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ABSTRACT

Extrememesoscale weather, including tropical cyclones, squall lines, and floods, can be enormously damaging and yet challenging to simulate;
hence, there is a pressing need for more efficient simulation strategies. Here, we present a new rare event sampling algorithm called quantile
diffusion Monte Carlo (quantile DMC). Quantile DMC is a simple-to-use algorithm that can sample extreme tail behavior for a wide class of
processes.Wedemonstrate the advantages of quantileDMCcompared to other samplingmethods and discuss practical aspects of implementing
quantile DMC. To test the feasibility of quantile DMC for extrememesoscale weather, we sample extremely intense realizations of two historical
tropical cyclones, 2010Hurricane Earl and 2015Hurricane Joaquin. Our results demonstrate quantile DMC’s potential to provide low-variance
extreme weather statistics while highlighting the work that is necessary for quantile DMC to attain greater efficiency in future applications.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5081461

When rare events are studied using simulation, it can take a long
time to gather sufficient data through direct sampling. As an alter-
native to direct sampling, specialized rare event sampling algo-
rithms provide data more quickly, thus reducing computational
costs. Here, we present a new rare event sampling method, quan-
tile diffusion Monte Carlo (quantile DMC), that is simple to use.
Quantile DMCperforms extremely well on a one-dimensional test
case, accurately estimating rare event probabilities with less than
one thousandth the computational cost of direct sampling. Quan-
tile DMC could potentially be of use in complex rare event simu-
lations, for example, simulating the frequency of tropical cyclones
(TCs), mesoscale convective systems, or floods under different
climate conditions. When we apply quantile DMC to simulate
intense tropical cyclones, we obtain promising results: storms at
high intensities are more reliably simulated using quantile DMC
compared to direct sampling.

I. INTRODUCTION

A common strategy for estimating rare event probabilities is
direct sampling.1–3 The direct sampling approach is to repeatedly

simulate data from a model and then calculate the frequency of a
rare event over all the simulated data. This approach can be effec-
tive in some contexts but can also be computationally expensive.
For the rarest probabilities, an exorbitant amount of computational
effort might be required before the event occurs even once in the
simulations. Responding to these concerns, researchers as early as
the 1950s4,5 developed specialized rare event sampling algorithms to
improve computational efficiency.

Today, a diverse community of scientists uses rare event sam-
pling and analysis tools to study processes that take place infre-
quently, are too complex to be described analytically, and can be
simulated on a computer. For example, the following extraordi-
nary events have all been simulated using rare event sampling: a
high-energy particle penetrating a nuclear shield,6 a life-sustaining
protein-protein reaction,7 and an extreme loss of portfolio value.8

A burgeoning field of research explicitly links rare event simu-
lation and analysis tools with geophysical applications.9–14 In a recent
paper, Ragone et al.12 showed that rare event sampling methods can
be used to study the probability of extreme weather occurring. They
sampled intense 90-day heat waves overWestern Europe at a fraction
of the computational expense of direct sampling. Their simulations
led to the surprising insight that extreme heat waves over Western
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Europe are associated with a stationary wavenumber 3 anomaly in
the jet stream.

The work of Ragone and coauthors concerns synoptic scale
weather, weather that occurs on a length scale of 1000 km or greater.1

A more challenging question is how to apply rare event sampling
techniques to mesoscale weather, which occurs on a smaller length
scale of 10–1000 km. Extreme mesoscale weather, including tropical
cyclones and floods, accounts for many of the world’s most destruc-
tive natural disasters.15,16 Yet, simulations of mesoscale weather can
demand enormous computational resources due to the need for
high spatial resolution.17,18 Mesoscale weather simulation presents a
unique challenge for rare event sampling and analysis, where the need
for efficient simulation strategies is great and yet sample size is highly
limited due to computational expense.

In Plotkin et al.,14 we present a rare event analysis strategy
for potential use in extreme mesoscale weather simulations. Using
a computationally efficient algorithm, we identify maximum likeli-
hood perturbations that lead to the occurrence of an intense tropical
cyclone in a high-resolution weather model. In particular, we iden-
tify key changes in wind, temperature, and relative humidity fields
that help explain the rapid intensification process inmodeled tropical
cyclones.

In contrast to Plotkin et al.,14 which analyzes the single most
likely path toward extrememesoscale weather, the present paper ana-
lyzes statistics of extreme mesoscale weather. Accurate estimation of
statistics can require sampling numerous possible paths. To achieve
this goal, therefore, it is appropriate to use a rare event sampling
algorithm.

Here, we present a new rare event sampling algorithm called
quantile diffusion Monte Carlo (quantile DMC) that is suited for
complex real-world applications such as extreme weather simula-
tions. The algorithm is simple to implement, yet suitable for a large
class of nonlinear processes. When we apply quantile DMC to a sim-
ple example, the algorithm is more efficient than direct sampling by
a factor of more than a thousand.

Quantile DMC is a “splitting” algorithm, an algorithm in which
some simulations are split into multiple replicas to promote progress
toward the rare event of interest and other simulations are “killed.”
A key advantage of splitting algorithms is that they are practical to
implement. Our simulations with quantile DMC are simple to code
and require the same computational cost as direct sampling from
the dynamical model. In contrast, alternative rare event sampling
approaches can be more challenging to implement, because they
require modifying the underlying dynamical model or frequently
starting and stopping the dynamics. For mesoscale weather mod-
els like the one simulated in the current paper, these manipulations
would require extensive code development or substantial additional
computational cost.

Quantile DMC is inspired by a previous splitting algorithm
called diffusion Monte Carlo,4,5,19–22 but it incorporates two new fea-
tures. First, in diffusionMonte Carlo, splitting is typically uniform in
time, but in quantile DMC the intensity and frequency of splitting
increase over time, thereby improving efficiency. Second, quantile
DMC adaptively makes use of data from simulations, so that the
algorithm requires less tuning as compared to diffusionMonte Carlo.

We envision that quantile DMC could be used to study the
frequency of extreme mesoscale weather under different climate

conditions. While a full application of rare event sampling tech-
niques to study extreme weather is beyond the scope of the current
paper, we test the feasibility of our approach using a high-resolution
weathermodel to simulate tropical cyclones.We apply quantile DMC
to study the upper tail of the intensity distribution for numerical
simulations of two historical tropical cyclones: 2010 Hurricane Earl
and 2015 Hurricane Joaquin. Using an ensemble of N = 100 sim-
ulations, quantile DMC produces more than seven times as many
high-intensity Category 5 realizations for both of the storms com-
pared to direct sampling. Moreover, the variance of important rare
event statistics is improved by a factor of two to ten. Building on this
success, we anticipate that we can improve the performance of this
method in the future.

This paper is organized into two major sections. Section II
presents various approaches to estimating rare event probabilities:
direct sampling, diffusionMonte Carlo, and the newmethod quantile
DMC. Section III examines the potential role of rare event sampling
in extreme weather and presents tropical cyclone simulations.

II. ESTIMATING RARE EVENT PROBABILITIES

In this section, we introduce several approaches to estimating
rare event probabilities for potential use in climate andweather appli-
cations. First, we discuss the well-known method of direct sampling.
Then, we describe a rare event sampling algorithm, called diffusion
Monte Carlo (DMC).We illustrate the advantages and disadvantages
of DMC on a simple example. Then, we introduce quantile DMC
and explain why it gives more robust performance compared to stan-
dard DMC. Lastly, we discuss the implementation of quantile DMC
in practical settings.

A. Direct sampling

While direct sampling is a useful tool for studying the typical
behavior of complex or high-dimensional systems, it is not an ideal
approach for investigating unlikely or infrequent phenomena. In par-
ticular, as we will demonstrate, direct sampling can give very high
error when estimating statistics of rare events.

Direct sampling uses a straightforward approach to esti-
mate probabilities. We assume that X is a random process, A is
an important event (e.g., the occurrence of an intense tropical
cyclone), and we can draw independent samples of X, labeled as
ξ (1), ξ (2), ξ (3), . . . , ξ (N). To estimate the probability p = P {X ∈ A},
direct sampling uses

p̂ = 1

N

N
∑

i=1

1
{

ξ (i) ∈ A
}

. (1)

This estimator is called the sample average.
To assess the error in direct sampling, we calculate themean and

variance of p̂






E
[

p̂
]

= p,

Var
[

p̂
]

= 1
N
p
(

1 − p
)

.
(2)

On the surface, the variance of the sample average p̂ would
appear to be quite good. In particular, the variance depends only on p
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and not on the process X. The process X can have millions of dimen-
sions or even infinite dimensions and still the variance of p̂ converges
to zero at a 1/N rate as N → ∞.

