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Abstract—Our goal in this paper is to develop a practical
framework for obtaining a uniform sample of users in an online
social network (OSN) by crawling its social graph. Such a
sample allows to estimate any user property and some topological
properties as well. To this end, first, we consider and compare
several candidate crawling techniques. Two approaches that can
produce approximately uniform samples are the Metropolis-
Hasting random walk (MHRW) and a re-weighted random walk
(RWRW). Both have pros and cons, which we demonstrate
through a comparison to each other as well as to the “ground
truth.” In contrast, using Breadth-First-Search (BFS) or an unad-
justed Random Walk (RW) leads to substantially biased results.
Second, and in addition to offline performance assessment, we
introduce online formal convergence diagnostics to assess sample
quality during the data collection process. We show how these
diagnostics can be used to effectively determine when a random
walk sample is of adequate size and quality. Third, as a case
study, we apply the above methods to Facebook and we collect
the first, to the best of our knowledge, representative sample of
Facebook users. We make it publicly available and employ it
to characterize several key properties of Facebook.

Index Terms—Sampling methods, Social network services,
Facebook, Random Walks, Convergence, Measurements, Graph
sampling.

I. INTRODUCTION

Online Social Networks (OSNs) have recently emerged as

a new Internet “killer-application.” The adoption of OSNs by

Internet users is off-the-charts with respect to almost every

metric. In November 2010, Facebook, the most popular

OSN, counted more than 500 million members; the total

combined membership in the top five OSNs (Facebook,

QQ, Myspace, Orkut, Twitter) exceeded 1 billion users.

Putting this number into context, the population of OSN users

is approaching 20% of the world population and is more than

50% of the world’s Internet users. According to Nielsen [1],

users worldwide currently spend over 110 billion minutes on

social media sites per month, which accounts for 22% of

all time spent online, surpassing even time spent on email.

According to Alexa [2], a well-known traffic analytics website,

Facebook is the second most visited website on the Internet
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(second only to Google) with each user spending 30 minutes

on average per day on the site (more than the time spent

on Google). Four of the top five OSNs are also contained in

Alexa’s top 15 websites in regard to traffic rankings. Clearly,

OSNs in general, and Facebook in particular, have become

an important phenomenon on the Internet.

OSNs are of interest to several different communities. For

example, sociologists employ them as a venue for collecting

relational data and studying online human behavior. Marketers,

by contrast, seek to exploit information about OSNs in the

design of viral marketing strategies. From an engineering

perspective, understanding OSNs can enable the design of

better networked systems. For example, an OSN provider

may want to understand the social graph and user activity in

order to improve user experience by optimizing the design

of their datacenters and/or data storage on the cloud [3];

or by providing personalized services and ads. A network

provider may also want to understand the traffic generated by

activities of OSN users in order to design mechanisms, such

as caching [4] and traffic engineering [5], to better serve that

traffic.

Another potential use of OSNs is in algorithms that employ

trusted or influential users, e.g., to thwart unwanted commu-

nication while not impeding legitimate communication [6]; to

utilize social trust for collaborative spam filtering [7]; or to en-

able online personas to cost-effectively obtain credentials [8].

Third-party applications are also interested in OSNs in order

to provide personalized services as well as to become popular.

The immense interest generated by OSNs has given rise

to a number of measurement and characterization studies that

attempt to provide a first step towards their understanding.

Only a very small number of these studies are based on

complete datasets provided by the OSN operators [9,10]. A

few other studies have collected a complete view of specific

parts of OSNs; e.g., [11] collected the social graph of the

Harvard university network. However, the complete dataset

is typically unavailable to researchers, as most OSNs are

unwilling to share their company’s data even in an anonymized

form, primarily due to privacy concerns.

Furthermore, the large size1 and access limitations of most

OSN services (e.g., login requirements, limited view, API

query limits) make it difficult or nearly impossible to fully

1 A back-of-the-envelope calculation of the effort needed to crawl
Facebook’s social graph is as follows. In December 2010, Facebook
advertised more than 500 million active users, each encoded by 64 bits (4
bytes) long userID, and 130 friends per user on average. Therefore, the
raw topological data alone, without any node attributes, amounts to at least
500M × 130× 8 bytes ≃ 520 GBytes.
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cover the social graph of an OSN. In many cases, HTML

scraping is necessary, which increases the overhead multifold.2

Instead, it would be desirable to obtain and use a small but

representative sample.

Given this, sampling techniques are essential for practical

estimation of OSN properties. While sampling can, in princi-

ple, allow precise population-level inference from a relatively

small number of observations, this depends critically on the

ability to draw a sample with known statistical properties. The

lack of a sampling frame (i.e., a complete list of users, from

which individuals can be directly sampled) for most OSNs

makes principled sampling especially difficult. To elude this

limitation, our work focuses on sampling methods that are

based on crawling of friendship relations - a fundamental

primitive in any OSN.

Our goal in this paper is to provide a framework for

obtaining an asymptotically uniform sample (or one that can

be systematically reweighted to approach uniformity) of OSN

users by crawling the social graph. We provide practical

recommendations for appropriately implementing the frame-

work, including: the choice of crawling technique; the use

of online convergence diagnostics; and the implementation of

high-performance crawlers. We then apply our framework to

an important case-study - Facebook. More specifically, we

make the following three contributions.

Our first contribution is the comparison of several candidate

graph-crawling techniques in terms of sampling bias and

efficiency. First, we consider Breadth-First-Search (BFS) -

the most widely used technique for measuring OSNs [9,12]

including Facebook [13]. BFS sampling is known to in-

troduce bias towards high degree nodes, which is highly

non-trivial to characterize analytically [14,15] or to correct.

Second, we consider Random Walk (RW) sampling, which

also leads to bias towards high degree nodes, but whose bias

can be quantified by Markov Chain analysis and corrected via

appropriate re-weighting (RWRW) [16,17]. Then, we consider

the Metropolis-Hastings Random Walk (MHRW) that can

directly yield a uniform stationary distribution of users. This

technique has been used in the past for P2P sampling [18],

recently for a few OSNs [19,20], but not for Facebook.

Finally, we also collect a uniform sample of Facebook

userIDs (UNI), selected by a rejection sampling procedure

from Facebook’s 32-bit ID space, which serves as our

“ground truth”. We compare all sampling methods in terms

of their bias and convergence speed. We show that MHRW

and RWRW are both able to collect asymptotically uniform

samples, while BFS and RW result in a significant bias in

practice. We also compare the efficiency MHRW to RWRW,

via analysis, simulation and experimentation and discuss their

pros and cons. The former provides a sample ready to be

used by non-experts, while the latter is more efficient for all

practical purposes.

Our second contribution is that we introduce, for the first

time in this context, the use of formal convergence diagnostics

(namely Geweke and Gelman-Rubin) to assess sample quality

2For the example in footnote 1, one would have to download about 500M×
230 KBytes ≃ 115 TBytes of uncompressed HTML data.

in an online fashion. These methods (adapted from Markov

Chain Monte Carlo applications) allow us to determine, in the

absence of a ground truth, when a sample is adequate for use,

and hence when it is safe to stop sampling. These is a critical

issue in implementation.

Our third contribution is that we apply and compare all the

aforementioned techniques for the first time, to the best of

our knowledge, on a large scale OSN. We use Facebook

as a case study by crawling its web front-end, which is

highly non-trivial due to various access limitations, and we

provide guidelines for the practical implementation of high-

performance crawlers. We obtain the first representative sam-

ple of Facebook users, which we make publicly avail-

able [21]; we have received approximately 500 requests for

this dataset in the last eighteen months. Finally, we use the

collected datasets to characterize several key properties of

Facebook, including user properties (e.g., privacy settings)

and topological properties (e.g., the node degree distribution,

clustering, and assortativity).

