
Practical Prediction and Prefetch for Faster Access to
Applications on Mobile phones

Abhinav Parate
University of Massachusetts

Amherst, MA, USA
aparate@cs.umass.edu

Matthias Böhmer
DFKI GmbH

Saarbrücken, Germany
matthias.boehmer@dfki.de

David Chu
Microsoft Reasearch
Redmond, WA, USA

davidchu@microsoft.com

Deepak Ganesan
University of Massachusetts

Amherst, MA, USA
dganesan@cs.umass.edu

Benjamin M. Marlin
University of Massachusetts

Amherst, MA, USA
marlin@cs.umass.edu

ABSTRACT

Mobile phones have evolved from communication devices to
indispensable accessories with access to real-time content.
The increasing reliance on dynamic content comes at the cost
of increased latency to pull the content from the Internet be-
fore the user can start using it. While prior work has ex-
plored parts of this problem, they ignore the bandwidth costs
of prefetching, incur significant training overhead, need sev-
eral sensors to be turned on, and do not consider practical sys-
tems issues that arise from the limited background processing
capability supported by mobile operating systems. In this pa-
per, we make app prefetch practical on mobile phones. Our
contributions are two-fold. First, we design an app predic-
tion algorithm, APPM, that requires no prior training, adapts
to usage dynamics, predicts not only which app will be used
next but also when it will be used, and provides high accu-
racy without requiring additional sensor context. Second, we
perform parallel prefetch on screen unlock, a mechanism that
leverages the benefits of prediction while operating within the
constraints of mobile operating systems. Our experiments are
conducted on long-term traces, live deployments on the An-
droid Play Market, and user studies, and show that we out-
perform prior approaches to predicting app usage, while also
providing practical ways to prefetch application content on
mobile phones.

Author Keywords

App prediction, Prefetch, Mobile computing

ACM Classification Keywords

C.5.3 Computer System Implementation: Microcomputers—
Portable devices; D.4.8 Operating Systems: [Performance
Modeling and prediction]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UbiComp’13, September 8–12, 2013, Zurich, Switzerland.
Copyright c� 2013 ACM 978-1-4503-1770-2/13/09...$15.00.
http://dx.doi.org/10.1145/2493432.2493490

INTRODUCTION

The success of smartphones has resulted in an explosive in-
crease in the number of apps available in app marketplaces.
Currently, Apple’s iOS app store and Google’s play store
both have more than 700,000 apps available while the Win-
dow Phone app store is catching up with more than 150,000
available apps. Among the most popular apps in the market-
place are real-time content-driven applications such as News,
Email, Facebook, Twitter, and others that provide timely in-
formation to users.

While the utility provided by installed apps has made the
smartphone an indispensable companion to users, it comes
with a new set of user experience challenges. Mobile phones
are largely used during idle times in between real-world tasks,
and users want information instantly during these periods.
Yet, the reality is that delays in refreshing popular apps like
Email, Facebook, Twitter, News and Weather that rely on net-
work connectivity to download app content is often of the or-
der of seconds or tens of seconds. The fickle nature of cellular
connectivity means that these apps can have highly variable
wait times before the content is displayed to the user. Prior
work has shown that the top apps available in the market have
an average network latency greater than 11 seconds [15]. In
short, we face a dire challenge — app loading times are in-
creasing as apps fetch more content from the cloud, and the
cellular data networks continue to play catch up with these
trends.

There have been several prior efforts at tackling the increase
in app usage latency, but ultimately they fall short of address-
ing a plethora of practical considerations. First, prior work ig-
nores the freshness of loading predicted apps — for example,
Email may be predicted to be the next application to be used,
but should new emails be prefetched now or an hour later?
Second, several past efforts propose to modify either the mo-
bile OS or apps in order to speed up launch time [11, 15] —
these methods lack easy deployability through app stores or
require modifications of 3rd party app source code. Third,
prior approaches propose to use contextual data such as loca-
tion to improve prediction accuracy. However, users are often
reluctant to install apps that require contextual information, in
particular location context, diminishing the broader appeal of

such methods. Fourth, prediction methods proposed in prior
work often have high training requirements (several weeks
of data), but users expect system adaptation within days, not
weeks.

In response, we have developed PREPP1, a preeminently
practical approach to prefetch. By practical, we mean that the
two major facets inherent to fast app launch — App Predic-
tion, and Prefetch Execution — have been designed for per-
formance on today’s stock mobile devices with users seeing
immediate launch time speedups. At the core of our system,
we have two models. The first is App Prediction by Partial
Match (APPM), a prediction model that adaptively learns the
probability distribution of the apps to be used next and re-
quires no privacy-sensitive or power-hungry contextual infor-
mation like location. The second model is a Time Till Usage
(TTU) temporal model that utilizes the learnt distribution of
time spent before app use to estimate appropriate time for
prefetch in a bandwidth cost-aware manner – an aspect which
is of key importance for prefetching dynamic application con-
tent.

The outputs of the prediction and TTU models are combined
in PREPP to dynamically decide when to prefetch app con-
tent, thereby delivering significant fresh content with low en-
ergy overhead, while requiring neither app nor OS modifica-
tions. We are able to accomplish this by designing PREPP to
take advantage of app foreground-background execution se-
mantics that are common across mobile OSs while operating
within their constraints.

We use a combination of a deployment in the Android app
store with 7,630 active users, controlled user study with 22
participants, trace-based analysis and micro-benchmarks of
an Android smartphone to show that PREPP:

• Reaches over 80% accuracy when predicting a top 5 rank-
ing for the next app to be used. In fact, we perform better
than widely used approaches such as MRU, as well as pre-
vious technical proposals [11, 15] while requiring neither
privacy-sensative location information nor offline training
time.

• Delivers content to the user that is on average fresh within
3 minutes, and even up to 1.5 minutes fresh on average for
some users.

• Causes negligible additional energy expenditure.