Surprisingly then, direct sampling estimates p̂ can have unac-
ceptably high error in rare event calculations. For example, suppose
p = 0.01 is the probability of a rare event A, and N = 100 is the
sample size of simulations. Then, p̂ may take the value p̂ = 0 with
probability 0.37, the value p̂ = 0.01 with probability 0.37, the value
p̂ = 0.02 with probability 0.18, the value p̂ = 0.03 with probability
0.06, and higher values with probability 0.02. The error in p̂ is over-
whelming. If the estimate p̂ is used for risk analysis, then the error in
p̂might have harmful practical consequences.

How can direct sampling produce estimates that are simultane-
ously so good and so bad? In most applications, what is important
is not absolute error p̂ − p, but rather relative error

(

p̂ − p
)

/p. To
assess the relative error in direct sampling, we calculate themean and
variance of p̂/p







E
[

p̂/p
]

= 1,

Var
[

p̂/p
]

= 1−p

Np
.

(3)

To estimate a probability pwith even one digit of precision, Var
[

p̂/p
]

must be many times smaller than 1, and this requires a sample size
N that is many times larger than 1/p. When models are expensive to
run and probabilities p are small, obtaining these large sample sizes
is not a practical option.

Rare event sampling methods can help address the deficiency
of direct sampling in estimating rare probabilities. For example, in
carefully designed rare event splitting algorithms similar to diffu-
sionMonte Carlo and quantile DMC it can suffice to increase sample
size N as slowly as N ∼ log

(

1/p
)

as p → 0 to achieve fixed rela-
tive error.23 This is an exponential improvement compared to direct
sampling, where it is necessary to increase sample size N at a rate
of N ∼ 1/p to achieve fixed relative error. The exponential improve-
ment due to rare event sampling methods can make possible very
precise calculations of rare event probabilities even with a limited
ensemble size N.

B. Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is a sampling algorithm that
causes simulations to explore regions of state space that would rarely
be accessed under typical conditions. The earliest antecedents of
DMCwere splitting algorithms invented in the 1950s.4,5 In the 1960s,
DMC was popularized in the quantum chemistry community where
researchers used DMC to obtain information about the ground state
energy of the Schrödinger equation for chemical systems.19,20 In the
2000s, the tools of DMCwere increasingly applied to rare event sam-
pling, and the algorithm became known in some circles as “genealog-
ical particle analysis.”24,25 Recently, DMC has been the subject of a
series of mathematical analyses, which describe the convergence and
asymptotic behavior of DMC as the ensemble size N approaches
infinity.26,27 Hairer and Weare22 provide a more detailed history of
DMC.

For a simple example of DMC, assume (Xt)t≥0 is a Markov pro-

cess in R
d, and ξ

(1)
t , ξ (2)

t , . . . , ξ (N)
t are simulations of Xt , which are

called “particles.” To estimate the probability of a rare, important
event A, the DMC algorithm iterates the following steps:

1. Evolve particles
(

ξ
(i)
t

)

1≤i≤N
forward from time t to a later time t′.

2. Using a consistent set of rules, randomly “split” particles ξ
(i)

t′ that

have moved much closer to A and randomly “kill” particles ξ
(i)

t′
that havemovedmuch farther fromA, making sure that the total
number of particles N remains unchanged.

DMC uses splitting and killing to cause a greater number of particles
to reach the rare event state A, compared to direct sampling.

In greater generality, the DMC algorithm is guided by one-
dimensional coordinate θ : R

d → R that is high in some regions of
the state spaceR

d and low in other regions of the state space.Where θ

is high, DMC exhibits a greater propensity toward splitting. Where θ

is low, DMC exhibits a greater propensity toward killing. The coordi-
nate θ is often known as an order parameter or reaction coordinate.
The particular choice of reaction coordinate can be crucial to the
efficiency of DMC for computing rare event statistics.

A basic schematic of DMC is given in Fig. 1. In this schematic,
the reaction coordinate is the position θ (x) = x. Therefore, splitting
and killing of simulations drives the process toward high values of x.

To implement DMC on a computer, a sequence of actions are
required. The user defines a series of resampling times 0 = t0 < t1 <

t2 < · · · . For each resampling time tk, the user specifiesVk (x), a split-
ting function that increases with the reaction coordinate θ (x). DMC
begins with an initialization step and then iterates over reweighting,
resampling, andmutation steps according to the following definition:

Definition II.1 (Diffusion Monte Carlo).

1. Initialization: Independently sample initial particles ξ (i)
0 ∼ Law (X0)

for 1 ≤ i ≤ N
2. For k = 0, 1, 2, . . . ,

FIG. 1. Illustration of diffusion Monte Carlo. At fixed times t, some simulations
are killed (white circles). Simulations that are not killed (black circles) are possibly
replicated, and all simulations are run forward in time. Splitting and killing create
a net flux, driving simulations toward high values of x.
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(a) Reweighting: If k = 0, define initial weights

w(i)
0 = exp

{

V0

(

ξ
(i)
0

)}

. (4)

If k > 0, define weights

w(i)
k = wk−1 exp

{

Vk

(

ξ
(i)
k

)

− Vk−1

(

ξ̂
(i)
k−1

)}

. (5)

Define the average weight wk = 1
N

∑N
i=1 w

(i)
k .

(b) Resampling: By splitting and killing particles
(

ξ
(i)
k

)

1≤i≤N
,

create an ensemble of updated particles
(

ξ̂
(i)
k

)

1≤i≤N
consist-

ing of N(i)
k copies of each particle ξ

(i)
k . The numbers N(i)

k are
randomly chosen to satisfy



















N
∑

i=1

N(i)
k = N,

E
[

N(i)
k

]

= w(i)
k /wk.

(6)

(c) Mutation: Independently sample ξ
(i)
k+1 ∼ Law(Xtk+1

|Xtk
=

ξ̂
(i)
k ) for 1 ≤ i ≤ N.

3. Estimation: To approximate E
[

f
(

Xtk

)]

, DMC uses the estimate

E
[

f
(

Xtk

)]

≈ wk−1

N

N
∑

i=1

f
(

ξ
(i)
k

)

exp
{

Vk−1

(

ξ̂
(i)
k−1

)} . (7)

The intialization and mutation steps in DMC are straightfor-
ward, but the reweighting and resampling steps require further elab-

oration. In the reweighting step, splitting/killing weights
(

w(i)
k

)

1≤i≤N

are defined by means of the splitting functions Vk. The simplest
example of a splitting function is Vk (x) = Cθ (x), where C > 0 is a
splitting parameter that controls howmany times a single particle can
be split to create new copies.

In the resampling step, particles are split and killed according to

the weights
(

w(i)
k

)

1≤i≤N
. Random numbers N(i)

k indicate how many

times each particle ξ
(i)
k is copied. The random numbers N(i)

k have
expectation

E
[

N(i)
k

]

= w(i)
k /wk. (8)

In this formula, w
(i)
k is divided by wk to ensure that the total number

of particles satisfies E
[

∑N
i=1 N

(i)
k

]

= N. To define the particular dis-

tribution for the randomnumbers
(

N(i)
k

)

1≤i≤N
, we use a low-variance

resampling scheme called sorted stratified resampling,27,28 the details
of which we describe in the Appendix.While a good choice of resam-
pling scheme can slighly reduce DMC error, other factors determine
a greater share of the error in DMC estimates. The splitting functions
Vk are the most important parameters for determining the dynamics
of DMC.

The validity of DMC estimates is supported by mathemati-
cal analyses.26,27 DMC estimates are unbiased and converge as the

number of particles N tends to infinity under mild integrability con-
ditions. These theoretical results are very general, holding true for
systems with arbitrarily high dimension d. Any quantity that can be
estimated by direct sampling can also be estimated by DMC. Esti-
mates can include functions that depend on the entire path from time
0 until a later time tk.

Analysis of DMC supports the conclusion that DMC over-
samples regions, where the reaction coordinate θ is large and
undersamples regions where θ is small. In particular, the distribu-

tion of particles 1
N

∑N
i=1 δ

(

ξ̂
(i)
k

)

converges weakly as N → ∞ to the

distribution of Xtk
weighted by a likelihood ratio of

Lk (x) = exp {Vk (x)}
E

[

exp
{

Vk

(

Xtk

)}] . (9)

Since Vk (x) increases with the reaction coordinate θ (x), more par-
ticles occupy regions where θ is high, compared to direct sampling.

In summary, we have defined diffusion Monte Carlo and pre-
sented two key facts. First, DMC provides unbiased, convergent
estimates. Second, at each resampling step tk, DMC moves particles
to regions where the reaction coordinate θ is large.

C. Strengths and weaknesses of DMC: The

Ornstein-Uhlenbeck example

The Ornstein-Uhlenbeck (OU) process is a one-dimensional,
linear process, which we use to illustrate the strengths and weak-
nesses of DMC. On the one hand, DMC can effectively sample rare
extreme deviations of theOUprocess. On the other hand, when sam-
pling transformations of the OU process, DMC can require delicate
tuning, which limits the practical effectiveness of the algorithm.

