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The development of quantum computing across
several technologies and platforms has reached
the point of having an advantage over classi-
cal computers for an artificial problem, a point
known as “quantum advantage”. As a next step
along the development of this technology, it is
now important to discuss practical quantum advan-
tage, the point at which quantum devices will
solve problems of practical interest that are not
tractable for traditional supercomputers. Many
of the most promising short-term applications
of quantum computers fall under the umbrella
of quantum simulation: modelling the quantum
properties of microscopic particles that are di-
rectly relevant to modern materials science, high
energy physics, and quantum chemistry. This
would impact several important real-world appli-
cations, such as developing materials for batter-
ies, industrial catalysis or nitrogen fixing. Much
as aerodynamics can be studied either through
simulations on a digital computer, or in a wind
tunnel, quantum simulation can be performed
not only on future fault-tolerant digital quantum
computers, but already today through special-
purpose analogue quantum simulators. Here we
overview the state-of-the-art and future perspec-
tives for quantum simulation, arguing that a first
practical quantum advantage already exists in the
case of specialised applications of analogue de-
vices, while fully digital devices open a full range
of applications but require further development of
fault-tolerant hardware. Hybrid digital-analogue
devices that exist today already promise substan-
tial flexibility in near-term applications.

*

andrew.daley@strath.ac.uk

I. INTRODUCTION

Quantum computers have potential for medium to
long-term wide-ranging impact on demanding comput-
ing tasks in many areas of modern society and industry
— with proposed applications that range from materials
science and chemistry to logistics and optimisation, en-
cryption and information security, as well as artificial in-
telligence [1-3]. The power of quantum computers arises
from the physical properties of the microscopic building
blocks of nature, which are described by quantum me-
chanics, and for which the complexity of classically sim-
ulating a system can grow exponentially with the sys-
tem size [4, 5]. However, determining how to take ad-
vantage of these properties in order to solve complex
computational tasks is often very challenging. This is
not “business as usual” for algorithm design [6], and of-
ten involves a completely different approach to solving a
computing task than what was traditionally applied on
a classical computer. Indeed, so-called quantum-inspired
algorithms have been developed in recent years, allow-
ing faster calculations on existing classical computers by
taking different approaches to computing challenges, mo-
tivated by quantum algorithms (see, e.g. [7]). Recent
demonstrations of the potential advantage of quantum
computers over classical computing have generally been
for artificial problems tailored to the specific setup [8-10].
Establishing a practical quantum advantage over classi-
cal computers, which we understand as involving relevant
academic or commercial problems that are useful beyond
testing the quantum hardware, is widely acknowledged
to be a difficult step.

In looking for an early practical quantum advantage in
near-term quantum computing, it is best to consider the
simulation of quantum mechanical systems [11, 12]. This
is the “native” and most natural application of quantum
computers, where we aim to use a quantum computer to
mimic the rules that describe physical microscopic quan-
tum systems. These problems are computationally chal-
lenging for the same underpinning reason that quantum
computers can be powerful. While systems in classical
physics exist in just one configuration, in quantum me-
chanics different configurations can coexist at the same
time in a superposition of all of the possible states in
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FIG. 1. Overview of quantum simulators. Understand-
ing the physical properties of real and promising materials
(depicted is a magnet, floating above a superconductor when
this is sufficiently cold) often requires theoretical models that
simplify the material enough to make it treatable. Such mod-
els could treat a material as a rigid lattice of interacting par-
ticles (depicted in blue in the figure), but even these models
may be too complex to be calculated exactly. A range of these
computational tasks could be mapped onto programmable
quantum simulators, with digital and analogue means to ap-
proach these problems - much in the same way as classical
aerodynamics uses wind tunnels in combination with digital
computing. Problems could be solved on a fault-tolerant dig-
ital quantum computer (shown bottom right in the form of
a circuit, where lines correspond to single qubits and boxes
represent operations between qubits) or we can build a scale
model of the problem in an analogue quantum simulator (de-
picted bottom left as an array of atoms, blue and red for
different species, trapped in an optical lattice represented in
grey). A range of programmable quantum simulators are now
under development, looking to increase the programmability
of analogue devices, and combine these with variational digi-
tal algorithms. Through the insights gathered from quantum
simulators we can build better models or obtain new under-
standing of the modelled materials.

the system [4]. In this way, the complexity of classically
simulating the problem can grow exponentially with the
number of particles. This is particularly important when
we start to look at problems describing the behaviour of
electrons in materials, or in large molecules, as we en-
counter in quantum chemistry. Beyond the initial diffi-
culty of writing a model that captures the full complexity
of the real physical system, any model we construct to
describe these real-world scenarios needs to deal with a
large number of interacting particles. The direct solution
of these models typically goes beyond the capabilities of
classical supercomputers. In some cases, such as in quan-
tum chemistry good existing approximate methods mean
that we need many digits of precision to gain a practical
advantage over existing approximate classical solutions
[13]. But there are many puzzles in describing solid state
materials where even the qualitative behaviour is not de-

cided by classical computation, and accurately solving
simplified models can provide significant insight [14] —
both directly for the materials, and for validating and
calibrating approximate classical calculation methods.

