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Practical Poissonian-Gaussian noise modeling and

Þtting for single-image raw-data
Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian, Senior member, IEEE

Abstract�We present a simple and usable noise model for the
raw-data of digital imaging sensors. This signal-dependent noise
model, which gives the pointwise standard-deviation of the noise
as a function of the expectation of the pixel raw-data output, is
composed of a Poissonian part, modeling the photon sensing, and
Gaussian part, for the remaining stationary disturbancies in the
output data. We further explicitly take into account the clipping
of the data (over- and under-exposure), faithfully reproducing
the nonlinear response of the sensor. We propose an algorithm
for the fully automatic estimation of the model parameters given
a single noisy image. Experiments with synthetic images as well
as with real raw-data from various sensors prove the practical
applicability of the method and the accuracy of the proposed
model.

Index Terms�clipping, digital imaging sensors, noise estima-
tion, noise modeling, overexposure, Poisson noise, raw-data.

I. INTRODUCTION

Progress in hardware design and manufacturing has intro-

duced digital imaging sensors having a dramatically increased

resolution. This is mainly achieved by an increase of the

pixel density. Despite the electrical and thermal characteristics

of the sensors have noticeably improved in the last decade

[18], [15], with the size of each pixel becoming smaller and

smaller the sensor output signal�s susceptibility to photon noise

has become greater and greater. As of now, this source of

noise appears as the most signiÞcant contributor of the overall

noise in a digital imaging sensor [1]. This makes the noise

component of the raw-data output of the sensor markedly

signal-dependent, thus far from the conventional additive white

Gaussian noise modeling so widely used in image processing.

Further, with the intention of making full use of the rather

limited dynamic range of digital sensors, pictures are usually

taken with some areas purposely overexposed or clipped,

i.e. accumulating charge beyond the full-well capacity of

the individual pixels. These pixels obviously present highly

nonlinear noise characteristics, which are completely different

than those of normally exposed pixels.

The raw-data which comes from sensor always under-

goes various processing stages (e.g., denoising, demosaicking,

deblurring, compression) before the Þnal �cooked� image

reaches the user. In order to process the data and/or to attenuate
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the noise in the most efÞcient and effective way, it is vital that

a proper modeling of the noise is considered during the various

stages of digital image processing. However, the technical

datasheets of the devices usually provide vague and inadequate

Þgures for the noise that are of a global nature (i.e., �average�

values which are meant to be valid for the whole sensor)

[17]. Consequently, raw-data Þltering algorithms either assume

independent stationary noise models or, if a signal-dependent

model is assumed, the correct parameters for the noise are

often not speciÞed. Such rough noise estimates are inadequate

for the high-quality image processing Þlters which are rapidly

becoming an integral part of the imaging chain.

Two are the contributions in this paper. First, we present

a simple noise model which can accurately be used for the

raw-data. Based on the above considerations, it is a signal-

dependent noise model based on a Poissonian part, modeling

the photon sensing, and Gaussian part, for the remaining sta-

tionary disturbances in the output data. We explicitly take into

account the problem of clipping (over- and under-exposure),

faithfully reproducing the nonlinear response of the sensor.

Only two parameters are sufÞcient to fully describe the model.

These parameters are explained in relation to the sensor�s

hardware characteristics (quantum efÞciency, pedestal, gain).

As a second and most important contribution, we propose

an algorithm for the fully automatic estimation of the model

parameters given a single noisy image.

The paper is organized as follows. In Section II we present

the model in its basic form, which ignores the clipping. The

parameter estimation algorithm is then presented in Section

III. The general model with clipping requires more involved

mathematics, and it is given in Section IV, followed by

the modiÞed estimation algorithm in Sections V and VI.

Throughout these sections, we demonstrate the accuracy of

the algorithm with synthetic test images, for which the exact

noise parameters are known. Experiments with real raw-data

are presented in Section VII; these experiments prove the

practical applicability of the method and conÞrm that the

raw-data noise can indeed be accurately modeled as a clipped

Poissonian-Gaussian process. Further comments and details on

the algorithm and its implementation are given in Section VIII.

II. POISSONIAN-GAUSSIAN MODELING

Let us consider the generic signal-dependent noise observa-

tion model of the form

z (x) = y (x) + σ (y (x)) ξ (x) (1)

where x ∈ X is the pixel position in the domain X, z : X →
R is the observed (recorded) signal, y : X → R is the original
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(unknown) signal, ξ : X → R is zero-mean independent

random noise with standard deviation equal to 1, and σ :
R → R

+ is a function of y that gives the standard deviation
of the overall noise component. Throughout the paper, we

denote the expected value (or mathematical expectation) of

a random variable as E {·}, its variance as var {·}, and its
standard deviation as std {·} =

p
var {·}; when any of these

operators is applied to a sequence (resp. matrix) of random

variables, its output is deÞned as the sequence (resp. matrix)

of the operator�s outputs for the individual random variables.

The symbol σ is used exclusively to denote this function of
the model (1). From E {ξ (x)} = 0 follows that E {z (x)} =
y (x), i.e. the original signal can be deÞned as the expected
value of the noisy observations. Consequently, we have that

std {z (x)} = σ (E {z (x)}), i.e. the standard deviation of the
noise is a function, namely σ, of the expectation of the noisy
signal.

In our modeling, we assume that the noise term is com-

posed of two mutually independent parts, a Poissonian signal-

dependent component ηp and a Gaussian signal-independent
component ηg:

σ (y (x)) ξ (x) = ηp (y (x)) + ηg (x) . (2)

In terms of distributions, these two components are character-

ized as follows,

χ
¡
y (x) + ηp (y (x))

¢
∼ P (χy (x)) , ηg (x) ∼ N (0, b) ,

where χ > 0 and b ≥ 0 are real scalar parameters and P and
N denote the Poisson and normal (i.e., Gaussian) distributions.

From the elementary properties of the Poisson distribution, we

obtain the following equation for the mean and variance

E
©
χ
¡
y (x) + ηp (y (x))

¢ª
= var

©
χ
¡
y (x) + ηp (y (x))

¢ª
=

= χy (x) .

Since E
©
χ
¡
y (x) + ηp (y (x))

¢ª
= χy (x)+χE

©
ηp (y (x))

ª

and χ2 var
©
ηp (y (x))

ª
= χy (x), it follows that

E
©
ηp (y (x))

ª
= 0 and var

©
ηp (y (x))

ª
= y (x) /χ.

Thus, the Poissonian ηp has varying variance that depends on
the value of y (x), var

©
ηp (y (x))

ª
= ay (x), where a = χ−1.

The Gaussian component ηg has instead constant variance
equal to b.

Consequently, the overall variance of z in (1) has the afÞne
form

σ2 (y (x)) = ay (x) + b, (3)

which gives the standard deviation σ as the square root

σ (y (x)) =
p
ay (x) + b, (4)

and, in particular, σ (0) =
√
b and σ (1) =

√
a+ b.

Some examples of standard-deviation functions σ for dif-
ferent combinations of the constants a and b are shown, as an
illustration, in Figure 1 (solid lines).

Figure 2 presents a simple piecewise smooth image which

is degraded by Poissonian and Gaussian noise with parameters

χ = 100 (a = 0.01) and b = 0.042. As illustrated in Figure
1, these parameters imply that the noise standard-deviation in

the brightest parts of the image is more than twice as large as

in the darker ones.

A. Raw-data modeling

The Poissonian-Gaussian model (1-2) is naturally suited

for the raw-data of digital imaging sensors. The Poissonian

component ηp models the signal-dependent part of the errors,
which is essentially due to the photon-counting process, while

the Gaussian ηg accounts for the signal-independent errors
such as electric and thermal noise. We brießy mention how

the above model parameters relate to elementary aspects of

the digital sensor�s hardware.

1) Quantum efÞciency: The parameter χ of ηp is related to
the quantum efÞciency of the sensor: the larger the number

of photons necessary to produce a response of the sensor

(generation of an electron), the smaller the χ.

2) Pedestal parameter: In digital imaging sensors, the

collected charge is always added to some base �pedestal� level

p0 ∈ R+. This constitutes an offset-from-zero of the output
data and it can be rewritten as a shift in the argument of the

signal-dependent part of the noise:

z (x) = y (x) + σ (y (x)− p0) ξ (x) =
= y (x) + ηp (y (x)− p0) + ηg (x) .

3) Analog gain: We model the analog gain as an ampli-

Þcation of the collected charge. Let us denote the variables

before ampliÞcation by the circle superscriptû,

ûz (x) =ûy (x) +ûηp (ûy (x)− p0) +ûηg (x) .
We formalize the ampliÞcation Θ ofûz as the multiplication of
the noise-free signal, of the Poissonian noise, and of a part of

the Gaussian noise, by a scaling constant θ > 1,

z(x) =Θ (ûz(x)) = θ
¡
ûy(x) +ûηp(ûy(x)−p0) +ûη0g(x)

¢
+ûη00g (x).

Here, the Gaussian noise term ûηg has been split in two
componentsûη0g andûη

00
g ,ûη

0
g+ûη

00
g = ηg, whereûη

00
g represents the

portion of the noise that is introduced after the ampliÞcation

and thus not affected by the factor θ. The expectation and
variance for z are

E {z (x)} = y (x) = θûy (x) , var {z (x)} =

= θ2χ−1 (ûy (x)− p0)+θ2 var
©
ûη0g (x)

ª
+var

©
ûη00g (x)

ª
.

Hence, we come again to a model of the form (3)-(4) with

a = χ−1θ, b = θ2 var
©
ûη0g (x)

ª
+ var

©
ûη00g (x)

ª
− θ2χ−1p0.

Note that now this b can be negative, provided a large pedestal
p0 and a small variance ofûηg. This does not mean that there is
a �negative� variance. Indeed, because of the pedestal, y ≥ θp0
and therefore ay + b ≥ 0.
In digital cameras, the analog gain (i.e., θ) is usually

controlled by the choice of the ISO sensitivity setting. This

can be done manually by the user, or automatically by the

camera (�auto mode�). Large ISO numbers (e.g., 800 or 1600)

correspond to large θ, and thus worse signal-to-noise ratio
(SNR). Lower values (e.g., ISO 50) yield a better SNR but at

the same time produce darker images, unless these are taken

with a longer exposure time (which corresponds to having

larger values of ûy before the multiplication by θ).