BACKGROUND AND SHORTCOMINGS

In this section, we outline three drawbacks of existing sys-
tems that we address in this work.

Slow User Adaptation. Approaches that use prediction-
based strategies have suffered from prediction model training
cold-start: once a user starts to use the system, it has taken as
long as 3-6 weeks of data collection before meaningful pre-
dictions can be made [15]. Unfortunately, for mobile systems
where time and attention spans are limited, users expect ben-
efits within days, not weeks, particularly since app usage pat-
terns continually change over time. For example, long-term
1Predictive Practical Prefetch

traces of app usage (e.g. LiveLab iPhone usage dataset [10])
show that users download more than one hundred apps each
year, and use them only for a few weeks or months. There-
fore, prediction systems that require lengthy training periods
are not suitable.

Lack of Freshness. Prior work only answers the ques-
tion of which application will be used next and not when
it will be used. Predicting when an application will be
used is particularly important when optimizing freshness of
prefetched application content. For example, Email may be
predicted to be the next application to be used, but should
it be prefetched now or an hour later? Prefetching content
frequently would incur bandwidth and energy overhead, and
infrequently would result in stale content. Therefore, tem-
poral prediction is an important missing piece for cost-aware
prefetch.

Ease of Deployability Mobile OSs have unique constraints
that make it difficult to implement a practical prefetch sys-
tem. Hence existing approaches either propose modifications
to mobile OSs [15], or modifications to the app source to
prefetch content [8]. However, this hurts their deployabil-
ity — even with an open source system like Android, man-
ufacturers often lock down the OS bootloader such that un-
signed OS changes are not installable. Similarly, a potential
approach that aimed to modify only the server push decision
algorithm would also lack deployability because push noti-
fication infrastructure is under OS vendor control and is not
accessible for modification. Finally, approaches that propose
to modify only apps are challenged with the necessity for ac-
cess to and modification of 3rd party app source [8]. These
constraints from the OS and Apps are unlikely to change any-
time soon. While modifications to the OS or apps represent
useful design alternatives, a key question that has remained
unanswered is whether it is possible to design an easily de-
ployable, store-compatible prefetching system for mobile de-
vices.

REQUIREMENTS

Our goal is to design PREPP, a practical prediction and
prefetch system that satisfies the following key requirements:

I PREPP should require a small training overhead, and be
able to converge to high accuracy within a small number of
days of use, while adapting to changing usage patterns and
applications quickly.

I PREPP should maximize freshness for applications that
need to update their content, while minimizing the resource
overhead incurred in terms of network access and energy
cost.

I PREPP should work on unmodified off-the-shelf phones
and bring speedups to existing apps, thereby making it im-
mediately deployable to mobile app stores, installable on
current mobile OSs and usable by all mobile users.

The next three sections address these requirements.

PREPP: SYSTEM DESIGN

The problem that we solve in PREPP can be defined as fol-
lows: given a sequence of content-based apps that a user has

used, and the times when the user has used them, can we
prefetch content in a timely manner while keeping the overall
network prefetch costs low. This high-level problem can be
divided into three sub-problems: a) can we accurately predict
what app is going to be used next? b) can we predict when
that app is going to be used next? and c) can we decide when
to prefetch to maximize freshness while keeping network ac-
cess costs bounded? We describe next the three key system
components in PREPP that accomplish these goals.

APP PREDICTION ALGORITHM

The problem of app prediction is as follows: given the app us-
age sequence for an individual, can we predict what app the
user is likely to use next? Intuitively, this problem has paral-
lels with text compression, where the preceding character se-
quence can be used to determine the most likely next charac-
ter, which in turn can be leveraged to compress the text. (For
example, a character following the sequence natio in English
language is highly likely to be n). Similarly, one can view
each app as a “character” and the sequence of app usages as
a character stream, and apply text compression techniques to
our problem. We now look at what text compression algo-
rithm to leverage, and how to adapt it to our needs.

One of the widely used methods in text compression is Pre-
diction by Partial Match (PPM) [6]. At a high level, PPM
operates by scanning character sequences, and building up
a variable-length Markov-based predictor on the fly. PPM
uses the longest preceding character sequence to compute the
conditional probability distribution for the following charac-
ter. To compute this conditional probability distribution, PPM
maintains frequencies for characters that have been seen be-
fore in all prefix-sequences that have occurred before, up to
some maximum order, where order is the length of the prefix.
For example, PPM with order 3 maintains frequencies for all
prefixes of length 3, 2, 1, and 0 as shown in Table 1. To
predict what character is likely to appear next in the stream,
PPM computes the conditional probability for each charac-
ter given the highest order node having a non-zero frequency
for the character and scales it using weights, with weights be-
ing highest for the longest prefix, since longer matches often
provide more precise contexts for character prediction.

Since PPM is designed for text compression rather than app
usage patterns, we need to address some of the differences be-
tween these two cases. The main difference is that in text pre-
diction, the longest prefix is often the most relevant, whereas
in app usage, both long and short prefixes can be highly in-
formative. For example, we found that in some cases, a user
tends to strongly favor recently used items whereas in other
cases, a user exhibits highly sequential app usage behavior.

We address this issue by allowing the prediction accuracy
from the different orders in PPM determine how they are
weighted. Thus, we do not make strong assumptions about
what length prefixes are likely to be useful, and instead let
the empirical accuracies from prior predictions dictate which
nodes are favored. With accuracy-driven weights, we com-
pute weighted sum of the outputs of predictions from each of
the prefix nodes. In this manner, APPM’s vocabulary is per-
sonalized to each user, and can learn their preferred patterns

Order prefix
character frequency

Tm

PPM APPM
n t r f s o wm wm

3 sio 2 1 3 1 0.5

2 io 3 1 1 1 1

4
0.5

1 o 3 1 2 6 6 1

4.2
0.64

0 φ 3 1 2 6 4 12 16 1

4.2.7
0.38

Table 1. Example of PPM nodes for current context sio in string
“sionofionsionofofioroforofsiotofsio”. Nodes for prefixes sio, io, o and

empty sequence φ along with character frequencies, sum of frequencies

for characters in node that are not present in higher order node (Tm),

PPM weights wm =
Q

3
i=m+1

1

Ti+1
and APPM weights given by the

prediction accuracy observed for the node are shown.

over time. Table 1 shows an example scenario where APPM
weights are given by accuracy obtained using the top-2 pre-
dictions for each node.