As depicted in Fig. 1, there are two ways to ap-
proach such problems via quantum simulation [12], the
first of which is to use a digital quantum computer
[32, 33], designed in analogy to modern classical com-
puters. There, the computation is divided into a series
of discrete “gate” operations that are used to manipu-
late information stored on quantum mechanical systems
[4, 6]. This form of digital quantum computing provides
the possibility to perform error correction [34] on im-
perfect implementations of the gates, with the potential
for fault-tolerant operations enabling large scale quan-
tum computations. Up to now, only certain aspects of
error correction have been demonstrated for very small
numbers of qubits and for a limited set of errors, and
in order to make progress, most devices operate without
any quantum error correction. This current situation is
sometimes referred to as “Noisy intermediate-scale quan-
tum (NISQ) computing” [35]. As noise severely limits the
number of operations that can be carried out on such a
device, the early demonstrations of the power of a quan-
tum computer have worked closer to the native hard-
ware, such as randomised sequences of native gate oper-
ations, as first shown by the result in 2019 from Google
[9]. This also extends to specialised non-programmable
devices built to demonstrate the complexity of quantum
dynamics, such as Boson Samplers in the form demon-
strated by several groups, including recently by USTC
[10]. Going beyond these demonstrations, which we often
refer to as showing quantum primacy for specific prob-
lems, the difficulty in looking for practical quantum ad-
vantage in near-term quantum computing, is that many
of the algorithms developed require a large number of
gate operations, far beyond the ability of NISQ devices
without error correction.

While fault-tolerant digital quantum computers are
still under development, we can already build “analogue
quantum simulators” that allow us to compute quantum
dynamics in a similar sense to how wind tunnels allow us
to understand aerodynamics [5, 11, 12, 36]. They are spe-
cial purpose analogue computers, which come with the
restriction that you have to be able to realise a model to
study directly in the laboratory. The major advantage is
that these can readily scale to large system sizes, making
them a natural frontier to search for a practical quantum
advantage relative to classical simulations. There are a
variety of experimental platforms allowing for the realisa-
tion of analogue quantum simulation, including but not
limited to neutral atoms [20, 21], superconducting sys-
tems [19, 23], trapped ions [16, 17], and photons [18, 24].
In Box 1, we give more information on the state-of-the-
art of these platforms with examples of physical models
that they can simulate. We expand on one of these mod-
els, the Hubbard model, as a specific example in Box 2.

Already in the last years, these devices have been pro-
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Box 1: Example Platforms for Analogue Quantum Simulation
Analogue Quantum Simulations are today performed on a variety of platforms [15-20], each of which offer distinct features
that make them more suitable for specific simulation tasks.

Ultracold atoms in optical lattices — Currently up to 3000 atoms in optical potentials with single atom detection and
control via so-called quantum gas microscopes. These uniquely implement models of interacting fermionic particles (such as
the Hubbard model, see Box 2) or its bosonic variant using bosonic atoms. Spin models can also be engineered, with tailored

U
J U
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The model is deceptively simple in its construction, describing electrons of two spin components located in one orbital at each
site, and involving tunneling of electrons between neighbouring sites (described in the Hamiltonian
H = *JZ@,]-),U é}oéig + U Y, Nipfyy by an annihilation operator removing a particle of spin o € 1, | from site i, é;», and a
creation operator placing it on the neighbouring site j, é:r” with an amplitude J), and interactions when two particles of
opposite spin are in the same orbital (represented by the operator for the number of particles on site i, 7,0 = clicgi and an
energy shift U).
The Hubbard model (and several of its generalisations) can be realised with cold atoms in optical lattices, where fermionic
atoms represent the electrons, and are trapped in an interference pattern of light formed by overlapping many laser beams,
with tunable interparticle interactions. Quantum gas microscopy has made it possible to take full spin and charge resolved
photographs of such systems, revealing complex interplay of magnetic ordering and mobile dopants at a microscopic level [21].
The Hubbard model and its generalisations to multiple bands allow us to explore electronic systems close to a Mott
transition, which is relevant for understanding a range of strongly-correlated materials, beginning with high-Tc
superconductors [29]. Strong correlation in this form appears in many materials including heavy metals with electrons in d
and f orbitals, which are important in a range of materials, including for batteries and catalysis [30]. For microscopically
quantitatively accurate models we then need to include long-range hopping and exchange in addition to the terms present in
the Hubbard model, but this could be explored in fault-tolerant digital quantum simulators [31].

viding insight into scientific problems, ranging from long-
standing questions on the influence of disorder on quan-
tum dynamics (see, e.g. [37]) and underlying physics that
gives rise to high-temperature superconductors (see, e.g.
[38]), to systems with topological properties [39, 40], and
dynamics in spin systems with both short [41, 42] and
long-range interactions [43—45]. Even today, these plat-
forms are well-calibrated and provide quantitative mea-
surements, e.g., of correlation functions, transport coef-
ficients and dynamical exponents. As we will note be-
low, the ultimate quantitative limitation of an analogue

system without error correction is set by the calibra-
tion accuracy of the model that is implemented — this
is where fault tolerant digital quantum simulation will
eventually have an advantage in specified accuracy and in
the broader programmability for more complex models,
at the cost of substantial overhead in required hardware
resources and computation time.

From a computational point of view, the dynamics of
an analogue quantum simulator can be seen as a highly
entangling operation on all of the particles/spins/qubits
in the system, with time-dependent control. This can
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also be combined for spin systems with operations from
digital quantum computing, leading to a range of possible
programmable quantum simulators[2, 17, 21, 46], which
combine analogue elements with programmability. This
provides a particular opportunity to scale to large sizes
and to address problems of practical relevance, especially
in variational approaches to quantum simulation prob-
lems.

In the remainder of this article, we will address the lim-
itations of classical calculation of quantum dynamics, and
the opportunities and challenges of quantum simulators.
We will then analyse the potential for practical quan-
tum advantage, again comparing state-of-the-art classi-
cal numerical methods to analogue and digital quantum
simulators.