The structure of this paper is as follows. Section II discusses

related work. Section III describes the sampling methodol-

ogy, including the assumptions and limitations, the candi-

date crawling techniques and the convergence diagnostics.

Section IV describes the data collection process, including

the implementation of high-performance crawlers, and the

collected data sets from Facebook. Section V evaluates

and compares all sampling techniques in terms of efficiency

(convergence of various node properties) and quality (bias) of

the obtained sample. Section VI provides a characterization of

some key Facebook properties, based on the MHRW sample.

Section VII concludes the paper. The appendices elaborate

on the following points: (A) the uniform sample obtained

via userID rejection sampling, used as “ground truth” in this

paper; (B) the lack of temporal dynamics in Facebook, in the

timescale of our crawls; and (C) a comparison of the sampling

efficiency of MHRW vs. RWRW.

II. RELATED WORK

Broadly speaking, there are two bodies of work related to

this paper: (i) sampling techniques, investigating the quality

and efficiency of the sampling technique itself and (ii) charac-

terization studies, focusing on the properties of online social

networks based on the collected data. In this section, we review

this related literature and place our work in perspective.

A. Graph sampling techniques

Graph sampling techniques, via crawling, can be roughly

classified into two categories: graph traversal techniques and

random walks. In graph traversal techniques, nodes are sam-

pled without replacement: once a node is visited, it is not

visited again. These methods differ in the order in which they

visit the nodes; examples include Breadth-Search-First (BFS),

Depth-First Search (DFS), Forest Fire (FF) and Snowball

Sampling (SBS) [22].

BFS, in particular, is a basic technique that has been

used extensively for sampling OSNs in past research [9,12,

13,23,24]. One reason for this popularity is that an (even
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incomplete) BFS sample collects a full view (all nodes and

edges) of some particular region in the graph. However, BFS

has been shown to lead to a bias towards high degree nodes

in various artificial and real world topologies [25]–[27]. Our

work also confirms the bias of BFS when sampling Online

Social Networks. It is worth noting that BFS and its variants

lead to samples that not only are biased but also do not

have known statistical properties (and hence cannot in general

be used to produce trustworthy estimates). Although recent

work suggests that it is possible to analytically compute

and correct this bias for random graphs with certain degree

distributions [14], these methods are mere heuristics under

arbitrary graphs [15] and will fail for networks with large-

scale heterogeneity (e.g., block structure).

Random walks on graphs are a well-studied topic; see [28]

for an excellent survey. They have been used for sampling the

World Wide Web (WWW) [29,30], peer-to-peer networks [17,

18,31], and other large graphs [32]. Similarly to traversals,

random walks are typically biased towards high-degree nodes.

However, the bias of random walks can be analyzed and

corrected for using classical results from Markov Chains. If

necessary, such a bias correction can be obtained during the

walk itself - the resulting Metropolis-Hasting Random Walk

(MHRW) described in Section III-C4 has been applied by

Stutzbach et al. [18] to select a representative sample of

peers in the Gnutella network. Alternatively, we can re-weight

the sample after it is collected - the resulting Re-Weighted

Random Walk (RWRW) described in Section III-C3 has been

recently compared with MHRW in the context of peer-to-peer

sampling by Rasti et al. [17]. Further improvements or variants

of random walks include random walk with jumps [29,33],

multiple dependent random walks [34], weighted random

walks [35], or multigraph sampling [36].

Our work is most closely related to the random walk

techniques. We obtain unbiased estimators of user properties

in Facebook using MHRW and RWRW and we compare the

two through experiments and analysis; BFS and RW (without

re-weighting) are used mainly as baselines for comparison.

We complement the crawling techniques with formal, online

convergence diagnostic tests using several node properties.To

the best of our knowledge, this has not been done before

in measurements of such systems. The closest to formal

diagnostics is the work by Latapy et al. [37] which studies

how the properties of interest evolve when the sample grows

to practically detect steady state. We also implement multiple

parallel chains. Multiple chains started at the same node have

been recently used in [17]. In contrast, we start different chains

from different nodes. We demonstrate that random walks,

whose bias can be analyzed and corrected, are able to estimate

properties of users in OSNs remarkably well in practice. We

also find that correcting for the bias at the end (RWRW),

rather than during the walk (MHRW) is more efficient for

all practical purposes - a finding that agrees with [17].

In terms of application, we apply the measurement tech-

niques to online social networks and study characteristics

specific to that context. To the best of our knowledge, we

are the first to obtain an unbiased sample of a large scale

OSN, namely Facebook, and make it publicly available.

Krishnamurthy et al. [20] ran a single Metropolis Random

Walk, inspired by [18], on Twitter as a way to verify the

lack of bias in their main crawl used throughout the paper.

However, the Metropolis algorithm was not the main focus

of their paper and Twitter is a directed graph which requires

different treatment. Parallel to our work, Rasti et al. [19] also

applied similar random walk techniques to collect unbiased

samples of Friendster.

Previous work on the temporal dynamics of social networks

includes [19,38]–[41]. Kumar et al. [38] studied the structure

and evolution of Flickr and Yahoo! from datasets provided by

the OSN providers. Backstrom et al. [39] presented different

ways in which communities in social networks grow over time

and [40] proposed a method for modeling relationships that

change over time in a social network. Willinger et al. [41] pro-

posed a multi-scale approach to study dynamic social graphs

at a coarser level of granularity. Rasti et al. [19] evaluate

the performance of random walks in dynamic graphs via

simulations and show that there is a tradeoff between number

of parallel samplers, churn and accuracy. In our work, we

assume that the social graph remains static during the crawl,

which we show in Appendix B to be the case for Facebook

in practice. Therefore, we do not consider dynamics, which

are essential in other sampling contexts.

A unique asset of our study is the collection of a true

uniform sample of OSN users through rejection sampling of

userIDs (UNI), which served as ground truth in this paper; see

Section III-D. We note that UNI yields a uniform sample of

users regardless of the allocation policy of userIDs by the

OSN, as shown in Appendix A. UNI is essentially a star

random node sampling scheme [42]; this is different from the

induced subgraph random node sampling schemes that were

evaluated in [32,43].

B. Characterization studies of OSNs

Several papers have measured and characterized properties

of OSNs. In [44], Krishnamurthy presents a summary of

the challenges that researchers face in collecting data from

OSNs. In [9], Ahn et al. analyze three online social networks;

one complete social graph of Cyworld obtained from the

Cyworld provider, and two small samples from Orkut

and Myspace crawled with BFS. In [12,23], Mislove et al.

studied the properties of the social graph in four popular

OSNs: Flickr, LiveJournal, Orkut, and YouTube.

Their approach was to collect the large Weakly Connected

Component, also using BFS; their study shows that OSNs are

structurally different from other complex networks.

[11,13,45] are related to this paper in that they also study

Facebook. Wilson et al. [13] collect and analyze social

graphs and user interaction graphs in Facebook between

March and May 2008. Their methodology is what we refer

to as Region-Constrained BFS: they exhaustively collect all

open user profiles and their list of friends in the largest regional

networks. Such Region-Constrained BFS might be appropriate

to study particular regions, but it does not provide Facebook-

wide information, which is the goal of this paper. Furthermore,

the percentage of users in the social graph retrieved in [13] is
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30%-60% less than the maximum possible in each network.3

Our findings show some noteworthy differences from [13]: for

example, we find larger values of the degree-dependent clus-

tering coefficient, significantly higher assortativity coefficient,

and a degree distribution that does not follow a power law.