Figure 3 shows few examples of the standard-deviation

functions σ which can typically be found for the raw data.
Two of these examples have b < 0, which corresponds to a
pedestal p0 > 0.
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Fig. 1. Some examples of the standard-deviation functions σ (solid lines) from the model (1) for different combinations of the constants a and b of Equation
(4): (left) a = 0.022, 0.062, 0.102, b = 0.042 and (right) a = 0.42, b = 0.022, 0.062, 0.102. The dashed lines show the corresponding functions �σ of the
clipped observation model (30), as functions of the clipped �y (see Section IV). The small black triangles indicate the points (�y, �σ (�y)) which correspond to
y = 0 and y = 1.

Fig. 2. A piecewise smooth test image of size 512 × 512: original y and
observation z degraded by Poissonian and Gaussian noise with parameters
χ = 100 (a = 0.01) and b = 0.042.

B. Heteroskedastic normal approximation

Throughout the following sections, we need to derive a few

results and relations which depend not only on the mean and

variance, but also on the particular distribution of the processed

samples. For the sake of simpliÞcation, we exploit the usual

normal approximation of the Poisson distribution, which gives

P (λ) ≈ N (λ, λ) . (5)

The accuracy of this approximation increases with the para-

meter λ and in practice, for large enough1 λ, a Poissonian
process can be treated as a special heteroskedastic Gaussian

one. We thus obtain the following normal approximations of

the errors

σ (y (x)) ξ (x) =
p
ay (x) + bξ (x) ' ηh (y (x)) , (6)

where ηh (x) ∼ N (0, ay (x) + b).

III. THE ALGORITHM

Our goal is to estimate the function σ : R → R
+ of the

observation model (1) from a noisy image z. The proposed
algorithm is divided in two main stages: local estimation

of multiple expectation/standard-deviation pairs and global

parametric model Þtting to these local estimates. An initial

1How large λ is enough really depends on the considered application
and desired accuracy. The fact that the Poisson distribution is discrete is
a secondary aspect, because quantization of the digital data makes anyway
discrete even errors due to continuous distributions.
For the considered standard-deviation estimation problem, we found exper-

imentally that already with λ = 10 (corresponding to χ = 20 for the middle
intensity y = 0.5) there is virtually no difference between the estimation
accuracy of a truly Poissonian variable and that of its Gaussian approximation.

Fig. 3. Some examples of the standard-deviation functions σ (solid lines)
which are often found for the raw data. In these three examples the parameters
(a, b) from Equation (4) are

!
1.5 · 10−3, 10−4

"
,
!
6 · 10−4,−5 · 10−6

"
, and!

10−4,−8 · 10−6
"
. The dashed lines show the corresponding functions �σ of

the clipped observation model (30), as functions of the clipped �y (see Section
IV). The small black triangles indicate the points (�y, �σ (�y)) which correspond
to y = 0 and y = 1.

preprocessing stage, in which the data is transformed to the

wavelet domain and then segmented into non-overlapping level

sets where the data is smooth, precedes the estimation.

A. Wavelet domain analysis

Similar to [4], we facilitate the noise analysis by considering

wavelet detail coefÞcients zwdet deÞned as the downsampled
convolution

zwdet =↓2 (z ~ ψ) ,

where ψ is a 2-D wavelet function with zero mean and unity
52-norm,

P
ψ = 0, kψk2 = 1, and ↓2 denotes the decimation

operator that discards every second row and every second

column. Analogously, we deÞne the normalized approximation

coefÞcients as

zwapp =↓2 (z ~ ϕ) ,

where ϕ is the corresponding 2-D wavelet scaling function,
which we specially normalize so that

P
ϕ = 1.

For noisy images, the detail coefÞcients zwdet contain mostly
noise and, due to the normalizations of the convolution kernels,

we have

std
©
zwdet

ª
= ↓2 (std {z ~ ψ}) =↓2

µq
var {z}~ ψ2

¶
' (7)

' ↓2 (std {z} kψk2) =↓2 (std {z}) =
= ↓2 (σ (y)) = σ (↓2 y) = σ (↓2 (y

P
ϕ)) '

' σ (↓2 (y ~ ϕ)) = σ (E {zwapp}) , (8)
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Fig. 4. From left to right: wavelet approximation and detail coefÞcients zwapp and zwdet, restricted on the set of smoothness Xsmo, and two level-sets Si
(13) computed for ∆i = ∆ = 1/300. The scale of this Þgure is half that of Fig. 2.

with the approximate equalities ' becoming accurate at points
in regions where y (and hence std {z}) is uniform, as we can
assume that the distribution of z does not change over the
small support of the wavelets. Thus, in particular, at a point

x in such uniform regions, we can assume that

zwdet (x) ∼ N (0, σ (E {zwapp (x)})) , (9)

and, because of decimation and orthogonality properties of

wavelet functions, that the noise degrading zwdet, as well as
the noise degrading zwapp, are independent ones.
Note that, always, kϕk2 6= 1. Therefore, when considering

std {zwapp}, the above equations can be repeated, replacing ψ
with ϕ, only provided that the factor kϕk2 is kept. Thus, we
come to

std {zwapp} ' kϕk2 σ (z
wapp) .

In our implementation, we use separable kernels ψ = ψ1~
ψT1 and ϕ = ϕ1 ~ ϕ

T
1 where ψ1 and ϕ1 are 1-D Daubechies

wavelet and scaling functions

ψ1 = [0.035 0.085 − 0.135 − 0.460 0.807 − 0.333] , (10)

ϕ1 = [0.025 − 0.060 − 0.095 0.325 0.571 0.235] .

B. Segmentation

Like in our previous work [6], we segment the data into

level sets, in each of which the image can be reasonably

assumed to be uniformly close to a certain value. Having

nothing but a noisy image at our disposal, we shall employ

spatial smoothing (as opposed to temporal smoothing, used in

[6]) in order to attenuate the noise and an edge-detector in

order to stay clear from edges when analyzing the data, thus

enabling the conditions (7)-(8).

There exist a myriad of different methods which can be

used for smoothing or for edge detection. However, for our

purposes, the following simple and non-adaptive methods

proved adequate for all considered experimental cases.

1) Smoothed approximation: From zwapp, we compute a
smoothed (low-pass) image zsmo,

zsmo = zwapp ~7, (11)

where 7 is positive smoothing kernel, 7 ≥ 0 and k7k1 =
1. The smoothing action of the kernel should be especially
strong, so to effectively suppress most of the noise. In our

implementation, we use a uniform 7× 7 kernel for 7.
In the corresponding regions where y itself is smooth, zsmo

is approximately equal to E {zwapp}, and thus to ↓2 y. This is

a reasonable assumption provided that the support of 7 does

not intersect edges during the calculation of the convolution

(11).

2) Edges and set of smoothness: To detect edges, we use

the conventional approach where some smoothed derivatives

of the image are thresholded against an estimate of the local

standard deviation. Exploiting the fact that the mean of the

absolute deviations of N (0, 1) is equal to
p
2/π [7], we can

deÞne a rough estimate of the local standard-deviations of zwdet

as the map

s =

r
π

2

¯̄
zwdet

¯̄
~7.

We deÞne the set of smoothness Xsmo as

Xsmo = {x ∈↓2 X :

: |∇ (Λ (zwapp)) (x)|+ |Λ (zwapp) (x)| < τ · s (x)}, (12)

Λ (zwapp) = ∇2medÞlt (zwapp) ,
where ∇ and ∇2 are, respectively, gradient and Laplacian
operators, medÞlt denotes a 3 × 3 median Þlter, ↓2 X is the

decimated domain of the wavelet coefÞcients zwapp, and τ > 0
is positive threshold constant. We realize both the Laplacian

operator ∇2 and the gradient operator ∇ as convolutions

against 9× 9 kernels. Thresholding the sum of the moduli of
the Laplacian and of its gradient is a heuristic way to obtain

�thickened� edges.

In Figure 4, we show the wavelet approximation and detail

coefÞcients zwapp and zwdet, restricted on the set of smoothness
Xsmo (whose complement thus appears as white in the Þgure),

calculated for the test image z of Figure 2. Note that some of
the weakest edges have not been detected as such.

3) Level sets (segments): In the set of smoothness Xsmo,

we can assume that edges of the image did not interfere with

the smoothing (11), hence, that the conditions (7)-(8) hold and

that, for x ∈ Xsmo,

zsmo(x) = E {zwapp(x)} = E {(↓2 z)(x)} = (↓2 y)(x) ,
std
©
zwdet(x)

ª
= std {(↓2 z)(x)} = (↓2 (σ (y)))(x).

We identify in the smoothness set Xsmo a collection of

N non-overlapping level sets (segments) Si ⊂ Xsmo, i =
1, . . . , N of the smoothed image zsmo. Each level set, char-
acterized by its centre value ui and allowed deviation ∆i > 0,
is deÞned as

Si = {x ∈ Xsmo : zsmo(x) ∈ [ui −∆i/2, ui +∆i/2)} . (13)
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By non-overlapping we mean that Si ∩ Sj = ∅ if

i 6= j. In practice, assuming a signal in the range [0, 1],
one can take Þxed ∆i ≡ ∆ and equispaced ui ∈©
∆j, j = 1, . . . , N̄ =

§
∆−1

¨ª
, where the b·c brackets indi-

cate the rounding to the nearest larger or equal integer. Further,

we require that the level sets are non-trivial, in the sense that

each set Si must contain at least two samples
2; thus, N ≤ N̄

and
SN
i=1 Si ⊆ Xsmo ⊆↓2 X. Figure 4 shows two of the level

sets computed for the example in Figure 2 for ∆ = 1/300.
Observe that these sets are meager and quite fragmented.

C. Local estimation of expectation/standard-deviation pairs

For each level set Si, we deÞne the (unknown) variable

yi =
1

ni

niX

j=1

E {zwapp (xj)} , {xj}
ni
j=1 = Si. (14)

Note that yi and ui might not coincide. The level set Si is used
as a one domain for the computation of a pair of estimates

(�yi, �σi), where �yi is an estimate of yi and �σi is an estimate
of σ (yi). In what follows, although we shall refer explicitly
to yi, this variable is always used implicitly and, in the Þnal
estimation of the function y 7→ σ (y), the many yi, i, . . . , N ,
remain �hidden� variables which are modeled as unknown.

