
i

, ' SAND--90-2 383C

DE91 000034

OCT0 1 1990

I

Practical Path Planning

among Movable Obstacles*

Pazlg C. Chen Yong K. Hwang
Sandia National Laboratories

Albuquerque, NM 87185

September 5, 1990

Abstract

Path planning among movable obstacles is a practical problem that is in

need of a solution. In this paper, we present an efficient heuristic algorithm that

uses a generate-and-test paradigm: a "good" candidate path is hypothesized

by a global planner and subsequently verified by a local planner. In the process

of formalizing the problem, we also present a technique for modeling object

interactions through contact. Our algorithm has been tested on a variety of

examples, and was able to generate solutions within 10 seconds.

1 Introduction

Path planning for mobile robots is a key component in robotics, and has received

much attention. Various approaches have been used to plan short and safe paths.

Most of the previous work, however, ha_ considered environments with stationary

obstacles, obstacles moving along prescribed trajectories, or the control of multiple

robots. In the movable obstacle problem, the robot is allowed to move objects in

the environments to clear a path for itself. This problem is very important and

practical since mobile robots often encounter situations in Which objects have to be

moved out of the robot's way. Unfortunately, however, the movable-obstacle problem

has been shown to have high complexity [WilfS8], and an exact algorithm is not

expected to run within practical limits. Ou the other hand, allowing the robot to

move objects creates more solutions than in a fixed environment. In this respect,

practical path pla:,aing among movable obstacles should be easier than among fixed

*This work has been performed at Sandia National Laboratories and supported by the U.S. De-
partme,lt of Energy under Contract DE-AC04-7¢_DP00789.

, MATER
. - - ,'_L.',,',",i _ ,':::.,',................. -":r'";_ (.,_;-"i-I",,;:,L':.-_ :":-:,--fvi£!;'7"i",,:

0 ° I

• " e

obstacles. We demonstrate this point by presenting a fast, heuristic algorithm that

solvesthe movable-obstacleprobleluin a varietyofsituations.

Several approaches have been used to plan paths for mobile robots. The visibility

graph is used when the shortest path is desired [LoWe79, RaIS88, FuSa90]. The

paths in the visibility graph touch the corners of obstacles to minimize the path

lengths. Retraction approaches use the Voronoi diagra m or the medial axes of the

free space [OdYa82, HwAh89] to generate paths that stay as far away from obstacles as

possible. Cell decomposition techniques build obstacle-free cells of the free space, and

find paths from the graph representing the adjacency information of the cells. The cell

shapes can either be uniform such as in quadtree [KaDa86, NoNA89], or dependent

upon the boundaries of obstacles [Nguy84, RuWo87, SiWaS7]. Grid representations of

environments are used for twocases. When the environment consists of regions with

different traveling costs, a search for the rninimum-cost path through the grid can be

conducted [GaMe86, A1Ro90]. When a sMety margin is desired between the robot and

the obstacles, each point on the grid is assigned a. cost based on an artificial potential

that increases as the robot approaches obstacles [KrTh85, Wart89, HaBC90]. The

minimum-cost path found then represents the shortest path with the desired amount

of safety margin.

Other variations of the path planning problem for mobile robots include the mov-

ing obstacle problem [ReSh85, KaZu88, FuSa90], the multi-robot problem [ScSh83,

Buck89, LiKN89, PaCa90], and the unknown environment problem [LuSt87, SaVi90].

Both exact and heuristic algorithms have been developed to solve these problems.

There appears to be only one paper that examines the movable obstacle problem. Wil-

fong [Wilf88] has shown that the movable-obstacle problem is PSPACE-hard when

the final positions of obstacles are specified, and otherwise, NP-hard. He has pre-

sented an O(n31og 2 n) algorithm for the case of one movable obstacle. His algorithm

computes a planar partition of the possible positions of the movable object ,_ that

within a particular partition, the free space has essentially the same connectivity

properties.