In summary, APPM is an appealing app prediction algorithm
that satisfies our key requirements: (1) it has low training
overhead — incremental training requires O(1) operations
that involve a simple increment of counts, (2) it continuously
adapts to changes in the sequence’s character distribution by
discounting older history, and (3) it learns what prefixes are
likely to be more useful for prediction and places its bets ap-
propriately.

TEMPORAL MODELING

One of the limitations of prior work on app prediction is that it
does not consider freshness, i.e. how recently an application’s
content was prefetched prior to an application use. Consider
the following naı̈ve prefetch example — every time APPM
predicts that Email will be used as the next app, prefetch
Email. This has high freshness if Email is used immediately
but has poor freshness if the user opens Email an hour later.
An alternative might be to prefetch Email every, say 10 min-
utes, until the user opens Email. But this suffers from high
network access overhead if the delay is of the order of an
hour or more. Clearly, if we want to optimize cost, we need
to first predict when an app is likely to be opened next.

The question we are addressing here is: If we have just
opened an app, and if we know that the next app to be used is
e, what is the probability that e will be used in time interval
∆t from the current time (denoted p(TTU ≤ ∆t|nextapp =
e), where TTU , time till usage for nextapp, is the time that
elapses between the current time and when the nextapp is
used). Note that we only need to evaluate this probability ev-
ery time an app is used (we refer to this as an app-change
event), since no additional information is available between
app usage events.

To answer this, we learn the conditional cumulative dis-
tribution function (CDF) FTTU |nextapp=e for an app e
from the app usage history. Given an app usage history
[app1, ..., appn] where appj is the jth app used and launched
at time tj , we can learn the conditional CDF using the distri-
bution of all durations (tj − tj�1) such that appj = e. Figure
1 shows an example of the conditional CDF obtained for a
representative user where nextapp being modeled is Email.
The conditional CDF is computed from a user trace of app
usages obtained from LiveLab iPhone usage dataset [10].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Time till Usage, TTU (in seconds)

Email

Figure 1. The cumulative probability distribution of Email to be

launched as the next app as a function of time till usage, obtained for

a representative user.

DECISION ENGINE

Our decision engine executes on each app-change event and
utilizes the prediction model and the temporal model to de-
cide when to prefetch an app such that it balances the need
to improve freshness, while at the same time limits the net-
work bandwidth costs associated with frequently connecting
to a server and downloading the data from it. The output of
the decision engine is the time ∆t we should wait from the
app-change event to execute prefetch.

Recall that our prediction model predicts what app is going to
be used next and the temporal model predicts when some app
will be used assuming it knows what app will be used next.
Our decision fuses the uncertainty in what and uncertainty
in conditional when to get the joint estimate of the probabil-
ity of some target app nextapp to be used next within some
time interval(∆t). Let us denote this probability using pfetch.
Now, if we choose to prefetch after time ∆t has elapsed, then
with probability 1 − pfetch, the next app will be used after
prefetch and will see a freshness benefit of ∆t, and with prob-
ability pfetch, the next app is opened prior to prefetch and it
will see no benefits in freshness. If we select a small value
for pfetch, it has two effects: a) more apps are prefetched
since even apps that are predicted to be opened next with
low probability will qualify for prefetch, and b) ∆t will be
smaller and hence, we will typically prefetch apps quickly.
This means higher bandwidth cost and apps used a while later
see less prefetch benefit. On the other hand, a higher value of
pfetch means fewer app prefetches and longer ∆t and hence,
we prefetch less frequently but the fewer target app usages
that benefit from it see better freshness due to larger ∆t ben-
efit.

Thus, the key question for the decision engine is how to
choose pfetch to balance freshness and bandwidth cost. To
address this, we set a target bandwidth cost for each app,
and learn from history the largest possible value of pfetch

that would have been within the target cost while ensuring
the least missed opportunities. This learning is not expensive
since we only need to make a decision upon each app change
event, which restricts our search space. We now present our
intuition in a more formal manner.

Algorithm

Our prediction model can be used to compute the probabil-
ity p(nextapp = e) and our temporal model gives us the
probability of nextapp = e being used within time ∆t con-
ditioned on e being the next app. This probability is pro-
vided using the conditional cumulative distribution function
FTTU |nextapp=e(∆t). The decision engine fuses these two
outputs multiplicatively to obtain a cumulative distribution
function (FTTU (∆t)) that can be used to compute the proba-
bility of e being used as the next app within the time interval
∆t.

FTTU (∆t) = p(nextapp = e) × FTTU |nextapp=e(∆t)

Once the distribution function FTTU is known, we need to
choose a threshold pfetch that balances freshness and cost
as described earlier. We define network bandwidth cost (C)
as the multiplicative factor of the rate of use of the target
app. Thus, if a target app is used N times then the num-
ber of prefetches can be at most N ×C. Given such a cost C
and app usage history, we can estimate the appropriate value
for pfetch to limit the cost to C. The detailed description of
our algorithm can be found in Algorithm 1, but intuitively,
if there are N occurrences of nextapp in the user’s history,
the multiplicative cost is C and we know the probability val-
ues attained by the joint distribution function FTTU just be-
fore each app-change event in the history, we pick the NCth

largest probability value as pfetch since it results in exactly
NC prefetches on the historical trace.

Algorithm 1 Compute Time To Prefetch

1: Input: Network Bandwidth Cost C; TTU distribution function for target
app FTTU ; TTU probability history d[1...L]; Count of target app in
user’s history N .