The first question is in which steps we go beyond
quantum primacy, where we solve problems that are
not accessible to classical computers primarily to demon-
strate the abilities of quantum hardware. A first practi-
cal quantum advantage in this sense is offered by ana-
logue quantum simulators, which can be quantitatively
verified, with a precision that is ultimately dependent
on the calibration of the hardware. These will be able
to address the properties of models that can be natively
realised within given hardware. The broader interest in
solving these relevant problems (e.g., for the purposes
of solid-state physics and materials science) takes us a
step beyond quantum primacy, and can be further ex-
tended within programmable analogue quantum simula-
tors. While these systems already allow us to explore
qualitative elements of solid-state physics that underpin
quantum materials science, with the addition of verifi-
cation, these platforms have the potential to perform
verified quantitative simulations of such models, both
directly and through variational techniques (similar to
NISQ hardware, but using the full analogue programma-
bility of the system). In future, the realisation of practi-
cal quantum advantage with digital quantum sim-
ulation on fault tolerant quantum computers will
remove restrictions on the models we can implement, and
provide the potential for arbitrarily accurate calculations
at a trade-off of increasing resources in terms of compu-
tation size and time.

We conclude below in broad terms that a first prac-
tical quantum advantage is already available with pro-
grammable analogue simulators for relevant problems —
especially involving out-of-equilibrium dynamics in 2D.
Going beyond this using a digital gate-based approach
will most likely require development of fault-tolerant
quantum hardware — which underlines the importance
both of developing fault-tolerant hardware, and of un-
derstanding and utilising analogue devices in the era of
NISQ Computing, where we stand at present. We give
perspectives for analogue and digital devices, and em-
phasise the importance of combining existing digital and
analogue techniques over the coming years.

II. CHALLENGES AND STATE-OF-THE-ART
FOR SIMULATING QUANTUM DYNAMICS ON
CLASSICAL COMPUTERS

In order to evaluate the opportunities and potential
practical quantum advantage provided by quantum simu-
lators, it is important to note the challenges in simulating
many-body quantum dynamics on a classical computer.
As mentioned above, this arises because of the huge num-
ber of configurations a system can take, which grow ex-
ponentially with its number of constituent particles (e.g.,
doubling every time we add another constituent building
block). This makes even storing such a state on the most
powerful existing supercomputers a challenging task in
general once the system grows beyond a very small size
(often of the scale of 50 quantum spins). To simulate a
quantum system on a classical computer, we then in some
sense need to either compress or sample from this expo-
nentially large space. While this can be done efficiently
for some systems in nature, for other relevant problems
the time cost of the calculations grows exponentially with
the system size for all known methods. We note that for
some problems there are methods with uncontrolled ap-
proximations (including mean-field techniques) that can
represent dynamics qualitatively and sometimes quan-
titatively for systems in some parameter regimes. But
to be reliable in general these need to be benchmarked
against simulations with controlled approximations. In-
deed, one early application of quantum simulation will be
to benchmark these methods. For this reason, we specif-
ically consider general classical methods with controlled
approximations.

A. Lowest energy state calculations

When calculating properties of a quantum system, we
are typically interested either in calculation of the lowest
energy states of a system (or specific excited states), or its
time evolution. Both of these can be specified in terms
of the total energy function, or Hamiltonian, H of the
system. Typically, calculation of the lowest energy state
is a simpler classical problem, because physical systems
with local interactions between particles often lead to a
much more limited range of possibilities than space of all
possible solutions. It is therefore sometimes possible to
sample the relevant states, or compress the number of pa-
rameters we store, rather than considering the whole ex-
ponentially large space. This can remove the exponential
scaling, at least in terms of memory requirements. The
last decades have seen many advances in classical meth-
ods for many-particle systems, and across Physics, Chem-
istry, and materials science there are large subfields ded-
icated to developing new computational methods. This
also makes the bar for a practical quantum advantage
a constantly moving target. Nonetheless, lowest energy
state calculations remain elusive for many models, with
the Hubbard model a particularly good example (see Box
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2) [27, 28]. For example, while there has been tremendous
progress made possible by Quantum Monte-Carlo meth-
ods over the past decades [47-49], path-integral monte-
carlo calculations face the challenge of the so-called “sign
problem” in sampling. This sampling problem has been
shown to be NP-Hard, in the sense that a generally ap-
plicable solution to the specific issues encountered would
be equivalent to proving that NP problems are solvable
in polynomial time [50].

B. Quantum dynamics

In non-equilibrium dynamics (such as a quantum
quench, when a parameter of the Hamiltonian is suddenly
changed) we start from an initial state and observe how
it evolves. An isolated quantum system then tends to ex-
plore a large part of the entire configuration space with
its exponential-in-system-size growing number of quan-
tum states, making such kinds of problems the most chal-
lenging and intractable for a classical computer. This is
often connected with the notion of scrambling of infor-
mation in quantum systems, where all degrees of free-
dom of the problem become important [51, 52], and we
cannot apply classical methods that rely on compressing
the state using a properly chosen basis. This also makes
quantum dynamics a particularly good example for iden-
tifying the regimes of practical quantum advantage, as
quantum information scrambling gives good arguments
that the states cannot be compressed in the way that is
often possible for lowest energy states. We will there-
fore focus on out-of-equilibrium dynamics in our analysis
below.

