while doing that parallelization I realized that I was in the presence of embarrassingly parallelism.

More specifically, I could guarantee that the parallel nested transactions that I was creating would never

conflict with each other in the same nesting tree. This is a case of embarrassing parallelism. In this

case, I can use several threads running in the context of the same top-level transaction. The benefit of

this is that the transactional operations follow the same algorithm as a top-level transaction, rather than

the more complex version presented in this dissertation for nested transactions. Additionally, when they

finish their work, these threads do not need to execute any validation or commit.

In Figure 8.6, I show the application of this strategy compared with the usage of single-threaded top-

level transactions. Once again, we may see that adding more top-level transactions does not necessarily

translate into better scaling. In turn, allowing each top-level transaction to run faster yields a better

77

performance, being slightly over 2 times better at 48 threads in both mainboard and memboard. In

Figure 8.6(d), this multi-threaded top-level transactions approach does not yield benefits as consistently

as in the other boards. This happens because the duration of each track laid in the workload is much

smaller than in the other cases. The parallelization that I identified in the benchmark takes place only

when the tracks have a minimum size to make it attractive to parallelize. Therefore, in the sparseshort

board, a top-level transaction execute most of the time without more than one thread.

The expansion phase of the Lee-TM benchmark collects many transactional reads, which induce an

increased likelihood of conflict as the transactions get larger. This can be overcome by applying an early

release technique [32, 23] to obtain better scaling with top-level transactions. Yet, it was an interesting

case to illustrate embarrassingly parallelism that may arise in top-level transactions. The solution of

running more than one thread in the context of a single transaction is possible only if the structures of

the transaction are thread-safe. To minimize the costs of synchronization, I use a strategy similar to what

was described in the InPlace algorithm: Both read-set and write-set are scattered across the threads

executing in the same transaction, and accessed by the thread that is running the top-level transaction

when it commits globally. For this to be possible, these threads use the commmittedChildren field of

the top-level transaction in the same way as described for the InPlace design.

 0

 0.5

 1

 1.5

 2

 2.5

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

sp
ee

du
p

threads

top
mt-top

(a) Mainboard.

 0

 0.5

 1

 1.5

 2

 2.5

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

sp
ee

du
p

threads

top
mt-top

(b) Memboard.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

sp
ee

du
p

threads

top
mt-top

(c) Sparselong.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

sp
ee

du
p

threads

top
mt-top

(d) Sparseshort.

Figure 8.6: Usage of embarrassingly parallelized top-level transactions in Lee-TM with several test boards.
The top executes single-threaded top-level transactions only whereas the mt-top uses more threads per
top-level transaction. The threads used are shown as the number of top-level transactions and number
of threads that may run in each top-level transaction. In the top approach, the number of top-level
transactions used is the multiplication of those two numbers.

78

8.3 Comparison against the state of the art

In this section I compare the InPlace algorithm proposed in this dissertation against two STMs

with support for parallel nesting in the related work, the NesTM [7] and PNSTM [9]. Both these

alternatives provided a detailed description of their algorithms (contrarily to most of the other related

work). Furthermore, the authors of NesTM were the only ones providing an evaluation beyond micro-

benchmarks with fair performance gains, which strengthens its position as representative of the state

of the art. On the other hand, PNSTM represents the algorithm for parallel nesting with the lowest

worst-case complexity bounds for all the STM operations.

Next, I compare the worst-case complexity bounds of each of the three STMs, in Section 8.3.1. Then,

in Section 8.3.2, I present the results of experiments that I conducted to assess the practical impact of the

design choices of the STMs. I implemented both NesTM and PNSTM in Java according to the algorithms

in their publications. This was the only alternative given that they are not publicly available nor was I

able to reach the corresponding authors. To make the comparison fair, I also defined an API for these

implementations that allows the applications to specify which locations are transactional. Moreover, it

is important to take into consideration that this evaluation is necessarily comparing also the underlying

TM designs. Because of that, I also executed the workloads using only top-level transactions, so that we

may have an idea of how the baseline TMs compare with each other.

8.3.1 Worst-case complexity bounds

I have briefly described both STMs in previous sections: NesTM in Section 3.5.1 and PNSTM in

Section 3.5.3. Both provide opacity [28]. Yet, in the rest, they explore different design choices. As a

consequence, they provide different bounds and guarantees to applications using them. Table 8.1 lists

the worst-case complexity bounds in the operations of a parallel nested transaction in the mentioned

STMs, where: k is a constant value defined statically in NesTM; r and w are the size of the read-set

and write-set, respectively; children is the number of descendants of a transaction; maxDepth is the

maximum depth of the nesting tree; and txDepth is the depth of the transaction executing the operation.

JVSTM is the only one where the read operation depends on the maximum depth of the nesting tree.

This worst case may happen if the variable being read has been written by all the transactions in the

deepest branch of the nesting tree (and necessarily different from the branch of the reader transaction).

The read in NesTM may need to be repeated k times, where k is defined statically. The access has to

read the value and lock separately, and thus uses a double read pattern to ensure a consistent reading.

A repetition takes place when a concurrent abort occurs between the double read. Finally, the PNSTM

only needs to look at the top of the access stack to decide in constant time if the access is conflict-free.

Regarding the write operation, both JVSTM and PNSTM need only to insert the new value in a single

JVSTM NesTM PNSTM

read O(maxDepth) O(k) O(1)
write O(1) O(txDepth) O(1)

commit O(r + children) O(r + w) O(1)

Table 8.1: Complexity bounds for the worst-case of transactional operations in parallel nested transac-
tions.

79

location (reachable in constant time). On the other hand, NesTM may need to validate the variable being

written in all the ancestors’ read-sets.

The commit operation is also performed in a constant number of operations in PNSTM. On the other

hand, NesTM needs to validate the read-set and to propagate the ownership of the writes to the parent.

JVSTM also requires the validation, which cannot be avoided given its lazy update nature [1], but has a

different bound for the propagation of the write-set: It depends on the number of committed children of

the committer.

The bounds presented thus far are clearly in favor of the PNSTM but, in practice, what affects more

the performance of an STM is the complexity of the common case, rather than the complexity of the

worst case, if they are rarely the same. For instance, the read operation of JVSTM has a worst case that

seems very unlikely to happen in practice because it requires that all the transactions in a nesting branch

write to the same variable. This single fact is of great importance as the read operation is typically

predominant in applications. Futhermore, as explained in Section 6.3, the common case for the read

operation in the JVSTM ends up being O(k) where k ≪ depth.

Moreover, providing constant time operations in parallel nesting does not come for free. The design

choices of the STMs are reflected in the types of conflicts that may lead to abort, which I summarize in

Table 8.2.