Similarly, the smoothed data zsmo and the values ui and ∆i
used for the construction of Si do not appear in the following
estimation, where only zwdet, zwapp and Si are used in order
to compute the estimates �yi and �σi.
1) Estimation of yi: We estimate yi as the sample mean of

the approximation coefÞcients zwapp on Si

�yi =
1

ni

niX

j=1

zwapp (xj) , {xj}
ni
j=1 = Si. (15)

2) Estimation of σ (yi): The estimate �σi is calculated as the
unbiased sample standard-deviation of the detail coefÞcients

zwdet on Si

�σi =
1

κni

sPni
j=1

¡
zwdet (xj)− z̄wdeti

¢2

ni − 1
, (16)

where z̄wdeti = 1
ni

Pni
j=1 z

wdet (xj) and the factor κ
−1
ni

is

deÞned [7]

κn =

r
2

n− 1
Γ
¡
n
2

¢

Γ
¡
n−1
2

¢ = 1− 1

4n
− 7

32n2
+O

µ
1

n3

¶
. (17)

This factor, which comes from the mean of the chi-distribution

with n− 1 degrees of freedom, makes the estimate unbiased
for normally and identically independently distributed (i.i.d.)

zwdet (xj).
3) Unbiasedness: Clearly from the deÞnition (14), �yi is an

unbiased estimator of yi.
The unbiasedness of �σi as an estimator of σ (yi) is a

more complex issue. As observed above, �σi is an unbiased
estimator of σ (yi) provided that z

wdet is normally i.i.d. on

the level set Si. However, we cannot claim, in general,
that zwdet is identically distributed on Si. We remark that

2The smoothness threshold τ (12) can be automatically increased in the
rare event of N < 2, i.e. when there are not enough non-trivial level sets for
the estimation. Note that Xsmo is monotonically enlarging to ↓2 X with τ ,
Xsmo %

τ→∞

↓2 X.

the assumed validity of (7)-(8) concerns individual points.

It does not mean that std
©
zwdet

ª
is constant over Si. As

a matter of fact, especially for large ∆i, E {zwapp (x)} is
not constant for x ∈ Si, which implies that the standard
deviations of the wavelet detail coefÞcients (8) are not constant

over Si. Lacking any particular hypothesis on the image y,
it is nevertheless reasonable to assume that {E {zwapp (x)},
x ∈ Si} has a symmetric (discrete) distribution centred at yi
(with diameter bounded by ∆i). Because of (3) and (9), we

have that {var
©
zwdet (x)

ª
, x ∈ Si} has also a symmetrical

distribution, which is centred at var {yi}. This makes κ2ni�σ
2
i

an unbiased3 estimator of var {yi} and, since κn →
n→∞

1,

�σi is an asymptotically unbiased estimator of σ (yi). This
asymptotic unbiasedness is relevant in the practice, since a

large ∆i corresponds to large ni.

We further note that, despite the segmentation and removal

of edges, the presence of sharp image features, singularities, or

even texture in the segment Si is not completely ruled out. This
can be effectively compensated by means of non-linear robust

estimators of the standard deviation, such as the well-known

median of absolute deviations (MAD) [12]. For the sake of

expository simplicity, in the current and in the next section

we restrict ourself to the basic estimator (16) and postpone

considerations on robust estimation of the standard-deviation

to Section VI.
4) Variance of the estimates: The variance of the estimates

�yi and �σi depends directly on the variances of the samples
used for the estimation, which are degraded by independent

noise. With arguments similar to Section III-C.3, the variances

of the estimates can be expressed as

var {�yi} = σ
2 (yi) ci, var {�σi} = σ

2 (yi) di, (18)

ci =
kϕk22
ni

, di =
1− κ2ni
κ2ni

=
1

2ni
+

5

8n2i
+O

µ
1

n3i

¶
, (19)

where these expressions coincide with those for the perfect

case when var
©
zwdet

ª
and var {zwapp} are constant on Si [7].

5) Distribution of the estimates: The estimates �yi and �σi
are distributed, respectively, following a normal distribution

and a scaled non-central chi-distribution, which can also

be approximated, very accurately for large ni, as a normal
distribution [7]. Thus, in what follows, we treat both �yi and
�σi as normally distributed random variables and, in particular,
as

�yi ∼ N
¡
yi, σ

2 (yi) ci
¢
, �σi ∼ N

¡
σ (yi) , σ

2 (yi) di
¢
, (20)

where ci and di are deÞned as in (19).

D. Maximum-likelihood Þtting of a global parametric model

The maximum-likelihood (ML) approach is used to Þt a

global parametric model of the function σ on the estimates
{�yi, �σi}

N
i=1. Depending on the parameters a and b, we have

σ2 (y) = ay + b. For reasons of numerical consistency (note
that formally this σ2 (y) may be zero or negative), for the
Þtting we deÞne a simple regularized variance-function σ2reg
as

σ2reg (y) = max
¡
ε2reg, σ

2 (y)
¢

(21)

3This can be proved easily since, for x ∈ Xsmo, we can treat E
#
zwdet (x)

$

as zero.
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Fig. 5. Each dot of the scatter plot corresponds to a pair (�yi, �σi) of estimates
of yi and σ (yi). The solid line shows the maximum-likelihood estimate �σÞt
of the true standard-deviation function σ. The plot of �σÞt overlaps perfectly
with that of the true σ (shown in Figure 1). The estimated parameters are

�a = 0.01008 (�χ = 99.20) and �b = 0.001583 (
%
�b = 0.03979). The

initialization parameters, found as the least-squares solution (26), were �a0 =

0.00994 (�χ0 = 100.62) and
�b0 = 0.001649 (

%
�b0 = 0.04061).

where εreg > 0 is a small regularization parameter. Hence,

the regularized standard-deviation σreg =
q
σ2reg (y) is always

well deÞned, for any choice of a, b, and y.
As discussed in Section III-C.5, we can assume normality

and unbiasedness for both �yi and �σi. Thus, the conditional
probability densities of �yi and �σi given yi = y are, respec-
tively,

℘ (�yi|yi = y) = 1√
2πσ2reg(y)ci

e
− 1
2σ2reg(y)ci

(�yi−y)2
,

℘ (�σi|yi = y) = 1√
2πσ2reg(y)di

e
− 1
2σ2reg(y)di

(�σi−σreg(y))2
.

Further, we observe that, because of the orthogonality of the

wavelets, �yi and �σi are mutually independent
4. Hence,

℘ ((�yi, �σi) |yi = y) = ℘ (�yi|yi = y)℘ (�σi|yi = y) = (22)

=
1

2π
√
cidi

1

σ2reg (y)
e
− 1
2σ2reg(y)

!
(�yi−y)

2

ci
+
(�σi−σreg(y))

2

di

"

.

The posterior likelihood L is obtained by considering all

measurements {(�yi, �σi)}
N
i=1 and by integrating the densities

℘ ((�yi, �σi) |yi = y) with respect to a prior probability density
℘0 (y) of y,

L (a, b) =
NY

i=1

Z ∞

−∞
℘ ((�yi, �σi) |yi = y)℘0 (y) dy. (23)

The integration copes with the fact that yi and y are unknown.
For images in the range [0, 1], the simplest and most obvious
choice is ℘0 to be uniform on [0, 1], which implies that (23)

becomes L (a, b) =
QN
i=1

R 1
0
℘ ((�yi, �σi) |yi = y) dy. In our

experiments with synthetic images we use this prior. However,

we wish to note that other prior statistics have been shown to

be more representative of the histograms of natural images

[10]. Let us observe that (�yi, �σi) and (�yj , �σj) , i 6= j, are
mutually independent because the corresponding level sets Si
and Sj are non-overlapping.

4This independence is a general property of the sample mean and sam-
ple standard-deviation, which property holds also when the estimates are
computed from the very same samples [7]. However, by sampling two
independent sets of wavelet coefÞcients, we have that the two estimates
are necessarily independent, regardless of the particular mean and standard-
deviation estimators used, a fact that comes useful for the forthcoming
sections.

From (23), the sought parameter estimates �a and �b are
deÞned as the solution of³
�a,�b
´

= argmax
a,b

L (a, b) = argmin
a,b

− lnL (a, b) = (24)

= argmin
a,b

−
NX

i=1

ln

Z
℘((�yi, �σi) |yi = y)℘0 (y) dy.

Hence, our Þnal estimate of the function σ is

�σÞt (y) =

r
max

³
0, �ay +�b

´
. (25)

Figure 5 shows the result of the above optimization for

the test example shown in Figure 2. It can be seen that the

procedure estimates the parameters of the noise with great

accuracy.

1) Iterative solution and initialization: In our implementa-

tion, we solve the problem (24) numerically, using the Nelder-

Mead iterative downhill simplex method [13] and evaluating

the integrals as Þnite sums. As initial parameters �a0,�b0 for
this iterative optimization we take the least-squares solutionh
�a0,�b0

i
= argmin

a,b

¡
[a b]ΦT−�v

¢ ¡
[a b]ΦT−�v

¢T
= (26)

= �vΦ
¡
Φ
T
Φ
¢−1

, (27)

where

Φ =






�y1 1
�y2 1
...

...




 , �v =

£
ÿκ2n1�σ

2
1 ÿκ2n2�σ

2
2 · · ·

¤
, (28)

with the factors ÿκn deÞned as ÿκn = κn. The linear problem
(26) allows a simple direct solution by means of the normal

equations (27). While in (24) we aim at Þtting the standard-

deviation curve σreg to the estimates {(�yi, �σi)}
N

i=1, Equation

(26) minimizes the residuals with respect to the variances �σ2,
treated as a linear function of the parameters a and b. Here, the
factor ÿκ2ni makes ÿκ

2
ni
�σ2i an unbiased estimate of the variance

(contrary to �σi (16), which is an unbiased estimate of the
standard deviation).

IV. CLIPPING (CENSORING)

A. Clipped observations model

In practice, the data range, or dynamic range, of acquisition,

transmission, and storage systems is always limited. Without

loss of generality, we consider data given on the normalized

range [0, 1], where the extremes correspond to the maximum
and minimum pixel values for the considered noisy image

(e.g., raw data) format. Even if the noise-free image y is
within the [0, 1] range, the noise can cause z to exceed these
bounds. We shall assume that values exceeding these bounds

are replaced by the bounds themselves, as this corresponds to

the behavior of digital imaging sensors in the case of over-

or underexposure. Thus, we deÞne the clipped (or censored5)

5Strictly speaking, the form of the so-called censored samples [2] is really
�z = z if 0 ≤ z ≤ 1 and no sample (i.e., censoring) if z < 0 or
z > 1. Usually, the amount of censored samples below and above the
extrema are assumed as known (Type-1 censoring). Thus, clipped (29) and
censored observations can, in a sense, be considered as equivalent. However,
the formulas and estimators for censored variables which can be found in the
literature cannot be used directly in the case of the clipped observations (29).
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observations �z as

�z (x) = max (0,min (z (x) , 1)) , x ∈ X, (29)

where z is given by the signal-dependent noise model (1). Let
�y (x) = E {�z (x)}. The corresponding noise model for the
clipped observations (29) is

�z (x) = �y (x) + �σ (�y (x)) �ξ (x) , (30)

where again E
n
�ξ (x)

o
= 0, var

n
�ξ (x)

o
= 1, and the

function �σ : [0, 1]→ R
+ is deÞned as �σ (�y (x)) = std {�z (x)}.