To calculate the dynamics of a quantum system, we
usually need to compute a time-evolution operation,
which is expressed in terms of the Hamiltonian of the
system, H. For Hamiltonians that are the sum of terms
acting on different parts of the system H;, the time evolu-
tion operator can be broken up via a Trotter decomposi-
tion as exp(—iHdt/h) = [[, exp(—iH;8t/h)+ O(6t?) with
time-step 0t. In practice, higher-order Suzuki-Trotter or
other expansions are used [53]. The result is a time evo-
lution with controlled error [54-57].

The ultimate constraint on classical methods for
generic time evolution is that the state space occu-
pied in quantum quench dynamics grows exponentially
in time. State-of-the art methods for compressing the
state in order to compute quantum dynamics with con-
trolled approximations and errors are based on ten-
sor network techniques (including time-dependent Den-
sity Matrix Renormalisation Group, Projected Entangled
Pair States, and a variety of other configurations) [58-
60]. These methods serve to compress the representation
of the state from an exponentially large number of co-
efficients into a smaller, tractable representation. This
works well when the time-evolving state has limited lev-
els of quantum entanglement [61], and these methods are
often excellent for computing low-energy states or near-

equilibrium dynamics, especially in 1D systems with lo-
cal interactions, where we expect the entanglement to
be small [58-60]. They are also the best methods avail-
able for general non-equilibrium dynamics on classical
computers. However, as noted above, for a general time
evolution, rapidly growing entanglement still leads to an
exponentially growing computational cost of the calcula-
tion.

III. QUANTUM SIMULATORS

Through direct implementation on quantum hardware,
quantum simulators avoid the potential for exponential
scaling in memory, and the time cost associated with ma-
nipulating or sampling this. The runtime cost of the com-
putation could still be substantial (and even maybe ex-
ponential in some cases), especially for finding the lowest
energy states, but for time evolution starting from a large
class of initial states, the runtime cost can be reduced to
a low order polynomial in the duration of the evolution,
both on analogue and digital quantum simulators.

A. Analogue Quantum Simulators

In an analogue quantum simulator [11], the system is
capable of implementing specific classes of models, and
is engineered to implement a chosen model with well-
calibrated parameters. The lowest energy state could
then be found e.g., by starting from a simple, well con-
trolled Hamiltonian and a well defined initial state of the
system and then blending over very slowly to the more
complex Hamiltonian. This approach is akin to the con-
cept of an Adiabatic Quantum Computer (AQC) [62],
but in a restricted sense, as one typically cannot control
all degrees of freedom of the system to realise a univer-
sal AQC. We note that depending on the Hamiltonian,
although a quantum simulator avoids exponential scal-
ing for memory requirements, the runtime for producing
lowest energy states adiabatically can still scale expo-
nentially with the system size — in fact finding a ground
state is at least as difficult as running an arbitrary quan-
tum computation [63]. Simulation of dynamics out-of-
equilibrium involve engineering the initial state, and then
evolving the system under the Hamiltonian that has been
engineered, with a linear cost in time because we directly
observe the native time evolution.

The limitations of analogue quantum simulation can
be grouped into two parts. Firstly, we only have ac-
cess to models for which we can realise the Hamiltonian
directly in the analogue simulator. Secondly, without
error correction these systems are susceptible in gen-
eral to calibration errors (including imperfectly imple-
mented Hamiltonians, parameter calibration), as well as
decoherence and noise. However, both the Hamiltonian
and decoherence and noise processes can be determined
from first principles, allowing us to diagnose errors in
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current experiments either in terms of the many-body
state, or on a practical level, in correlation functions
that we would measure in experiments. Furthermore, one
can estimate calibration errors directly from Hamiltonian
learning techniques, which we will discuss below. One
can similarly estimate errors due to initial state prepara-
tion and measurement techniques.

There are general arguments that especially for local
models, the growth of errors due to imperfect calibration
can be bounded, making analogue quantum simulation
quantitatively reliable to an accuracy of a similar level
as the calibration errors themselves [64]. The ultimate
limit for analogue quantum simulation is then set by the
decoherence timescale, which provides an upper bound
on the timescale on which we can controllably observe
coherent quantum dynamics. But this is generally well
beyond the timescales accessible in classical calculations,
allowing for regimes of practical quantum advantage to
be achieved.

B. Fault-tolerant digital quantum simulators

Many of the algorithms used on a classical computer
can be modified for use on a fault-tolerant digital quan-
tum computer, and vice-versa [33]. This includes a range
of methods calculating lowest energy states that can be
adapted, as well as time evolution methods - includ-
ing those based around Suzuki-Trotter decompositions
of the time evolution, as described above [53]. The great
strength of digital quantum simulators is the possibility
to realise any desired Hamiltonian of the system [65, 66],
providing opportunities to study wide-ranging models
with no need to engineer this directly in the laboratory.
While algorithms to prepare complex low-energy states
could still scale exponentially in time, evolving a pre-
pared initial state could be performed to arbitrary ac-
curacy with a polynomially growing cost. Specifically,
with decoherence, noise, and most calibration errors sup-
pressed, the residual errors in computing time evolu-
tion would be model calibration errors from the non-zero
Trotter timestep [32, 54, 55], which can be made arbi-
trarily small by increasing the length of the computation
polynomially. There is a range of further methods be-
yond Trotter decompositions that provide more efficient
convergence with the error tolerance, which can be im-
plemented on fault tolerant digital quantum computers
[67—70], giving fault-tolerant devices a clear advantage
for the high-accuracy calculations needed, e.g., for many
applications in quantum chemistry.

The catch is that in practice, algorithms to compute
the time evolution would require a long calculation on
a large fault-tolerant quantum computer. As with other
fault-tolerant quantum computations, this comes with an
overhead for error correction based on the gate fidelities,
with a tremendous overhead in the number of required
qubits and runtime to implement quantum error correc-
tion. We will give quantitative estimates of the number of

gates required to reach the regime of quantum advantage
in the next section.