As we may see, there is a relation between the complexity bounds and the conflicts detected: The

cheaper the worst case complexity bounds are, the more conflicts the STM has to detect to guarantee

correctness. There is no perfect solution as we are being faced with a trade-off. Despite having constant-

time worst-cases, PNSTM limits severely the concurrency of transactions whose footprints intersect with

each other.

JVSTM NesTM PNSTM

r-r - - yes
r-w yes yes yes
w-w yes (if nested) yes yes

Table 8.2: Possible conflicts that may lead to abort in each STM. Note that, in the case of the JVSTM,
this refers to read-write transactions only, because read-only transactions never abort.

8.3.2 Practical comparison

I begin by comparing the three STMs in the Vacation benchmark, for which Figure 8.7 presents the

throughput of each STM in a scenario with high-contention. Looking at Figure 8.7(a), we may see that

JVSTM is considerably faster than the alternatives when using only top-level transactions. In particular,

it achieves 1.58 speedup over NesTM and 5.41 speedup over PNSTM with a single top-level transaction.

Given that the baseline JVSTM is already faster than NesTM, it is expected that using parallel nesting

is also faster in JVSTM. We can see that in Figure 8.7(b). Still, the actual improvement of using parallel

nesting instead of top-level transactions (for 48 threads) is greater for JVSTM (2.8 times) than for NesTM

(2.2 times) and PNSTM (no improvements).

I now present similar experiments to compare the three STMs, but using a write-dominated workload

of STMBench7. The results are shown in Figure 8.8, where we may see that JVSTM is again faster

already with only one thread: It is 2.6 and 3.4 times faster than NesTM and PNSTM, respectively, when

80

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8 16 32 48

th
ro

ug
hp

ut
 (1

06
 o

ps
/s

ec
)

threads

jvstm
nestm
pnstm

(a) Top-level transactions.

 0

 1

 2

 3

 4

 5

 6

 7

1(1) 1(2) 1(4) 1(8) 1(16) 2(16) 3(16)

th
ro

ug
hp

ut
 (1

06
 o

ps
/s

ec
)

threads tops(nested)

jvstm
nestm
pnstm

(b) Using parallel nesting.

Figure 8.7: Throughput in a contended workload in the Vacation benchmark. When using parallel
nesting, the number of top-level transactions used is followed in parentheses by the number of nested
transactions that each one may spawn.

using only top-level transactions. Moreover, even though I do not show them, the results are very similar

across the other workloads of the STMBench7.

Yet, unlike the results obtained in the Vacation benchmark, in this case the parallel nesting algo-

rithm of NesTM is unable (together with PNSTM) to obtain improvements over its execution with only

top-level transactions, whereas JVSTM more than doubles its throughput when using parallel nesting.

Finally, in Figure 8.9, I present results that show how each STM performs when the nesting depth

increases. To obtain these results, I modified both benchmarks so that they execute all of their trans-

actions entirely within a single nested transaction at a certain depth. This yields a nesting tree with a

single branch that is increasingly deeper as the nesting increases up to a level of 128. I also performed

this experiment using 16 threads, and obtained similar results (not shown here).

These results are consistent with the theoretical complexity bounds of each STM. Namely, PNSTM

performs independently of the nesting depth, whereas the other two degrade their performance. However,

JVSTM not only performs significantly better, but it also degrades at a much slower rate than NesTM.

This behavior is similar in both benchmarks shown and is representative of the data that I collected in

several other workloads.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 6 12 24 48

th
ro

ug
hp

ut
 (t

xs
/s

ec
)

threads

jvstm
nestm
pnstm

(a) Top-level transactions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

th
ro

ug
hp

ut
 (t

xs
/s

ec
)

threads tops(nested)

jvstm
nestm
pnstm

(b) Using parallel nesting.

Figure 8.8: Throughput in the write-dominated workload of the STMBench7 benchmark. When using
parallel nesting, the number of top-level transactions used is followed in parentheses by the number of
nested transactions that each one may spawn.

81

 0

 1

 2

 3

 4

 5

 6

1 8 32 128

th
ro

ug
hp

ut
 (1

05
 o

ps
/s

ec
)

depth

jvstm
nestm
pnstm

(a) Vacation.

 0

 2

 4

 6

 8

 10

1 8 32 128

th
ro

ug
hp

ut
 (t

xs
/s

ec
)

depth

jvstm
nestm
pnstm

(b) STMBench7.

Figure 8.9: Throughput obtained with a single nested transaction at an increasing nesting depth in
STMBench7.

So, just as PNSTM gets better results than NesTM for a sufficiently high depth, I expect the same to

happen also, at some depth, with regard to JVSTM. Yet, given the slow decay of the JVSTM, that will

require a much higher nesting depth (note that the horizontal axis is growing exponentially). In fact, I

argue that such depth would seldom, if at all, be seen in real applications.

8.3.3 Discussion

A naive interpretation of the worst-case complexity bounds for the STMs presented in Section 8.3.1

could lead us to conclude that PNSTM should obtain the best performance (followed by NesTM). Yet,

the results shown in the previous section contradict that conclusion. This happens for two reasons: (1)

the execution of a transactional operation does not always fall under the worst-case; and (2) the amount

of conflicts detected influences greatly the resulting performance. In this section I look at both reasons

to understand why JVSTM obtained the best performance despite the analysis in Section 8.3.1.

I first look at the usage of fast paths in the algorithms that avoid the worst-cases. For that, I used an

execution with 48 threads in the write-dominated workload of the STMBench7. For JVSTM, I verified

that the in-place metadata was used in 43% of the reads, corresponding to read-after-writes. Moreover,

the remaining 57% of the reads were able to avoid checking the in-place metadata in over 99% of the

times. This means that nearly all the time is spent in the fast paths of JVSTM.

Table 8.3 presents this data together with the corresponding data for the other two STMs. I considered

that the fast path in both of them is the read-after-write, because, given their eager in-place nature, such

operation is considerably cheaper than a normal read. JVSTM has two possible fast paths: one when it

reads in-place, and another when it reads a globally consolidated version without having to check the in-

place slot. As we may see, JVSTM is able to execute nearly all of the times in either of these two modes,

whereas the other two STMs go through their fast path only 39% of the times. Moreover, when reading

JVSTM NesTM PNSTM
Fast Path Slow Path Read In-Place Fast Path Slow Path Fast Path Slow Path

0.56 0.01 0.43 0.39 0.61 0.39 0.61

Table 8.3: Fraction of occurrence of each type of read per STM in an execution of a write-dominated
workload in STMBench7.