Finally, Wilson et al. [13] focus on the user interaction graph,

while we focus on the friendship graph. [11] and [45] have also

made publicly available and analyzed datasets corresponding

to university networks from Facebook with many annotated

properties for each student. In contrast, we collect a sample

of the global Facebook social graph.

Other works that have measured properties of Facebook

include [24,46]–[48]. In [46], Krishnamurthy et al. examine

the usage of privacy settings in Myspace and Facebook,

and the potential privacy leakage in OSNs. Compared to that

work, we have one common privacy attribute, “View friends“,

for which we observe similar results using our unbiased

sample. We also have additional privacy settings and the

one-hop neighborhood for every node, which allows us to

analyze user properties conditioned on their privacy awareness.

Bonneau et al. [47] demonstrate that many interesting user

properties can be accurately approximated just by crawling

“public search listings”.

Finally, there is a large body of work on the collection

and analysis of datasets for platforms or services that are

not pure online social networks but include social networking

features. To mention a few examples, Liben-Nowell et al. [49]

studied the LiveJournal online community and showed a

strong relationship between friendship and geography in social

networks. Cha et al. [50] presented a data-driven analysis of

user generated content video popularity distributions by using

data collected from YouTube and Daum. Gill et al. [51] also

studied a wide range of features of YouTube traffic, includ-

ing usage patterns, file properties, popularity and referencing

characteristics. In [36], we crawl Last.FM a music site with

social networking features.

C. Our prior and related work.

The conference version of this work appeared in [52].

This paper is revised and extended to include the following

materials. (i) A detailed discussion of the uniform userID

rejection sampling, which is used as ground truth in this

work; see Section III-D and Appendix A. (ii) An empirical

validation of the assumption that the social graph is static in

the time scales of the crawl; see Appendix B. (iii) A detailed

comparison of MHRW and RWRW methods and the finding

that RWRW is more efficient for all practical purposes; see

Section V-A for an experimental comparison on Facebook

and Appendix C for a comparison via analysis and simulation.

(iv) An extended section on the characterization of Facebook

based on a representative sample; see Section VI for additional

figures on node properties and topological characteristics, and

3More specifically, it is most likely that for the collection of the social
graph, their BFS crawler does not follow users that have their “view profile”
privacy setting closed and “view friends“ privacy setting open.We infer that,
by the discrepancy in the percentage of users for those settings as reported in
a Facebook privacy study conducted during the same time in [46] i.e., in
networks New York, London, Australia, Turkey.

new results on privacy settings. (iv) A comprehensive review

of related work in this section.

This work focuses on providing a practical sampling frame-

work (e.g., choosing a crawling method, utilizing online

convergence diagnostics, implementation issues) for a well-

connected OSN social graph. Other related -but distinct-

work from our group that appear in the same issue include:

(i) multigraph sampling [36], a method that utilizes multiple

relations to crawl the social graph and is well suited for OSNs

with either poorly connected or highly clustered users, (ii) a

BFS bias correction procedure [15].

III. SAMPLING METHODOLOGY

We consider OSNs, whose social graph can be modeled as

a graph G = (V,E), where V is a set of nodes (users) and E
is a set of edges.

A. Assumptions

We make the following assumptions and discuss the extent

to which they hold:

A1 G is undirected. This is true in Facebook (its friendship

relations are mutual), but in Twitter the edges are directed,

which significantly changes the problem [20,29,53].

A2 We are interested only in the publicly available part of G.

This is not a big limitation in Facebook, because all the

information we collect is publicly available under default

privacy settings.

A3 G is well connected, and/or we can ignore isolated nodes.

This holds relatively well in Facebook thanks to its

high connection density. In contrast, in Last.fm the

friendship graph is highly fragmented, which may require

more sophisticated crawling approaches [36].

A4 G remains static during the duration of our crawl. We

argue in Appendix B that this assumption holds well in

Facebook.

A5 The OSN supports crawling. This means that on sampling

a node v we learn the identities of all its neighbors. It

is typically true in OSNs, e.g., through some mechanism

such as an API call or HTML scraping (both available in

Facebook).

B. Goal and applications

Our goal is to obtain a uniform sample (or more generally

a probability sample) of OSN users by crawling the social

graph. This is interesting in its own right, as it allows to

estimate frequencies of user attributes such as age, privacy

settings etc. Furthermore, a probability sample of users allows

us to estimate some local topological properties such as node

degree distribution, clustering and assortativity. In Section

VI-A, we compute the last two properties based on the one-

hop neighborhood of nodes. Therefore, a random sample of

nodes, obtained using our methodology, is a useful building

block towards characterizing structural properties.

We would like to emphasize, however, that a sample of

nodes cannot be directly used to obtain a “representative topol-

ogy” for estimating global structural properties. For example,
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the nodes and edges in the sample, possibly together with their

neighbors (nodes and edges in the egonets) do not necessarily

provide a graph representative of the entire Facebook with

respect to properties such as e.g., geodesics. Therefore, if

global structural properties rather than local properties or

user attributes are of interest, our node sampling needs to be

combined with other techniques such as matrix completion

[54] or block modeling [55].

C. Sampling via crawling

The process of crawling the social graph starts with an

initially selected node and proceeds iteratively. In every op-

eration, we visit a node and discover all its neighbors. There

are many ways in which we can proceed, depending on which

neighbor we choose to visit next. In this section, we describe

the sampling methods implemented and compared in this

paper.

1) Breadth First Search (BFS): At each new iteration the

earliest explored but not-yet-visited node is selected next. As

this method discovers all nodes within some distance from the

starting point, an incomplete BFS is likely to densely cover

only some specific region of the graph.

2) Random Walk (RW): In the classic random walk [28],

the next-hop node w is chosen uniformly at random among

the neighbors of the current node v. I.e., the probability of

moving from v to w is

PRW

v,w =

{

1
kv

if w is a neighbor of v,

0 otherwise.

RW is inherently biased. Assuming a connected graph and

aperiodicity, the probability of being at the particular node v
converges to the stationary distribution πRW

v = kv

2·|E| , i.e. the

classic RW samples nodes w.p. πRW

v ∼ kv. This is clearly

biased towards high degree nodes; e.g., a node with twice the

degree will be visited by RW twice more often. In Section V,

we show that several other node properties are correlated with

the node degree and thus estimated with bias by RW sampling.

3) Re-Weighted RandomWalk (RWRW): A natural next step

is to crawl the network using RW, but to correct for the degree

bias by an appropriate re-weighting of the measured values.

This can be done using the Hansen-Hurwitz estimator 4 [56]

as first shown in [16,57] for random walks and also later used

in [17]. Consider a stationary random walk that has visited

V = v1, ...vn unique nodes. Each node can belong to one

of m groups with respect to a property of interest A, which
might be the degree, network size or any other discrete-valued

node property. Let (A1, A2, .., Am) be all possible values of

A and corresponding groups; ∪m
1 Ai = V . E.g., if the property

of interest is the node degree, Ai contains all nodes u that

have degree ku = i. To estimate the probability distribution

of A, we need to estimate the proportion of nodes with value

Ai, i = 1, ..m:

p̂(Ai) =

∑

u∈Ai
1/ku

∑

u∈V 1/ku
(1)

4The simple estimators we use in this paper, e.g., see Eq. (1), are Hansen-
Hurwitz estimators, which are well-known to have good properties (consistent
and unbiased) under mild conditions; see [55] for proof of consistency.

Estimators for continuous properties can be obtained using

related methods, e.g., kernel density estimators.