This paper presents an effective approacl, tllat yields a solution in seconds to an

otherwise intractable problem. It is essenti_,.lly grid based, and makes judicious use

of a generalized distance function to move the robot and the obstacles. This paper is

organized as follows: The movable obstacle problem is formulated in Section '2., and

our algorithm is presented in Section 3. Its performance is illustrated and evaluated

in Sections 4 and 5.

2 Problem Formulation

Let R be a mobile robot in a workspace filled with movable objects, each with a

positive weight. Let a state be a description of the workspace with the location and

orientation of each object and the robot totally specified. Given an initial state with

the robot at position s, and a goal position for the robot at t, our problem is to find

a short path for R that also minimizes the work required in moving obstacles out of

the path. More specifically, if we let r(n) be a robot path from s to t, and F(B,) be

a path for each object Bi with weight wi, then we are interested in finding a feasible

path r(n), while minimizing the length of r(R) plus the weighted length of r(B;) for
each B;.

We assume that the robot has the capability to push any object in any direction,

once it is in contact with that object. (In our implementation, the robot is assumed

to have an invisible arm that can move the touched object in any direction.) While

an object is being pushed by the robot, it may push other objects that it contacts. To

model the contact interactions between objects, we will allow an object to penetrat<

another slightly before the penetrated one can move in a direction that minirnizes the

overlap.

To facilitate the discussion and implementa.tion of our algorithm, we assume a

circular robot in a two-dimensional workspace in which each object is represented by

a union of convex polygons.

3 Algorithm

Our algorithm employs a generate-and-test strategy: We first generate a "good"

sequence of subgoals with a "global planner", _, and then test the reachability of

each subgoal with a "local move" module,/:. If a subgoal cannot be reached, then

the next best sequence of subgoals will be considered until either no sequence is

available or a feasible path is found.

In our algorithm, we use the generaliz_,_l _li._tance, d, that extends the Euclidean

distance between objects. The concept of d is described in [BuckS5], and is used

in [PaMF89] to plan paths for manipulators. When two objects A and B do not in-

tersect, d(A, B) corresponds to the minimum separation distance; otherwisc, d(A,B)

is negative, and its magnitude corresponds to the nfinimum distance A has to be

translated to be separated from B. We use d in this p_per in three important wa.ys.

First, it is used in the global planning to estiv_ate potential feasibility of a subgoal.

In the local move module, it is used to find a direction to move objects _way from the

robot's predetermined path. The generalized distance is also used to model object

interactions during contact.

3.1 Global Planning

The global planner _ finds a good sequence of subgoals by searching through a dy-
namic graph of subgoals. The initial structure of this graph G with nodes U U V and

edges E is constructed as follows: First, we subdivide the workspace into square cells

with a predetermined size, and set U = {s}, V = {t}, where s and t are the start

_ad goal positions of the robot, respectively. Then, we remdomly sample each cell for

a subgoal position v to be placed in V. Our heuristic is *.oselect a v that minimizes

0

i

the node cost

f(v) =- _ rnin(0, wid(Bi, R)),
i

which represents a lower bound on the work required to move all objects away from

the robot at v. (Notice that d(Bi, R), when negative, represents the necessary distance

that Bi has to travel to avoid a collision with R.) Finally, for each pair of positions u,

v belonging to the same or adjacent cells, we construct an edge e = (u, v) with edge

cost g(e) equal to the Euclidean distance from u to v.

With G initialized, we can now plan a good sequence of subgoals by finding a short

path in G that connects s to t. To find this path efficiently, we will not consider other

ways of reaching a subgoal once it is declared reachable. Thus, for each reachable

subgoal, we will have just one associated state that describes the positions of a.ll

objects when the robot reaches the subgoal. To avoid reentering a subgoal, we will

let U keep track of the set of no'des known to be reachable from s, and let V be its

complement in G. Since no subgoM can be entered twice, it, is only necessary for us

consider simple paths in G. Hence, we can apply Dijkstra's algorithm on G with node

cost f and edge cost g to map out a tree T of G that gives a shortest path from s to

every node in G. By tracing the path in T from t back to a node in U, we can then

find our best sequence of subgoals to be t(,st_,(I.