82

JVSTM NesTM PNSTM
R-W (eager) R-W (commit) W-W (nest) R-W (commit) Spurious R-W (eager) R-W (eager)

465 177 203 39 1465 123 84496

Table 8.4: Occurrence of conflicts per STM in an execution of a write-dominated workload in STMBench7.

in-place, JVSTM was able to obtain a write entry immediately without incurring in the worst-case of the

read operation in over 99% of the time.

In practice this means that the complexity of the read operation in the JVSTM is O(1), the same as

PNSTM. Thus, what differs between them is how efficient each implementation is. The design decisions

of the JVSTM make its fast path considerably simpler than PNSTM’s. This fact is visible in the time

that it takes to execute a transaction (measuring only executions that commit): JVSTM 1046µs; NesTM

5200µs; PNSTM 7357µs.

But having a more efficient read operation in the common case is not the only reason for the better

performance of the JVSTM. The second reason is the degree of concurrency that each STM allows. To

assess the importance of this second reason, I show, in Figure 8.4, the conflicts registered in an execution

with 48 threads in the write-dominated workload of the STMBench7. These results are consistent with

executions with a decreasing number of threads and show that JVSTM had the least number of conflicts

detected. In fact, NesTM detected approximately twice more conflicts, and PNSTM detected a hundred

times more conflicts.

Adding to this, I also measured the percentage of transactions that failed in their first attempt in an

execution with 48 cores. The results for Vacation and STMBench7 are presented in Table 8.5.

The general trend of these statistics follows the expectation according to the conflicts that are detected

in each STM (as presented in Figure 8.4): The less conflict types detected, the smaller the percentage

of unsuccessful transactions. Note that the number of conflicts in the execution of STMBench7 is much

smaller because of a serialization imposed by a scheduler. Nevertheless the relative degree of conflicts

between each STM is consistent with the other results and withstands the point raised.

The data presented in this section backs up the two reasons pointed out for the higher performance

of JVSTM. Even though this comparison was performed against my implementation of the other STMs

(rather than implementations provided by their authors), I believe that the conclusions still hold, as we

may single out some aspects that explain why JVSTM obtained the best results: Its multi-version property

allows more concurrency (by detecting less conflicts), which results in less aborts and re-executions.

Moreover, JVSTM has simpler fast paths, which are also used more frequently than in the other two

STMs. That is a consequence of the different design decisions, which seems to indicate that the JVSTM

represents a sweet spot in the design space of STMs due to its superior performance, while at the same

time providing stronger progress guarantees.

Conversely, NeSTM suffers mainly from its costly validation procedure, naive merging at commit-

JVSTM NesTM PNSTM

STMBench7 0.1% 0.4% 6%
Vacation 27% 36% 98%

Table 8.5: Percentage of transactions that failed in their first attempt.

83

time, and spurious aborts (which serve to avoid livelocks heuristically). On the other hand, in the case of

PNSTM most of the overhead comes both from the reads that have the same costly path as the writes,

and from its read-read conflict detection.

This also strengthens the idea that we cannot reason about the performance of each parallel nesting

approach independently of the underlying TM used, because the quite different design choices of the

underlying TM may have a significant effect on the performance of the parallel nesting algorithm. In

particular, PNSTM was designed specifically with the purpose of providing a parallel nesting algorithm

that performed completely independent of the nesting depth. Unfortunately, that decision makes it

extremely inefficient in practical applications such as those mimicked by these benchmarks. A similar

conclusion applies to NesTM because it uses single versions and, thus, read-only transactions may abort.

8.4 Summary

In this chapter I began by confirming the expectation that the JVSTM InPlace design would perform

better than the Naive and SharedWS designs when exploring parallel nesting. This is visible not only

in the fact that it produces the least overhead, but also in the fast paths that it offers even under high

concurrency and contention.

Then, I compared two other STMs that support parallel nesting with the JVSTM. That comparison

suggested that the JVSTM would behave worse due to the complexity of the worst cases of its operations.

Yet, it is also important to take into account the design decisions that enable those complexity bounds.

To assess the consequence of those decisions, I provided an evaluation in two well-known benchmarks.

Although the parallel nesting algorithm of the JVSTM is theoretically worse, it contributed efficiently to

the improvement of the performance over its baseline implementation. On the other hand, the alternatives

either obtained weaker results or could not improve at all. In particular, PNSTM was tailored to suit

better parallel nesting but failed to be adequate to a wide variety of workloads.

These results support the thesis statement of this dissertation both in terms of alternative designs for

the JVSTM as well as by comparing the chosen design against state of the art alternatives in the related

work.

84

Chapter 9

Conclusions

The widespread growth of parallel computation power has unveiled the concern for the development

of scalable applications. In the context of synchronizing the access to shared data in these applica-

tions, I addressed the pitfalls of mutual exclusion resorting to locks, and how the Transactional Memory

abstraction may solve those issues.

Transactional Memory supports the composability of different software components via nesting of

transactions. This nesting capability provides more flexibility to an application using a TM. However, it

is still limited when code that runs within the scope of an atomic block makes use of multi-threading.

In this dissertation I explored parallel nesting, which is a mechanism that overcomes that limitation

in the expressiveness of TM. I additionally used it in a novel approach to overcome the problems caused

by the optimistic concurrency control mechanisms used by TM in highly-conflicting workloads. Next,

in Section 9.1 I elaborate on the contributions of my work. I discuss the challenge of finding latent

parallelism, in Section 9.2. Then, in Section 9.3, I conclude with some future directions for research.

9.1 Main Contributions

To accomplish the goals of this dissertation, I presented three algorithms with different design choices

for parallel nesting. These incrementally improved over previous designs by addressing challenges iden-

tified in earlier stages. The InPlace algorithm is my main contribution: It is a low-overhead parallel

nesting algorithm for a multi-version STM that successfully tackled all those difficulties. With that

algorithm we can obtain the following benefits:

• More expressiveness: I provided a more flexible TM in which it is possible to parallelize transactions

as opposed to the traditional perspective that has seen transactions as a sequential set of instruc-

tions. It is perfectly acceptable that an application programmer identifies some code as meant to

run within a transaction, while at the same time willing to parallelize that same code. In that

sense, I provided the tools that allow him to do so. In particular, the reason behind wanting to

do that may very well be to overcome the limitations of TM in conflicting workloads such as those

that I identified in this dissertation. Yet, I point out that it is also possible to envision automatic

parallelization tools that may create parallel tasks within the control flow of parallel code. In fact,

85

this has been attempted by using TM to synchronize the access to shared data [3], in which case

the work presented in this dissertation is once again crucial.