2: Output: Time to wait for prefetch ∆t.
3: Sort d in decreasing order.
4: p = d[Ne ∗ C] i.e. NCth highest TTU probability.

5: ∆t = F−1

TTU
(p).

6: return ∆t

TRACE-DRIVEN EVALUATION

In this section, we evaluate the benefits of our techniques
using long-term app usage traces provided by the LiveLab
project at Rice University [10]. This dataset consists of traces
for thirty four volunteers collected on iPhone 3GS for a pe-
riod of up to fourteen months. We look at the app-usage traces
from this dataset, which provide the start time and the dura-
tion of each app usage observed on the phone. In addition, we
use location traces to obtain the location where apps are used.
Since location traces are obtained at a coarse granularity com-
pared to app usage data, we interpolate location information
to find the missing location information for app usage data.
In all, we have 576,491 records of app use across 14 months.

Prefetch Effectiveness

We evaluate the effectiveness of our prefetch algorithm and
compare it with Falcon [15] which is the only other known
scheme for app prefetch. Figure 2 shows the results for two
heavily used apps that can leverage prefetch, Email and Face-
book. Since Falcon cannot control the bandwidth costs, for a
fair comparison, we evaluate our APPM+TTU model based

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Freshness (in secs)

NOOP

Falcon

APPM

(a) Freshness in Facebook app

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Freshness (in secs)

NOOP

Falcon

APPM

(b) Freshness in Email app

Figure 2. Freshness observed using i) No prefetching (NOOP) ii) Previ-

ously proposed scheme (Falcon), and iii) our APPM prefetch algorithm.

While the previous scheme improves median Email and Facebook fresh-

ness to 7 and 8 minutes, respectively, APPM further improves freshness

to 3 minutes at the same bandwidth cost.

prefetch scheme using the same bandwidth cost as observed
in Falcon. The median freshness (i.e. the time period between
the latest network data fetch and the time of actual app use)
with the Falcon scheme is near 8 minutes for both the apps.
Our scheme improves freshness by reducing median fresh-
ness to 3 minutes. Note that for the ‘No prefetching’ case, we
computed freshness as the time elapsed since last use of the
app assuming that the app is refreshed by a user upon each
use.

In addition, we evaluate the effectiveness of temporal mod-
eling in our scheme by comparing it against a APPM-based
scheme which prefetches on app-change events whenever the
probability of the target app predicted by APPM algorithm is
above a certain threshold. The threshold value in this scheme
is determined by the bandwidth cost. Table 2 shows the ben-
efits of using TTU model in 3 quartiles of observed freshness
in Facebook app for various costs. We see that the benefits are
significant, particularly at low bandwidth costs. The median
freshness improves by 25% for 2× and 4× cost, demonstrat-
ing the benefit of incorporating TTU into the algorithm.

Utility of location context

As described earlier, several prior efforts at predicting appli-
cation usage have pointed out that location context is very
useful [11, 13, 15]. Yet, obtaining location is often undesir-

Cost Algorithm
Freshness(in secs)

25-%ile 50-%ile 75-%ile

2x
APPM w/o TTU model 83 383 1966
APPM w/ TTU model 68 286 1334

4x
APPM w/o TTU model 41 190 928
APPM w/ TTU model 37 155 691

8x
APPM w/o TTU model 26 111 506
APPM w/ TTU model 26 104 452

Table 2. APPM w/ TTU model delivers better freshness, especially for

low bandwidth budgets. Three quartiles of observed freshness values for

Facebook app are shown at varying bandwidth budgets of 2x, 4x and 8x

(Evaluated on 34 users from LiveLab dataset).

Context Used Prediction Accuracy

None 80.85%
Location 81.10%
Time of Day 81.23%
Location, Time of Day 81.35%

Table 3. Aggregate prediction accuracy over all users obtained using

APPM with and without various contexts. Additional contexts like Time

of Day and Location provide only a marginal improvement in accuracy.

able due to user privacy concerns as well as energy overhead.
Therefore, we investigate the actual utility of location data
and whether we can forgo it. Interestingly, we find that app
prefixes largely subsume the need for explicit location.

To understand whether location contexts improve prediction
accuracy, we design a multi-context version of APPM which
includes a different predictor for each location context (e.g.
home, workplace, etc), and one for each time-segment of the
day (e.g. morning, afternoon, etc). Given several context-
specific predictors, we compute a weighted combination of
these models to predict the next application. Table 3 shows
the performance of a single predictor that does not use any
context, as well as predictors that use additional contexts. The
benefits of additional context is surprisingly small, a puzzling
observation given observations made in prior work. A closer
look at app usage patterns in different location contexts pro-
vides an interesting explanation. As it turns out, “contextual”
information is partially captured by the app sequences that are
used only in a specific context e.g. Angry Birds at home. We
further validated this by looking at the distribution of location
contexts for each prefix used by APPM for a representative
user who had 14 semantic locations. We observed an 80th-
percentile entropy of 2.0 bits indicating that a large number
of app prefixes have location information encoded in them. If
the prefixes had no correlation with location, then the entropy
would be close to 3.8 bits corresponding to the 14 semantic
locations.

Prediction Evaluation

Tables 4(a) and 4(b) present a comparison of prefix-only
APPM against previously proposed prediction techniques in-
cluding: a) Falcon, which uses location and time contexts
[15], b) 2-NB: a Naive-Bayes prediction model that uses lo-
cation and time-of-day as features [13], c) 3-NB: a Naive-
Bayes prediction model that uses location, time-of-day and
previous-app-used as features [4], and d) a strawman Most
Frequently Used (MFU) algorithm.