The OU process evolves under the dynamics

dXt = −αXtdt +
√
2αdWt , (10)

where α > 0 is a constant. We present three properties of the OU
process for later reference:

1. From any starting distribution, the OU process converges geo-
metrically to an equilibrium distribution of N (0, 1). Therefore,
it is a rare event for the OU process to reach a position much
larger than the standard deviation of 1 at a large time T.

2. From any starting position X0 = x, the mean of the OU pro-
cess converges geometrically to 0 at a time scale of 1/α; that is,
E [Xt] = xe−αt .

3. From any starting position X0 = x, the variance of the OU pro-
cess converges geometrically to 1 at a time scale of 1/ (2α); that
is, Var [Xt] = 1 − e−2αt .

We consider using DMC to estimate the probability that the OU pro-
cess starting from X0 = 0 exhibits a rare extreme deviation X1 ≥ U.
To set up the DMC algorithm, a natural choice of reaction coordi-
nate is position θ (x) = x. Wemust also choose a series of resampling
times 0 < t1 < · · · < tK−1 < tK = 1 and splitting functions Vk. The
simplest choice is to set tk = k/K for k = 1, 2, . . . ,K and Vk (x) =
Cθ (x), where C > 0 is a positive number. We refer to this strategy as
“time-homogeneous” DMC, since the splitting intensity and splitting
frequency are uniform in time.
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FIG. 2. In time-homogeneous DMC (left) particles reach high positions xmore quickly than in time-heterogeneous DMC (right). Bothmethods are implemented withN = 1000
particles, tilting constant C = 2.5, and dynamics dXt = −2Xtdt + 2dWt .

As an alternative to time-homogeneous DMC, we also consider
a “time-heterogeneous” resampling strategy. Since the OU process
loses its memory exponentially quickly, we observe that random
motion of particles at early times is not as important as random
motion of particles at later times for determining final locations at
time 1.Motivated by this observation, we can define resampling times
0 < t1 < · · · < tK−1 < tK = 1 using the formula

∫ t1

0

e2αtdt =
∫ t2

t1

e2αtdt = · · · =
∫ tK

tK−1

e2αtdt. (11)

We can also define splitting functions Vk (x) = Ceα(tk−1)θ (x). In
this time-heterogeneous resampling strategy, strength and frequency
of splitting increase exponentially with time. Splitting strength
increases at the 1/α time scale with which the OU process mean
reverts to zero. Splitting frequency increases at the 1/ (2α) time scale
with which the OU process variance reverts to 1.We note that a simi-
lar suggestion to increase the strength of splitting appears in the work
of Wouters and Bouchet.25 The suggestion to increase the frequency
of splitting is newly presented here.

Figure 2 contrasts the different qualitative behavior of time-
homogeneous DMC, shown in red, and time-heterogeneous DMC,
shown in blue. In time-homogeneous DMC, the distribution of par-
ticles is immediately shifted toward high positions x in the time
interval [0, 1/ (2α)]; in time-heterogeneousDMC, on the other hand,
the distribution of particles is shifted toward high positions x at a later
time interval [1 − 1/α, 1].

DMC can be used to estimate the probability p = P {X1 ≥ U}
that theOrnstein-Uhlenbeck process exceeds a thresholdU at time 1.
Following Definition II.1, estimates take the form

p̂ = wK−1

N

N
∑

i=1

1

{

ξ
(i)
K ≥ U

}

exp
{

VK−1

(

ξ̂
(i)
K−1

)} . (12)

We simulated rare extreme deviations of the Ornstein-Uhlenbeck
process ten thousand times using DMC with a splitting intensity of
C = 2.5. We then computed estimates p̂ and assessed error using the

relative standard error
√

Var
[

p̂/p
]

. The results are shown in Table I.

The table shows for a range of U values that time-heterogeneous
DMC is more accurate than time-homogeneous DMC. Moreover,

when studying the most extreme rare events, time-heterogeneous
DMC is more than 50 times more accurate than direct sampling.
Thus, with direct sampling, it would be necessary to increase the sam-
ple size by a factor of more than a thousand to obtain comparable
error to time-heterogeneous DMC.

Having discussed the strengths of diffusion Monte Carlo, we
now turn to a discussion of the method’s shortcomings. Under the
best of conditions, diffusion Monte Carlo is a highly effective rare
event sampling strategy. However, to sample a transformation of
the OU process, DMC can require delicate tuning, which limits the
method’s practical appeal.

Consider using DMC to sample extreme deviations of the pro-
cess

{

d log (Yt/4) = −α log (Yt/4) dt + √
α/8dWt ,

Y0 = 4.
(13)

The process Yt is a nonlinear transformation of the OU process, with
Yt = 4 exp {Xt/4}. Figure 3 illustrates what can happen when DMC
is used to sample Yt without a careful tuning of parameters.We apply
DMC with a reaction coordinate θ

(

y
)

= y and splitting functions

Vk

(

y
)

= 2.5eα(tk−1)θ
(

y
)

. The resulting DMC scheme performs well
at the first resampling time, but as soon as the first particles reach
positions y > 10, the algorithm becomes unbalanced. Particles with
the highest positions y are split into dozens or hundreds of repli-
cas. Thus, particle positions y become highly correlated, leading to
volatile and error-prone estimates for rare event probabilities.

TABLE I. Relative standard errors. With 1000 particles, time-heterogeneous DMC

gives better estimates for tail probabilities than time-homogeneous DMC or direct

sampling.

Direct
sampling

Time-homogeneous
DMC

Time-heterogeneous
DMC

P {X1 ≥ 1} 0.073 0.26 0.096
P {X1 ≥ 2} 0.21 0.25 0.11
P {X1 ≥ 3} 0.90 0.32 0.17
P {X1 ≥ 4} 6.1 0.69 0.37
P {X1 ≥ 5} 67 2.5 1.3
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FIG. 3. With the wrong splitting functions Vk , DMC can experience a catas-
trophic instability. Extreme splitting leads to high correlations between particles
and error-prone estimates.

While DMC can potentially be tuned to efficiently sample the
process Yt , the tuning process requires great care and flexibility. In

particular, no splitting function of the form Vk

(

y
)

= Ceα(tk−1)θ
(

y
)

efficiently samples extreme deviations of Yt . A splitting function of
a different parametric form is required. Moreover, tuning becomes
muchmore difficult when sampling a process with unknown dynam-
ics. Large amounts of data are necessary to tune DMC, and gathering
the necessary data from a complex model can be computationally
expensive.

We draw two essential observations from the Ornstein-
Uhlenbeck example. First, DMC is most effective when the strength
and frequency of splitting increase over time. Second, DMC is quite
sensitive to the particular splitting functions Vk that are used. This
sensitivity potentially compromises the real-world performance of
DMC and prompts the development of a more robust version of
DMC.

D. Quantile DMC

Quantile DMC is an elaboration of the DMC algorithm
algorithm, with additional adaptation steps that make the scheme
more robust. The current section describes how adaptation steps
are performed and explores the specific theoretical properties that
explain the robustness of quantile DMC.

The key difference between quantile DMC and standard DMC
is that quantile DMC adaptively rescales the reaction coordinate θ to
match a target distribution νk. It is the rescaled reaction coordinate
θ ′
k that is used for splitting and killing of simulations.

To perform quantile DMC, first define a series of resampling
times 0 = t0 < t1 < t2 < · · · . For each resampling time tk, specify
a target distribution νk for the rescaled reaction coordinate θ ′

k and
specifyV ′

k (x), a splitting function that increases with θ ′
k (x). Quantile

DMC begins with an initialization step and then iterates over adap-
tation, reweighting, resampling, and mutation steps according to the
following definition:

Definition II.2 (Quantile DMC).

1. Initialization: Independently sample initial particles ξ
(i)
0

∼ Law (X0) for 1 ≤ i ≤ N
2. For k = 0, 1, 2, . . . ,

(a) Adaptation: If k = 0, let γ0 be a transport function from
1
N

∑N
i=1 δ

(

θ
(

ξ
(i)
0

))

to ν0. If k > 0, let γk be a transport

function from

∑N
i=1 exp

{

−V ′
k−1

(

ξ̂
(i)
k−1

)}

δ
(

θ
(

ξ
(i)
k

))

∑N
i=1 exp

{

−V ′
k−1

(

ξ̂
(i)
k−1

)} (14)

to νk. Define the rescaled reaction coordinate θ ′
k = γk (θ).