• Better performance: The algorithms that I proposed and the challenges overcome during their cre-

ation constitute an important understanding of parallel nesting: As shown with the initial approach,

it is not trivial to design a parallel nesting algorithm that supports unlimited depth without incur-

ring into excessive overheads that preclude the benefits of the parallelism being explored. I showed

that parallel nesting can be used to improve the performance obtained with TM in some highly-

conflicting workloads. For that, I presented the first complete implementation and evaluation that

took advantage of parallel nesting to overcome highly-conflicting workloads in known benchmarks.

• Unaffected performance for normal transactions: The solutions that I proposed never put at risk

the performance of the underlying TM. This means that the performance of top-level transactions

remains unchanged even though the TM now supports parallel nesting. This happens because the

changes that I described are either negligible or are outside the normal path of execution for a top-

level transaction. This fact is of great relevance, as much of the related work that provided parallel

nesting either created a new TM from scratch that suited the needs of parallel nesting (such as

eager update and conflict detection) or affected the performance of normal transactions. Typically

these hand-crafted TMs provided elegant or theoretically efficient parallel nesting algorithms, but

were not adequate for general use in various workloads as a TM should be. Another important

contribution is that my algorithm is the first to support multi-versions.

Moreover, I contributed with the creation of a scheduler that can be used to improve the results of

parallel nesting. The Serial scheduler has the following benefits:

• Take advantage of scheduling: I showed that the benefits obtained with parallel nesting are sub-

stantially increased when a conflict-aware scheduler is used. This is interesting as I did not directly

explore the benefits of performance that a scheduler may yield due to the reduction of conflicts.

Instead, I explored a side-effect of scheduling to decide when to use inner parallelism in a trans-

action. This is, in itself, another benefit that may be obtained from using scheduling, beyond the

more obvious reason that usually motivates for it.

• Automatized decision to use parallel nesting: Another important benefit concerns the integration

of the scheduler with the STM. I embedded the Serial scheduler in the JVSTM and provided an

API that the programmer may use for his applications to take advantage of the scheduler. This

enriches the set of tools that I give to a programmer that seeks to parallelize transactions: He no

longer has to decide when to use parallel nesting, because the scheduler (within the TM) can decide

that with runtime information about the conflicts.

9.2 The problem of finding latent parallelism

In Chapter 8 I showed the performance benefits obtained with parallel nesting. Namely, I paralellized

the read-write long-traversals of the STMBench7 and presented the gains over the sequential execution.

Generally, the use of the InPlace variant improved over the performance without parallel nesting.

Yet, even if a programmer uses the tools that I provide in this dissertation, he is not guaranteed to

obtain improvements. A key observation in my evaluation is that the best results are attained when two

86

conditions are met: (1) top-level transactions fail to deliver significant improvements with the increase of

parallel threads, because of contention among the transactions, which inhibits the optimistic concurrency

severely; and (2) each top-level transaction contains some substantial computation that is efficiently

parallelizable.

Yet, traversal t5 was a different case, as its parallelization did not result in any improvements. This

happened for two reasons: (1) the identified parallelization caused conflicts between the siblings; and (2)

the traversal is 10 to 100 times smaller than the other traversals that were successfully parallelized.

The first issue has been a cause of concern in a wide variety of topics. This particular example

may be seen as a more general challenge of how to parallelize code. Generally, the difficulty is in doing

so in such a way that the synchronization of the parallel tasks does not overwhelm the benefits of the

parallelism. In the example, this is happening in the form of the conflicts created between the parallel

nested transactions. Therefore, the performance gains that may be obtained with the strategy that I

proposed in this dissertation are tightly related with the way the code is parallelized. That has been in

itself a source of many research efforts, but nevertheless relevant to this work.

To evaluate my work, I parallelized three different benchmarks. Yet, doing that parallelization was

not a particularly easy task. The difficulty of identifying parallelism is yet another well known challenge

in the research community, which led to some research efforts that explored automatic parallelization

and programming language constructs to ease the job of the programmer. Consequently, the difficulty

of exploring nested parallelism is contradictory to the idea that TM is meant to be simple to use. Of

course, nested parallelism may be delegated to experts, but then the general programmer may be losing

performance gains that would be possible to obtain with TM. In practice it could almost be considered a

process of fine-tuning the performance for specific workloads or transactions. This open issue falls in the

same category of many other constructs built over TM: There is a constant trade-off between preserving

its simplicity, or making it more powerful but at the same time harder to use.

The second point takes into consideration the amount of work being parallelized. Although tightly

related to the previous point, it also has other implications. In this case, the loss of performance is due

to the overhead of the management of transactions. Such overhead results from the burden of going

through the start, validation and, commit of transactions that encapsulate code that would otherwise

be executing in single thread within a top-level transaction. Even more, transactional reads and writes

are also necessarily more complex in this setting. Consequently, this boils down to the challenge of

providing parallel nesting such that this overhead does not overwhelm the paralellization obtained. Of

course, as the size of the code to parallelize gets smaller, the easier it is for the overhead to be noticeable.

Even though I was able to reduce this overhead substantially, as shown in several benchmarks with the

InPlace design, ultimately it is always an open issue unless the algorithm has no overhead at all.

9.3 Future research

In this section I discuss directions that can be followed in future research related to the work described

throughout this dissertation. None of these issues is directly related to the goals that I proposed to attain

and, thus, were left out for future exploration as they would constitute a considerable amount of work.

Nevertheless, I think that the following directions are topics worth of research effort.

87

9.3.1 Parallel TM

This dissertation showed that the existing parallelization in some workloads may not efficiently take

advantage of all the available processors. Namely, because blindly using all of them to run top-level

transactions may yield many conflicts that preclude concurrency and thus inhibit performance gains.

My solution to this problem is for the programmer to identify new parallelism to be explored within

transactions.

An interesting topic for future research would be to parallelize the TM itself. This would imply

studying and changing the algorithms used in the operations of TM to allow them to be executed by

several threads. One trivial example is the validation procedure at commit-time: Iterating the read-set

to ensure that each read is still consistent is a parallelizable operation. I also envision other possibilities

such as parallelizing the lookup for a RAW in the read operation.

Moreover, this idea would still benefit from the scheduling that I described in this dissertation: A

transaction would only use more threads if the scheduler had granted it permission to do so.

9.3.2 Threads and Transactions

The best practices in software development encourage programmers to modularize their code and to

abide to well defined interfaces [42]. As we have seen, this explicitly contradicts lock-based concurrency,

in which the programmer has to be aware of modules’ internal locking conventions. However, that is not

the case for transactions, which provide composability using nesting. Unfortunately, this is not so simple

when we take into consideration that multi-threaded code may exist in the control flow of transactions.