(a) Predicting all apps in the user traces

Algorithm Prediction Accuracy

MFU 48.81±1.08 %
2-NB 74.87±1.60 %
3-NB 78.81±1.34 %

APPM 80.85±1.23 %

(b) Predicting follower apps in the user traces

Algorithm Prediction Accuracy

Falcon 70.16±1.56 %
APPM 74.37±1.41 %

Table 4. Comparison of APPM with previous app prediction algorithms

when making Top-5 predictions. APPM performs better than schemes

using location and time context.

Table 4(a) compares prefix-only APPM against all schemes
except Falcon, and Table 4(b) compares against Falcon. We
separated these results because Falcon only predicts occur-
rences of apps that follow the first app used upon unlocking
the screen. The results show that the prefix-only version of
APPM performs just as well as algorithms that use additional
contexts including location.

PRACTICAL PREFETCH CONSIDERATIONS

Mobile operating systems such as Android, iOS and Windows
Phone support a set of runtime semantics distinct from their
desktop OS counterparts. A central challenge in the design
of a practical prefetching system is managing the limitations
posed by these mobile operating systems. While the remain-
der of our discussion centers around Android, the design de-
cisions are in fact standard to modern mobile OSs, and apply
to iOS and Windows Phone as well.

Addressing Android constraints: Android places several
constraints on the scheduling and resource usage of fore-
ground and background threads and processes. The con-
straints that directly impact the design of prefetch mecha-
nisms are two-fold. First, main threads are not scheduled
when the device enters the standby state (which occurs ei-
ther due to an idle activity timeout or an explicit user button
toggle). This means that main threads can only run when the
device is active. Second, apps are restricted from performing
networking activities on the main thread as it can make an
app unresponsive if there is slow or no network connectivity.
Thus, the standard model is that apps fetch network data by
spawning background threads from the main thread.

We examined the behavior of several apps that could be po-
tential prefetch candidates and found that all of them rely on
the main thread to be active to fetch content or load state.
For example, Facebook and Email rely on network fetch and
initiate background threads for network calls from the main
thread when the app is opened and appears on the screen.
Thus, it was clear that we could not initiate prefetch during
times that the device was turned off, leaving us with the times
that the device was actually unlocked and in use.

A close look at applications that require content refresh re-
veals that they often auto-refresh upon opening the app and/or
upon re-starting the app. This means that once auto-refresh

is triggered by the main thread, the asynchronous network
fetch task is created and the app can be pushed to the back-
ground. Thus, we only needed to bring the app to the fore-
ground for the small amount of time that it needed to initi-
ate auto-refresh. An empirical study of the minimum amount
of time needed for an app to be brought to the foreground
showed that it ranges from 200ms for apps like Email to up to
1 second for Facebook. Note that even if auto-sync is turned
off for an application, it is possible to kill and re-start an app,
at which time it automatically updates its content.

Minimizing disruptiveness to user: Next, we ask what is
the most suitable time for prefetch such that it is minimally
disruptive to user experience. During periods when the de-
vice is actively used, three opportunities present themselves:
a) when the screen is unlocked and before an application is
started, b) transition times between usage of applications in
the same session, and c) between an app being closed and
the phone being turned off. While all three are viable, we
find that the most convenient option is prefetch upon screen
unlock since it allows us to prefetch immediately prior to a
user opening an app. Our approach uses k-step prediction,
where APPM predicts which apps to prefetch among the next
k applications that were going to be used. Previous work has
analyzed typical session lengths and found that these are typ-
ically short [15], therefore a two-step prediction is sufficient
for deciding which apps to prefetch upon screen unlock.

Parallel prefetch to minimize energy overhead: The en-
ergy consumption in executing prefetch is another considera-
tion that impacts our design. Prior work has shown that data
transfer using cellular incurs a tail-energy overhead as the
phone’s radio remains in active mode for another 10-20 sec-
onds after data transfer is complete [7]. Therefore, batching
transfer can provide energy savings in the range 62-75% for
3G networks. We leverage this insight to reduce prefetch cost
by executing a number of prefetches in parallel. In PREPP,
two-step look ahead allows us to merge all the prefetches that
are scheduled to execute within 30 seconds of each other and
execute them in parallel.

IMPLEMENTATION

To implement the APPM algorithm on Android, we ported the
PPMII implementation from D. Shkarin et al. [12] in C++,
and modified it to implement our ranking scheme for pre-
dictions. Since Android apps are written in Java, we imple-
mented a Java wrapper around this code using Java Native
Interface so that other components implemented in Java can
interact seamlessly with the predictor.

In addition to prefetching content automatically, we also in-
tegrate a dynamic home screen widget that leverages predic-
tions from APPM to allow users to quickly find apps among
the many that they have installed. The idea of adaptive short-
cut menus for smartphones has existed for some time [3, 5,
11, 14]. Our PREPP widget builds on prior work, with the
change that we update the widget not only when the device
is unlocked, but also when the user returns to his homescreen
after closing an app. This provides the user with a higher
degree of adaptiveness.

Figure 3. PREPP’s adaptive shortcut menu placed on the homescreen as

a widget.

Figure 3 shows a screenshot of our PREPP adaptive shortcut
menu Android prototype. Shortcut icons for the top five pre-
dicted apps are shown, and the user can click on any of them
to launch it directly. In addition, a timer beneath each short-
cut indicating time since prefetch informs users about content
freshness.

User Control: Since a user may have sensitive apps like
banking applications or apps that use privacy-sensitive infor-
mation like location upon start, we do not prefetch any app by
default. Instead, we provide users with an interface to select
the apps they want to prefetch. This interface provides users
with a greater control regarding which apps get prefetched.

EXPERIMENTAL EVALUATION

In this section, we present an evaluation of our implementa-
tion through two user studies. We first describe our controlled
user study where we evaluate benefits of prefetch in detail.
Next, we describe our experiences deploying our prediction
algorithm part of PREPP to Google Play Store and study its
impact on real users in the wild. Finally, we conclude with
benchmarks characterizing system overhead for our imple-
mentation.