(b) Reweighting: If k = 0, define initial weights

w(i)
0 = exp

{

V ′
0

(

ξ
(i)
0

)}

. (15)

If k > 0, define weights

w
(i)
k = wk−1 exp

{

V ′
tk

(

ξ
(i)
k

)

− V ′
tk−1

(

ξ̂
(i)
k−1

)}

. (16)

Define the average weight wk = 1
N

∑N
i=1 w

(i)
k .

(c) Resampling: By splitting and killing particles
(

ξ
(i)
k

)

1≤i≤N
,

create an ensemble of updated particles
(

ξ̂
(i)
k

)

1≤i≤N
consist-

ing of N(i)
k copies of each particle ξ

(i)
k . The numbers N(i)

k are
randomly chosen to satisfy



















N
∑

i=1

N(i)
k = N,

E
[

N(i)
k

]

= w(i)
k /wk.

(17)

(d) Mutation: Independently sample ξ
(i)
k+1 ∼ Law(Xtk+1

|Xtk
=

ξ̂
(i)
k ) for 1 ≤ i ≤ N.

3. Estimation: To approximate E
[

f
(

Xtk

)]

, Quantile DMC uses the
estimate

E
[

f
(

Xtk

)]

≈ wk−1

N

N
∑

i=1

f
(

ξ
(i)
k

)

exp
{

V ′
k−1

(

ξ̂
(i)
k−1

)} . (18)

QuantileDMC is distinguished from standardDMCby an adap-
tation step. The adaptation step begins by estimating the distribution
of θ

(

Xtk

)

using data from simulations. At time t0, the distribution

of θ (X0) is estimated using η0 = 1
N

∑N
i=1 δ

(

θ
(

ξ
(i)
0

))

. At later times,

the distribution of θ
(

Xtk

)

is estimated using

ηk =
∑N

i=1 exp
{

−V ′
k−1

(

ξ̂
(i)
k−1

)}

δ
(

θ
(

ξ
(i)
k

))

∑N
i=1 exp

{

−V ′
k−1

(

ξ̂
(i)
k−1

)} . (19)

After estimating the distribution of θ
(

Xtk

)

, quantile DMC

builds a transformation θ ′
k = γk (θ) so that the distribution of θ ′

k

(

Xtk

)
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approximates a target distribution νk. In particular, quantile DMC
builds a transport function29 from ηk to νk of the form

γk (x) = F−1
νk

(

Fηk
(x)

)

. (20)

Here, Fηk
is a distribution function for ηk, defined by

Fηk
(x) = ηk ((−∞, x)) + 1

2
ηk ({x}) (21)

and F−1
νk

is a quantile function for νk, defined by

F−1
νk

(α) = inf
{

x ∈ R : Fνk
(x) ≥ α

}

. (22)

Since the transport function γk maps the quantiles of ηk to the
quantiles of νk, we call this algorithm quantile DMC.

An explicit example of quantile DMC helps illustrate the main
features of this new algorithm. Consider using quantile DMC to
estimate the probability of extreme deviations of the process

{

d log (Yt/4) = −α log (Yt/4) dt + √
α/8dWt ,

Y0 = 4.
(23)

This is the same nonlinear transformation of theOUprocess that was
responsible for a catastrophic failure of DMC in Sec. II C. To sample
extreme deviations of the process Yt , we define a reaction coordi-
nate θ

(

y
)

= y and target distributions νk = N (0, 1). We use splitting
functions

V ′
k (x) = 2.5eα(tk−1)θ ′

k (x) . (24)

Figure 4 presents results of these quantile DMC simulations. The
behavior of quantileDMC is highly stable. Particles are nudged gently
but forcibly in the direction of high θ values. Explicit error calcula-
tions confirm that quantile DMC is just as effective at computing tail
probabilities for this nonlinear transformation of the OU process as
for the OU process itself.

FIG. 4. Quantile DMC efficiently samples extreme deviations of the nonlinear
process d log (Yt/4) = −2 log (Yt/4) dt + 1/2dWt .

The main advantage of quantile DMC, compared to DMC, is
that quantile DMC requires less tuning when it is applied to a wide
class of nonlinear processes. This robustness is due to the fact that
quantile DMC estimates have the same distribution if the reaction

coordinate θ is replaced with any other reaction coordinate θ̃ that
is a monotonic, one-to-one transformation of θ . Thus, for exam-
ple, quantile DMC is equally effective when sampling from the OU
process or from a nonlinear, montonic transformation of the OU
process. We note that this property of invariance under monotonic
transformations is also shared by Adaptive Multilevel Splitting30 and
Steered Transition Path Sampling31 and thus appears to be an impor-
tant property underlying the success of a variety of effective rare event
sampling methods. We refer the reader to the Appendix for a proof
of this theoretical property and further discussion of convergence
properties for quantile DMC estimates.

E. Implementation of quantile DMC

Quantile DMC provides a method to estimate rare event prob-
abilities with much reduced computational effort compared to direct
sampling. For example, Fig. 5 compares tail probabilities estimated
using quantile DMC with N = 1000 particles to the same tail proba-
bilities estimated using direct sampling withN = 1 000 000 particles.
When sampling from the OU process, quantile DMC achieves bet-
ter accuracy than direct sampling but uses one thousand times less
computational power.

Quantile DMC is straightforward to implement. Whereas some
rare event sampling algorithms can require additional simulation
time, additional storage, or additional manipulations of the underly-
ing dynamicalmodel compared to direct sampling, this is not the case
with quantile DMC. The only additional cost of using quantile DMC
is the cost of resampling, and the cost of resampling is often negli-
gible compared to the cost of running complex simulations forward
in time. For the tropical cyclone simulations presented in Sec. III,

FIG. 5. Extreme tail probabilities obtained using quantile DMC with N = 1000
particles are more accurate than tail probabilities obtained using direct sampling
with N = 1 000 000 particles.
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resampling was completed with ten lines of code and a few seconds
of processing time.

Tomaximize the efficiency of quantile DMC, parameters should
be adjusted depending on the particular rare event sampling problem
being investigated. To illustrate this tuning process, we investigate
optimal parameter choices for sampling from the OU process with
resampling times, target distributions, and splitting functions



















∫ t1
0
e2αtdt =

∫ t2
t1
e2αtdt = · · · =

∫ tK
tK−1

e2αtdt,

νk = N (0, 1) ,

V ′
k (x) = Ceα(1−tk)θ ′

k (x) .

(25)

With this resampling schedule and this approach to splitting and
killing particles, four parameters can impact the quality of quantile
DMC estimates: the time scale parameter α, the tilting constant C,
the number of resampling times K, and the number of particles N.

The simplest parameter to analyze is the time scale parameter α.
Ideally, the parameter α should be the same time scale as the under-
lying Ornstein-Uhlenbeck process. However, if the parameter α is
overestimated or underestimated by a factor of two, we found in our
experiments that error increases by less than 20%.

To ensure quantile DMC’s effectiveness, the tilting constant C
must be adjusted depending on the rareness of the probabilities being
investigated. When estimating a tail probability P {X1 ≥ U} for the
OUprocess, the optimal tilting constantC lies within one or twounits
of U. This numerical result is consistent with the fact that particles
at time t = 1 are approximately normally distributed with mean C
and variance 1, and theN (C, 1) distribution is a suitable importance
sampling distribution for estimating P {X1 ≥ U} when U lies close
to C.

Parameters K and N should also be increased as probabili-
ties being investigated become rarer. For example, when estimat-
ing P {X1 ≥ 2}, 100 particles and 10 resampling times yield near-
maximal efficiency. When estimating P {X1 ≥ 4}, 1000 particles and
100 resampling times are required for near-maximal efficiency. In
the second situation, the probability being estimated is rarer and
consequently more computational power is required.

The efficiency gains from using quantile DMC instead of direct
sampling become most dramatic when the number of particles N
exceeds a critical threshold. Figure 6 shows how quantile DMC error
decays quickly, at a faster thanN−1/2 rate asN is increased from 10 to
1000. Once the ensemble size reachesN = 1000 particles, then error
decreases less quickly, at an asymptotic N−1/2 rate.

The tuning of parameters α, C, K, and N must be coupled with
a careful selection of reaction coordinate θ to guarantee the effec-
tiveness of quantile DMC. The goal of quantile DMC is to emphasize
paths leading to a rare eventA via splitting and to deemphasize paths
leading away from A through random killing. Thus, the ideal reac-
tion coordinate θ should anticipate what paths lead to the rare event
A. One specific reaction coordinate that is appropriate for this goal is
therefore the conditional probability function

θk (x) = P
(

A|Xtk
= x

)

. (26)

Here, the reaction coordinate θk changes at each resampling time
tk. This reaction coordinate is proven to be optimal for a splitting
algorithm similar to quantile DMC.23

FIG. 6. Error in calculating p = P {X1 ≥ 4}. In quantile DMC, error decays
quickly for small N and then levels off asymptotically to a N−1/2 scaling. In direct
sampling, error decays with a perfect N−1/2 scaling.