Here, I shall refer to threads to designate some form of execution of parallel code without loss of generality.

In the literature there has been an implicit coupling between a transaction and the thread in which

it is running. In particular, if a thread starts a transaction already in the context of another transaction,

the new one will be nested in its outer enclosing transaction. Moreover, it will run in the same thread.

This is considered to be the normal case, in which the code within the transaction is sequential and

transactions compose naturally.

Consider now an application that uses TM and some of the transactions identified are wrapping code

that internally resorts to threads. The consequence is that the multi-threaded code that is executed within

those threads will escape the control of the TM system. This is a concern that crosscuts programming

languages, although in this work I turn my attention to Java. A transaction is managed at a given thread,

but nothing should forbid other threads from being included in that transactional context as well. The

underlying problem is that threads are completely agnostic of transactions. Therefore, there seems to

exist a need of identifying their relation and to make threads aware of transactions so that both may be

used transparently in a composable manner.

It has been consensual that creating a new transaction should always mean that it executes in the

current thread and in the context of a possibly already executing transaction. What is left to define

is what happens when a thread is spawned by a thread that is executing a transaction. In this case,

I identify three possible scenarios. To simplify the discussion, let us consider that when a thread Thi

spawns another thread Thj , Thi is the father of Thj :

• Thread Thj executes in the context of a new transaction. This new transaction is a child of Thi’s

88

transaction. This scenario is representative of the parallel nesting model presented in Section 4.2:

There is a one-to-one relation between transactions and threads. Moreover, the childhood relation-

ship created between threads is mimicked in transactions as well. This is the safest alternative in

terms of accesses to shared data as there is no danger of breaking the correctness criterion with the

new threads being executed in parallel.

• Thread Thj executes in the context of the transaction that was running in its father. Ultimately,

this means that a single transaction may have multiple threads concurrently running in its context.

That may happen if Thi spawns more than one thread for concurrent execution. I addressed

how this scenario may be implemented and applied to in Section 8.2. In short, it makes sense

when the concurrent threads spawned are completely independent from each other, but may not

be independent from other unrelated threads. Eventually, if Thj contains code that starts a new

transaction, then this transaction composes with the transaction of Thi.

• Thread Thj escapes the transactional context of its father. This happens if Thj encapsulates

its execution in a new top-level transaction or none at all. In any case this may be seen as an

irrevocable action: If the transaction running in Thi aborts, the actions performed within Thj will

remain unaffected.

I only present and discuss this issue briefly in this dissertation. A future research direction would

be to provide a new language construct that unifies the concepts of transaction and thread to take into

account the scenarios described. The main objective is to ease the exploration of parallelization and the

correct synchronization of the code, which are concerns that are related to parallel nesting as well.

Still, I partially tackled some of the issues discussed, by providing a specific approach that requires

the programmer to consciously create threads aware of possible transactions that may be executing. I

present this API in Appendix A.

89

Appendix A

Using parallelism within transactions

Throughout this dissertation, we have seen how the inner workings of a TM may be adapted to support

and take advantage of parallelism within transactions. Yet, it is a mechanism that has to be exposed for

it to be useful in any way. It may be used directly by the programmer or by an automatic/speculative

parallelization tool. In either way, it is important to address its interface and usage.

In the next section I describe the interface that I provide in the JVSTM to allow parallelism within

transactions, starting with the next section. Then, in Section A.2, I explain how I implemented the inner

workings of the exposed API by means of Java bytecode rewriting.

A.1 Interfacing with threads and transactions in Java

In this section I describe how the programmer may use parallel nesting in the JVSTM. The API hides

the details of the underlying algorithm, which may be any of the three alternatives presented in this

dissertation.

This API represents the intent of a programmer who wants to parallelize part of its program that

uses TM. This means that the parallelization may occur within the control flow of transactions. Yet,

nothing forbids its use outside transactions, thus allowing the programmer to easily compose its program:

A certain method that the programmer parallelizes may be reachable from both transactional and non-

transactional contexts. Next, I revisit the examples from Chapter 2 to drive the description of the API.

In Listing A.1 I use some abstractions provided by the JVSTM to ease readability. Namely, the

@Atomic annotation is processed at compile time to produce code to start, handle and finish a trans-

action in the annotated method. Moreover, the VList is a transactional class that implements the

java.util.List interface. For that, it is using VBoxes in its internals.

Let us now look into the parallelization of the method enrollMultipleCourses. The idea is

to enroll the student in each course concurrently. A given point of parallelization entails the following

stages: (1) identification of the parallel tasks; (2) transactional execution of each of those tasks; (3)

retrieval of the results and continuation of the execution flow. To represent one point of parallelization

in the program, I created the ParallelSpawn interface shown in Listing A.2.

91

class Course {

final int capacity;
final VList<Student> enrolledStudents;

Course(int capacity) {
this.capacity = capacity;
this.enrolledStudents = new VList<Student>();

}

@Atomic
boolean enrollStudent(Student std) {
if (enrolledStudents.size() < capacity) {
enrolledStudents.add(std);
return true;

} else {
return false;

}
}

@Atomic
void enrollMultipleCourses(Student std, List courses) {
for (Course course : courses) {

if (!course.enrollStudent(std)) {
TM.abort();

}
}

}

}

Listing A.1: Class representing a college course in which students may enroll.

public interface ParallelSpawn<T> {

public static final Object RETURN_FROM_METHOD = new Object();

public void exec();

}

Listing A.2: Interface to be implemented by the programmer representing points of parallelism.

The idea is that each point of parallelization is reified in an implementation of that interface. List-

ing A.3 shows the parallelization of the method enrollMultipleCourses as explained before. In

particular, an inner class was created that implements the ParallelSpawn interface. This way, the

point of the parallelization now entails instantiating this reification and executing it, thus abstracting the

handling of the parallelization and transactional context inside it.

Next, I describe what the programmer is required to implement in these points of parallel task

spawning. Note that each of these points is related to the three stages identified above:

• Parallel tasks: The code that corresponds to each parallel task must be identified by the programmer

with the @ParallelAtomic annotation. The semantics of this annotation are twofold: It means

that the code within the method will execute in parallel as well as within a transaction. The latter

is agnostic to whether the control flow is already within a transaction or not. This means that the

transaction created, for each concurrent task, may be either top-level or nested. In the example

provided, the only parallel task presented is the one in method enroll, which delegates its logic

to the code within the Course class.

• Method exec: This requirement is imposed by the interface being implemented. This method repre-

92

class Course {

(...)