To verify the feasibility of an untested s('_lllence in the form

p = (vi,v2,..., vk= t),

we will begin _ith the state associated with va, and invoke the local move module to

move the robot to v2. If v_ is reachable, then we will swap v2 ft'ore V to U, associate

the state thus reached with v2, and iteratively verify the rest of the path until we

reach t. If the verification process does indeed end with t reached, then obviously a

feasible path from s to t can be retraced. However, if there is some edge (vi, vi+l) not

connectable using the local move_module, then we will penalize the edge by deleting

it from G, and proceed to generate the next candidate sequence from the new G.

To generate the next candidate sequence efficiently, we can take advantage of the

fact that only one edge (u, v) in T is deleted from the previous G, which means that

only the shortest paths to the descendents of v in T are affected. Thus, to update T,

ali we have to do is to reapply Dijkstra's algorithm on the subgraph G _ induced by

the descendents of the unreachable node v, using the neighboring nodes of G_ in G

as the new multiple source. The best sequence after updating T can then again be

obtained by tracing the path in T from t back to the first node in U.

The complexity of our Mgorithm is largely determined by n, the number nodes

in G, m, the number of times that G calls/2, and l, th_. maximum number of steps

required to execute/2. Since every node by const.ruction has only a fixed number of

neighbors, the number of edges in G is only O(n), which incidentally implies that

m = O(n). Thus, with a standard min-heap implementation [AhHU74], a shortest

path can be generated within O(nlogn) steps. Therefore, our algorithm will take

o - i

i

i

at most O(mn log n) steps in generating paths, and O(mnl) steps in verifying paths,

giving a total time complexity of O(mn(log n q- l)).

The low complexity of this algorithm is due to our crucialdesign decision of not

considering other ways of reaching a subgoal once it is declared reachable. Of course,

it is possible to design a more "complete" algorithm by considering more than one

state per subgoal. The amount of extra work required, however, will be extremely

prohibitive as the combinatorial explosion takes its toll. Fortunately, our primary

goal is not to design a "complete" algorithm, but merely a fast module that will

yield a solution for many practical problems. For problems that are too difficult for

our algorithm to handle, a kigher level task planner should take the responsibility of

breaking down I_,hetask into easier subtasks. Therefore, we believe that our algorithm

is "adequately complete" for practical purposes.

3.2 Local Planning

The objective of the local move module,/2, is to move the robot from one subgoal to

another. The module should implement a fast and simple algorithm that is likely to

succ_d in finding a collision-free path when the subgoals are close to e_:ch other. The

global planner should give close enough subgoals so that/: has a high probability of

success. The probability of success is determined by the complexity of/::. The lnore

powerful/2 is, the more computation time it will require. Since low computL_,ioa time

is one of our main objectives,/2 is designed to be just powerful enough to move the

robot from a node in a cell to that in an adjacent cell.

In our implementation, £: consists of two components: slide and shove_aside. The.

slide module tries to move the robot toward the desired subgo_tl without movillg

objects. If the robo_ cannot get any closer to the goal with slide, then shove_aside is

used to move the obs¢_ructing objects away from the robot's path. Since moving

an object might cause the object to collide with oi,her objects_ shove_aside is called

recursively to move subsequently colliding objects. The local move module calls

slide again Mter shoving aside the objects on the robot's path. Iterative application

of slide and shove_aside is performed until either the goal is reached, or obstructing
objects cannot be shoved aside as described later.

The slide module uses a hill-climbing method to approach the goal while avoiding

objects. When the distance to the goal cannot be decreased due to the blocking

objects, a fictitious object W is created. I4/is a rectangular object that encloses the

area swept by the robot moving from the current position to the goal in a straight

line. The objects intersecting W are identified and passed to shove_aside.

The shove-aside module makes judicious use of the generalized distance. The

generalized distance provides a fast and powerful way to move objects out of the way.