With quantile DMC, identifying a reaction coordinate can be
easier than with DMC because any monotonic, time-dependent
transformation of P

(

A|Xtk
= x

)

serves equally well as a reaction
coordinate. However, in a complex, high-dimensional system, it can
be challenging even to approximate a monotonic transformation of
P

(

A|Xtk
= x

)

. In our analysis of tropical cyclone simulations in
Sec. III, we conclude that identifying an appropriate reaction coor-
dinate requires careful data analysis and scientific insight into the
model being simulated.

With an imperfect choice of reaction coordinate, quantile DMC
users should take care not to resample too often. In our experiments
with the OU process, we can resample more than K = 100 times
without any adverse effects because the process of splitting/killing
particles is carefully tuned to the underlying dynamics. However,
for more complicated problems in which an ideal choice of θ is not
available, resampling should be performed as little as possible, while
sustaining the necessary particle dynamics.32 When testing a new
reaction coordinate, it is a good strategy to start with just a few resam-
pling times and increase resampling frequency once the coordinate
is proven to be effective.

In a complex, high-dimensional system, where the reaction
coordinate θ is imperfect, it is essential to gauge the quality of DMC
estimates by providing error bars. For estimates

P
{

XtK ∈ A
}

≈ wK−1

N

N
∑

i=1

1

{

ξ
(i)
K ∈ A

}

exp
{

V ′
K−1

(

ξ̂
(i)
K−1

)} , (27)

it is possible to estimate variance σ 2 using33

1

N2

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

anc

(

ξ
(j)
K

)

=i

wK−11

{

ξ
(j)
K ∈ A

}

exp
{

V ′
K−1

(

ξ̂
(j)
K−1

)} − p̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (28)
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Here, anc
(

ξ
(j)
K

)

denotes the “ancestral index” of particle ξ
(j)
K . Trac-

ing the ancestry of ξ
(j)
K back to an initial particle ξ

(i)
0 , anc

(

ξ
(j)
K

)

is the

index i for the initial particle. We note that the variance estimator σ̂ 2

is most accurate when the sample size N is very high and when the
number of resampling times K is small, which is not always the case
in practical simulations. Properties of the variance estimator σ̂ 2 are
discussed at more length in the Appendix.

In summary, quantileDMC is straightforward to implement and
becomes increasingly effective relative to other sampling methods as
parameters of splitting/killing are tuned and as the number of parti-
cles N increases. However, quantile DMC can perform poorly when
the reaction coordinate θ fails to anticipate paths leading to rare event
states. Lastly, we have shown how to provide rough error bars that
assess the accuracy of quantile DMC estimates.

III. EXTREME MESOSCALE WEATHER

In this section, we discuss why it is difficult to estimate the fre-
quency of extreme mesoscale weather and how rare event sampling
methods like quantile DMC can potentially assist in calculations.
Then, we focus our attention on the frequency of intense tropical
cyclones and present simulations, which illustrate both the potential
benefits of rare event sampling and the work that remains to be done.

A. Frequency of extreme weather

While extreme weather events such as heat waves, floods, and
tropical cyclones are rare, they can cause immense damage and
fatalities.15,16,34 Understanding the frequency of extreme weather is
therefore an essential task, both for real-world disaster preparedness
and for assessing weather’s impact on society. The study of weather
extremes is more relevant than ever, since evidence points to chang-
ing frequencies of extreme weather events with climate change.34–36

To understand the frequency of extreme weather, observations
provide the most fundamental data source, but these data have
important limitations. For many potential extreme weather events,
no historical analog exists. Storms can occur in surprising places.
Droughts can afflict new areas. Even when historical data are avail-
able, measurements can be sparse and sometimes corrupted.37 Most
critically, as the climate changes, the frequency and intensity of trop-
ical cyclones, of heat waves, and of flooding are expected to change,
so that historical measurements will become less relevant.34–36 For
all these reasons, climate simulations provide essential additional
insight into extreme weather in historical, current, and potential
future climates.

When modeling extreme weather, there is a trade-off between
bias and variance. While inexpensive models can be runmany times,
leading to low-variance estimates, these estimates can be highly
biased. More computationally-intensive models potentially provide
a less biased climatology of extreme weather17,18,36 yet these models
cannot be run for as long or with as many ensemble members, due
to limited computational resources. Because of these practical limi-
tations, estimates can have high variance, particularly for the rarest,
most extreme weather events.

Mesoscale extreme weather, such as floods and tropical
cyclones, provides a stark example of the need for increased statistical

accuracy without sacrificing model fidelity. Because mesoscale
extreme weather occurs on a fine spatial scale (10-1000 km) at which
simplifying assumptions for thermodynamics and dynamics begin to
fail, running accurate mesoscale weather models can be enormously
expensive. It is here that the computational burden is the greatest. It
is here, therefore, that rare event sampling methods stand to provide
the greatest benefit.

In extreme mesoscale weather simulations where rare event
sampling could potentially provide a benefit, a process known as
“dynamical downscaling”38 is now common. First, a Global Climate
Model (GCM) simulates a coarse-resolution version of an extreme
weather event. Using initial and boundary conditions from theGCM,
a high-resolution regional model with more complex physics then
enhances the GCMoutput, simulating the local details of the extreme
weather event.

The dynamical downscaling approach is necessary because cur-
rent GCMs cannot simulate the details of mesoscale weather that
are essential for damage assessment. For example, the peak winds
of a tropical cyclone are underestimated by a GCM,2 and a GCM
cannot resolve the overflowing riverbeds that lead to flooding.18,36

Versions of dynamical downscaling have become standard in storm
surge modeling,3 flood modeling,36 and tropical cyclone modeling.2

A simple probabilistic interpretation helps clarify how dynam-
ical downscaling can estimate the probability of an extreme weather
event occurring. Let A denote an extreme event and let B denote the
coarse-scale meteorological conditions that are necessary for eventA
to occur. We can then write

P {event A} = P {conditions B}
× P { event A | conditions B} . (29)

A GCM is used to evaluate the first probability P {conditions B},
whereas a regional model is used to evaluate the second probability
P { event A | conditions B} using output from the GCM. For exam-
ple, Bender and co-workers2 identified protocyclones in a GCM and
then used a high-resolution regional model to simulate the intensity
evolution of protocyclones into full-fledged tropical cyclones.

Applying rare event sampling in a dynamical downscaling con-
text is a multitiered process. A GCM can be run either directly or
with a splitting method such as quantile DMC. Then, starting from
the intial conditions selected from GCM output, a regional weather
model can be run either directly or with a splitting method such as
quantile DMC. At multiple stages of the dynamical downscaling pro-
cess, statistics can be potentially improved by a judicious application
of rare event sampling.

In summary, there is a pressing need for rare event sampling
of mesoscale extreme weather since mesoscale simulations are enor-
mously expensive. The incorporation of rare event sampling into
extreme weather calculations can enable higher-resolution, more
computationally-intensive models, ultimately leading to more accu-
rate extreme weather risk assessment.

B. Tropical cyclone test case

1. Motivation for simulations

Tropical cyclones rank among the deadliest natural disas-
ters in human history. Approximately 300 000 died in the 1970
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Bhola cyclone, and an estimated 138 000 died in the 2008 cyclone
Nargis.39,40While high-intensity tropical cyclones (TCs) are rare, they
are themost destructive and fatal TCs.16,41Moreover, the frequency of
the most intense storms is expected to increase with climate change,
the precise rate of change being an open area of research.35 Under-
standing the upper tail of intensity for TCs is therefore of paramount
societal concern.

Reducing computational cost is a central priority for the TC
modeling community. TCs aremost accurately simulated using high-
resolution weather models with 1–10 km horizontal resolution.17

High spatial resolution is required to resolve the storm eyewall where
winds are the strongest. Increasing horizontal resolution can lead to
more accurate simulations; however, increased resolution comes at
a steep computational cost. Doubling horizontal resolution requires
an eight-fold increase in computational expense because resolution
must be doubled in the zonal andmeridional directions, and the time
step must be cut in half to ensure numerical stability.

Helping to alleviate the computational burden of TC model-
ing, rare event sampling potentially provides a means to accurately
estimate TC statistics with a reduced sample size of high-resolution
simulations. Here, as a proof of concept, we apply quantile DMC to
estimate statistics for two high-intensity TCs. For initial and bound-
ary conditions, we use reanalysis data for two storms that achieved
Category 4 status in the real world but did not achieve the high-
est intensity level, Category 5 status. We model these storms using
a stochastic model that predicts a range of possible intensities, differ-
ent from the real-world intensities of Hurricane Earl and Hurricane
Joaquin. Starting from coarse-scale protocyclones, we nudge the evo-
lution of storms toward high intensities using the quantile DMC
algorithm and estimate the probability of high-intensity manifesta-
tions of these storms. We then compare the efficiency of quantile
DMC to the efficiency of direct sampling for this estimation problem.