@Atomic
void enrollMultipleCourses(Student std, List courses) {
if (new ParallelEnrollment(std, courses).exec() == false) {

TM.abort();
}

}

class ParallelEnrollment implements ParallelSpawn<Boolean> {

Student std;
List courses;

ParallelEnrollment(Student std, List courses) {
this.std = std;
this.courses = courses;

}

@Override
Boolean exec(){
for (Course course : this.courses) {
enroll(this.std, course);

}
return ParallelSpawn.RETURN_FROM_METHOD;

}

@ParallelAtomic
Boolean enroll(Student std, Course course) {
return course.enrollStudent(std);

}

@Combiner
Boolean combine(List<Boolean> results) {
return !results.contains(false);

}

}

}

Listing A.3: Parallelization of the method enrollMultipleCourses from Listing A.1.

sents the spawn of the parallel tasks. Each invocation to a method annotated with @ParallelAto-

mic, within the class, corresponds to a parallel task being launched. For this to be possible, I rewrite

this method at compile time using the ASM bytecode library [10]. In particular, the exec method

in Listing A.3 shall be rewritten in such a way that the invocation of enroll is changed. I explain

the details of how that is achieved in the next section.

• Combining the results: The exec method calls one or more methods annotated with @ParallelA-

tomic, which produce a set of results. Consequently, the execution of a ParallelSpawn has to

combine those results into some result that represents the execution of the point of parallelization.

The type of this final result is defined by the parametrization of the ParallelSpawn, which in

Listing A.3 is a Boolean. The programmer is responsible for creating a method, annotated with

@Combiner, that produces that Boolean. The arguments of the combiner method are defined

by the return types of the parallel tasks that the programmer calls in exec. My tool limits the

combiner method to receive only one argument, which means that all @ParallelAtomic methods

called in the exec of a ParallelSpawn must have the same return type. This sufficed for all the

93

benchmarks tested in this dissertation. In particular, for the example used above, the set of results

of the parallel tasks is an arbitrary number of Boolean instances because the parallel method

identified returns a Boolean. Consequently, the programmer has to create a method that receives

a List<Boolean> to combine.

Summarizing, to allow changing from a sequential to a parallel execution, a ParallelSpawn imple-

mentation comprises a decoupling between the identification of tasks, its invocation, and the collection

of a single result that represents that computation.

So far this applies to the case in which a new transaction is always created in threads spawned in

transactional contexts. Yet, I also described the scenario in which a new transaction may not be required,

and it is enough to execute the new threads in the context of the transaction of their parent (Section 8.2).

Once again, it is a decision that the programmer has to take consciously. Therefore, it suffices to have

a different interface similar to what was described so far. In this case, the ParallelUnsafeSpawn is

interpreted by the bytecode rewriter as a point of parallelization in which a transaction is only created

within each callable if the parent did not have any transaction.

A.2 Providing support for the API

The set of requirements described to use parallel nesting is far from elegant and simple. The main

reason behind it is that I refrained from changing the language constructs: Everything is compatible

with a common Java compiler and runtime. Next, I shall briefly explain the changes that I perform

automatically in the code. To simplify the description, I shall provide examples with the equivalent code

in Java despite the fact that all the modifications are performed in Java bytecode.

To allow executing each of the invocations concurrently, I encapsulate those calls in implementations

of Callables, as shown in Listing A.4 for the method enroll. This way I turn those invocations into

first class citizens that may be manipulated in the program. In particular, it allows collecting all the calls

to methods annotated with ParallelAtomic and only then submitting them for parallel execution in

a thread pool.

Therefore each method annotated with ParallelAtomic will have a corresponding Callable au-

tomatically generated. This Callable receives an instance of the class that encapsulates the annotated

method to allow calling the method. Additionally, its constructor also captures a possible transaction

that is executing at the time. Recall that the constructor is executed in the parent thread of this paral-

lelization point. Lastly, the call to the annotated method is wrapped with code to handle the beginning,

commit and abort of a transaction. I omitted it in Listing A.4 for simplicity. The fact that a possible par-

ent transaction is made known in this thread leads to the aforementioned composability of transactions

when the new transaction is created.

After this transformation, we just need to modify the exec method. Listing A.5 demonstrates the

equivalent Java code of those modifications. I create a new list to hold the parallel tasks in the beginning

of the exec method. I also append code to hand-off that list of tasks to the JVSTM, which I extended to

handle the execution of parallel (and potentially nested) transactions in a thread pool. Those tasks, reified

by Callables, are submitted to an ExecutorService. Finally, the result of the parallel execution is

passed to the combiner method.

94

class ParallelEnrollment$enroll$1 implements Callable<Boolean> {

ParallelEnrollment arg0;
Student arg1;
Course arg2;
Transaction parent;

ParallelEnrollment$enroll$1(ParallelEnrollment arg0,
Student arg1, Course arg2) {

this.arg0 = arg0;
this.arg1 = arg1;
this.arg2 = arg2;
this.parent = Transaction.current();

}

Boolean call() {
Transaction.setCurrent(this.parent);
// Code for handling transactions omitted for simplicity
(...)
Object result = execute();
(...)
Transaction.setCurrent(null);
return result;

}

Boolean execute() {
return this.arg0.enroll(arg1, arg2);

}

}

Listing A.4: Callable generated for parallel execution of a method identified with @ParallelAtomic.

To populate the list of tasks, I have to replace calls to methods annotated with @ParallelAtomic.

In its place, I need to create the corresponding generated Callable and to add it to the list of tasks.

It may be difficult to do so, given the intrinsic difficulties of manipulating arbitrary code that may be

involved in computing and pushing the arguments of the method call to the stack. Therefore, I chose to

create a static method responsible for instantiating each generated Callable. This allows me to replace

the call to the parallel method with the corresponding static method, followed by its addition to the list

of tasks.

95

class ParallelEnrollment implements ParallelSpawn<Boolean> {

Student std;
List courses;

ParallelEnrollment(Student std, List courses) {
this.std = std;
this.courses = courses;

}

@Override
Boolean exec() {

List<Callable<Boolean>> tasks = new ArrayList<Callable<Boolean>>();
for (Course course : this.courses) {

ParallelEnrollment$enroll$1 var = create$enroll$1(this, std, course);
tasks.add(var);

}
return combine(JVSTM.manageParallelExecution(tasks));

}

static ParallelEnrollment$enroll$1 create$enroll$1(ParallelEnrollment arg0,
Student arg1, Course arg2) {

return new ParallelEnrollment$enroll$1(arg0, arg1, arg2);
}

@ParallelAtomic
Boolean enroll(Student std, Course course) {

course.enrollStudent(std);
}

@Combiner
Boolean combine(List<Boolean> results) {

return !results.contains(false);
}

}

Listing A.5: Class representing a parallelization of Listing A.3 after being automatically rewritten by the
bytecode processor.