Objects are shoved aside as follows: The generalized distance between Hz and each

object is computed, and those with non-positive distances are marked as objects to

be shoved. A hill-climbing method is used to move each object away from 14/'. The

5

Figure 1: A case where the local move module fails.

configuration of each colliding object B; is changed incrementally in a direction that

maximizes d(B,, W) until either Bi separates from W, or collides with another object

besides W. In the latter cas'e, shove_aside is recursively caviled with W replaced by Bi.

This recursive nature is in fact the reason for creating W a.s a fictitious object.

lt ma 5, not be possible to shove obstructing objects off the robot's path completely

when the accumulated weights of the objects currently being moved exceeds the

robot's pushing capability. (Notice that this condition includes the encounter with

immovable objects.) If this situation occurs, then therobot would use slide to advance

toward the goal through the partially cleared path until it cannot get any closer to

the goal. If the robot is able to advance more than a preset number of steps, then

shove_aside is invoked again. Otherwise, it is assumed that the objects cannot be

cleared away from the robot's path, so the local move module reports a failure to

the global planner, lt may !lappen that during the shove-aside recursion some object

is pushed back into the robot's way, as shown in Figure la. When the robot shoves

Object 1 aside, Object 3 is pushed back onto the robot's path. The robot will advance

toward the goal and shove Object 3 aside. In Figure lh, however, shoving Object 1

aside will caus(,: Object 4 to block the robot's path, and vice versa. Such a situation

can be resolved by using a more elaborate algorithm, but we chose not to include it

in/2 to reduce computation time. We shift the responsibility of finding a solution in

• such cases to either _, or a higher level task planner.

3.3 Alternative Approach

We have considered many other approaches, and one based on the Voronoi diagram

seems promising enough to be mentioned. First, a Voronoi diagram is constructed

i *

by assuming that all objects are immovable. The best candidate path in the diagram

is thell selected and subsequently tested by £. If this fails, then the next best path

is selected and tested. If there are no nl_,r' I_aths to be tested, then the lightest

set of objects is deleted and a new Vorolloi diagram is constructed. The process of

generating candidate paths and testing with £ is continued with the new Voronoi

diagram. When testing with /:, the deleted objects are, of course, put back in the

world spa.ce. If no s(Aution is found in the current diagram, then the search process

continues in the next Voronoi diagram, which is constructed by deleting the next

lightest set of objects. This process is repeated until either a solution is found, or

there are no more paths to be tested in the final Voronoi diagram containing only

immovable objects. The advantage of this approach is that it does not examine similar

paths, because the edges of the Voronoi diagram are topologicallydistinct. However,

this approach has its disadvantage depending on how we define the Voronoi diagram.

If we were to define it as the points equi-distant to two or more edges of objects,

then the Voronoi diagram is very sensitive to the variations in object shapes, and in

fact is ill-defined for curved objects. On the other hand, if we were to define it as

the points equi-distant to two or more objects, then it would not contain edges in

the space surrounded by a single concave object. Hence, if the robot were in such a

space, then it would not have a path to follow. We are currently investigating ways

to circumvent this problem.

4 Examples

Our algorithm has been tested on several examples, and shown to be effective. In

our figures, the robot is drawn as a disk, and polygonal objects are shaded according

to their weights. The darker the objects, the heavier they are. Black objects are

immovable. In the first frame of each example, the start and goal positions are shown

along with the sequence of subgoals generated by the global planner. The rest of the

frames show the state of the objects before and after the local move module calls

the shove-aside module. The frames are ordered from left tc, right and from top to
bottom.