These simulations are envisioned as a first step toward the goal
of using quantile DMC to study the probability of intense TCs in
historical, present, and future climates. In our simulations, we use
quantile DMC to provide statistics for just two storms. In the future,
however, as quantileDMC is applied to study the frequency of intense
TCs in different climates, it will be necessary to start simulations
from an ensemble of hundreds of different protocyclones. For these
initial investigations, we use a small sample size N = 100, whereas
a sample size of N = 1000 would be more appropriate for a full
implementation of quantile DMC in the future.

2. Simulation details

The 2010 storm Earl was a long-lived hurricane of tropical ori-
gin that came very close to the Eastern seaboard of the United States
but ultimately did not make landfall, passing 150 km off the coast of
Massachusetts. The 2015 storm Joaquin was a hurricane of extratrop-
ical origin that intensified more rapidly than expected, leading to the
worst U.S. maritime disaster in decades, the sinking of the cargo ship
El Faro with all 33 sailors aboard.42

We model Hurricanes Earl and Joaquin using the Advanced
Research Weather Research and Forecasting Model43 (ARW, ver-
sion 3.9.1.1), which has been applied extensively for hurricane
research in the past.17 ARW is a finite-difference model whose

governing equations include energy conservation, mass conserva-
tion, a thermodynamic law, and an equation of state. ARW incor-
porates parametrized physics schemes for precipitation processes,
heat/moisture fluxes over land, radiation, and mixing in atmo-
spheric columns. ARWuses artificial dissipation and filters to achieve
numerical stability.

We have previously used the ARW model to simulate intense
tropical cyclones;14 however, our previous simulations did not incor-
porate the quantile DMC algorithm. In Plotkin et al.,14 we used an
optimization strategy to identify a maximum likelihood pathway for
a simulated tropical cyclone to achieve a high intensity at a termi-
nal time. While the optimization approach is useful for identifying
factors that can cause tropical cyclones to intensify, it is less suitable
for computing tropical cyclone statistics. Statistics of TCs can depend
on myriad possible paths, and sampling these paths is a necessary
requirement for accurate estimation of statistics. Thus, in the current
work, we present quantile DMC as an additional tool, uniquely suited
to low-variance calculation of tropical cyclone statistics.

Among weather models, ARW has the advantage that it sup-
ports vortex-following nested domains. Three domains of different
resolutions are often used in TC simulations. The outer domain is
static, while the inner domains follow a localminimum in the 500 hPa
geopotential height field, indicating aTC’s location.Vortex-following
domains enable high resolution around the eye of the storm without
the computational expense of high resolution across the entire storm
path.

Our simulations use a time step of 6.7 s and horizontal resolu-
tion of 2 km in the inner domain, a time step of 20 s and resolution
of 6 km in the middle domain, and a time step of 60 s and reso-
lution of 18 km in the outer domain. The inner domain stretches
468 × 468 km2, the middle domain 1404 × 1404 km2, and the outer
domain 5382 × 5382 km2. All domains use 40 vertical levels. The
physics parametrizations are the same as used by Judt et al.44 Con-
vection is explicitly simulated in the two inner domains, whereas
convection is parametrized in the outermost domain.

Simulations are randomly perturbed using the Stochastic
Kinetic Energy Backscatter (SKEB) scheme.45 Perturbations from
this physics scheme are smooth in space and time, but they change
rapidly, modeling the effects of small-scale turbulent processes.
Potential temperature and the non-divergent component of horizon-
tal wind are both independently perturbed with forcing terms

F
(

x, y, z, t
)

=
∑

j,k

ℜ
{

Fj,k (t)Hj,k

(

x, y
)

eiCj,k,z
}

, (30)

where Hj,k are the Fourier modes for the domain and Cj,k,z are con-
stants that produce a westward phase tilt in the perturbation field.
Fj,k terms evolve randomly, according to a complex-valued Ornstein-
Uhlenbeck process with decorrelation time scale α−1 ≈ 0.5 h, that is,

dFj,k = −αFj,kdt +
√

2ασ 2
j,kdWj,k, (31)

where Wj,k denote independent complex-valued Brownian motions

and the noise amplitude σ 2
j,k decreases as a power law of

√

j2 + k2. The
SKEB scheme is implemented as a physics module within the ARW
software. The paper of Berner et al.45 describes how this physicsmod-
ule discretizes the underlying OU process dynamics as a first-order
autoregressive process. At every ARW time step, the perturbation
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field is updated, and perturbations provide a series of small, frequent
changes influencing model dynamics.

In our previous simulations of tropical cyclones,14 we used
an alternative probabilistic model for ARW perturbations, different
from the SKEB scheme. In Plotkin et al.,14 a Gaussian perturbation is
applied once per hour to the ARWmodel. The optimization strategy
used in Plotkin et al.14 would not have been practical to apply to the
SKEB scheme. The SKEB scheme perturbs simulations many times
per minute, making a derivative-based optimization challenging, but
leading to small and physically realistic perturbations.

We use direct sampling and quantile DMC to sample extreme
intensities of Earl and Joaquin with an ensemble size of N = 100
simulations. Direct sampling runs are seven-day forward runs of the
ARWmodel with SKEB. Quantile DMC runs are seven-day forward
runs, which incorporate splitting and killing of trajectories. Since
the ARW model with SKEB is a Markovian model, quantile DMC
provides unbiased estimates of a wide range of statistics of trop-
ical cyclones, including pathways, characteristics, and frequencies.
For simplicity, however, this paper discusses only the probability of
intense tropical cyclones occurring.

Table II describes the specific start and end times for the sim-
ulations. Start times are selected near the beginning of the hurri-
cane life cycle. End times are selected 7 days after start times, which
gives hurricanes sufficient time to reach peak intensity and then
recede for at least two days. For the quantile DMC runs, we select
a time T when we expect each storm to achieve peak intensity. We
resample at times t1 = T − 48 h, t2 = T − 24 h, t3 = T − 12 h, and
t4 = T. Thus, resampling increases in frequency in an attempt to
maximize quantile DMC efficiency. Resampling stops once hurri-
canes are expected to achieve peak intensity since resampling too
often can increase the variance of quantile DMC estimates. The spe-
cific time T for each storm is identified using official best track
historical data.46

The parameters for our quantile DMC simulations are defined
as follows:

1. The reaction coordinate θ is the deviation of sea surface pressure
from a hydrostatically-balanced reference state43 at the storm
core.

2. We assume the reaction coordinate θ can bemodeled as amono-
tonic, time-dependent transformation of an OU process. Since
N (0, 1)distributionsworkwell as target distributionswhen sam-
pling from the OU process, our target distribution is N (0, 1) at
each adaptation step.

TABLE II. Start times, end times, and resampling times for Earl and Joaquin (all time

zones are UTC).

Earl Joaquin

t0 Start August 27 00:00 September 29 00:00
t1 Resample 1 August 30 00:00 October 1 00:00
t2 Resample 2 August 31 00:00 October 2 00:00
t3 Resample 3 August 31 12:00 October 2 12:00
t4 Resample 4 September 1 00:00 October 3 00:00
t5 End September 3 00:00 October 6 00:00

3. Splitting functions take the form V ′
k = Ceα(t−T)θ ′

k. The decor-
relation time scale α−1 = 3d is the appropriate time scale for
large-scale differences to emerge in TC development in the ARW
model.44 The splitting constant C = 1 is appropriate for estimat-
ing intensity quantiles up to the 99.9th percentile of intensity.
Moreover, when sampling an OU process with a splitting con-
stant of C = 1, four rounds of resampling and a sample size of
N = 100 simulations are sufficient to ensure the effectiveness of
quantile DMC compared to direct sampling.

For both quantile DMC and direct sampling, equivalent computing
resources are required on the University of Chicago Research Com-
puting Center high-performance cluster: 100 nodes ran continuously
for 2 days with 28 CPUs per node and 2 gigabytes of RAM per CPU.

3. Simulation results

In Fig. 7, we present intensity trajectories for direct sampling
and quantile DMC runs for Hurricane Earl and Hurricane Joaquin.
Direct sampling trajectories typically occupy the middle quantiles
of intensity, whereas quantile DMC trajectories are more likely to
occupy the upper quantiles of intensity. For example, direct sam-
pling produces zero Category 5 realizations of Earl and only four
of Joaquin. In contrast, quantile DMC produces three Category 5
realizations of Earl and 22 of Joaquin. Therefore, quantile DMC is
successful at simulating more intense storms compared to direct
sampling.