IV. PRACTICAL QUANTUM ADVANTAGE IN
ANALOGUE AND DIGITAL QUANTUM
SIMULATION

We now address the question of quantum advantage
and the present state-of-the-art. It is important to recog-
nise that the threshold for quantum advantage remains
moving target as classical algorithms continuously im-
prove. Even for fully fault-tolerant digital quantum com-
puting, where we have an exponential scaling advantage
both for quantum simulation and other algorithms such
as Shor’s algorithm for factoring, there is no complex-
ity proof that this advantage must hold for all future
classical algorithms. However, we can make clear robust
comparisons to well established classical algorithms, and
have good general arguments, including both factoring
and the simulation of general complex quantum dynam-
ics, that it is an extraordinarily difficult task to produce
an exponential improvement in the scaling of known clas-
sical algorithms. It is very unlikely that for general time
evolution in quantum many-body systems, we will over-
come the exponential scaling of classical calculations, as
noted above.

Demonstrating a genuine practical quantum advantage
then requires (A) showing that a quantum simulator can
generate a reliable solution for a relevant problem be-
yond the bounds of classical simulation (with controlled
errors), and (B) implementing techniques to verify or
quantify the accuracy of a quantum simulation when it is
operating beyond the capabilities of current classical sim-
ulations. This is the process undertaken in NISQ systems
such as that of Google [9] and USTC [10], to demonstrate
quantum primacy.

To illustrate this, we consider a dynamical evolution
in which system parameters are abruptly adjusted (e.g.,
a quench) and the subsequent evolution of the system is
tracked, which gives us the clearest comparison to state-
of-the-art classical simulations as noted above. We take
the example of a 2D Hubbard model with 10x10 lattice
sites and 100 particles. We choose this size, as simulat-
ing dynamics for the time it would take particles to cross
from one side of the system to the other is significantly
beyond the capabilities of current classical simulators.
We will compare the calibration requirements to reach
errors below a few percent for analogue quantum simula-
tors, and then identify the size requirements to match the
accuracy of these analogue simulations on a fault-tolerant
digital quantum computer. Finally, we will also consider
the question of how to verify the solution in analogue
hardware without fault-tolerance.
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FIG. 2. Quantum advantage of quantum simulators
over classical simulation. A future fault-tolerant digital
quantum simulation will be able to compute dynamics with
very small errors, controlled by the method for implement-
ing the time evolution calculation (e.g. timestep errors in
a Trotter decomposition). While analogue quantum simu-
lation is affected over time by decoherence and propagation
of calibration errors, these build up much more slowly than
for the best available classical simulation, where once their
limits are reached, errors will typically grow exponentially.
To illustrate this, we use classical calculations for the er-
rors in single-particle correlations Eiozdéimém) /20 arising
for quench dynamics a 1D Hubbard model (see Box 2) for
U/J =1 and 20 sites, starting from half filling of each spin
component, alternating on even and odd sites. (Blue) Single
site time-dependent variational principle time-evolution using
Matrix Product States with bond dimension D = 64 [58], as a
demonstration of typical truncation errors from these classi-
cal methods relative to exact calculations, which are necessary
for longer times and system sizes. (Red) Analogue simulation
with calibration errors of 1% (error bars show the standard
error from sampling a Gaussian distribution of Hamiltonian
parameters). (Yellow) Digital simulation with a second order
Trotter decomposition with a time-step Jdt = 1/8.

A. Illustration of the regime of first practical
quantum advantage for analogue and digital
quantum simulators

Considering Hubbard model quench dynamics, we first
identify the growth of errors based on comparison with
classical simulations at short times. We give illustrative
comparisons between classical simulations, and analogue
and digital quantum simulators in Fig. 2. Once the ca-
pabilities of classical methods to represent the state of
the quantum system reach the maximum computational
capacity, errors in tracking the dynamics grow exponen-
tially - measured either by the fidelity with which the
state is represented, or the errors in estimates of mea-
surable correlation functions. In contrast, for analogue
quantum simulators we can determine an error budget,
and find that errors are dominated by imperfect calibra-
tion and grow slowly and polynomially in time, as shown
in Fig. 2. A 10x10 Hubbard model can be implemented
in existing experiments [21], and the slow build-up of

errors shown in Fig. 2 extends to 2D systems (see the
supplementary material for further technical details of
this comparison), so that calibration errors on the level
of 1% provide reliable quantum simulation of dynamics
(with errors below the percent level) [64, 71]. At longer
times, the ultimate limit to the timescale for reliable cal-
culation is decoherence, but for present experiments our
example 10x10 lattice models with evolution times up to
time T' = 10h/J are clearly attainable.

In this sense, following the analysis of Ref. [71], we con-
clude that present experiments with cold atoms already
operate in a regime of quantum advantage over state-of-
the-art classical algorithms, for those models that can
be natively implemented. We can make similar argu-
ments for other quantum simulation platforms with well-
controlled microscopic error and decoherence sources, in-
cluding trapped ions [16, 17] and neutral atom arrays
with Rydberg excitations [20, 72].