4) Metropolis-Hastings Random Walk (MHRW): Instead of

correcting the bias after the walk, one can appropriately mod-

ify the transition probabilities so that the walk converges to

the desired uniform distribution. The Metropolis-Hastings al-

gorithm [58] is a general Markov Chain Monte Carlo (MCMC)

technique [59] for sampling from a probability distribution µ
that is difficult to sample from directly. In our case, we would

like to sample nodes from the uniform distribution µv = 1
|V | .

This can be achieved by the following transition probability:

PMH

v,w =







min( 1
kv

, 1
kw

) if w is a neighbor of v,

1−
∑

y 6=v P
MH

v,y if w = v,

0 otherwise.

It can be shown that the resulting stationary distribution

is πMH

v = 1
|V | , which is exactly the uniform distribution

we are looking for. PMH

v,w implies the following algorithm,

which we refer to simply as MHRW in the rest of the

paper:

v ← initial node.
while stopping criterion not met do

Select node w uniformly at random from neighbors of v.
Generate uniformly at random a number 0≤p≤1.
if p ≤

kv

kw
then

v ← w.
else

Stay at v
end if

end while

At every iteration of MHRW, at the current node v we

randomly select a neighbor w and move there w.p.min(1, kv

kw

).
We always accept the move towards a node of smaller degree,

and reject some of the moves towards higher degree nodes.

This eliminates the bias towards high degree nodes.

D. Ground Truth: Uniform Sample of UserIDs (UNI)

Assessing the quality of any graph sampling method on an

unknown graph, as it is the case when measuring real systems,

is a challenging task. In order to have a “ground truth” to

compare against, the performance of such methods is typically

tested on artificial graphs.

Fortunately, Facebook was an exception during the time

period we performed our measurements. We capitalized on a

unique opportunity to obtain a uniform sample of Facebook

users by generating uniformly random 32-bit userIDs, and by

polling Facebook about their existence. If the userID exists

(i.e., belongs to a valid user), we keep it, otherwise we discard

it. This simple method is a textbook technique known as

rejection sampling [60] and in general it allows to sample from

any distribution of interest, which in our case is the uniform.

In particular, it guarantees to select uniformly random userIDs

from the allocated Facebook users regardless of their actual

distribution in the userID space, even when the userIDs are

not allocated sequentially or evenly across the userID space.

For completeness, we re-derive this property in Appendix VII.

We refer to this method as “UNI” and use it as a ground-truth

uniform sampler.
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Although UNI sampling solves the problem of uniform node

sampling in Facebook, crawling remains important. Indeed,

the userID space must not be sparsely allocated for UNI to

be efficient. During our data collection (April-May 2009) the

number of Facebook users (∼ 200× 106) was comparable

to the size of the userID space (232 ∼ 4.3 × 109), resulting
in about one user retrieved per 22 attempts on average. If the

userID were 64 bit long or consisting of strings of arbitrary

length, UNI would had been infeasible.5

In summary, we were fortunate to be able to obtain a

uniform independence sample of userIDs, which we then used

as a baseline for comparison (our “ground truth”) and showed

that our results conform closely to it. However, crawling

friendship relations is a fundamental primitive available in all

OSNs and, we believe, the right building block for designing

sampling techniques in OSNs in the general case.

E. Convergence

1) Using Multiple Parallel Walks: Multiple parallel walks

are used in the MCMC literature [59] to improve convergence.

Intuitively, if we only have one walk, the walk may get

trapped in cluster while exploring the graph, which may lead to

erroneous diagnosis of convergence. Having multiple parallel

walks reduces the probability of this happening and allows for

more accurate convergence diagnostics. An additional advan-

tage of multiple parallel walks, from an implementation point

of view, is that it is amenable to parallel implementation from

different machines or different threads in the same machine.

2) Detecting Convergence with Online Diagnostics: Valid

inferences from MCMC are based on the assumption that the

samples are derived from the equilibrium distribution, which

is true asymptotically. In order to correctly diagnose when

convergence to equilibrium occurs, we use standard diagnostic

tests developed within the MCMC literature [59]. In particular,

we would like to use diagnostic tests to answer at least the

following questions:

• How many of the initial samples in each walk do we need

to discard to lose dependence from the starting point (or

burn-in) ?

• How many samples do we need before we have collected

a representative sample?

A standard approach is to run the sampling long enough

and to discard a number of initial burn-in samples proactively.

From a practical point of view, however, the burn-in comes at a

cost. In the case of Facebook, it is the consumed bandwidth

(in the order of gigabytes) and measurement time (days or

weeks). It is therefore crucial to assess the convergence of

our MCMC sampling, and to decide on appropriate settings

of burn-in and total running time.

Given that during a crawl we do not know the target

distribution, we can only estimate convergence from the sta-

tistical properties of the walks as they are collected. Here

5To mention a few such cases in the same time frame: Orkut had a 64bit
userID and hi5 used a concatenation of userID+Name. Interestingly, within
days to weeks after our measurements were completed, Facebook changed
its userID allocation space from 32 bit to 64 bit [61]. Section V-B3 contains
more information about userID space usage in Facebook in April 2009.

Fig. 1. Basic node information collected when visiting a user u.

we present two standard convergence tests, widely accepted

and well documented in the MCMC literature, Geweke [62]

and Gelman-Rubin [63], described below. In Section V, we

apply these tests on several node properties, including the

node degree, userID, network ID and membership in a specific

network; please see Section V-A5 for details. Below, we briefly

outline the rationale of these tests.

Geweke Diagnostic. The Geweke diagnostic [62] detects

the convergence of a single Markov chain. Let X be a

single sequence of samples of our metric of interest. Geweke

considers two subsequences of X , its beginning Xa (typically

the first 10%), and its end Xb (typically the last 50%). Based

on Xa and Xb, we compute the z-statistic:

z =
E(Xa)− E(Xb)

√

V ar(Xa) + V ar(Xb)

With increasing number of iterations, Xa and Xb move further

apart, which limits the correlation between them. As they

measure the same metric, they should be identically distributed

when converged and, according to the law of large numbers,

the z values become normally distributed with mean 0 and

variance 1. We can declare convergence when all values fall

in the [−1, 1] interval.

Gelman-Rubin Diagnostic. Monitoring one long sequence

of nodes has some disadvantages. For example, if our chain

stays long enough in some non-representative region of the

parameter space, we might erroneously declare convergence.

For this reason, Gelman and Rubin [63] proposed to monitor

m > 1 sequences. Intuitively speaking, the Gelman-Rubin

diagnostic compares the empirical distributions of individ-

ual chains with the empirical distribution of all sequences

together: if these two are similar, we declare convergence.

The test outputs a single value R that is a function of means

and variances of all chains. With time, R approaches 1, and

convergence is declared typically for values smaller than 1.02.

IV. DATA COLLECTION

A. User properties of interest

Fig. 1 summarizes the information collected when visiting

the “show friends” web page of a sampled user u, which we

refer to as basic node information.
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bit attribute explanation

1 Add as friend =1 if w can propose to ‘friend’ u
2 Photo =1 if w can see the profile photo of u
3 View friends =1 if w can see the friends of u
4 Send message =1 if w can send a message to u

TABLE I
PRIVACY SETTINGS OF A USER u WITH RESPECT TO HER NON-FRIENDw.

Name and userID. Each user is uniquely defined by her

userID, which is a 32-bit number6. Each user presumably

provides her real name. The names do not have to be unique.

Friends list. A core idea in social networks is the possibility

to declare friendship between users. In Facebook, friendship

is always mutual and must be accepted by both sides. Thus

the social network is undirected.