When presenting results, we measure TC intensity using mini-
mum sea surface pressure. While it is also common to see TC inten-
sity reported usingmaximumwind speed, econometric analysis finds
thatminimum sea surface pressure is a better predictor of TCdamage
and fatalities than is wind speed.41 Pressure combines information on
wind speed and storm size,47 thereby giving amore holistic indication
of TC damage.48 We note that historically the Saffir-Simpson hurri-
cane scale combined maximum wind speed, minimum pressure and
maximum storm surge information to classify TCs into Categories
1 (least intense) to 5 (most intense). More recently, the scale was
renamed the Saffir-Simpson hurricane wind scale, and Categories
1–5 are defined by maximum wind speeds alone.49 When presenting
results, we use the historical Saffir-Simpson hurricane scale to define
Categories 1–5 in terms of minimum sea surface pressure.

We can use data from quantile DMC and direct sampling runs
to estimate a range of statistics associated with storm intensity. In
particular, we estimate cumulative distribution functions for ran-
dom variables PT and Plife. PT is the TC intensity at the particular
time T when each storm is expected to reach maximum strength,
namely, September 1 00:00 UTC for Earl and October 3 00:00 UTC
for Joaquin. Plife is the strongest TC intensity over the entire seven
days of simulated time. The cumulative distribution function for PT

is defined by F (U) = P {PT ≤ U}, where U ranges over all possible
pressures. To estimate P {PT ≤ U} from Quantile DMC data, we use

P {PT ≤ U} ≈ wK−1

N

N
∑

i=1

1

{

PT

(

ξ
(i)
K

)

≤ U
}

exp
{

V ′
K−1

(

ξ̂
(i)
K−1

)} . (32)
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FIG. 7. Intensity trajectories for N = 100 direct sampling and quantile DMC simulations with intensity quantiles estimated from data. In direct sampling (left), trajectories
occupy the middle quantiles of intensity (orange and red); in quantile DMC (right), trajectories are more likely to occupy extreme quantiles of intensity (yellow). While direct
sampling trajectories span from the beginning to the end of simulations, quantile DMC trajectories can end when killing occurs.

To estimate P {PT ≤ U} from direct sampling data, we use

P {PT ≤ U} ≈ 1

N

N
∑

i=1

1
{

PT

(

ξ (i)
)

≤ U
}

. (33)

We apply analogous formulas when estimating the cumulative distri-
bution function for Plife.

Figure 8 provides side-by-side comparisons between the direct
sampling and quantile DMC estimates. Intensity estimates from
quantile DMC are statistically consistent with intensity estimates
from direct sampling. For example, the estimated probability for Earl
to reach Category 5 status is 0% from direct sampling and 0.2% from
quantile DMC. The estimated probability for Joaquin to reach Cate-
gory 5 status is 4% from direct sampling and 6% from quantile DMC.
The disagreement between estimates falls well within the range of
random error, particularly if one or the other estimate has high rela-
tive variance. The cumulative distribution functions estimated from
direct sampling exhibit sharper jump discontinuities compared to
the relatively smooth behavior of the CDFs from quantile DMC.

This jumpy behavior may reflect a greater degree of error in the
direct sampling estimates if it can be assumed that the distribution
of hurricane pressures is smooth.

To check the hypothesis that quantile DMC estimates are more
accurate, we can use data from quantile DMC and direct sampling
runs to gauge the variance in our estimates. For quantile DMC
estimates of P {PT ≤ U}, we assess variance using

σ̂ 2 = 1

N2

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

anc

(

ξ
(j)
K

)

=i

wK−11

{

PT

(

ξ
(j)
K

)

≤ U
}

exp
{

V ′
K−1

(

ξ̂
(j)
K−1

)} − p̂

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (34)

For direct sampling estimates of P {PT ≤ U}, we assess variance using
σ̂ 2 = 1

N
p̂
(

1 − p̂
)

.
Figure 9 provides side-by-side comparisons between direct

sampling and quantile DMC relative variances σ̂ 2/p̂2. For many
important rare event sampling estimates, quantile DMC provides
substantial variance reduction compared to direct sampling. When
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FIG. 8. Estimates of cumulative distribution functions P {PT ≤ p} and P {Plife ≤ p} are roughly consistent between quantile DMC and direct sampling. However, estimates
from direct sampling exhibit large jumps, which may be a sign of higher error.

estimating the PT distribution, quantile DMC gives reduced variance
for all pressures lower than 925 hPa for both Earl and Joaquin. When
estimating thePlife distribution, quantileDMCgives reduced variance
for all pressures lower than 925 hPa for Earl and 916 hPa for Joaquin.
At the lowest pressures, the variance of quantile DMC is two to ten
times lower than the variance of direct sampling.

An important reason for presenting the PT distribution is to
show that quantileDMC is highly effective at sampling intense storms
at the reference time T. More generally, quantile DMC is effective at
sampling intense storms in the twelve hours leading up to the ref-
erence time T and the twelve hours following the reference time T.
Outside this window of time, quantile DMC may be less effective at
sampling intense storms. It is therefore of central importance tomake
sure the reference time T aligns with the time of maximum inten-
sity. To achieve this goal, it may be necessary to run the model in
advance of quantile DMC simulations or predict based on initial and
boundary conditions when the model will achieve peak intensity.

The one anomalous result in the pattern of variance reduction
due to quantileDMC is quantileDMC’s limited benefitwhen estimat-
ing the Plife distribution for Hurricane Joaquin. To shine light on the

limitations of quantile DMC for this particular estimation problem,
we can examine the family weights

W(i) =
∑

anc

(

ξ
(j)
K

)

=i

wK−11

{

Plife

(

ξ
(j)
K

)

≤ U
}

exp
{

V ′
K−1

(

ξ̂
(j)
K−1

)} (35)

contributing to the variance estimator σ̂ 2.When estimating the prob-
ability for Joaquin to reachCategory 5 status, the eight nonzero family
weightsW(i) are 0.2, 0.2, 0.3, 0.3, 0.5, 0.6, 0.9, and 3.1. The largest fam-
ily weight ofW(i) = 3.1 accounts for 85% of the variance σ̂ 2. Without
this particularW(i) value, σ̂ 2 would be 3.5 times smaller for quantile
DMC compared to direct sampling. Because of this particular W(i)

value, σ̂ 2 is instead 1.9 times larger for quantile DMC compared to
direct sampling.

The largest weight of W(i) = 3.1 belongs to a family of late-
developing storms. The initial simulation in this family exhibited low
intensity at the first resampling time, but it was not killed during the
resampling step due to random chance. Over time, the simulation
increased in intensity. The single particle was eventually split into
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FIG. 9. Variances are lower for quantile DMC than direct sampling at extreme tail pressures p. Quantile DMC provides the greatest benefit when estimating PT statistics for
Earl and Jaquin and Plife statistics for Earl. Quantile DMC provides less of an improvement when estimating Plife statistics for Joaquin.

six family members, and ultimately all six family members achieved
Category 5 status. The high variance of Joaquin Plife estimates can be
wholly attributed to this single family of late-developing storms.

The story of the largest family weightW(i) = 3.1 illustrates key
areas in which our design of quantile DMC simulations of tropical
cyclones was not optimal. First, the reaction coordinate θ failed to
anticipate which trajectories would lead to high intensities at later

times. At the first resampling time, the value of θ
(

ξ
(i)
1

)

was low, but

all six descendents of ξ
(i)
1 would go on to achieve Category 5 sta-

tus. This rapid intensification was not predictable using sea surface
pressure as our reaction coordinate. However, an improved reaction
coordinate θ could predict lifetime intensity based on additional vari-
ables such as steering flow, vertical wind shear, and relative humidity.
With an improved reaction coordinate, future intensity could be
more accurately identified, thereby reducing quantile DMC variance.

A second shortcoming in the design of simulations was the
poor identification of the time T for Joaquin to reach peak intensity.
For Earl, the reference time T was correctly identified as Septem-
ber 1 00:00 UTC, the approximate time when storms achieved peak

intensity in direct sampling and quantile DMC runs. For Joaquin,
on the other hand, the reference time T was incorrectly identified
as October 3 00:00 UTC, nearly 24 h before peak intensity occurred
in direct sampling and quantile DMC runs. With a later reference
timeT, late-developing storms could bemore appropriately sampled,
reducing the variance of Plife estimates for Hurricane Joaquin.

We report three takeaway messages for future applications of
quantile DMC to study intense tropical cyclones.

First, with an increased ensemble of N = 1000 simulations, we
are optimistic that quantile DMC can provide low-error estimates of
extreme tail probabilities. Already with a small sample of N = 100
simulations, we see signs of reduced variance using quantile DMC.
But with increased sample size N, we expect the error of quantile
DMC to shrink with a faster-than-N−1/2 scaling, enhancing quantile
DMC’s advantages over direct sampling. When estimating the most
extreme quantiles of intensity, a splitting method such as quantile
DMC truly excels.