A truly fault-tolerant digital quantum computer
would have only residual errors associated with Trotter
timesteps, which are also shown in Fig. 2. The challenge
is in building a large enough system of this kind. For our
10x10 Hubbard system evolving up to T' = 10h/J, we
would require a minimum of 200 error-corrected logical
qubits to store the system states, and over one million er-
ror corrected gate operations. To arrive at this number,
we assume a Trotter decomposition for the time evolu-
tion, and allow timesteps as large as possible [54, 55]
while matching the accuracy of the analogue quantum
simulator for this problem, which is just below 1/J (so
we take 1/J as our timestep for these estimates). This
is extrapolated to keep the error in most observables to
less than 1% over the time evolution. As described in
the supplementary material, for these fixed, relatively
large errors, Trotter decompositions are the most efficient
available methods for systems with local interactions, and
other methods that perform better in the limit of vanish
error are less efficient here. The number of operations
is then minimised by a 4th-order evolution [73], which
we decompose into two-qubit gates with arbitrary con-
nectivity (see the supplementary information for further
details). We then require 2.6 x 105 2-qubit CNOT gates
and 10° rotation gates to implement this time evolution,
with the gate counts minimised by using ca. 20 further
ancilla qubits [56, 57]. As the error budget is entirely
used up in the Trotter error, we would then need to exe-
cute these gates to better than one part in 107, which is
beyond all available NISQ hardware. To implement this
on a fault-tolerant device we would need to decompose
the rotations as ca. 30 fault tolerant T-gates per rotation,
leading to the total of over 1 million gates (ca. 5 million
for inhomogeneous systems).

The number of physical qubits required to implement
this would depend on the fidelity of the physical digital
gate operations, but near the threshold fidelity for digi-
tal quantum computing, would presently require several
million physical qubits. In a digital NISQ machine, at
the very least, many more gates operations would be re-
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quired to trade off time-step errors in a simulation for
gate errors, and obtaining errors of < 1% is beyond all
presently available digital quantum computers.

For these quantum simulation problems, the hardware
requirements for fault-tolerant digital systems are very
demanding, and will require substantial further break-
throughs in development. But these systems bring a high
pay-off in the flexibility of models that can be studied,
and the applications, e.g., to broad classes of materi-
als science and quantum chemistry problems once this
is achieved, with the models unconstrained by what we
can build physically in the laboratory.

B. Verification of quantum simulation

Based on an error budget above, we concluded that
current analogue systems can already operate in a regime
of quantum advantage. But the next step for experiments
will be to verify the simulation being performed when
it is beyond the bounds of classical simulation, i.e. in
a regime where verification of the quantum device by
direct comparison with classical computations is a priori
not possible [74, 77]. Verification is also made difficult
by the exponential scaling of the classical problem: direct
verification on the level of the many-body quantum state,
e.g. using techniques such as quantum state tomography,
will similarly face the challenge of being exponentially
costly.

A first method of verification in the regime of quantum
advantage is cross-platform verification [74, 78]. This in-
volves building two or more quantum devices, possibly on
different platforms and employing different encodings of
the many-body problem, but solving the same quantum
task. By comparison we can gain confidence and build
trust into the results predicted by the quantum devices.
The situation is reminiscent of what we encounter when
we want to verify the proper operation of atomic clocks
operating today on the unprecedented level of 1078 ac-
curacy: we build several clocks, and we compare them.
For two quantum simulators, such a comparison of pre-
dictions is readily performed by when we are interested in
simple few-body expectation values that we can tabulate,
e.g. properties of quantum materials. Cross-platform
verification becomes challenging again when we wish to
compare quantum simulation on the level of the full quan-
tum many-body state, where — as remarked above — this
comparison has an exponential overhead. There is an
answer for this problem, although it is far from realisa-
tion with present technologies: instead of comparing the
quantum states on a classical level, we employ quantum
communication, i.e. teleportation of the quantum state
[4] of the first simulator to the second to perform such a
comparison.

However, quantum simulation offers another intriguing
route to ensure the proper functioning of a quantum de-
vice via the approach of Hamiltonian learning [74-76, 79—
81]. In analogue simulation a Hamiltonian H is specified

as the design goal to be implemented, and its implemen-
tation on the quantum device allows preparation of de-
sired quantum states. Verification of quantum simulation
via Hamiltonian learning takes the approach of “learn-
ing” the Hamiltonian back from the quantum device by
making appropriate measurements on the quantum state
stored in the quantum simulator. Comparing the design
goal and reconstructed Hamiltonian provides an assess-
ment of errors and functionality. Remarkably, this pro-
cedure is efficient, having only polynomial overhead, and
thus also applies in the regime of quantum advantage.
The key observation is that Hamiltonians of quantum
many-body physics, and thus in quantum simulation only
consists of a small number of terms. This is illustrated
in Box 2 for the Hubbard model, where the parameter J
characterises hopping of particles between adjacent sites,
and U represents on-site interactions; and there is no
other terms such as off-site interactions. Learning the
Hamiltonian, instead of the quantum state, thus requires
only determination of a small number of parameters in
a tomographic reconstruction of the Hamiltonian. Hence
the efficiency and potential scaling to the regime of quan-
tum advantage. Box 3 provides an example of Hamil-
tonian learning and verification for the Hubbard model
in non-equilibrium dynamics. The idea of Hamiltonian
learning and verification is also readily applied to digital
quantum simulation.

V. FUTURE PERSPECTIVES FOR
PROGRAMMABLE QUANTUM SIMULATORS

We will now give a brief perspective on the develop-
ment of programmable quantum simulators. In the case
of analogue simulators, by the term “programmable”, we
highlight that the level of control is now such that in a
variety of platforms we can realise a class of Hamiltonians
with local control over parameters, as well as single-site
resolved measurement, and typically local spin rotations.
These are not universal, but already scale to large parti-
cle numbers for models that can be realised natively. In
the future, we expect that fault-tolerant digital quantum
simulators will give access to an even broader class of
problems, but this requires further investment and hard-
ware development. In the medium term, an exciting di-
rection is to combine ideas from analogue and digital
simulation, using the full programmability of analogue
devices to implement NISQ algorithms, especially with
variational approaches.