In general, �y (x) = E {�z (x)} 6= E {z (x)} = y (x),
�σ (�y (x)) = std {�z (x)} 6= std {z (x)} = σ (y (x)), and, even

though var
n
�ξ (x)

o
= var {ξ (x)} = 1, the distributions of ξ

and �ξ are different.
In Figure 1 one can compare the standard-deviation func-

tions �σ (dashed line) and σ (solid line) for different combina-
tions of the constants a and b in (4).
In the next sections, we rely on the heteroskedastic normal

approximation (6) and hence treat z as a purely Gaussian
variable. Consequently, we model �z as a clipped (censored)
normal variable. We note that this normal approximation is

especially relevant for values of y = E {z} close to 0 or 1,
where the clipping effects may be dominant. For y close to 1,
we have that (5) holds with the largest values of λ, hence is
for this values of y that the Gaussianization of the Poissonian
component ηp (y (x)) is most accurate. For y close to 0,
although λ in (5) might not be large, the approximation holds
because the variance ay (x) of ηp (y (x)) becomes negligible
compared to the variance b of the Gaussian part ηg (x). This
is true provided that b 6= 0. However, if b = 0 the noise has
only the Poissonian component ηp, which is always positive.
It means that z ≥ 0 and, thus, �z = min (1, z). Therefore,
if b = 0, for our purposes it is sufÞcient to consider only the
normal approximation for y close to 1, as no clipping happens
at 0.

B. Expectations, standard deviations, and their transforma-

tions

To simplify the calculations, we shall assume that the two

clippings, the one from below (z < 0, �z = 0) and the one from
above (z > 1, �z = 1), are not mixed by the randomness of
the noise, and can thus be computed independently6. In other

words, this means that, in practice, if y is close enough to 0 so
that it is possible that z < 0, then it is impossible that z > 1;
similarly, if y is close enough to 1, so that z can be larger than
1, then z cannot be smaller than 0; for intermediate values of
y, with 0 ¿ y ¿ 1, we have that 0 < z < 1, i.e. clipping is
not happening.

In what follows, we therefore treat separately the two cases:

6Formally, this corresponds to assuming that, for a given y (x), the
product probability P (z (x) > 1) · P (z (x) < 0) is negligibly small.
This condition is satisÞed provided, e.g., the stronger condition that
P (z (x) < 0|y (x) > 1− 4) and P (z (x) > 1|y (x) < 4) are both negligi-
bly small for 4 = 0.5. These conditions are all surely met in the practical
cases, since there the standard deviation σ (y (x)) of z (x) is always much
smaller (in fact, several orders smaller) than 0.5 and its distribution does not
have heavy tails (note that [y − γσ (y) , y + γσ (y)] with γ ≥ 4 can be a
rather �safe� conÞdence interval for z, with higher than 99.99% conÞdence
for Gaussian distributions).

Fig. 6. The probability density function of �ν = max (0, ν), as deÞned by
Equation (31). In this illustration µ = 1. The height of the impulse at 0 is
equal to the area under the bell curve between −∞ and 0.

� clipping from below (left single censoring): y and z are
near 0 and z < 1, thus, �z = max (0, z);

� clipping from above (right single censoring): y and z are
near 1 and z > 0, thus, �z = min (z, 1).

Further, we combine the results for the two cases, so

to obtain formulas which are valid for the case �z =
max (0,min (z, 1)), where clipping can happen from above

or below (double censoring).

1) Clipping from below (left single censoring): Since �z =
max (0, z), we have that E {�z} ≥ E {z} = y.
Let ν ∼ N (µ, 1) be a normally distributed random variable

with mean E {ν} = µ and unitary variance and �ν =
max (0, ν).

The probability density f�ν of �ν is a generalized function
deÞned as follows

f�ν (t) =

½
φ (t− µ) +Φ (−µ) δ0 (t) t ≥ 0,
0 t < 0,

(31)

where φ and Φ are the probability density and cumulative

distribution functions (p.d.f. and c.d.f.) of the standard normal

N (0, 1) and δ0 is the Dirac delta impulse. This function is
illustrated in Figure 6.

Tedious but simple calculations (see, e.g., [7], or [8],

Chapter 20) show that the expectation E {�ν} and the variance
var {�ν} of the clipped �ν are

E {�ν} = Φ (µ)µ+ φ (µ) , (32)

var {�ν} = Φ (µ) + φ (µ)µ− φ2 (µ) + (33)

+ Φ (µ)µ (µ−Φ (µ)µ− 2φ (µ)) .
The plots of the expectation E {�ν} and of the standard
deviation std {�ν} =

p
var {�ν} as functions Em and Sm of

µ = E {ν} are shown in Figure 7. Observe that E {�ν} is
strictly positive even for negative values of µ; it is convex and
increasing, E {�ν}→ 0 as µ→ −∞ and E {�ν} is asymptotic
to µ = E {ν} as µ → +∞. The standard deviation std {�ν}
approaches 1 = std {ν} as µ → +∞ and goes to zero as µ
decreases.

The normal approximation (6) gives that z ∼ N
¡
y, σ2 (y)

¢
.

�Standardization� of the noise is obtained dividing the vari-

ables by σ (y), which gives z
σ(y) ∼ N

³
y

σ(y) , 1
´
. It means that,

by taking µ = y
σ(y) , we can write z = σ (y) ν, �z = σ (y) �ν.

It follows that �y (x) = E {�z (x)} = σ (y)E {�ν} and �σ (�y) =
std {�z} = σ (y) std {�ν}. Exploiting this standardization, we
can formulate the direct and inverse transformations which

link σ and y to �y and �σ.
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Fig. 7. Expectation E {�ν} and standard deviation std {�ν} of the clipped
�ν = max (0, ν) as functions Em and Sm of µ, where µ = E {ν} and
ν ∼ N (µ, 1).

Fig. 8. Standard deviation std {�ν} of the clipped �ν = max (0, ν) as function
Se of its expectation E {�ν}. The numbers in italic indicate the corresponding
value of µ, where µ = E {ν} and ν ∼ N (µ, 1).

a) Direct transformation (�y and �σ from y and σ): From
the above formulas we obtain

�y = σ (y) Em

µ
y

σ (y)

¶
, (34)

�σ (�y) = σ (y)Sm

µ
y

σ (y)

¶
, (35)

which give an explicit expression for the clipped observation

model (30), provided that σ (y) from the basic model (1) is

known. In particular, (34) and (35) deÞne the transformations

that bring the standard deviation curve (y, σ (y)) to its clipped
counterpart (�y, �σ (�y)).
The two plots in Figure 7 can be uniÞed, plotting std {�ν}

as a function of E {�ν}. This is shown by the function Se in
Figure 8. Naturally, between Sm and Se there is only a change
of the independent variables, µ←→ E {�ν}, hence, from (35)
follows that

�σ (�y) = σ (y)Se

µ
�y

σ (y)

¶
, (36)

where �y can be obtained from (34).

Fig. 9. Expectation E {�ν} and standard deviation std {�ν} of the clipped

�ν = max (0, ν) as functions Er and Sr of ρ =
E{�ν}
std{�ν}

. The numbers in

italic indicate the corresponding value of µ.

b) Inverse transformation (σ and y from �σ and �y): As
clearly seen in Figure 7, the plot of Se is strictly convex, which
implies that the (incremental) ratio ρ = E{�ν}

std{�ν} =
E{�ν}−0
std{�ν}−0

is in bijection with µ. This means that µ can be univocally
determined given ρ. Note that this ratio is scale-invariant and

that, in particular, ρ = E{�ν}
std{�ν} =

�yσ−1(y)
�σ(�y)σ−1(y) =

�y
�σ(�y) . Therefore,

given both �y and �σ (�y), we can obtain µ and hence also E {�ν}
and std {�ν}.

In Figure 9 we show the plots of Er and Sr which represent
µ

E{�ν} =
E{ν}
E{�ν} and std {�ν} as functions of ρ, respectively.

From the deÞnition of Er follows that y = E {z} =
σ (y)E {ν} = σ (y)µ = σ (y)E {�ν} Er (ρ). Substituting
�y = E {�z} = σ (y)E {�ν} in the previous equation (observe
that, at this stage, σ (y) is considered as unknown) we obtain

y = �yEr (ρ) = �yEr

µ
�y

�σ (�y)

¶
. (37)

Analogously for the standard deviation, σ (y) = std {z} =
σ (y) std {ν} = σ (y) std{�ν}Sr(ρ)

. Substituting �σ (�y) = std {�z} =
σ (y) std {�ν} we have

σ (y) = std {z} =
�σ (�y)

Sr (ρ)
=

�σ (�y)

Sr
³

�y
�σ(�y)

´ . (38)

The Equations (37) and (38) deÞne the transformation that

brings the clipped standard deviation curve (�y, �σ (�y)) to its
non-clipped counterpart (y, σ (y)).