Controlled User Study

In order to perform a detailed evaluation of the prefetch ben-
efits from PREPP, we conducted a user study2 consisting of
22 users. Of these 22 users, 6 users used PREPP for at least
two weeks, segmented as follows: (1) one week of control
data with no prefetch, and (2) one week of data with prefetch
active, and the multiplicative bandwidth cost C set to 2. The
remaining 16 users had a control and test period of 3 days and
4 days respectively. Recall that PREPP performs prefetch by
bringing an app to the foreground for a brief period upon un-
locking the phone screen. To make users unaware of whether
it was the control or experimental period, apps were brought
to the foreground during the control period without actually

2Study conducted with appropriate IRB approval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
u

m
u

la
ti

v
e
 P

ro
b

a
b

il
it

y

Freshness (in secs)

No Prefetch
Prefetch

Polling

Figure 4. Prefetch achieves better content freshness than 15-minutes

polling at a fraction of cost (number of polls were 3.58× number of

prefetches). The median freshness improves from 1955s (no prefetch)

to 247s with polling and to 162s with prefetch.

performing any content fetch activity. Note that for the con-
trolled user study, we disabled the adaptive shortcut menu
shown in Figure 3.

Prefetch Benefits

The primary metric for evaluating the benefit of prefetch dur-
ing app usage is the increase in freshness of content. Content
freshness reflects how recently content was retrieved at time
of use, and is measured as the time between prefetch and app
usage.

Figure 4 shows distributions of freshness observed for all
users during the control period with no prefetching and the
test period with active prefetching. Also, we show the dis-
tribution that can be achieved via 15-minutes polling for the
test period as polling is the most popular way of refreshing
app content on phones. We see substantial freshness bene-
fits across the board, with an order of magnitude improve-
ments across all three quartiles. The median freshness im-
proves from 32.6 minutes to 4.1 minutes with polling and to
2.7 minutes with prefetch. Most importantly, the number of
polls during test period are 3.58× the number of prefetches.
Thus, APPM achieves better freshness than polling at a much
smaller cost. Also, the median freshness with prefetch for
16 users with 3-days control period and 6 users with 7-days
control period are 3.6 minutes and 2.06 minutes respectively.

Additionally, we measure prefetch effectiveness using preci-
sion i.e. the fraction of prefetches that were followed by a
respective app usage and recall i.e. the fraction of app usages
that were preceded by a respective prefetch. The average pre-
cision and recall values observed for all the users are 22.12%
and 46.87% respectively. In contrast, 15-minutes polling has
3.82% precision and 28.97% recall.

Prediction Accuracy and Adaptivity

We now show that APPM requires very little training and
adapts rapidly to changing user behavior. Figure 5 shows the
time-series trend for a representative user — the bar graph
below shows the number of unique apps seen by APPM over
time, and the upper bar graph shows APPM’s accuracy on
those days based on top-5 predictions.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
c
c
u

ra
c
y

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

U
n

iq
u

e
 A

p
p

s
 S

e
e
n

Days since APPM Installation

Figure 5. APPM yields high accuracy and adapts quickly to usage of

new apps.

The results suggest two interesting conclusions. First, we see
that accuracy with top-5 predictions is extremely high (95%)
even on the first day, and our average prediction accuracy is
81.89±3.9%, both of which are very high. Second, we see
that APPM adapts well to usage dynamics — for example,
we see that on day 4, the user invokes a large number of new
apps that are previously unseen by APPM, As a result, pre-
diction accuracy drops for the day, but rapidly improves again
on day 5. We see similar fluctuations between day 7 to day 10
where new apps are used. These results validate the adaptive
capability of APPM

User Study in the Wild

Next, we study PREPP in the wild, and specifically focus on
the prediction performance. We packaged the adaptive short-
cut menu widget with APPM prediction and other state of the
art prediction algorithms and released them as a standalone
download — called AppKicker3 — on the Google Play Store.

Methodology

We compared APPM with two other prediction algorithms: i)
Most Recently Used (MRU), which is used by all major mo-
bile platforms to show MRU app shortcuts; and ii) Sequential
(SEQ), which uses only the previously used app to predict the
next app, as suggested by previous work [4, 11].

We used a within-subject A/B/C design to test and compare
the different prediction strategies; whenever a new prediction
is requested, we randomly choose one of APPM, MRU or
SEQ for prediction. We tracked how users interacted with
the icon menu with each prediction algorithm. However, our
evaluation is limited in that we cannot know what other icons
users have on their home screens. For example, we might
recommend apps that the user has already pinned to his home
screen, or we might not catch app launches that the user initi-
ates outside of our launcher widget.

Results

At the current time, the widget has been installed more than
43,600 times and has more than 7,630 active users.4 Note

3http://goo.gl/wZO0C
4According to Android Developer Console

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5

App Ranking by Predicted Likelihood of Use

C
u

m
u

la
ti
v
e

 C
lic

k
-T

h
ro

u
g

h
 R

a
te

Algorithm

MRU

SEQ

AppPPM

Figure 6. APPM yields better click-through rates for more highly ranked

apps.

that both PREPP installation and participation in the research
study are voluntary. As soon as a user starts PREPP, we
present a research study disclaimer and offer opt-in consent.
Following the Two Buttons Approach [9], users can decline
from contributing data but still use the application.

For a fair comparison of the different prediction algorithms,
we report results for the top 100 users as ranked by click vol-
ume. These users had a median of 112.5 clicks (min 62, max
1,807). This resulted in 16,991 clicks in total.

Figure 6 shows the click-through rate as a function of the pre-
diction algorithm’s ranking. APPM yields a click-through
rate of 38.1% on its top ranked app, whereas MRU and
SEQ produce only 27.7% and 35.4% respectively. Simi-
larly, APPM outperforms other prediction algorithms at other
ranked positions as well. APPM’s more accurate predictions
and better app rankings result in more opportunities for effec-
tive prefetch.