A. Analogue Quantum Simulators

In recent years, analogue quantum simulation has al-
ready begun to shed light on a wide range of scien-
tific problems with lattice and spin models, across all
of the platforms noted in Box 1. Some very recent exam-
ples include the exploration of out-of-equilibrium dynam-



Practical quantum advantage in quantum simulation

experimental input

Hamiltonian ff;,

Experiment: Hamiltonian
. ——> .
Dynamics measured Learning
observables
3 x 4 lattice
/9\ input components
AL V0 (e, uofe, Ruriiy)
9\\3/ /9 6/ 10 ] J RiZAS
O\'O/

output Hamiltonian

> Ao = D (ifeltse 4| Vifhioise) + SOy
2

(ij)a

O N = O 0o
T T T T T
o
S
<
Il
—_

o

20

The fact that quantum simulation is governed by a local Hamiltonian enables efficient verification via Hamiltonian learning in
a regime inaccessible to classical simulations [74]. We illustrate this idea for non-equilibrium dynamics in a Hubbard model as

introduced in Box 2 [21

the boundary of 3 x 4 lattice, and a quench with the input Hamiltonian H;, =

]. In our numerical simulations, fermionic atoms are placed in an antiferromagnetic configuration on

JZ (ig)o zaCJU + UZ nJTnJl (U/J - 8)

generatles highly entangled states after about 4 hopping times ¢t ~ 4[1/J]. In practice, the experiment has to be repeated
several times for different time instances and local observables are measured at the end of each experimental run.

Verification protocols based on Hamiltonian learning aim to reconstruct Hi, that governs the non-equilibrium dynamics

[75, 76]. The starting point is an Ansatz consisting of polynomially many spatially local input components from which the
output Hamiltonian Hout is assembled and which determine the observables to be measured on the quantum system. The
procedure infers the coefficients J,J, VZ] and U; of the input components from measurement data taken on the quantum
simulator. As can be seen in the example above, terms not present in the input Hamiltonian like offsite density-density
interactions 7,7, turn out to be zero. Here, the number of measurements required to estimate the coefficients up to a given

error bar scales polynomially with the system size [76].

ics of the Hubbard model [38], disordered, interacting
many-particle systems [82], topological phases of matter
[39, 40, 83], robust features of out of equilibrium dynam-
ics such as quantum many-body scars [41, 84], and Bo-
son sampling as noted earlier [10]. In each case, analogue
quantum simulators have allowed experiments to explore
new dynamical features, and address previously inacces-
sible questions. One example of addressing existing ques-
tions is being able to directly investigate the interplay
between disorder and interaction in 2D systems [37, 82],
especially in determining the transition between localised
and delocalised particles by observing expansion dynam-
ics of particles on a lattice with controllable parameters in
a quantum gas microscope. In terms of providing a new
perspective on low-temperature behaviour in interacting
systems of fermions, recent work has focussed on directly
local measurements of correlations between particles and
holes in the Hubbard model [38]. A wide range of con-
trollability suggests possibilities to apply analogue quan-
tum simulators to open problems in high energy physics
[85], and the scrambling of information in black holes, in-
cluding models connected with the holographic principle
[86, 87], and there are also proposals in future for address-
ing quantum chemistry problems [88] as well as connect-
ing to broader computations though universal hamilto-
nians [89, 90]. Beyond basic science, one of the areas of
greatest potential is the application of these systems as
programmable quantum sensors [91]. As noted below, a
great opportunity also exists in hybridising these systems
with digital operations to access a much wider range of

physical models and problems beyond basic science.

B. Digital Quantum Simulators

Despite their resource cost, fault-tolerant Digital
Quantum Simulators will open an even broader range
of possibilities because we can implement any desired
Hamiltonian without needing to engineer this in the lab-
oratory. This will open the possibility to simulate pro-
cesses in quantum chemistry [13, 92] and materials sci-
ence [93, 94], where the effective models are often com-
plex and involve long-range couplings. A lot of ex-
citement around the potential to simulate the quantum
chemistry of large molecules, for example, presupposes
the potential to implement highly complex Hamiltoni-
ans. This is also especially important for the encoding
of broader computational challenges (including, e.g., op-
timisation) on quantum dynamics, where the resulting
Hamiltonians again generally involve long-range interac-
tions [95, 96]. This underlines the importance for the
area of quantum simulator of continuing work develop-
ing future fault-tolerant quantum computers.

C. Hybrid analogue-digital quantum simulators

A very exciting opportunity in the near-term, how-
ever, is the potential for programmable quantum sim-
ulators that begin with the capabilities of an analogue
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system, and add the control from digital systems in dif-
ferent forms [97-102]. This is already progressing, [98]
with random operations applied digitally being used for
platform verification in analogue simulators [78], or the
measurement of many-body entanglement in quench dy-
namics [98, 102, 103]. Hybridisation of analogue systems
with classical digital computing is also underway, with
recent small-scale demonstrations of variational quantum
emulation, using a quantum system controlled by a clas-
sical optimiser to explore the lowest energy state of a
many-body problem [99].