2) Clipping from above (right single censoring): The case

of clipping from above, �z = min (1, z), can be treated exactly
as the clipping from below, provided simple manipulations and

the following obvious change of variables:

y ←→ 1− y, z ←→ 1− z,
�y ←→ 1− �y, �z ←→ 1− �z.
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a) Direct transformation (�y and �σ from y and σ):

�y = 1− σ (y) Em
µ
1− y
σ (y)

¶
, (39)

�σ (�y) = σ (y)Sm

µ
1− y
σ (y)

¶
, (40)

�σ (�y) = σ (y)Se

µ
1− �y
σ (y)

¶
. (41)

b) Inverse transformation (σ and y from �σ and �y):

y = 1− (1− �y) Er
µ
1− �y
�σ (�y)

¶
, (42)

σ (y) = std {z} =
�σ (�y)

Sr
³
1−�y
�σ(�y)

´ , (43)

3) Combined clipping from above and below (double cen-

soring): The formulas for the two separate clippings, the

one from below and the one from above, can be combined

into �universal� formulas which can be applied to data which

is clipped in any of the two ways. Here, we undertake

the assumption, discussed in Section IV-B, that the product

probability of z being clipped both from above and from below
is negligibly small.

a) Direct transformation (�y and �σ from y and σ): Since
only one kind of clipping can happen for a given y, it means
that either (34) or (39) is equal to y. Therefore, Equations
(37) and (42) can be combined by summing the two right-

hand sides and subtracting y,

�y = σ (y) Em

µ
y

σ (y)

¶
− y + 1− σ (y) Em

µ
1− y
σ (y)

¶
. (44)

Similarly, (35) and (40) cannot be simultaneously different

than σ (y). So do (36) and (41). It means that their combina-
tions are simply the products of the respective factors in the

right-hand sides:

�σ (�y) = σ (y)Sm

µ
y

σ (y)

¶
Sm

µ
1− y
σ (y)

¶
, (45)

�σ (�y) = σ (y)Se

µ
�y

σ (y)

¶
Se

µ
1− �y
σ (y)

¶
. (46)

b) Inverse transformation (σ and y from �σ and �y):
Analogous considerations hold also for combining of Equation

(37) with (42) and Equation (38) with (43). Consequently, we

have

y = �yEr

µ
�y

�σ (�y)

¶
− �y + 1− (1− �y) Er

µ
1− �y
�σ (�y)

¶
, (47)

σ (y) = std {z} =
�σ (�y)

Sr
³

�y
�σ(�y)

´
Sr
³
1−�y
�σ(�y)

´ . (48)

C. Expectation and standard deviation in the wavelet domain

All the above results are valid also in the more general case

where the mean and the standard deviation are not calculated

for �ν, but rather from the corresponding detail or approxima-
tion wavelet coefÞcients, respectively. More precisely,

E {�ν} = E {�ν ~ ϕ} , std {�ν} = std {�ν ~ ψ} ,

since these equalities follow from the independence of �ν and
on the normalizations

P
ϕ = 1 and kψk2 = 1. Therefore,

in the next section, we consider the wavelet coefÞcients

calculated from the clipped observations:

�zwdet =↓2 (�z ~ ψ) , �zwapp =↓2 (�z ~ ϕ) .

V. ALGORITHM: CLIPPED CASE

Our goal is to estimate the functions �σ and σ which

correspond to the clipped observation model (30) from the

clipped image �z.
Pragmatically, we approach the problem using the estima-

tors �yi (15) and �σi (16) of mean and standard-deviation,
without any particular modiÞcation. Because of clipping, these

are no longer unbiased estimators of yi and σ (yi). However,
as discussed below, they can be treated as unbiased estimators

of the unknown variable �yi, deÞned analogously to (14) as

�yi =
1

ni

niX

j=1

E {�zwapp (xj)} , {xj}
ni
j=1 = Si,

and of its associated standard deviation �σ (�yi).
Exploiting the transformations deÞned in the previous sec-

tion and by modeling the statistics of the estimates computed

from the wavelet coefÞcients of clipped variables, we modify

the likelihood function (22) and the least-squares normal

equations (Section III-D.1). Thus, we come to the desired

estimates �σÞt of σ and b�σÞt of �σ.

A. Local estimation of expectation/standard-deviation pairs

1) Estimate of �σ (�yi): The standard-deviation estimator
(16) is an asymptotically (for large samples) unbiased esti-

mator of the standard deviation regardless of their particular

distribution. However, for Þnite samples, we can guarantee

unbiasedness only when the samples are normally distributed.

On this respect, applying the estimator on the wavelet detail

coefÞcients �zwdet (rather than directly on �z) has the important
beneÞcial effect of �Gaussianizing� the analyzed data, essen-

tially by the central-limit theorem. In practice, the larger is the

support of the Þlter ψ, the closer to a normal is the distribution
of �zwdet. To make the issue transparent, let us consider the
example of a constant y (x) ≡ y, ∀x ∈ X , and restrict our
attention to the clipping from below (single left censoring).

According to the models (1) and (30), var {z (x)} = σ2 (y)
and var {�z (x)} = �σ2 (�y) are also obviously constant. Then,
provided that ψ has zero mean and kψk2 = 1, we have
that �zwdet has a distribution that approaches, for an enlarging
support of ψ, the normal distribution N

¡
0, �σ2

¢
. Indeed, the

probability density f�zwdet of �z
wdet can be calculated as the

generalized cascaded convolutions of the densities fψ(j)�z,
j = 1, . . . , nψ of nψ clipped normal distributions, where nψ
is the number of non-zero elements ψ (·) of the wavelet ψ.
We remark that all these densities are generalized functions

with a scaled Dirac impulse at 0. From (31), we have that the

impulse in fψ(j)�z is Φ (−y/σ (y)) δ0 (note that the scale of the
impulse does not depend on ψ). Because of the independence
of �z, the probability P

¡
�zwdet = 0

¢
is the product probabilityQ

j P (ψ (j) �z = 0) = Φ (−y/σ (y))nψ , thus the impulse in
f�zwdet is Φ (−y/σ (y))

nψ δ0, showing that the discrete part of
the distribution vanishes at exponential rate with nψ . The
convergence to a normal distribution is rather fast, and even for

small wavelet kernels such as ψ = ψ1 ~ ψ
T
1 with ψ1 deÞned
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Fig. 10. Probability densities of the clipped (from below) �ν = �z/σ (y)
(thin lines) and of its wavelet detail coefÞcients �νwdet = �zwdet/σ (y) =↓2
(�z ~ ψ) /σ (y) (thick lines) for different values of µ = y/σ (y), when ψ is
the 2-D Daubechies wavelet. The �Dirac peaks� at 0, characteristic of these
densities, appear here as vertical asymptotes at 0 and cannot thus be seen in
the drawing.

as (10), for which nψ = 36, the distribution of �zwdet is very
similar to a normal for values µ = y

σ(y) as low as 0 (observe
that the larger is µ, the closer is the normal approximation),
as shown in Figure 107. Note that for µ = −0.5, 0, 0.5, 1 and
nψ = 36, the amplitudes of the step discontinuity at 0 in the
distribution of �zwdet are Φ (µ)

nψ ' 1.7 ·10−6, 1.5 ·10−11, 4.1 ·
10−19, 1.6 ·10−29, respectively, thus all these distributions are
practically continuous and therefore the plots in the Þgure are

a faithful illustration of the generalized probability densities

f�zwdet .
The described �Gaussianization� is important, because it

ensures that the bias due to Þnite samples is not signiÞcant,

allowing to use the same constant κn (17) as in the non-clipped
case. As a rough quantitative Þgure of the error which may

come from this simpliÞcation, in Table I we give the values

of the expectation8 E {�σi} /σ (yi) for different combinations
of µ = y/σ (y) and ni. The cases �ni = ∞� correspond
to the true values of the standard deviation �σ (�y) /σ (y) =
std {�z} /σ (y) = std {�ν} = Sm (µ) = Sm (y/σ (y)) of the
clipped data, calculated from (33) and plotted in Figure 7.

From the table one can see that a handful of samples are suf-

Þcient for the Þnite-sample estimation bias E {�σi}− std {�ν}
to be negligible.

2) Estimate of �yi: Let us now consider the estimates of

the mean. Clearly, being a sample average, �yi is an unbiased
estimate of �yi, regardless of the number of samples ni or of
the distribution of �z. The central-limit theorem and similar

arguments as above show that �zwapp and �yi are both normally
distributed with mean �yi.
3) Variance of the estimates: Ignoring the possible depen-

dence of the noise in the wavelet coefÞcients (due to non-

7In [5], we consider the case where the wavelet ψ is replaced by the basis
elements of the 2-D discrete cosine transform (DCT) and show analogous
Þgures for µ = 0 and transforms of size n × n, n = 2, 3, 4. The
�Gaussianization� is observable there as well, particularly for the AC terms.
8The Þnite-sample numbers in Tables I and III are obtained by Monte

Carlo simulations. The simulations were computed with enough replications
to have a sample standard-deviation of the averages lower than 0.0001. Thus,
the numbers given in the tables can be considered as precise for all shown
digits. The taken samples zwdet were contiguous in the set Si, therefore some
dependence was present (exact independence is found only for samples farther
than the diameter of the support of ψ, because in the considered case the
distribution of z is not normal), however, as ni grows the dependence becomes
negligible, since zwdet can be split in nψ/4 = 9 subsets, each with a growing
number of fully independent samples.

Gaussianity of the clipped variables), simple estimates of the

variances of �yi and �σi can be obtained from the variances

kϕk22 �σ
2 (�yi) and �σ

2 (�yi) of the wavelet coefÞcients �z
wapp and

�zwdet, respectively, as in Section III-C.4.
4) Distribution of the estimates: In conclusion, similar to

Section III-C.5, we model the distributions of the estimates �yi
and �σi as the normal

�yi ∼ N
¡
�yi, �σ

2 (�yi) ci
¢
, �σi ∼ N

¡
�σ (�yi) , �σ

2 (�yi) di
¢
, (49)

where the factors ci and di are deÞned as in (19).

B. Maximum-likelihood Þtting of the clipped model

It is straightforward to exploit the above analysis for the

estimation of the functions �σ (30) and σ (1) from the clipped
data �z = max (0,min (z, 1)). In fact, for the ML solution
(24), it sufÞces to introduce the functions Em and Sm into

the deÞnition of the function to be Þtted to the measured

data, which are pairs (�yi, �σi) centered�according to (49)�at
(�yi, �σ (�yi)). From (45) follows that we can deÞne �σreg (�y) as

�σreg (�y) = σreg (y)Sm

µ
y

σreg (y)

¶
Sm

µ
1− y
σreg (y)

¶
, (50)

where the argument �y is, according to (44),

�y = σreg (y) Em
³

y
σreg(y)

´
−y+1−σreg (y) Em

³
1−y
σreg(y)

´
. (51)

The conditional probability density (22) is thus modiÞed into

℘ ((�yi, �σi) |�yi = �y) = ℘ (�yi|�yi = �y)℘ (�σi|�yi = �y) = (52)

=
1

2π
√
cidi

1

�σ2reg (�y)
e
− 1
2�σ2reg(�y)

!
(�yi−�y)2

ci
+
(�σi−�σreg(�y))2

di

"

.