Networks. Facebook uses two types of “networks” to

organize its users. The first are regional (geographical) net-

works7. There are 507 predefined regional networks that

correspond to cities, regions, and countries around the world.

A user can freely join any regional network but can be a

member of only one regional network at a time. Changes

are allowed, but no more than twice every 6 months (April

2009). The second type of networks contain user affiliations

with colleges, workplaces, and high schools and have stricter

membership criteria: they require a valid email account from

the corresponding domain, e.g., to join the UC Irvine network

you have to provide a “@uci.edu” email account. A user can

belong to many networks of the second type.

Privacy settings Qv. Each user u can restrict the amount

of information revealed to any non-friend node w, as well as
the possibility of interaction with w. These are captured by

four basic binary privacy attributes, as described in Table I.

We refer to the resulting 4-bit number as privacy settings Qv

of node v. By default, Facebook sets Qv = 1111 (allow all).

Friends of u. The “show friends” web page of user u
exposes network membership information and privacy settings

for each listed friend. Therefore, we collect such information

for all friends of u, at no additional cost.

Profiles. Much more information about a user can poten-

tially be obtained by viewing her profile. Unless restricted by

the user, the profile can be displayed by her friends and users

from the same network. In this work, we do not collect any

profile information, even if it is publicly available. We study

only the basic node information shown in Fig.1.

Ego Networks. The sample of nodes collected by our

method enables us to study many features of FB users in a

statistically unbiased manner. However, more elaborate topo-

logical measures, such as clustering coefficient and assortativ-

ity, cannot be easily estimated based purely on a single-node

view. For this reason, we decided to also collect a number

6Facebook changed to 64-bit user ID space after May 2009 [61] whereas
our crawls were collected during April-May 2009.

7Regional networks were available at the time of this study but were phased
out starting from June 2009 [64]

Fig. 2. (a) Sampled user u with observed edges in yellow color. (b) The
extended ego network of user u with observed nodes and edges in yellow
color. Invalid neighbor w, whose privacy settings Qw = ∗ ∗ 0∗ do not allow
friend listing, is discarded.

Fig. 3. Distributed Crawling of an Online Social Network

of extended ego nets 8 (see Fig 2), for ∼37K “ego” nodes,

randomly selected from all nodes in MHRW.

B. Crawling Process

In order to apply our methodology to real-life OSNs,

we implemented high-performance distributed crawlers that

explored the social graph in a systematic and efficient way.

1) Challenges: There are several practical challenges we

faced while crawling the social graph of OSNs. First, OSNs

usually use some defense mechanisms against automated

data mining. Mislove et al. [12] reported rate limits per IP

while crawling Orkut. Similarly, in our Facebook crawls

we experienced banned accounts, probably due to excessive

traffic. Second, in Facebook, the API calls are usually more

restrictive than HTML scraping, which forced us to implement

the latter. Third, many modern web sites enable asynchronous

8We use the extended egonet sample differently from the Random Node
Neighbor (RNN) sample presented in [32]. We are interested in estimating
properties of the ego nodes only whereas RNN [32] looks at the induced
subgraph of all sampled nodes and is interested in estimating properties of
the ego and all alters. Therefore, the sample of extended egonets, that we
collect in this work, is expected to capture very well community structure
properties (i.e., clustering coefficient) of the whole Facebook population.
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Crawling method MHRW RW BFS UNI

Total number of valid users 28×81K 28×81K 28×81K 984K
Total number of unique users 957K 2.19M 2.20M 984K
Total number of unique neighbors 72.2M 120.1M 96M 58.4M
Crawling period 04/18-04/23 05/03-05/08 04/30-05/03 04/22-04/30

Avg Degree 95.2 338 323 94.1
Median Degree 40 234 208 38

Number of overlapping users

MHRW ∩ RW 16.2K

MHRW ∩ BFS 15.1K

MHRW ∩ Uniform 4.1K

RW ∩ BFS 64.2K

RW ∩ Uniform 9.3K

BFS ∩ Uniform 15.1K

TABLE II
(LEFT:) DATASETS COLLECTED BY MHRW, RW, BFS AND UNI IN 2009. (RIGHT:)THE OVERLAP BETWEEN DIFFERENT DATASETS IS SMALL.

loading of web content (i.e., use AJAX), which requires more

sophisticated customization of the crawlers. Finally, in order

to satisfy assumption A4, the data collection time should be

relatively small, in the order of a few days (see Appendix B).

2) Implementation: Fig 3 depicts an overview of our dis-

tributed crawling process.

First, we use a large number of machines with limited

memory (100 Mbytes-1GBytes RAM) and disk space (up to

5GBytes), to parallelize our crawling and shorten the data

collection time. We have up to three layers of parallelism

in each machine. Each crawling machine runs one or more

crawling processes. Each crawling process shares one user

account between multiple crawling threads within it. Each

crawling thread fetches data asynchronously where possible.

Second, we use one machine as coordinator server that

(i) controls the number of connections or amount of bandwidth

over the whole cluster, (ii) keeps track of already fetched users

to avoid fetching duplicate data, and (iii) maintains a data

structure that stores the crawl frontier, e.g., a queue for BFS.

Third, a user account server stores the login/API accounts,

created manually by the administrator. When a crawling pro-

cess is initiated, it requests an unused account from the user

account server; the crawling process is activated only if a valid

account is available.

3) Invalid users: There are two types of users that we

declare as invalid. First, if a user u decides to hide her friends

and to set the privacy settings to Qu = ∗∗0∗, the crawl cannot
continue. We address this problem by backtracking to the

previous node and continuing the crawl from there, as if u was

never selected. Second, there exist nodes with degree kv = 0;
these are not reachable by any crawls, but we stumble upon

them during the UNI sampling of the userID space. Discarding

both types of nodes is consistent with our assumptions (A2,

A3), where we already declared that we exclude such nodes

(either not publicly available (A2) or isolated (A3)) from the

graph we want to sample.

4) Execution of crawls: We ran 28 different independent

crawls for each crawling methodology, namely MHRW, BFS

and RW, all seeded at the same set of randomly selected nodes.

We collected exactly 81K samples for each independent crawl.

We count towards this value all repetitions, such as the self-

transitions of MHRW, and returning to an already visited state

(RW and MHRW). In addition to the 28×3 crawls (BFS, RW

and MHRW), we ran the UNI sampling until we collected

984K valid users, which is comparable to the 957K unique

users collected with MHRW.

C. Description of Datasets

Table II summarizes the datasets collected using the crawl-

ing techniques under comparison. This information refers to

all sampled nodes, before discarding any burn-in. For each of

MHRW, RW, and BFS, we collected the total of 28× 81K =
2.26M nodes. However, because MHRW and RW sample with

repetitions, and because the 28 BFSes may partially overlap,

the number of unique nodes sampled by these methods is

smaller. This effect is especially visible under MHRW that

collected only 957K unique nodes. Table II(right) shows that

the percentage of common users between the MHRW, RW,

BFS and UNI datasets is very small, as expected. The largest

observed, but still objectively small, overlap is between RW

and BFS and is probably due to the common starting points

selected.

To collect the UNI dataset, we checked ∼ 18.5M user

IDs picked uniformly at random from [1, 232]. Out of them,

only 1,216K users existed. Among them, 228K users had zero

friends; we discarded these isolated users to be consistent with

our problem statement. This results in a set of 984K valid users

with at least one friend each.

To analyze topological characteristics of the Facebook

population, we collected ∼ 37K egonets that contain basic

node information (see Fig 1) for ∼ 5.8M unique neighbors.