Binary Size 0.96MB
Memory 6.5MB
Time for prediction <250µs
Time for prefetch decision <5ms

Table 5. System overhead

MICROBENCHMARKS

System Overhead: We measure the system overhead of our
implementation on the Samsung Galaxy Nexus Phone. Ta-
ble 5 shows the overhead summary of PREPP. Using APPM
for prediction and prefetch decision requires less than 250µs
and 5ms respectively. This overhead is sufficiently low that
a prefetch upon unlock is not an issue. The memory require-
ment of 6.5MB is modest and remains stable during execu-
tion. This suffices for running all required background ser-
vices, keeping statistics for prediction in memory, and keep-
ing uplink state to collect user trace.

Data Overhead: In this evaluation, we define two cate-
gories of apps that can use prefetching and evaluate the data
overhead. We use data overhead observed for each app to set
the app-specific multiplicative bandwidth cost C to be used
by the decision engine.

Persistent data apps

In this category of apps, when refreshed, the apps fetch all
the new-arrived data since it was last updated and save the

 0

 100

 200

 300

 400

 500

 600

Facebook BBC Flipboard ESPN News and Weather

D
a
ta

 U
s
a
g

e
 (

in
 K

B
)

Figure 7. Data usage per refresh for popular apps.

data locally for later retrieval. Example of such apps include
Email, Dropbox and Evernote. The data usage in these apps
is proportional to the size of payload being fetched. These
apps can fetch their payload in one or more prefetches but the
actual cost of payload fetch remains independent of the num-
ber of prefetches. However, each prefetch incurs a constant
overhead that is needed for the synchronization protocol and
makes multiple prefetches expensive to execute. We can com-
pute this constant overhead by observing the total data usage
as we increase the payload size linearly. By fitting straight
lines to these observations, we can solve for the constant. Us-
ing this, we estimate constant overhead to be 8447 bytes for
the Email app and 2659 bytes for Gmail app.

Live feed apps

This category of apps receives the latest feed from the server.
In contrast to Email app, these apps do not fetch all the new
feeds since the last update but only the most recent ones. Ex-
ample of these apps include Facebook, News and Weather,
BBC news, etc. Depending on the nature of feed, the size
of the feed can be near constant (e.g. live game scores) or
it can vary significantly (e.g. Facebook where the number of
images and the amount of text in a feed vary). While most
of these apps will discard the previous feed upon refresh and
fetch the feed again, there are a few apps like Flipboard that
fetch only the change in feed since the last update. Overall,
the data overhead in these apps is equal to the data used in
receiving the new feed. Figure 7 shows average data usage
for popular apps observed at various times of day.

Energy Consumption in 3G: We now compare energy
consumption for refreshing app content in i) prefetch scheme,
and ii) manual refresh. We note that a user refreshes app by
opening each app in a sequence. In contrast, our prefetch
scheme identifies all the apps that need to be refreshed as soon
as the phone is unlocked and starts fetching content for all the
identified apps in parallel. Consequentially, the power con-
sumption characteristics are different for prefetch and manual
refresh. Now, we show that our prefetch scheme using paral-
lel fetches reduces the energy overhead per app-prefetch, and
can save energy up to 47% in comparison to manual refresh
if the app predictions are accurate.

Figures 8(a)-8(c) show power consumption characteristics of
network data-fetch for 3 distinct apps on a 3G network with
different levels of data usage. Also, Figure 8(d) shows power
characteristics when data is fetched for all these 3 apps in

Energy Consumption(in µAh)
Data Transfer Phase Total

Sequential 2320.04 3547.25
Parallel 1407.31 1875.00

Table 6. Energy consumed in parallel fetch vs sequential fetch of content

for 3 distinct apps. Parallel fetch saves 39.34% and 47.14% energy in

data transfer phase and total respectively.

parallel. We measured this using Monsoon Power monitor
on Galaxy Nexus phones running on AT&T’s 3G network.
In these figures, the first phase with high power consump-
tion is the data transfer phase, followed by a period called
the tail up to 17s in length when there is no data transfer but
the power consumed remains above 1000mW. In the end, we
see a baseline power of 783mW required to keep the screen
and cpu running on the phone. It is easy to see that paral-
lel fetch has an advantage over sequential fetch as it incurs
an energy overhead of 1 tail instead of 3 tails in the worst
case for a sequential fetch. Apart from energy consumed in
the tail, the energy consumed during the data transfer phase
in parallel fetch is smaller than the total energy consumed in
all the data transfer phases of sequential fetch of all the apps.
Table 6 shows the average energy consumed in parallel and
sequential fetch obtained over several runs. In this compu-
tation, we subtract the baseline power to accurately estimate
the energy consumption for network fetch. We see that the
parallel fetch uses 47.14% less energy than sequential fetch.
Thus, if apps are predicted accurately, our prefetch scheme
can potentially save energy. But if the predictions are inac-
curate, energy in prefetch can go waste. In the worst case,
the energy consumption of 1875µAh for prefetching 3 apps
in parallel accounts for 0.13% of the 1400mAh battery avail-
able on the Galaxy Nexus phone. This overhead is further
reduced if upon unlocking the phone, a user starts some app
that connects to the network to fetch data or an advertisement
or if some widget initiates a network connection. This is be-
cause a prefetch will occur in parallel with a user-initiated or
a widget-initiated fetch.