The example in Figure 2 has three immovable and two movable objects. The path

through the left corridor is shorter, but the robot has to push the heavier rectangular

block. The robot elects to travel through the right corridor, pushing the lighter

triangular object. The robot in Figure 3 maneuvers through a tight space between

the blocks. The S-shaped path is selected to minimize the movements of the two

heavier L-shaped objects. In Figure 4, ali tilt objects have the same weights. The

global planner selects the path between t,l,_,s,luare and the L-shaped object rather

than that between the square and the t,'i_,,_t_l,,. This is due to the higher cost at

the narrow passage along the latter patll. 'i'l,,. shove-aside module is called twice in

this e_ample. The paths in these examples were each found within l0 seconds on a

17 MIPS SUN Spare workstation. The example in Figure 5 shows a case where our

o0

| B |

I |

_./--

Figure 2: Robot chooses to push the lighter object.

i •

o

' G

iiiiii!iiiii!iiiii!
iiii!i!iiil iii!!iiiii:,i_i:_

ii!
• _

Figure 3: A generic warehouse example.

Figure 4: Robot chooses the wider path.

iiiiiiiiiiiiiiiiii_ •

Figure 5: A difficult example.

/U

algorithm fails to find a solution. The difficulty of this problem is approaching that of

a puzzle. It requires a higher level of planning to move the U-shaped object enclosing

the right tip of the T-shaped object.

5 Conclusion

Althougla the movable obstacle problem is theoretically difficult, it is nevertheless a

realistic problem. In practical situations where objects are not arranged in a puzzle-

like fashion, the problem of moving a robot to a desired position is actually easier if

the robot is empowered to move objects off its path. In this paper, we have presented

a computationally inexpensive, heuristic algorithm that solves the problem in many

practical situations. To our knowledge, it is the first implemented algorithm for the

movable obstacle problem. The effectiveness of our algorithm has been demonstrated

with a number of examples. The problems for which our algorithm fails either require

higher level knowledge to solve, or they are badly chosen tasks by the task-level

planner. Our planner is one component of a complete robot system, and the task-level

planner should share the responsibility of completing a task by providing achievable

subtasl:s to our planner. Our algorithm can be extended to three dimensions with

little modification.

References

[Al!HUT4] Aho, A., Hopcroft, J., and Ullman, J. The Design and Analysis of Com-

purer Algorithms, Addison-Wesley, 1974.

[A1Ro90] Alexander, R. and Rowe, N., "Path planning by optimal-path-map con-

struction for homogeneous-cost two-dimensional regions," Proceedings of IEEE

International Conference on Robotics and Automation, pp. 1924-1929, 1990.

[BuckS5] Buckle),, C. E., "The application of continuum methods to path planning,"

Ph.D. dissertation, Stanford University, 1985.

[Buck89] Buckley, S. J., "Fast motion planning for multiple moving robots_" Proceed-

ings of IEEE International Conference on Robotics and A utomation, pp. 322-326,
1989.

[FuSa90] Fujimura, K. and Samet, H. "Motion planning in a dynamic domain," Pro-

ceedings of IEEE International Conference on Robotics and Automation, pp. 324-

330, 1990.

[Ga',_le86] Caw, D. and Meystel, A., "Minimum-time navigation of an unmanned mo-

bile robot in a 2-1/2D worldwith obstacles," Proceedings of IEEE International

Conference on Robotics and Automation, pp. 1670-1677, 1986.

11

[HaBC90] Hague, T., Brady, M. and Cameron, S., "Using moments to plan paths for

the Oxford AGV," Proceedings of IEEE International Conference on Robotics

and Automation, pp. 210-215, 1990.

[HwAh89] Hwang, Y. K. and Ahuja, N., "Robot path planning using a potential field

representation," IEEE Comput, er Society Conference on Computer Vision and

Pattern Recognition, pp. 569-575, San Diego, California, June 1989.

[KaDa86] Kambhampati, S. and Davis, I,. ,_.. "Multiresolution path planning for

mobile robots," IEEE Journal of lb,h, li,'._ and Automation, vol. RA-2, no. 3,

pp. 135-145, 1986.

[KaZu88] Kant, A. and Zucker, S., "Planning collision-free trajectories in time-

varying environments: A two-level hierarchy," Proceedings of IEEE International

Conference on Robotics and Automation, pp. 1644-1649, 1988.

[KrTh85] Krogh, P H. and Thorpe, C. E., "Intergrated path planning and dynamic

steering control for autonomous vehicles," Proceedings of IEEE I_ternational

Conference on Robotics and Automation, pp. 1664-i669, 1986.