Table III contains a summary of the egonet dataset, including

properties that we analyze in section VI.

Number of egonets 37K

Number of neighbors 9.3M

Number of unique neighbors 5.8M

Crawling period 04/24-05/01

Avg Clustering coefficient 0.16

Avg Assortativity 0.233

TABLE III
EGO NETWORKS COLLECTED FOR 37K NODES, RANDOMLY SELECTED

FROM THE USERS IN THE MHRW DATASET.

Overall, we sampled 11.6 million unique nodes, and ob-

served other 172M as their (unsampled) neighbors. This is a

very large sample by itself, especially given that Facebook

had reported having close to 200 million active users during

the time of these measurements.

V. EVALUATION OF SAMPLING TECHNIQUES

In this section, we evaluate all candidate crawling tech-

niques (namely BFS, RW and RWRW, MHRW), in terms of

their efficiency (convergence) and quality (estimation bias). In
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Section V-A, we study the convergence of the random walk

methods with respect to several properties of interest. We find

a burn-in period of 6K samples, which we exclude from each

independent crawl. The remaining 75K x 28 sampled nodes

is our main sample dataset; for a fair comparison we also

exclude the same number of burn-in samples from all datasets.

In Section V-B we examine the quality of the estimation based

on each sample. In Section V-C, we summarize our findings

and provide practical recommendations.

A. Convergence analysis

There are several crucial parameters that affect the conver-

gence of a Markov Chain sample. In this section, we study

these parameters by (i) applying formal convergence tests and

(ii) using simple, yet insightful, visual inspection of the related

traces and histograms.
1) Burn-in: For the random walk-based methods, a number

of samples need to be discarded to lose dependence on the

initial seed point. Since there is a cost for every user we

sample, we would like to choose this value using formal

convergence diagnostics so as not to waste resources. Here, we

apply the convergence diagnostics presented in Section III-E2

to several properties of the sampled nodes and choose as burn-

in the maximum period from all tests.
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Fig. 4. Geweke z score (0K..81K) for number of friends (top) and regional
network affiliation (bottom). Each line shows the Geweke score for each of
the 28 parallel walks.

The Geweke diagnostic is applied in each of the 28 walks

separately and compares the difference between the first 10%
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Fig. 5. Gelman-Rubin R score (0K..81K) for five different metrics.

and the last 50% of the walk samples. It declares convergence

when all 28 values fall in the [−1, 1] interval. Fig. 4 presents

the results of the Geweke diagnostic for the user properties

of node degree and regional network membership. We start at

50 iterations and plot 150 points logarithmically spaced. We

observe that after approximately 500−2000 iterations we have
a z-score strictly between [−1, 1]. We also see that RWRW and

MHRW perform similarly w.r.t. the Geweke diagnostic.

The Gelman-Rubin diagnostic analyzes all the 28 walks

at once by summarizing the difference of the between-walk

variances and within-walk variances. In Fig. 5 we plot the

R score for the following metrics (i) number of friends (or

node degree) (ii) networkID (or regional network) (iii) privacy

settings Qv (iv) membership in specific regional networks,

namely Australia and New York. The last user property is

defined as follows: if the user in iteration i is a member of

network x then the metric is set to 1, otherwise it is set to 0.
We can see that the R score varies considerably in the initial

hundred to thousand iterations for all properties. To pick an

example, we observe a spike between iterations 1, 000 and

2, 000 in the MHRW crawl for the New York membership.

This is most likely the result of certain walks getting trapped

within the New York network, which is particularly large.

Eventually, after 3000 iterations all the R scores for the

properties of interest drop below 1.02, the typical target value
used for convergence indicator.

We declare convergence when all tests have detected it.

The Gelman-Rubin test is the last one at 3K nodes. To be

even safer, in each independent walk we conservatively discard

6K nodes, out of 81K nodes total. In the remainder of the

evaluation, we work only with the remaining 75K nodes per

independent chain for RW, RWRW and MHRW.

2) Total Running Time: Another decision we have to make

is about the walk length, excluding the burn-in samples. This

length should be appropriately long to ensure that we are

at equilibrium. Here, we utilize multiple ways to analyze

the collected samples, so as to increase our confidence that

the collected samples are appropriate for further statistical

analysis.

First, we apply formal convergence diagnostics that allow

us to assess convergence online by indicating approximate

equilibrium. Fig 6 shows the Geweke z-score for the number of
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Fig. 6. Online convergence diagnostics for samples 6K..81K (without burn-
in). (top) Geweke z score for number of friends. (bottom) Gelman-Rubin score
for five different metrics.

friends (top) and the Gelman-Rubin R score for five different

properties (bottom). These results are obtained after discarding

the burn-in samples (0K..6K). They show that convergence

is attained with at least 3K samples per walk, similar to

the section in which we determined the burn-in. This is an

indication that the Facebook social graph is well connected

and our random walks achieved good mixing with our initial

selection of random seeds.

Second, we perform visual inspection to check the con-

vergence state of our sample by plotting for each walk the

running mean of a user property against the iteration number.

The intuition is that if convergence has been reached, the

running mean of the property will not drastically change as

the number of iterations increases. Fig 7 shows for each crawl

type the running mean (i) for the node degree in the UNI

sample, (ii) in each of the 28 walks individually, and (iii) in

an average crawl that combines all 28 walks. It can be seen

that in order to estimate the average node degree kv based on

only a single MHRW or RW walk, we should take at least

10K iterations to be likely to get within ±10% off the real

value. In contrast, averaging over all 28 walks seems to provide

similar or better confidence after fewer than 100 iterations per

walk or 100× 28 ∼ 3K samples over all walks. Additionally,

the average MHRW and RW crawls reach stability within

350 × 28 ∼ 10K iterations. It is quite clear that the use of

multiple parallel walks is very beneficial in the estimation of
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Fig. 7. Average node degree kv observed by each crawl, as a function of
the number of iterations (or running mean).

user properties of interest.

According to the diagnostics and visual inspection, we need

at least 3K samples per walk or 3k×28 ∼ 84K over all walks.

Since we were not resource constrained during our crawling,

we continued sampling users until we reached 81K per walk.

One obvious reason is that more samples should decrease the

estimation variance. Another reason is that more samples allow

us to break the correlation between consecutive samples by

thinning the set of sampled users. We use such a thinning

process to collect egonets.

3) Thinning: Let us examine the effect of a larger sample

on the estimation of user properties. Fig. 8 shows the percent-

age of sampled users with specific node degrees and network

affiliations, rather than the average over the entire distribution.

A walk length of 75K (top) results in much smaller estimation

variance per walk than taking 5K consecutive iterations from

50-55K (middle). Fig.8 also reveals the correlation between

consecutive samples, even after equilibrium has been reached.

It is sometimes reasonable to break this correlation, by con-

sidering every ith sample, a process which is called thinning.

The bottom plots in Fig. 8 show 5K iterations per walk with

a thinning factor of i = 10. It performs much better than the

middle plot, despite the same total number of samples.

Thinning in MCMC samplings has the side advantage of

saving space instead of storing all collected samples. In the

case of crawling OSNs, the main bottleneck is the time and

bandwidth necessary to perform a single transition, rather

than storage and post-processing of the extracted information.

Therefore we did not apply thinning to our basic crawls.