Second,when simulating cyclones, quantileDMC is amore con-
venient algorithm to use than standard DMC. Using quantile DMC,
the decision to select a splitting constant of C = 1 is straightforward.
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In contrast, using DMC, similar results can only be obtained with the
foresight to select a splitting constant C with C−1 being the standard
deviation of intensity, namely, 7 hPa–8 hPa. Moreover, in future sim-
ulations of tropical cyclones, there is the possibility of highly skewed
or bimodal intensity distributions.50 In these contexts, the additional
robustness of quantileDMCoverDMCmayprovide a further benefit.

Lastly, to maximize the potential benefit of quantile DMC in
future simulations, it is of paramount importance to improve the
reaction coordinate θ and estimates of the time of maximum inten-
sity. In our simulations, the poor identification of these parameters
led to added variance in some quantile DMC calculations. Improved
parameters θ and T would better predict lifetime storm intensities,
alleviating the problem of variance inflation.

The search for improved predictions of lifetime intensity is chal-
lenging in part due to a limited understanding of the precursors
and dynamics of rapid intensification.51 In complementary work, we
develop a rare event analysis tool that offers insight into the physics of
TC rapid intensification.14 Such a technique could potentially iden-
tify a more suitable and predictive reaction coordinate for future
quantile DMC applications. By incorporating careful data analysis
and scientific insight into the model being simulated, future work
can potentially improve the efficiency of quantile DMC in tropical
cyclone simulations.

IV. CONCLUSION

Efficient sampling of extreme mesoscale weather remains one
of the outstanding computational challenges of the 21st century.
Extreme weather, such as tropical cyclones, squall lines, and floods,
has a tremendous impact on human society, yet assessing the fre-
quency of extreme weather in past, current, and projected future
climates is extremely difficult. Responding to this challenge, we
have introduced a new rare event sampling algorithm, quantile
DMC. Combining quantile DMC with dynamical downscaling pro-
vides a new paradigm for calculating extreme weather statistics.
This approach potentially enables high-accuracy, computationally-
intensive models to be run with reduced computational cost, raising
the quality of extreme weather statistics.

In Secs. II D and II E, we have provided a practical guide to using
quantile DMC. In particular, we offer specific recommendations for
the parameters to be used in the algorithm. When computing tail
probabilities for the Ornstein-Uhlenbeck process, quantile DMC is
over a thousand timesmore efficient than direct sampling and ismore
stable than diffusion Monte Carlo. When computing tail probabili-
ties for intense tropical cyclones, quantile DMC is two to ten times
more efficient than direct sampling, with the possibility for greater
efficiency in future simulations.

There remain important challenges in applying quantile DMC
to simulate extreme weather events. In our simulations of tropical
cyclones, we observe that quantile DMC’s performance depends on
a reaction coordinate, a one-dimensional coordinate that anticipates
the occurrence of high-intensity weather. The reaction coordinate
that we used in our simulations was not optimal, and we anticipate
using an improved reaction coordinate in future TC sampling. For-
tunately, even with an imperfect choice of reaction coordinate, it is
possible for quantile DMC to provide a reduction of variance.

We acknowledge two issues that affect the future of rare event
sampling of extreme weather. First, splitting methods like quantile
DMC can only be successful if extreme weather is simulated stochas-
tically. However, stochastic models are easily available and increas-
ingly used in many state-of-the-art geophysical computations,52 so
this does not present a major limitation in practice. Second, rare
event sampling is unnecessary if there exist models that are both
accurate and inexpensive to run. While we acknowledge some sta-
tistical models and simplified physics models perform remarkably
well in today’s extreme weather calculations,38,53 our outlook is to
the future. We believe high-resolution three-dimensional models
will eventually provide the greatest accuracy in all areas of extreme
weather inference. Developing rare event samplingmethods is there-
fore essential preparation for the future as computationally-intensive
ensembles become the authoritative source of insight in extreme
weather inference.
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APPENDIX: FURTHER ALGORITHMIC DETAILS

1. Resampling schemes

There are many possible resampling schemes that can be used
during DMC’s resampling step. One scheme that works well in prac-
tice is sorted stratified resampling.27,28 The scheme first sorts particles
(

ξ
(i)
k

)

1≤i≤N
based on the values of

(

θ
(

ξ
(i)
k

))

1≤i≤N
and then selects

new particles
(

ξ̂
(i)
k

)

1≤i≤N
using stratified resampling.

Definition A.1 (Sorted stratified resampling).

1. Sorting: Reindex the particles and weights
(

w
(i)
k , ξ

(i)
k

)

1≤i≤N
so that

θ
(

ξ
(1)
k

)

≤ θ
(

ξ
(2)
k

)

≤ · · · ≤ θ
(

ξ
(N)

k

)

. (A1)

2. Stratified resampling: Construct the empirical quantile function

Qt : [0, 1) → R
d for the ensemble

(

w(i)
k , ξ (i)

k

)

1≤i≤N
as follows:

Qk (x) = ξ
(i)
k ,

∑i−1
j=1 w

(j)
k

∑N
j=1 w

(j)
k

≤ x <

∑i
j=1 w

(j)
k

∑N
j=1 w

(j)
k

. (A2)
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Select updated particles ξ̂
(i)
k = Qk

(

j−1+U
(i)
k

N

)

for 1 ≤ i ≤ N,

where U(i)
k are independent Unif (0, 1) random variables.

It can be checked that each particle ξ
(i)
k is duplicated an expected

number of w(i)
k /wk times. Therefore, sorted stratified resampling is a

valid resampling scheme.

2. Invariance under monotonic transformations

Quantile DMC is unchanged if the reaction coordinate θ is

replacedwith a reaction coordinate θ̃ that is amonotonic, one-to-one
transformation of θ . To show this, we provide an alternate description
of quantile DMC’s process for splitting/killing particles that makes
clear the property of invariance under monotonic transformations.

First, we introduce an order relation x ≺ y that indicates θ (x) <

θ
(

y
)

and an equivalence relation x ∼ y that indicates θ (x) = θ
(

y
)

.
We observe that the order relation x ≺ y and equivalence relation x ∼
y remain unchanged if θ is replaced by θ̃ .

Second, define the quantiles p(i)
k with the formula

N
∑

j=1

z
(j)
k

[

1

{

ξ
(j)
k ≺ ξ

(i)
k

}

+ 1

2
1

{

ξ
(j)
k ∼ ξ

(i)
k

}

]

, (A3)

where
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The quantitities p(i)
k are approximate quantiles for the distribution

θ
(

Xtk

)

. Thus, if p(i)
k = 0.9 there is an approximate one-in-ten chance

that θ
(

Xtk

)

takes a value as high as θ
(

ξ
(i)
k

)

.

Third, the splitting function takes the values

V ′
k

(

ξ
(i)
k

)

= V ′
k

(

F−1
νk

(

p(i)
k

))

. (A5)

In this description, quantile DMC only relies on the reaction
coordinate θ through the order relation x ≺ y and equivalence rela-
tion x ∼ y. These two relations are unchanged under monotonic,
one-to-one transformations of the reaction coordinate.

In addition to the property of invariance under monotonic
transformations, quantile DMC also has the property that estimates
are unbiased, which can be established following standardmartingale
arguments.26,27Numerical evidence indicates that estimates converge

with an asymptotic 1/
√
N error rate, as N → ∞. However, a rigor-

ousmathematical analysis of quantile DMC’s error remains a task for
future research.

3. Variance estimation for quantile DMC

The variance estimator (28) for quantile DMC was originally
developed assuming a different resampling scheme called Bernoulli
resampling is used.33 Indeed, when the DMC algorithm is performed
using Bernoulli resampling, the variance estimator is asympotically

consistent as N → ∞. We have chosen to use a different resampling
scheme that gives better performance than the Bernoulli resam-
pling scheme. Consequently, the variance estimator σ̂ 2 is biased
toward overestimating the variance. Numerical experiments with the
Ornstein-Uhlenbeck process suggest that the variance is inflated by
less than 10%, at least for K ≤ 10 resampling times. Another poten-
tial concern is the natural variability in the estimator σ̂ 2. We find that
σ̂ 2 is most reliable when family weights

W(i) =
∑

anc

(

ξ
(j)
k

)

=i

wK−11

{

ξ
(j)
K ∈ A

}

exp
{

V ′
K−1

(

ξ̂
(j)
K−1

)} (A6)

are nonzero for many indices i. Consequently, σ̂ 2 is most reliable
when sample sizeN is high and the number of resampling times K is
low. We find that the variance estimator σ̂ 2 provides a valuable tool
for gauging the quality of quantile DMC estimates. We caution the
reader, however, there may be situations outside the current context
where the variance estimator σ̂ 2 behaves poorly.
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