96

Bibliography

[1] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism in transactional memory. In Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, PPoPP
’08, pages 163–174, Salt Lake City, USA, 2008. ACM.

[2] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nested transactions through ownership. In
Proceedings of the 20th annual Symposium on Parallelism in Algorithms and Architectures, SPAA
’08, pages 110–112, Munich, Germany, 2008. ACM.

[3] I. Anjo and J. Cachopo. Jaspex: Speculative parallel execution of java applications. In 1st INFO-
RUM, Faculdade de Ciências da Universidade de Lisboa, 2009.

[4] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. Luján, and K. Jarvis. Lee-TM: A non-trivial
benchmark suite for transactional memory. In Proceedings of the 8th international conference on Al-
gorithms and Architectures for Parallel Processing, ICA3PP ’08, pages 196–207, Agia Napa, Cyprus,
2008. Springer-Verlag.

[5] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Watson. Steal-on-abort: Improving
transactional memory performance through dynamic transaction reordering. In Proceedings of the
4th International Conference on High Performance Embedded Architectures and Compilers, HiPEAC
’09, pages 4–18, Paphos, Cyprus, 2009. Springer-Verlag.

[6] H. Attiya and E. Hillel. Single-version STMs can be multi-version permissive. In Proceedings of the
12th International Conference on Distributed Computing and Networking, ICDCN’11, pages 83–94,
Bangalore, India, 2011. Springer-Verlag.

[7] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating nested parallel
transactions in software transactional memory. In Proceedings of the 22nd ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’10, pages 253–262, Thira, Santorini, Greece,
2010. ACM.

[8] D. B. Baptista. Task scheduling in speculative parallelization, November 2011.

[9] J. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging parallel nesting
in transactional memory. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’10, pages 91–100, Bangalore, India, 2010. ACM.

[10] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to implement adaptable
systems. In Adaptable and Extensible Component Systems, AECS ’02, Grenoble, France, 2002.

[11] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis for memory transactions. Science of
Computer Programming, 63(2):172–185, Dec. 2006. Elsevier, North-Holland, Inc.

[12] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 007 benchmark. In Proceedings of the 1993 ACM
SIGMOD International conference on Management of Data, SIGMOD ’93, pages 12–21, Washington
D.C., United States, 1993. ACM.

[13] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and K. Olukotun.
The Atomos transactional programming language. In Proceedings of the ACM SIGPLAN conference
on Programming Language Design and Implementation, PLDI ’06, pages 1–13, Ottawa, Canada,
2006. ACM.

97

[14] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM by abolishing ownership
records. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 67–78, Bangalore, India, 2010. ACM.

[15] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proceedings of the 20th international
conference on Distributed Computing, DISC’06, pages 194–208, Stockholm, Sweden, 2006. Springer-
Verlag.

[16] N. Diegues and J. Cachopo. Review of nesting in transactional memory. Technical Report RT/1/2012,
Instituto Superior Técnico/INESC-ID, January 2012.

[17] N. Diegues and J. Cachopo. On the design space of parallel nesting. In the 4th Workshop on Theory
of Transactional Memory, WTTM ’12, Madeira, Portugal, 2012.

[18] N. Diegues, S. Fernandes, and J. Cachopo. Parallel nesting in a lock-free multi-version software trans-
actional memory. In the 7th ACM SIGPLAN Workshop on Transactional Computing, TRANSACT
’12, New Orleans, USA, 2012.

[19] S. Dolev, D. Hendler, and A. Suissa. CAR-STM: scheduling-based collision avoidance and resolution
for software transactional memory. In Proceedings of the 27th ACM Symposium on Principles of
Distributed Computing, PODC ’08, pages 125–134, Toronto, Canada, 2008. ACM.

[20] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching transactional memory. In Proceedings of
the ACM SIGPLAN conference on Programming Language Design and Implementation, PLDI ’09,
pages 155–165, Dublin, Ireland, 2009. ACM.

[21] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh. Preventing versus curing: avoiding conflicts
in transactional memories. In Proceedings of the 28th ACM symposium on Principles of Distributed
Computing, PODC ’09, pages 7–16, Calgary, Canada, 2009. ACM.

[22] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based software transac-
tional memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’08, pages 237–246, Salt Lake City, USA, 2008. ACM.

[23] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In Proceedings of the 23rd interna-
tional conference on Distributed Computing, DISC’09, pages 93–107, Elche, Spain, 2009. Springer-
Verlag.

[24] S. Fernandes and J. Cachopo. Lock-free and scalable multi-version software transactional memory.
In Proceedings of the 16th ACM symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 179–188, San Antonio, USA, 2011. ACM.

[25] K. Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer Laboratory, 2003.
Also available as Technical Report UCAM-CL-TR-579.

[26] R. Guerraoui, T. A. Henzinger, and V. Singh. Permissiveness in transactional memories. In Pro-
ceedings of the 22nd international symposium on Distributed Computing, DISC ’08, pages 305–319,
Arcachon, France, 2008. Springer-Verlag.

[27] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceedings of the 20th annual
Symposium on Parallelism in Algorithms and Architectures, SPAA ’08, pages 304–313, Munich,
Germany, 2008. ACM.

[28] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’08,
pages 175–184, Salt Lake City, USA, 2008. ACM.

[29] R. Guerraoui and M. Kapalka. The semantics of progress in lock-based transactional memory. In
Proceedings of the 36th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
languages, POPL ’09, pages 404–415, Savannah, USA, 2009. ACM.

[30] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: a benchmark for software transactional
memory. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 315–324, Lisbon, Portugal, 2007. ACM.

98

[31] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended queues as
an example. In Proceedings of the 23rd International Conference on Distributed Computing Systems,
ICDCS ’03, pages 522–529, Washington, USA, 2003. IEEE Computer Society.

[32] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for
dynamic-sized data structures. In Proceedings of the 22th annual symposium on Principles of Dis-
tributed Computing, PODC ’03, pages 92–101, Boston, Massachusetts, 2003. ACM.

[33] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free data
structures. In Proceedings of the 20th annual International Symposium on Computer Architecture,
ISCA ’93, pages 289–300, San Diego, USA, 1993. ACM.

[34] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, Mar. 2008.

[35] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, July 1990. ACM.

[36] D. Imbs and M. Raynal. A lock-based STM protocol that satisfies opacity and progressiveness. In
Proceedings of the 12th International Conference on Principles of Distributed Systems, OPODIS ’08,
pages 226–245, Luxor, Egypt, 2008. Springer-Verlag.