However, we applied another idea (sub-sampling), that has

a similar effect with thinning, when collecting the second

part of our data - the egonets. Indeed, in order to collect

the information on a single egonet, our crawler had to visit
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Fig. 8. The effect of walk length and thinning on the results. We present histograms of visits at nodes with a specific degree k ∈ {10, 50, 100, 200} and
network membership (Australia, New York, India, Vancouver), generated under three conditions. (top): All nodes visited after the first 6K burn-in nodes.
(middle): 5K consecutive nodes, from hop 50K to hop 55K. This represents a short walk length. (bottom): 5K nodes by taking every 10th sample (thinning).

the user and all its friends, an average ∼ 100 nodes. Due

to bandwidth and time constraints, we could fetch only 37K

egonets. In order to avoid correlations between consecutive

egonets, we collected a random sub-sample of the MHRW

(post burn-in) sample, which essentially introduced spacing

among sub-sampled nodes.

4) Comparison to Ground Truth: Finally, we compare the

random walk techniques in terms of their distance from the

true uniform (UNI) distribution as a function of the iterations.

In Fig. 9, we show the distance of the estimated distribution

from the ground truth in terms of the KL (Kullback-Leibler)

metric, that captures the distance of the 2 distributions ac-

counting for the bulk of the distributions. We also calculated

the Kolmogorov-Smirnov (KS) statistic, not shown here, which

captures the maximum vertical distance of two distributions.

We found that RWRW is more efficient than MHRW with

respect to both statistics. We note that the usage of distance

metrics such as KL and KS cannot replace the role of the

formal diagnostics which are able to determine convergence

online and most importantly in the absence of the ground truth.

5) The choice of metric matters: MCMC is typically used

to estimate some user property/metric, i.e., a function of the

underlying random variable. The choice of metric can greatly

affect the convergence time. We chose the metrics in the

diagnostics, guided by the following principles:

• We chose the node degree because it is one of the metrics

we want to estimate; therefore we need to ensure that the

MCMC has converged at least with respect to it. The

distribution of the node degree is also typically heavy
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Fig. 9. The efficiency of RWRW and MHRW in estimating the degree
distribution of Facebook, in terms of the Kullback-Leibler (KL) divergence.
The “Uniq” plots count as iterations only the number of unique sampled nodes,
which represents the real bandwidth cost of sampling.

tailed, and thus is slow to converge.

• We also used several additional metrics (e.g. network ID,

user ID and membership to specific networks), which are

uncorrelated to the node degree and to each other, and

thus provide additional assurance for convergence.

• We essentially chose to use all the nodal attributes that

were easily and cheaply accessible at each node. These

metrics were also relevant to the estimation at later

sections.

Let us focus on two of these metrics of interest, namely

node degree and sizes of geographical network and study their

convergence in more detail. The results for both metrics and all

three methods are shown in Fig.10. We expected node degrees

to not depend strongly on geography, while the relative size
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Fig. 10. Histograms of visits at node of a specific degree (left) and in a specific regional network (right). We consider four sampling techniques: BFS, RW,
RWRW and MHRW. We present how often a specific type of node is visited by the 28 crawlers (‘crawls’), and by the uniform UNI sampler (‘uniform’). We
also plot the visit frequency averaged over all the 28 crawlers (‘average crawl’). Finally, ‘size’ represents the real size of each regional network normalized
by the the total Facebook size. We used all the 81K nodes visited by each crawl, except the first 6K burn-in nodes. The metrics of interest cover roughly
the same number of nodes (about 0.1% to 1%), which allows for a fair comparison.

of geographical networks to strongly depend on geography.

This implies that (i) the degree distribution will converge fast

to a good uniform sample even if the walk has poor mixing

and stays in the same region for a long time; (ii) a walk that

mixes poorly will take long time to barely reach the networks

of interest, not to mention producing a reliable network size

estimate. In the latter case, MHRW will need a large number

of iterations before collecting a representative sample.

The results presented in Fig. 10 (bottom) confirm our

expectation. MHRW performs much better when estimating

the probability of a node having a given degree, than the

probability of a node belonging to a specific regional network.

For example, one MHRW crawl overestimates the size of

“New York, NY” by roughly 100%. The probability that a

perfect uniform sampling makes such an error (or larger) is
∑∞

i=i0

(

i
n

)

pi(1 − p)i ≃ 4.3 · 10−13, where we took i0 = 1k,
n = 81K and p = 0.006. Even given such single-walk

deviations, the multiple-walk average for the MHRW crawl

provides an excellent estimate of the true population size.

B. Unbiased Estimation

This section presents the main results of this chapter. First,

the MHRW and RWRW methods perform very well: they

estimate two distributions of interest (namely node degree,

regional network size) essentially identically to the UNI sam-

pler. Second, the baseline algorithms (BFS and RW) deviate

substantively from the truth and lead to misleading estimates.
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Fig. 11. Degree distribution (pdf) estimated by the sampling techniques
and the ground truth (uniform sampler). MHRW and RWRW agree almost
perfectly with the UNI sample; while BFS and RW deviate significantly. We
use log-log scale and logarithmic binning of data in all plots.
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Each user is assigned a 32 bit long userID. Although this results in numbers
up to 4.3e9, the values above 1.8e9 almost never occur. Inset: The average
node degree (in log scale) as a function of userID.

1) Node degree distribution: In Fig. 11 we present the

degree distributions estimated by MHRW, RWRW, RW, and

BFS. The average MHRW crawl’s pdf, shown in Fig. 11(a) is

virtually identical to UNI. Moreover, the degree distribution

found by each of the 28 chains separately are almost identical.

In contrast, RW and BFS shown in Fig. 11(c) and (d) introduce

a strong bias towards the high degree nodes. For example,

the low-degree nodes are under-represented by two orders of

magnitude. As a result, the estimated average node degree

is kv ≃ 95 for MHRW and UNI, and kv ≃ 330 for BFS

and RW. Interestingly, this bias is almost the same in the

case of BFS and RW, but BFS is characterized by a much

higher variance. Notice that that BFS and RW estimate wrong

not only the parameters but also the shape of the degree

distribution, thus leading to wrong information. Re-weighting

the simple RW corrects for the bias and results to RWRW,

which performs almost identical to UNI, as shown in 11(b).

As a side observation we can also see that the true degree

distribution clearly does not follow a power-law.

2) Regional networks: Let us now consider a geography-

dependent sensitive metric, i.e., the relative size of regional

networks. The results are presented in Fig. 10 (right). BFS

performs very poorly, which is expected due to its local

coverage. RW also produces biased results, possibly because of

a slight positive correlation that we observed between network

size and average node degree. In contrast, MHRW and RWRW

perform very well albeit with higher variance, as already

discussed in Section V-A5.

3) The userID space: Finally, we look at the distribution of

a property that is completely uncorrelated from the topology

of Facebook, namely the user ID. When a new user joins

Facebook, it is automatically assigned a 32-bit number,

called userID. It happens before the user specifies its profile,

joins networks or adds friends, and therefore one could expect

no correlations between userID and these features. In other

words, the degree bias of BFS and RW should not affect the

usage of userID space. Therefore, at first, we were surprised

to find big differences in the usage of userID space discovered

by BFS, RW and MHRW. We present the results in Fig 12.

Note that the userID space is not covered uniformly, prob-

ably for historical reasons. BFS and RW are clearly shifted

towards lower userIDs. The origin of this shift is probably

historical. The sharp steps at 229≃0.5e9 and at 230≃1.0e9
suggest that Facebook was first using only 29 bit of userIDs,

then 30, and now 31. As a result, users that joined earlier have

the smaller userIDs. At the same time, older users should have

higher degrees on average, which implies that userIDs should

be negatively correlated with node degrees. This is indeed the

case, as we show in the inset of Fig 12.9 This, together with

the degree bias of BFS and RW, explains the shifts of userIDs

distributions observed in the main plot in Fig 12. In contrast to

BFS and RW, MHRW performed extremely well with respect

to the userID metric.