In these programmable hybrid quantum simulators,
the dynamics governed by the system Hamiltonian es-
sentially act as a many-particle operation as described
in the introduction. This need not be restricted to sim-
ple evolution under one native Hamiltonian, as the time-
dependent control over these systems allows for strobo-
scopic engineering of the dynamics, or indeed engineering
of different models with rapid time-dependent processes
(so-called Floquet engineering). We are also clearly not
restricted to scientifically relevant models - as a simple
starting point, several groups have shown, e.g., how in-
dustrially relevant optimisation problems can be mapped
onto Hamiltonians that can be engineered in cold atom
quantum simulators (see, e.g. [104]).

We can then go beyond directly simulating these mod-
els by using the large-scale entangling operations implied
by many-body dynamics as a variational circuit that can
form the basis for methods such as Variational Quan-
tum Eigensolver [105], Quantum Approximate Optimisa-
tion [106], and Quantum Machine Learning [107, 108] on
these programmable systems. This again opens access to
a range of problems well beyond basic science. In many
of these systems, we can still use some of the same opera-
tions we are familiar with in digital quantum computing.
But we no longer restrict to the gate sets that are re-
quired for fault-tolerant digital computing, and instead,
in the NISQ era when we do not yet have fault-tolerance,
make best use of the native capabilities of our analogue
hardware.

VI. CONCLUSIONS

In summary, addressing quantum problems in quan-
tum many-body physics has a long history, and also many
practical applications - both directly to quantum systems
in physics, chemistry and materials science, and to cal-
culations from other fields that can be rewritten in this
form. These problems are both difficult to solve, and are
relevant and important beyond testing quantum hard-
ware, making them excellent candidates for demonstrat-
ing a practical quantum advantage. Though on a for-
mal level, there are no complexity proofs that the time
cost for classical algorithms must scale exponentially, the
same is true for most hard problems in classical comput-
ing, including factoring and NP-complete problems such
as the Travelling Salesperson. However, many decades

of progress and understanding underline (as for factoring
and NP-hard problems) that this is a difficult problem,
which is very unlikely to find a general solution. Ana-
logue and Digital Quantum simulators provide an answer
to this challenge, avoiding exponential scaling arising in
memory resources, and at least for time evolution start-
ing from a known state, also in time cost of the calcula-
tion.

Analogue quantum simulators are now moving from
providing qualitative demonstrations of physical phe-
nomena to providing well-calibrated, quantitative solu-
tions for native problems. A key element of this is the
further development of verification techniques, and one
way of achieving this would be via Hamiltonian learning.
We understand from controlled error budgets that ana-
logue quantum simulators are already operating quan-
titatively reliably in regimes that are intractable classi-
cally, with opportunities for efficient verification of this
in experiments. In table I we summarise the state-of-
the-art for simulation of quantum systems via classical,
analogue and digital methods.

Analogue quantum simulators are already having a sig-
nificant impact today on basic science. There is further
excitement over the range of models, as well as scala-
bility and accuracy that fault-tolerant digital quantum
simulation will make available in the future, with cau-
tious optimism regarding the timescales to achieve the
necessary hardware. A particularly exciting way for-
wards in the near term is development of a range of pro-
grammable quantum simulators hybridising digital and
analogue techniques. This holds great potential as the
best way forward in the NISQ era, as — rather than re-
stricting to a limited gate set that is only required for
fault-tolerant machines — it combines the best advantages
of both sides by making use of the native analogue oper-
ations to produce highly entangled states.

In computing history, classical analogue and digital
computing coexisted for more than half a century, with
a gradual transition towards digital computing. We ex-
pect the same thing to happen in quantum simulation,
where over the coming decades, we anticipate that larger-
scale, verified, and quantitatively controlled simulations
on analogue and hybrid devices will continue to play
an important role, while scalable fault-tolerant quantum
simulators will be developed in the future to provide ac-
cess to freely programmable models and specified accu-
racy.
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[

Classical Simulation

[ Analogue Quantum Simulation [Digital Quantum Computing

scaling in time (and potentially
memory)

Platforms Classical supercomputers Neutral atoms (optical lattices or|Neutral atoms (optical lattices or
tweezer arrays), lons, Supercon-|tweezer arrays), lons, Supercon-
ducting systems, Quantum Dots,|ducting systems, Quantum Dots,
Photons,. .. Photons,. . .

Universality Yes (up to restricted system sizes|Limited to available physical|Yes (with error correction, requiring

or timescales) due to exponential | models substantial scaling up from current

systems)

Quantum advantage

No, and the cost grows exponen-
tially with system size or simulation
time

Regimes of practical quantum ad-
vantage now for real scientific prob-
lems, with potential opportunities
for industrial problems

Quantum primacy for specialised
tasks, awaiting practical quan-
tum advantage and eventually fault
tolerance

Solvable models

Unrestricted models through best
available classical algorithms

Specific particle (Fermion or Bo-
son) Hamiltonian, Spin Models
(Qubits). Potentially, other math-
ematical problems that can be
mapped onto these models

Wide classes of models, solved
through algorithms for Quantum
Simulation on a general purpose
quantum computer

System Size (Today)

< 50 spins computed exactly, or
specialised short-time calculations
for larger systems

Platform dependent up to 50-1000
particles or spins

Around 50 noisy qubits are
presently available, but no fault-
tolerant digital qubits yet

Scalability (Near || Exponentially difficult to scale

term) to larger system sizes and longer
times, except for specialised
problems

Direct path to 10° — 10% particles
within the next 2-3 years

Few hundred in NISQ devices, next
step is to bring error corrected
qubits online

TABLE I. Summary of the state of the art in simulation of quantum systems. In this table, we summarise the state
of the art and near-term prospects for simulation of quantum systems by classical, analogue quantum, and digital quantum

simulators.
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