RELATED WORK

PREPP relates to two distinct lines of prior work:

App Prediction: In the wake of increasing availability of apps
in phone’s app stores, a number of algorithms have been pro-
posed for utilizing contextual information in app usage pre-
diction. Verkasalo et al. [13] found that location and time of
day are the most useful contexts in app usage prediction. The
study by Böhmer et al. [4] showed that in addition to loca-
tion and time contexts, the last app used by a user is a useful
predictor for the next app. Yan et al. [15] used the first app
opened upon phone unlocking to predict the following apps.
Most recently, Shin et al. [11] analyzed a variety of contextual
information like accelerometer, WiFi, SMS, Bluetooth, GPS,
last used app, etc. to build app-specific naive-bayes predictors
by selecting the best set of contextual features for each app.
In contrast to all these works, our APPM algorithm does not
use any of power-hungry or privacy-sensitive contexts but uti-
lizes only the history of sequence of app usages in prediction,
and does not require a long training period unlike previous
efforts.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40

P
o

w
e
r

(i
n

 m
W

)

Time (in secs)

(a) Google+

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40

P
o

w
e
r

(i
n

 m
W

)

Time (in secs)

(b) Play Magazines

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40

P
o

w
e
r

(i
n

 m
W

)

Time (in secs)

(c) News & Weather

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35 40

P
o

w
e
r

(i
n

 m
W

)

Time (in secs)

(d) All apps in parallel

Figure 8. Power consumption characteristics for fetching network data shown for 3 apps: Google+, Play Magazines and News & Weather. Google+

has highest data usage(>300KB) whereas News has the least data usage(<10KB). Figure 8(d) gives characteristics when all these 3 apps are fetched in

parallel.

Mobile Web Content Prefetch: Prefetching in mobile phones
has recently received attention from the research community
[2, 8, 15]. Higgins et al. [8] argue for an OS-supported API
for prefetch where third party apps are expected to provide
hints to execute prefetch. Such a model for prefetch requires
modification of third party apps to learn the temporal model.
In contrast, PREPP does not require any modification of the
OS or third party apps. Yet, PREPP is complementary to
this work in that APPM can provide hints to a potential OS-
supported API on behalf of legacy third party apps. FAL-
CON [15] considers prefetch under a fixed energy budget, but
requires extensive modification of the OS and some apps, re-
quires long training periods, and does not offer as accurate
prediction as PREPP. Balasubramania et al. [2] proposed
the TailEnder protocol that minimizes energy usage while
prefetching and meeting user-specified delay tolerance. How-
ever, they do not take usage behavior into account, perform-
ing prefetch even when a user is unlikely to use apps. In the
non-mobile case, browsers have utilized content prefetching
and caching for reducing page load times [1], but were not
targeted for interoperatibility with mobile apps nor OSs.

CONCLUSION

Mobile apps now serve a dazzling array of functions, but are
becoming increasingly complex and reliant on network con-
nectivity to provide up-to-date content and rich interaction.
For mobile users where seconds of sluggish loading can dis-
suade many users, PREPP mitigates long network content
retrieval times by accurately predicting which apps will be
used, and prefetching their app content to improve the user
experience. Moreover, PREPP’s careful design, cognizant of
the constraints posed by commodity OSs, has allowed us to
implement, evaluate and deploy a PREPP prototype on com-
modity Android devices. Through a combination of a con-
trolled user study and a study “in the wild” of the prediction
algorithm, we show that we can accurately predict app usage,
and deliver system-level speedups even without modification
to current OSs and apps.

REFERENCES

1. Aggarwal, C., Wolf, J. L., and Yu, P. S. Caching on the
world wide web. IEEE Trans. on Knowl. and Data Eng.
11, 1 (Jan. 1999), 94–107.

2. Balasubramanian, N., Balasubramanian, A., and
Venkataramani, A. Energy consumption in mobile
phones: a measurement study and implications for
network applications. In Proc. IMC’09, ACM (2009),
280–293.

3. Böhmer, M., and Bauer, G. Exploiting the icon
arrangement on mobile devices as information source
for context-awareness. In Proc. MobileHCI (2010).

4. Böhmer, M., Hecht, B., Schöning, J., Krüger, A., and
Bauer, G. Falling asleep with angry birds, facebook and
kindle - a large scale study on mobile application usage.
In Proc. of MobileHCI (2011).

5. Bridle, R., and McCreath, E. Inducing shortcuts on a
mobile phone interface. In Proc. IUI (2006).

6. Cleary, J. G., Ian, and Witten, I. H. Data compression
using adaptive coding and partial string matching. IEEE
Transactions on Communications 32 (1984), 396–402.

7. Deng, S., and Balakrishnan, H. Traffic-aware techniques
to reduce 3g/lte wireless energy consumption. In Proc.
of CoNEXT 2012, ACM (2012), 181–192.

8. Higgins, B. D., Flinn, J., Giuli, T. J., Noble, B., Peplin,
C., and Watson, D. Informed mobile prefetching. In
Proc. of MobiSys (2012), 155–168.

9. Pielot, M., Henze, N., and Boll, S. Experiments in app
stores - how to ask users for their consent? In CHI ’11
Workshop on Ethics, Logs and Videotape: Ethics in
Large Scale Trials & User Generated Content (2011).

10. Shepard, C., Rahmati, A., Tossell, C., Zhong, L., and
Kortum, P. Livelab: measuring wireless networks and
smartphone users in the field. SIGMETRICS Perform.
Eval. Rev. 38, 3 (Jan. 2011), 15–20.

11. Shin, C., Hong, J.-H., and Dey, A. K. Understanding and
prediction of mobile application usage for smart phones.
In Proc. of UbiComp’12, ACM (2012), 173–182.

12. Shkarin, D. Ppm: One step to practicality. In Proc. of the
Data Compression Conference, DCC ’02 (2002), 202–.

13. Verkasalo, H. Contextual patterns in mobile service
usage. Personal Ubiquitous Comput. 13, 5 (June 2009),
331–342.

14. Vetek, A., Flanagan, J., Colley, A., and Keränen, T.
SmartActions: Context-Aware Mobile Phone Shortcuts.
In Proc. INTERACT 2009 (2009).

15. Yan, T., Chu, D., Ganesan, D., Kansal, A., and Liu, J.
Fast app launching for mobile devices using predictive
user context. In Proc. of MobiSys, MobiSys ’12, ACM
(New York, NY, USA, 2012), 113–126.