Analogously to (23), the posterior likelihood L is obtained by
considering all measurements {(�yi, �σi)}

N
i=1 and by integrating

the densities ℘ ((�yi, �σi) |�yi = �y) with respect to a prior ℘0 (y)
as

�L (a, b) =
NY

i=1

Z
℘ ((�yi, �σi) |�yi = �y)℘0 (y) dy. (53)

Note that the integration in (53) is still with respect to y and
that ℘ ((�yi, �σi) |�yi = �y) is itself an explicit function of y, as it
is clear from Equations (50-52). Therefore, (53) allows for

direct calculation, and by solving (24) with the likelihood
�L (a, b) in place of L (a, b) (23) we obtain the parameters �a
and �b, which deÞne both the ML estimate �σÞt of σ, exactly
as in (25), and the ML estimate ��σÞt of �σ, which can be
obtained from �σÞt by application of the transformations (44)
and (45). Note that for the clipped raw-data it is unnatural

to assume that ℘0 is uniform on [0, 1], because in the case
of overexposure the true signal could be much larger than

1. Therefore, for the clipped raw-data, we assume that all
positive values of y are equiprobable and we maximize9

�L (a, b) =
QN

i=1

R +∞
0

℘ ((�yi, �σi) |�yi = �y) dy.
1) Least-squares initialization: Similar to the non-clipped

case, we use a simple least-squares solution as the initial

condition for the iterative maximization of the likelihood

9Equivalently, we maximize

�L (a, b) = lim
j→+∞

N&

i=1

' 1+j

0

℘ ((�yi, �σi) |�yi = �y)℘j (y) (1 + j) dy,

where ℘j is a uniform density on [0, 1 + j] and the normalization factor
(1 + j) enables the convergence of the sequence of integrals.
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E {�σi} /σ (yi) for n <∞, �σ (�y) /σ (y) = std {�z} /σ (y) = Sm (y/σ (y)) for n =∞
ni µ = −1 µ = −0.5 µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 2.5 µ = 3 µ = 5

2 0.226 0.389 0.572 0.741 0.868 0.946 0.982 0.995 0.999 1.000

10 0.247 0.404 0.580 0.743 0.867 0.944 0.981 0.995 0.999 1.000

50 0.258 0.411 0.583 0.744 0.867 0.943 0.980 0.994 0.999 1.000

100 0.260 0.412 0.583 0.744 0.867 0.943 0.980 0.994 0.999 1.000

500 0.261 0.413 0.584 0.744 0.867 0.943 0.980 0.994 0.999 1.000

∞ 0.262 0.413 0.584 0.744 0.867 0.943 0.980 0.994 0.999 1.000

TABLE I

EXPECTATION E {�σi} /σ (yi) FOR DIFFERENT COMBINATIONS OF µ = yi/σ (yi) AND ni . THE CASES �ni =∞� CORRESPOND TO THE TRUE VALUES OF

THE STANDARD DEVIATION �σ (�y) /σ (y) = std {�z} /σ (y) = std {�ν} = Sm (µ) = Sm (y/σ (y)) OF THE CLIPPED DATA, CALCULATED FROM (33) AND

PLOTTED IN FIGURE 7.

Fig. 11. Estimation with clipped observations �z (Fig. 2): Least-squares
initialization. Each dot of the scatter plot corresponds to a pair (�yi, �σi)
of estimates of �yi and �σ (�yi). The circles indicate these pairs of estimates
after inverse-transformation (see Eqs. (55) and (56)). The solid line shows
the square root of the least-squares estimate of the variance function σ2

(see Section V-B.1), �a0 = 0.00945 (�χ0 = 105.82), �b0 = 0.001822

(
%
�b0 = 0.04268). The dotted line is the true σ, while the dashed-line is

the function �σreg with parameters �a0,�b0 used as initial condition for the
iterative maximization of the likelihood (53).

function. We exploit the inverse transformations (47)-(48)

from Section IV-B.3.b to attain a Þt of σ2 with respect to
the non-clipped variables. Hence, the initial parameters are

given as
h
�a0,�b0

i
= �vΦ

¡
Φ
T
Φ
¢−1
, with the dependent and

independent variables transformed as

ρregi,0 =

sµ
�yi
�σi

¶2
+ ε2reg, ρregi,1 =

sµ
1− �yi
�σi

¶2
+ ε2reg, (54)

Φ=






�y1Er
¡
ρreg1,0

¢
− �y1 + 1− (1− �y1) Er

¡
ρreg1,1

¢
1

�y2Er
¡
ρreg2,0

¢
− �y2 + 1− (1− �y2) Er

¡
ρreg2,1

¢
1

...
...




, (55)

�v=

·
ÿκ2n1

�σ21

(Sr(ρreg1,0)Sr(ρ
reg
1,1))

2

ÿκ2n2
�σ22

(Sr(ρreg2,0)Sr(ρ
reg
2,1))

2 · · ·

¸
. (56)

Figures 11 and 12 respectively show the initial �σreg, which

corresponds to the parameters �a0,�b0, and the ML estimates
�σÞt and ��σÞt found using �σreg as initialization in the iterative
maximization of the likelihood. In Figure 11 we can see

that the inverse transformations (47)-(48) used in (55) and

(56) effectively move the clipped estimates pairs near to their

respective �non-clipped� positions. Note also the increased

accuracy of the ML estimates compared to that of the least-

squares ones.

Fig. 12. Estimation with clipped observations �z (Fig. 2): ML solution. Each
dot of the scatter plot corresponds to a pair (�yi, �σi) of estimates of �yi and
�σ (�yi). The solid line and dashed line show the maximum-likelihood estimates
�σÞt and ��σÞt of the standard-deviation functions σ and �σ, respectively. �a =

0.00995 (�χ = 100.52), �b = 0.001552 (
%
�b = 0.03940). The plot of �σÞt

overlaps perfectly with that of the true σ.

VI. ROBUST ESTIMATES

Despite the removal of edges from Xsmo, small singularities

or Þne textures and edges of the image can still be present

in zwdet, within Si. The accuracy of the sample standard-
deviation estimator (16) is consequently degraded, since zwdet

would contain wild errors of large amplitude, which can cause

the distribution of zwdet to become heavy-tailed. This typically
leads to an over-estimate of the standard-deviation. It is well-

known that robust estimators based on order-statistics can

effectively deal with these situations.

A. Robust standard-deviation estimates

To reduce the inßuence of these wild errors, we replace

the sample standard-deviation estimator (16) with the robust

estimator based on the median of the absolute deviations

(MAD) [12], [9]10

�σmadi =
1

κmadni

median
xj∈Si

©¯̄
zwdet (xj)

¯̄ª
, (57)

where κmadni
is again a scaling factor to make the estimator

unbiased. It is well known that, for large normally i.i.d.

samples, κmadn approaches Φ−1 (3/4) = 0.6745, where Φ−1

is the inverse c.d.f. of the standard normal. For small Þnite

10In its general form, this estimator is deÞned as
1

κni
medianxj∈Si

(((zwdet (xj)−medianxj∈Si
!
zwdet (xj)

"(((. However,

when used on wavelet detail coefÞcients, the subtraction of the median in the
deviation is often discarded, since its expected value for these coefÞcients is
typically zero.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

κmadn 0.798 0.732 0.712 0.702 0.696 0.693 0.690 0.688 0.686 0.685

TABLE II

BIAS FACTOR κmadn FOR THE MAD ESTIMATOR (57) FOR SMALL FINITE SAMPLES OF n INDEPENDENT NORMAL VARIABLES; κmad
2n = κmad

2n−1 .

E
#
�σmadi

$
/σ (yi)

ni µ = −1 µ = −0.5 µ = 0 µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 2.5 µ = 3 µ = 5

2 0.215 0.380 0.566 0.739 0.869 0.946 0.983 0.995 0.999 1.000

10 0.168 0.341 0.543 0.733 0.872 0.952 0.985 0.997 0.999 1.000

50 0.158 0.332 0.538 0.731 0.873 0.953 0.986 0.997 0.999 1.000

100 0.156 0.330 0.537 0.731 0.873 0.953 0.986 0.997 0.999 1.000

500 0.155 0.329 0.536 0.731 0.873 0.953 0.986 0.997 0.999 1.000

500000 0.154 0.329 0.536 0.731 0.873 0.953 0.986 0.997 0.999 1.000

TABLE III

EXPECTATION E
#
�σmadi

$
/σ (yi) FOR DIFFERENT COMBINATIONS OF µ = yi/σ (yi) AND ni .

samples, the values of κmadn are larger and up to
p
2/π =

0.7979 (mean of absolute deviations of N (0, 1)); in Table II
we give the values of κmadn for n = 1, . . . , 20. For larger n,
we can approximate κmadn as κmadn ' 1

5n + Φ
−1 (3/4). Note

that κmad2n = κmad2n−1; this is because in a set of 2n independent
random variables, any individual variable has probability 0.5
of belonging to the subset of n variables smaller (or larger)
than the median value. Tables similar to Table II can be found

in [14] for a few other estimators of the standard deviation.

1) Variance and distribution of the standard-deviation es-

timates: The variance of the robust estimates (57) can be

approximated11 as

var
n
�σmadi

o
= σ2 (yi) d

mad
i , dmadi '

1.35

ni + 1.5
. (58)

Thus, we pay the increased robustness with respect to outliers

with a more than twice as large variance of the estimates, in

comparison to (19) (this larger variance can be seen clearly

by visual comparison of Figures 12 and 14). However, in

practice, when working with many-megapixels images, the

variance (58) is often quite low, due to the large number of

samples ni. Hence, the use of the robust estimator is ordinarily
recommendable.

Like the sample standard-deviation estimates, also the MAD

estimates (57) have a distribution which can be approximated

by a normal12. In particular (and analogous to (20)),

�σmadi ∼ N
¡
σ (yi) , σ

2 (yi) d
mad
i

¢
.

2) Estimates of the variance: An unbiased robust estimate

of the variance (as used by the least-squares initialization (26))

can be obtained from the squared
³
�σmadi

´2
(57), provided

multiplication with a bias correction factor. Using the same

symbols of Section III-D.1, we denote this estimate of the

variance as
³
ÿκmadni

�σmadi

´2
, where the factor

¡
ÿκmadn

¢2
can be

11The approximation of dmadi in (58) can be obtained by Monte Carlo
simulations. A table with few of these values is found also in [14].
12The normal approximation can be easily veriÞed by numerical simula-

tions. Despite all the necessary ingredients for an analytical proof can be
found in [7], it seems that that this result is not explicitly reported in the
literature.

approximated as
¡
ÿκmadn

¢2
' 1 + 1

5n .