, P" _ _A[LiKN89] Liu Y. H., Ixuroda, S. Naniwa, T., Noborio, H. and Arimoto, S.,

practical algorithm for planning collision-free coordinated motion of multiple

mobile robots," Proceedings of IEEE International Conference on Robotics and

Automation, pp. 1427-1432, 1989.

[LoWe79] Lozano-Pe_ez, T. and Wesley, M. A., "An algorithm for planning collision-

free paths among polyhedral obstacles," Communications of the A CM, vol. 22,

no. 10, pp. 560-570, October 1979.

[LuSt87] Lumelsky, V. J. and Stepanov, A. A., "Path planning strategies for a point

mobile automaton moving amidst unknown obstacles of arbitrary shape," Algo-

rithmica, Springer-'Verlag, 1987

[Nguy84] Nguyen, V. C., "The findpath problem in the plane," Massachusetts Insti-

tute of Technology Artificial Intelligence Laboratory, AI Memo 760, 1984.

[NoNA89] Noborio, H., Naniwa, T. and Arimoto, S., "A feasible motion planning

algorithm for a mobile robot on a quadtree representation," Proceedings of IEEE

International Conference on Robotics and Automation, pp. 327-332, 1989.

[OdYa82] C. O'DufiJaing and Yap, C. K., "A retraction method for planning the

motion of of a disc," Journal of Algorithms, vol. 6, pp. 104-111, 1982.

[PaCa90] Parsons, D. and Canny, J., "A motion planner for multiple mobile robots,"

Proceedings of IEEE International Conference on Robotics and Automation,

pp. 8-13, 1990.

12

[PaMF89] Paden, B., Mees, A. and Fisher, M., "Path Planning Using a Jacobian-

Based Freespace Generation Algorithm," Proceedings of IEEE International

Conference on Robotics and Automatio,. pp. 1732-1737, 1989.

[RuWo87] Rueb, K. D. and Wong, A. K. ('., ".qtructuring free space as a hypergraph

for roving robot path planning and navigation," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. PAMI-9, no. 2, pp. 263-273, 1987.

[RaIS88] Rao, N., Iyengar S. and deSaussure, G., "The visit problem: visibility graph-

based solution," Proceedings of IEEE International Conference on Robotics and

Automation, pp. 1650-1655, 1988.

[ReSh85] Reif, J. and Sharir, M., "Motion planning in the presence of moving obsta-

cles," Proceedi_ qs of 25th IEEE Foundations of Computer Science, pp. 144-154,
1985.

[SaVi90] San "karanarayar_an, A. and Vidyasagar, M., "A new path planning algorithm

for moving a point object amidst unknown obstacles in a plane," Proceedings

of IEEE International Conference on Robotics and Automation, pp. 1930-1936,
1990.

[ScSh83] Schwartz, J. T. and Sharir, M.' "On the piano movers' problem: III. Co-

ordinating the motion of several independent bodies amidst polygonal barriers,"

International Journal of Robotics Research, vol. 2, no. 3, pp. 46-75, 1983.

[SiWa87] Singh' S. and Wagh, M. D., "Robot path planning using intersecting convex

shapes," IEEE Journal of Robotics and Automation, vol RA-3, no. 2, pp. 101-108,

April 1987.

[Warr89] Warren, C. W., "Global path planning using artificial potential fields," Pro-

ceedings of IEEE International Conference on Robotics and Automation, pp. 316-
321, 1989.

[Will88] Wilfong, G., "Motion planning in the presence of movable obstacles," Pro-

ceedings of ,lth Annual Symposium on Computational Geometry, pp. 279-288,

June 6-8, 1988, Urbana-Champaign, Illinois.

13

F _'_ _.j., w .._v,. ,_ ,, . , , ,1_.

iU.... .-----,----r_-r............. :_ ._-,,alL... - ,,,*_.-, ,:......... , ,, " _ _ "_ J.,

,,