[37] R. Kumar and K. Vidyasankar. HParSTM: A hierarchy-based STM protocol for supporting nested
parallelism. In the 6th ACM SIGPLAN Workshop on Transactional Computing, TRANSACT, 2011.

[38] P. Kuznetsov and S. Ravi. On the cost of concurrency in transactional memory. In Proceedings of the
15th International Conference On Principles Of Distributed System, OPODIS ’11, pages 112–117,
Toulouse, France, 2011. Springer-Verlag.

[39] J. Manson, W. Pugh, and S. V. Adve. The java memory model. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’05, pages 378–
391, Long Beach, USA, 2005. ACM.

[40] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive software transactional memory. In
Proceedings of the 19th International Symposium on Distributed Computing, DISC ’05, Cracow,
Poland.

[41] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and M. L.
Scott. Lowering the overhead of software transactional memory. Technical Report TR 893, Computer
Science Department, University of Rochester, Mar 2006.

[42] R. Martin. Solid design principles and design patterns. In http://butunclebob.com/

ArticleS.UncleBob.PrinciplesOfOod, 2000.

[43] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional applications
for multi-processing. In IEEE International Symposium on Workload Characterization, IISWC ’08,
pages 35–46, Seattle, USA, 2008.

[44] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit, M. M. Swift, and D. A.
Wood. Supporting nested transactional memory in LogTM. In Proceedings of the 12th international
conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’06, pages 359–370, San Jose, USA, 2006. ACM.

[45] J. E. B. Moss. Open nested transactions: Semantics and support. In poster presented at Workshop
on Memory Performance Issues, WMPI ’06, 2006.

[46] J. E. B. Moss and A. L. Hosking. Nested transactional memory: model and architecture sketches.
Science of Computer Programming, 63(2):186–201, Dec. 2006. Elsevier, North-Holland, Inc.

[47] K. Olukotun and L. Hammond. The future of microprocessors. Queue, 3(7):26–29, Sept. 2005. ACM.

[48] A. Oram and G. Wilson. Beautiful Code: Leading Programmers Explain How They Think. O’Reilly,
2007.

[49] V. Pankratius and A.-R. Adl-Tabatabai. A study of transactional memory vs. locks in practice. In
Proceedings of the 23rd ACM symposium on Parallelism in Algorithms and Architectures, SPAA ’11,
pages 43–52, San Jose, USA, 2011. ACM.

99

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

[50] C. H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM,
26(4):631–653, Oct. 1979. ACM.

[51] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In Proceedings of
the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’10,
pages 16–25, Zurich, Switzerland, 2010. ACM.

[52] H. Ramadan and E. Witchel. The Xfork in the road to coordinated sibling transactions. In the 4th
ACM SIGPLAN Workshop on Transactional Computing, TRANSACT, 2009.

[53] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with eager validation. In Proceedings
of the 20th international conference on Distributed Computing, DISC’06, pages 284–298, Stockholm,
Sweden, 2006. Springer-Verlag.

[54] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-STM: a high
performance software transactional memory system for a multi-core runtime. In Proceedings of the
11th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, PPoPP ’06,
pages 187–197, New York, USA, 2006. ACM.

[55] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the 14th annual ACM
symposium on Principles of Distributed Computing, PODC ’95, pages 204–213, Ottowa, Canada,
1995. ACM.

[56] M. F. Spear, V. J. Marathe, W. N. Scherer, and M. L. Scott. Conflict detection and validation
strategies for software transactional memory. In Proceedings of the 20th international conference on
Distributed Computing, DISC’06, pages 179–193, Stockholm, Sweden, 2006. Springer-Verlag.

[57] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable transactions with a single
atomic instruction. In Proceedings of the 20th annual Symposium on Parallelism in Algorithms and
Architectures, SPAA ’08, pages 275–284, Munich, Germany, 2008. ACM.

[58] H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr.
Dobb’s Journal, 30(3). 2005.

[59] M. M. Waliullah and P. Stenström. Intermediate checkpointing with conflicting access prediction
in transactional memory systems. In Proceedings of the 22nd IEEE International Symposium on
Parallel and Distributed Processing, IPDPS ’08, pages 1–11, Miami, USA, 2008. IEEE.

[60] G. Weikum. Principles and realization strategies of multilevel transaction management. ACM Trans-
actions on Database Systems, 16(1):132–180, Mar. 1991. ACM.

[61] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional memory systems. In
Proceedings of the 20th annual Symposium on Parallelism in Algorithms and Architectures, SPAA
’08, pages 169–178, Munich, Germany, 2008. ACM.

100

	Introduction
	Thesis Statement
	Notation
	Publications
	Outline

	Motivation and Objectives
	Synchronization of Concurrent Operations
	Transactional Memory
	Seeking better performance
	Goals and Contributions of this Work
	Validation
	STMBench7
	Vacation
	Lee-TM

	Related Work
	Transactional Memory Theory and Guarantees
	Correctness Criteria
	Operation level liveness
	Progressiveness
	Permissiveness

	Transactional memory design choices
	Update Policy
	Conflict detection and resolution

	Achieving Nesting by flattening
	Linear Nesting
	Parallel Nesting in TMs
	NeSTM
	HParSTM
	PNSTM

	Discussion of existing Parallel Nesting Implementations

	A naive algorithm
	JVSTM
	Optimizations to the read-set and write-set
	Nesting in the JVSTM

	Parallel Nesting Model
	An initial approach towards parallel nesting
	Data-structures and auxiliary functions
	The Naive algorithm

	A lock-free algorithm
	Data-structures
	Reading from a VBox
	Writing to a VBox
	Committing Parallel Nested Transactions
	Lock-free commit
	Abort procedure
	Correctness in the Java Memory Model
	Discussion of the Shared write-set design

	A practical algorithm
	Data-structures and auxiliary functions
	Reading a VBox
	Writing to a VBox
	Fallback mechanism
	Committing a parallel nested transaction
	Correctness in the Java Memory Model
	Progress guarantees
	Maintenance of read-sets
	Discussion of the InPlace design

	Scheduling for Profit
	Scheduling transactions
	A scheduler for the JVSTM
	Serial scheduler

	Using the Serial scheduler

	Evaluation
	Evaluating the different JVSTM-based implementations
	Vacation
	STMBench7

	Relinquishing the overhead of parallel nesting
	Comparison against the state of the art
	Worst-case complexity bounds
	Practical comparison
	Discussion

	Summary

	Conclusions
	Main Contributions
	The problem of finding latent parallelism
	Future research
	Parallel TM
	Threads and Transactions

	Using parallelism within transactions
	Interfacing with threads and transactions in Java
	Providing support for the API