B. Maximum-likelihood Þtting (non-clipped)

The ML solution is found exactly as in Section III-D,

provided that the estimates and factors �σi, di, ÿκni are replaced
by their respective �mad� counterparts �σmadi , dmadi , ÿκmadni

in

Equations (22-24) and (28).

C. Clipped observations

Let us now apply the MAD estimator (57) to the wavelet

coefÞcients �zwdet =↓2 (�z ~ ψ) of the clipped observations �z,

�σmadi =
1

κmadni

median
xj∈Si

©¯̄
�zwdet (xj)

¯̄ª
. (59)

Although robust with respect to outliers of large amplitude,

the MAD estimator is sensitive to the asymmetry in the

distribution of the samples [14] and even the limiting value

Φ−1 (3/4) is, as one can expect from the presence of the

inverse c.d.f. of the normal distribution, essentially correct

for normally distributed samples only. Thus, contrary to the

sample standard-deviation, the MAD estimator is not asymp-

totically unbiased:

lim
ni→∞

E
n
�σmadi

o
6= std

©
�zwdet

ª
= lim

ni→∞
E {�σi} . (60)

Let us investigate this estimation bias for large as well as for

small Þnite samples. As in Section V-A, we restrict ourselves

to the case of clipping from below for a constant y (x) ≡ y,
∀x ∈ X, and apply the estimator (57) to the corresponding
�zwdet. In Table III, we give the expectations E

n
�σmadi

o
/σ (yi)

for different combinations of µ = yi/σ (yi) and ni. The same
considerations which we made commenting Table I can be

repeated also for Table III.

We use the expectations of large-sample estimates (values

with ni = 500000 in Table III) as a numerical deÞnition

of limni→∞E
n
�σmadi

o
. In this way, we deÞne the function

Smadm which gives limni→∞E
n
�σmadi

o
as a function of E {�ν}.

Hence, are also deÞned Smade , Smadr , and Emadr and the cor-

responding analogs of the direct and inverse transformation
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Fig. 13. Large-sample asymptotic expectation limni→∞E
#
�σmadi

$
of the

median of the absolute deviations (57) as a function Smade of the expectation
E {�ν} = �yi/σ (yi) of the clipped variables. The dashed line corresponds to
the function Se from Fig. (8).

formulas (45)-(48). In particular, we deÞne �σmad by

�σmad (�y) = σ (y)Smadm

³
y

σ(y)

´
Smadm

³
1−y
σ(y)

´
.

In Figure 13, we show the plot of Smade superimposed on the

plot of Se (dashed line). The vertical difference between the
two plots in the Figure is the bias13 of (57) as an estimator

of std {�ν} = std
©
�zwdet

ª
/σ (y). These differences can also

be seen (as a function of µ) by comparing the last rows of
the Tables I and III, for the cases ni =∞ and ni = 500000,
respectively.

For the case of the MAD estimator, formula (49) needs

therefore to be modiÞed as follows:

�σmadi ∼ N
³
�σmad (�yi) ,

¡
�σmad (�yi)

¢2
dmadi

´
.

The speciÞc Smadm allows us to take into account of the

difference �σmad (�yi) − �σ (�yi) (60) here and in the following
ML estimation of the functions σ and �σ.

1) Maximum-likelihood Þtting (clipped): The ML solution

is found exactly as in Section V-B, provided that the functions

Smadm , Smadr , and Emadr deÞned above and estimates and factors

�σmadi , dmadi , ÿκmadni
are used, in place of their respective �non-

robust� counterparts, in the Equations (50), (52), (53), (54),

(55), and (56). The found parameters �a and �b deÞne simultane-
ously three functions: from (25) we obtain �σÞt, a ML estimate
of σ; ��σÞt, a ML estimate of �σ; and ��σ

mad
Þt , a ML estimate of

�σmad,

�σmad (�y) = σ (y)Smadm

³
y

σ(y)

´
Smadm

³
1−y
σ(y)

´
,

around which are scattered the estimates
³
�yi, �σ

mad
i

´
.

In Figure 14 we show the ML estimates �σÞt and ��σ
mad
Þt

obtained for the clipped �z from Figure 2 using the MAD.

We can see that, despite the larger variance of the estimates

�σmadi (as compared to �σi in Figure 12), the Þnal estimated
parameters and the corresponding �σÞt are essentially the same
as those obtained using the sample standard-deviation. In the

Figure, note the slightly different shape of the plot of ��σmad
Þt

compared to ��σÞt.

13Although it is not insigniÞcant, this asymptotic bias is as not large
as it would be if applying the MAD (57) directly on �z instead of zwdet.
In fact, it is easy to realize that median {�ν} = 0 for µ ≤ 0. Since
obviously median {|�ν|} = median {�ν}, we have that median {|�ν|} =
median {|�ν −median {�ν}|} = 0 for µ ≤ 0.

Fig. 14. Estimation with clipped observations �z and MAD estimator
(59) (Fig. 2): Maximum-likelihood solution. Each dot of the scatter plot
corresponds to a pair (�yi, �σi) of estimates of �yi and �σ (�yi). The solid line
and dashed line show the maximum-likelihood estimates �σÞt and ��σ

mad
Þt

of the
standard-deviation functions σ and �σ, respectively. The plot of �σÞt overlaps
perfectly with that of the true σ (shown in Figure 1). The estimated parameters

are �a = 0.01000 (�χ = 100.04) and �b = 0.001594 (
%
�b = 0.03992).

Fig. 15. The piecewise smooth test image of Fig. 2 with thin text
superimposed: original y and observation z degraded by Poissonian and
Gaussian noise with parameters χ = 100 (a = 0.01) and b = 0.042.

D. Another example

To demonstrate a situation where the robust estimates are

remarkably more accurate than the non-robust ones, we in-

troduce a number of thin and sharp discontinuities in the test

image, as shown in Figure 15. At many places, due to low

contrast (and also due to the simplicity of our edge-detector),

these discontinuities cannot be detected properly and are thus

eventually incorporated in the smoothness set Xsmo. In Figure

16, we show the estimates �σÞt and ��σÞt obtained using the
robust and the non-robust estimator. As easily expected, the

estimates �σi are inaccurate and typically biased in favour of
larger standard-deviation values. As a result, the �σÞt curve
does not match with the true σ. The result obtained from
the robust estimates �σmadi is essentially better, with only a

mild overestimation of the signal-dependent component of the

noise.

VII. EXPERIMENTS WITH RAW DATA

We performed extensive experiments with raw data14 of

various digital imaging sensors under different acquisition

parameters. The devices included three CMOS sensors from

14We reorder the raw-data pixels from color Þlter array (e.g., Bayer pattern)
sensors in such a way to pack pixels of the same color channel together. Thus,
the processed frame z is composed by four (Bayer pattern) or three (FujiÞlm
SuperCCD) subimages, which portray the different chromatic components.
The boundaries between the subimages are usually detected as edges, as can
be seen in Figure 17(right).
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Fig. 16. Robust (right) vs. non-robust (left) estimation with clipped observations �z (Fig. 15): ML solutions. Each dot of the scatter plot corresponds to a
pair (�yi, �σi) of estimates of �yi and �σ (�yi). The solid line and dashed line show the maximum-likelihood estimates �σÞt and ��σ

mad
Þt of the standard-deviation

functions σ and �σ, respectively. The dotted line is the true σ. The parameters estimated by the two methods are �a = 0.01415 (�χ = 70.68), �b = 0.000951

(
%
�b = 0.03084) and �a = 0.01108 (�χ = 90.29), �b = 0.001524 (

%
�b = 0.03904), respectively.

Fig. 17. From left to right: out-of-focus image with under- and overexposure (Canon EOS 350D, ISO 100), a natural image (Canon EOS 350D, ISO 1600)
and its wavelet detail coefÞcients zwdet restricted on the set of smoothness Xsmo (the four subimages are arranged as [R,B;G1,G2]).

Nokia cameraphones (300 Kpixel, 1.3 Mpixel, 5 Mpixel),

Super CCD HR sensors [16] from FujiÞlm FinePix S5600

(5 Mpixel) and S9600 (9.1 Mpixel) cameras, and two CMOS

sensors from Canon EOS 350D and 400D SLR cameras (8

Mpixel, 10 Mpixel). In all experiments we found near-perfect

Þt of our proposed clipped Poissonian-Gaussian model to the

data. We also compared the parametric curves ��σÞt, estimated
from a single image by the proposed algorithm, with the

nonparametric curves estimated by the algorithm [6] using 50

images; we found the agreement to be very good, with minor

differences due to the fact that the present algorithm includes

the Þxed-pattern noise (FPN) in the noise estimate, whereas

[6], being a pixelwise procedure, estimates only the temporal

noise. Because of length limitation, we present here only few

most signiÞcant examples of the obtained results.

First, we show the estimated curves for the raw-data of

Canon EOS 350D with ISO 100 and 1600 (lowest and highest

user-selectable analog-gain options). An out-of-focus, hence

smooth, target (shown in Figure 17,left) was used, with

under- and over-exposed parts, thus providing a complete and

reliable coverage of the dynamic range and beyond. Besides

the excellent match between the Þtted parametric curve ��σmad
Þt

and the local estimates
³
�yi, �σ

mad
i

´
, one should observe that

the curve accurately follows the estimates as these approach

(1, 0), in agreement with our clipped data modeling. Nearly
identical curves are found when the smooth out-of-focus target

is replaced by one, shown in Figure 17(center), which presents

various complex structures that may potentially impair the

estimation. The wavelet coefÞcients zwdet are shown in Figure
17(right). The estimated curves are shown in Figure 19, where

one can also observe the wider dispersion of the estimates

³
�yi, �σ

mad
i

´
(due to the much smaller number ni of usable

samples in the level sets Si) and that the �yi are not distributed
over the full data-range. In Figure 20 we show a remarkable

example of clipping from above and from below within the

same frame, as it can be found with the FujiÞlm S5600 using

ISO 1600. The plot on the left is estimated from the raw-

data of an evenly exposed out-of-focus-target, shown in Figure

21(left); observe that the Þt of the model to the data is again

nearly perfect. The plot on the right is estimated from the

raw-data of the dark image shown in Figure 21(center). The

curves estimated in the two cases coincide. A further example

of estimation from a dark image, showing the accuracy of the

proposed model, is given in Figure 22 for the Canon EOS

350D using ISO 1600. Even though in this case the estimates³
�yi, �σ

mad
i

´
are concentrated at one side of the diagram, this

plot and those shown in Figures 18(right) and 19(right) are

nearly identical. Finally, a comparison with the nonparametric

estimate �σnp obtained by the method [6] is given in Figure
23. The curve �σnp was computed analyzing 50 shots of the
same target, whereas only one of these 50 images has been

used to estimate the function �σÞt with the proposed algorithm.
The shots were acquired by a 1.3-Mpixel CMOS sensor of a

cameraphone, with an analog gain of 10dB. We note that the

nonparametric method provides an estimate of σ (y) only for
the range of values y covered by the used images. Moreover,
it produces erroneous results approaching the extrema of this

range (about 0.07 and 0.41), due to lack of samples. Within
these extrema (i.e., 0.07 < y < 0.41) the two plots are
however very close, with minor differences due to the lack

of FPN contribution to the �σnp estimate.
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Fig. 18. Estimation of the standard-deviation function σ from the raw-data of the out-of-focus image (Fig. 17,left).

Fig. 19. Estimation of the function σ from the raw-data of the natural image (Fig. 17,center). Compare with the corresponding plots in Fig. 18.

Fig. 20. Estimation from raw-data which exhibits both clipping from above (overexposure) and from below (underexposure), as with the FujiÞlm FinePix
S5600 camera at ISO 1600. The plot on the left is estimated from raw-data of an evenly exposed out-of-focus image shown in Figure 21(left), the one on the
right is estimated from the raw-data of the dark image shown in Figure 21(center). The curves estimated in the two cases coincide.

Fig. 21. From left to right: out-of-focus image with under- and over-exposure (FujiÞlm FinePix S5600, ISO 1600), and two largely underexposed dark shots
(FujiÞlm FinePix S5600, ISO 1600, and Canon EOS 350D, ISO 1600).

VIII. COMMENTS

A. Different parametric models for the σ function

We remark that the proposed algorithm is not restricted to

the particular model (4). In fact, the parameters of any other

parametric model can be estimated in the same way. It is

sufÞcient to modify the expression of the function σreg in the
likelihood (23) according to the assumed parametric model.

Therefore, our algorithm has a broader scope of application

than shown in this paper and can be applied for parameter

estimation of other signal-dependent noise models, which can

be approximated as heteroskedastic normal. Heuristic models

for σ, such as those found using the principal component
analysis in [11], can also be exploited in our estimation

framework.

B. Multiple images

If two or more independent realizations of the image z are
available, they can be easily exploited in a fashion similar to
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Fig. 22. Estimation from the raw-data of the dark image shown in Figure
21(right) (Canon EOS 350D, ISO 1600); compare with plots in Figures
18(right) and 19(right).

Fig. 23. Comparison between the parametric �σÞt, estimated from a single
image, and the nonparametric curve �σnp [6] computed from 50 images.

[6]. Let us denote the different realizations as z1, . . . , zJ . From
(1), we have

zj (x) = y (x) + σ (y (x)) ξj (x) ∀x ∈ X , j = 1, . . . , J ,

where ξ1, . . . , ξJ are mutually independent and, for a Þxed
x, ξ1 (x) , . . . , ξJ (x) are i.i.d. random variables. Thus, by

averaging we obtain

zave(x) =
JX

j=1

zj (x)

J
= y (x)+

σ (y(x))√
J

ξ(x) , ∀x ∈ X, (61)

where ξ (x) has the same distribution as any ξj (x). Applying
the proposed estimation procedure on zave permits to estimate
the function J−

1
2σ and hence σ. In principle, the advantage of

the averaging (61) lies in the lower variance of the observation

zave, which allows for better edge-removal and results in
estimates (�yi, �σi) with lower variance. However, in practice, J
cannot be taken arbitrarily large because a very large J would
render the noise-to-signal ratio of zave too low for the noise
J−

1
2σξ to be measured accurately. Hence, the averaging (61)

is valuable only provided that the true y is sufÞciently smooth
and that the computational precision is high.

C. Denoising clipped signals

A generic denoising procedure can be modeled as an

operator whose output is an estimate of the expectation of the

noisy input. It means that when we denoise �z, as the output
we do not get an estimate of y, but rather an estimate of �y.
However, by applying (47) on the output, we can transform it

to an estimate of y. In the same way, we can �take advantage
of the noise� to obtain an image with a higher dynamic range,

since the range of �z and �y is always smaller than that of y.
The interested reader can refer to the recent work [5], where

a detailed discussion about the denoising of clipped noisy

images is given.

D. Interpolation of the functions Sm, Se, Sr, Er

In our current implementation of the algorithm, we use

interpolated values for the functions Sm, Se, Sr, Er, Smadm ,

Smade , Smadr , and Emadr as no closed form expression is available.

For practicality, we resort to indirect (nonlinear) polynomial

interpolation with exponential or logarithmic functions. The

particular expressions of the used interpolant are as follows,

Sm (µ) ≈ 1+tanh(p(µ))
2 , Se (ξ) ≈ 1− ep(

√
ξ),

Er (ρ) ≈ 1− ep(log(ρ)), Sr (ρ) ≈ 1− ep(ρ),
(62)

where p (t) =
P
k pkt

k is a polynomial with coefÞcients pk
as given in Table IV. For the MAD estimates �σmadi (57) and

related functions Smadm , Smade , Smadr , and Emadr , we use the same

interpolant expressions as in (62) but with different polynomial

coefÞcients, which are given in Table V.

We note that, with (62) and the coefÞcients in Tables IV and

V, the interpolation achieved for Emadr and Sr is diverging at
ρ ' 0.5 and ρ ' 11.5, respectively. However, the interpolation
is accurate for 0.65 ≤ ρ ≤ 11. Therefore, in our experiments
we constrain ρ within these bounds. Since ρ, Emadr , or Sr are
used only for the weighted least-squares problem (26) and not

for the likelihood equation (23), the restriction on ρ does not
affect the Þnal estimation of the noise model parameters.

The interpolants and tables presented in this paper comple-

ment and extend similar (although not equivalent) numerical

data found in the literature [2] (and references therein), [3]. To

the best of the authors� knowledge, no other studies of indirect

(e.g., in the wavelet domain) and robust (e.g., median-based)

estimators of clipped samples have appeared to date and,

although limited, the results in Tables III and V are therefore

valuable on their own. Further, we wish to emphasize that

the various estimators proposed in the cited publications are

developed for censored Gaussian processes with Þxed mean

and variance, and are thus not applicable to the more general

estimation problem considered by us.

E. Matlab software

A MATLAB implementation of the algorithm is available at

http://www.cs.tut.fi/~foi/sensornoise.html
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X. CONCLUSION

We presented and analyzed a Poissonian-Gaussian noise

model for clipped (and non clipped) raw-data. An algorithm

for the estimation of the model parameters from a single

noisy image is proposed. The algorithm utilizes a special

ML Þtting of the parametric model on a collection of local

wavelet-domain estimates of mean and standard-deviation.
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Sm Se Er Sr

p10 � −5.7155077 · 10−3 � 2.3348876 · 10−7

p9 1.4308530 · 10−6 9.9630886 · 10−2 � −8.7619300 · 10−6

p8 3.2172868 · 10−7 −7.3358565 · 10−1 � 1.2534052 · 10−4

p7 −2.6295693 · 10−5 2.9464712 · 100 −5.5320701 · 10−3 −7.0907114 · 10−4

p6 −8.5123452 · 10−5 −6.9596693 · 100 −5.5542026 · 10−2 −1.4943642 · 10−3

p5 −1.7851033 · 10−5 9.7330082 · 100 −2.0363415 · 10−1 4.5981260 · 10−2

p4 2.0282884 · 10−3 −8.3760888 · 100 −3.4651219 · 10−1 −2.8638716 · 10−1

p3 2.4377832 · 10−2 3.9881199 · 100 −4.1222715 · 10−1 8.5412513 · 10−1

p2 3.7234715 · 10−2 −1.8598057 · 100 −9.1504182 · 10−1 −1.5725702 · 100

p1 7.0309281 · 10−1 −7.0210049 · 10−1 −4.3779025 · 100 −5.2653050 · 10−1

p0 1.6923658 · 10−1 −3.1389654 · 10−6 −1.5498697 · 100 −1.2319839 · 10−10

TABLE IV

COEFFICIENTS OF THE POLYNOMIAL p (t) =
)
k pkt

k USED FOR INDIRECT INTERPOLATION OF THE FUNCTIONS Sm , Se , Sr , Er AS IN (62).

Smadm Smade Emadr Smadr

p10 � −2.0882655 · 101 � −6.8695634 · 10−1

p9 6.8722511 · 10−4 1.5778478 · 102 −2.4852997 · 101 1.0659232 · 101

p8 −3.3132811 · 10−3 −4.9232870 · 102 6.2356790 · 101 −7.1938586 · 101

p7 4.6401970 · 10−4 8.1719776 · 102 −3.4588152 · 101 2.7680210 · 102

p6 1.4193996 · 10−2 −7.7148949 · 102 −2.3467375 · 101 −6.6844401 · 102

p5 −3.3370736 · 10−3 4.0631819 · 102 2.2066307 · 101 1.0501179 · 103

p4 −4.0537889 · 10−2 −1.0564855 · 102 1.7531850 · 100 −1.0745079 · 103

p3 7.8410754 · 10−2 8.7374360 · 100 −5.0041080 · 100 6.9444029 · 102

p2 1.6003810 · 10−2 −1.6521034 · 100 1.3236318 · 10−1 −2.6249852 · 102

p1 8.3418294 · 10−1 5.2647043 · 10−2 −4.7818191 · 100 4.5940232 · 101

p0 7.0493620 · 10−2 −1.3640079 · 10−6 −1.4931770 · 100 −1.3097339 · 100

TABLE V

COEFFICIENTS OF THE POLYNOMIAL p (t) =
)
k pkt

k USED FOR INDIRECT INTERPOLATION OF THE FUNCTIONS Smadm , Smade , Smadr , Emadr AS IN (62).

Experiments with synthetic images and real raw-data from

camera sensors demonstrate the effectiveness and accuracy of

the algorithm in estimating the model parameters and conÞrm

the validity of the proposed model.
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