C. Findings and Practical Recommendations

1) Choosing between methods: First and most important,

the above comparison demonstrates that both MHRW and

RWRW succeed in estimating several Facebook properties

of interest virtually identically to UNI. In contrast, commonly

used baseline methods (BFS and simple RW) fail, i.e., deviate

significantly from the truth and lead to substantively erroneous

estimates. Moreover, the bias of BFS and RW shows up

not only when estimating directly node degrees (which was

expected), but also when we consider other metrics seemingly

uncorrelated metrics (such as the size of regional network),

which end up being correlated to node degree. This makes

the case for moving from “1st generation” traversal methods

such as BFS, which have been predominantly used in the

measurements community so far [9,12,13], to more principled,

“2nd generation”, sampling techniques whose bias can be

analyzed and/or corrected for. The random walks considered

in this paper, RW, RWRW and MHRW, are well-known in

the field of Monte Carlo Markov Chains (MCMC). We apply

and adapt these methods to Facebook, for the first time, and

we demonstrate that, when appropriately used, they perform

remarkably well on real-world OSNs.

2) Adding convergence diagnostics and parallel crawls:

A key ingredient of our implementation - to the best of our

knowledge, not previously employed in network sampling -

was the use of formal online convergence diagnostic tests.

We tested these on several metrics of interest within and

across chains, showing that convergence was obtained within

a reasonable number of iterations. We believe that such tests

can and should be used in field implementations of walk-

based sampling methods to ensure that samples are adequate

for subsequent analysis. Another key ingredient of our imple-

mentation was the use of independent crawlers (started from

several random independent starting points, unlike [17,19] who

use a single starting point), which both improved convergence

and decreased the duration of the crawls.

9Our observations are also confirmed by internal sources within Facebook
[65]. According to them, Facebook’s user ID assignment reflects the history
of the website and has transitioned through several phases. Initially, userIDs
were auto-incremented starting at 4. As more networks, such as colleges or
high schools, were supported, customized userID spaces were assigned per
college i.e., Stanford IDs were assigned between 200000-299999. Finally,
open registration to all users introduced scalability problems and made userID
assignment less predictable.
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3) MHRW vs. RWRW: Both MHRW and RWRW achieved

a uniform sample. When comparing the two, RWRW is

slightly more efficient, i.e., needed less samples for the same

accuracy. This is consistent with the findings in [17,19]. This

is partly due to the fact that MHRW requires a large number of

rejections during the initial sampling process; and partly due

to slower mixing, in practice, as it avoids high degree nodes.

In this section, we present an empirical comparison based on

the Facebook experiments. In Appendix C, we provide a

more in-depth comparison via analysis and simulation.

However, when choosing between the two methods there

are additional trade-offs to consider. First, MHRW yields

an asymptotically uniform sample, which requires no addi-

tional processing for subsequent analysis. By contrast, RWRW

samples are heavily biased towards high-degree nodes, and

require use of appropriate re-weighting procedures to generate

correct results. For the creation of large data sets intended for

general distribution (as in the case of our Facebook sample),

this “ready-to-use” aspect of MHRW has obvious merit10. A

second advantage of MHRW is the ease of online testing for

convergence to the desired target (uniform) distribution. In

contrast, in RWRW, we test for convergence on a different dis-

tribution and then re-weight, which can introduce distortion11.

Finally, simple re-weighting is difficult or impossible to apply

in the context of many purely data-analytic procedures such as

multidimensional scaling or hierarchical clustering. Simulated

Importance Resampling [66] provides a useful alternative for

RWRW samples, but suffers from well-known problems of

asymptotic bias (see [67] for a discussion). This is of less

concern for applications such as moment estimation, for which

re-weighting is both simple and effective.

Ultimately, the choice of RWRW versus MHRW is thus

a trade-off between efficiency during the initial sampling

process (which favors RWRW in all practical cases) and

simplicity/versatility of use for the resulting data set (which

favors MHRW). For our present purposes, these trade-offs

favor MHRW, and we employ it here for producing a uniform

ready-to-use sample of users.

VI. FACEBOOK CHARACTERIZATION

In this section, we use the uniform sample of 1M nodes, col-

lected through MHRW, and the sub-sample of 37K extended

egonets to study some features of Facebook. In contrast to

previous work, which focused on particular regions [11,45] or

used larger but potentially biased samples [12,13], our user

sample is representative of the entire Facebook.

A. Topological Characteristics

We first focus on purely topological aspects of the graph of

Facebook.

10For example, our released data sets [21] are intended to be used by people
that are not necessarily experts in the re-weighting methods, for whom the
potential for erroneous misuse is high

11It is in principle possible to diagnose convergence on re-weighted
statistics with RWRW. However, this requires appropriate use of re-weighting
during the convergence evaluation process, which can increase the complexity
of implementation.
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Fig. 13. Assortativity - correlation between degrees of neighboring nodes.
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Fig. 14. Clustering coefficient of Facebook users as function of their
degree.

1) Degree distribution: Node degree is just one example

of a node-level (user) property, which also happens to be

an important topological characteristic. In Fig. 11(a,b), we

present the node degree distribution of Facebook. Differ-

ently from previous studies of crawled datasets in online social

networks in [9,12,13], we observe that node degree is not

a power law. Instead, we can identify two regimes, roughly

1 ≤ k < 300 and 300 ≤ k ≤ 5000, each of which can be

approximated by a power-law with exponents αk<300 = 1.32
and αk≥300 = 3.38, respectively. We note, however, that the

regime 300 ≤ k ≤ 5000 covers only slightly more than one

decade. This behavior is suggestive of multistage “vetting”

models of network formation.

2) Assortativity: Depending on the type of complex net-

work, nodes may tend to connect to similar or different nodes.

For example, in many social networks high degree nodes tend

to connect to other high degree nodes [68]. Such networks are

called assortative. In Fig.13, we plot the node degree vs. the

degrees of its neighbors. We observe a positive correlation,

which implies assortative mixing and is in agreement with

previous studies of similar social networks. We can also

summarize this plot by calculating the Pearson correlation

coefficient, or assortativity coefficient which is r = 0.233.
This value is higher than r′ = 0.17 reported in [13]. A

possible explanation is that the Region-Constrained BFS used

in [13] stops at regional network boundaries and thus misses

many connections to, typically high-degree, nodes outside the

network.

3) Clustering coefficient: In social networks, it is likely

that two friends of a user are also friends of each other. The

intensity of this phenomenon can be captured by the clustering

coefficient Cv of a node v, defined as the relative number of
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Fig. 15. The distribution of the privacy settings among ∼ 172M Facebook

users. Value Qv=1111 corresponds to default settings (privacy not restricted)
and covers 84% of all users.

PA Network n PA Network n

0.08 Iceland . . . . . .

0.11 Denmark 0.22 Bangladesh

0.11 Provo, UT 0.23 Hamilton, ON

0.11 Ogden, UT 0.23 Calgary, AB

0.11 Slovakia 0.23 Iran

0.11 Plymouth 0.23 India

0.11 Eastern Idaho, ID 0.23 Egypt

0.11 Indonesia 0.24 United Arab Emirates

0.11 Western Colorado, CO 0.24 Palestine

0.11 Quebec City, QC 0.25 Vancouver, BC

0.11 Salt Lake City, UT 0.26 Lebanon

0.12 Northern Colorado, CO 0.27 Turkey

0.12 Lancaster, PA 0.27 Toronto, ON

0.12 Boise, ID 0.28 Kuwait

0.12 Portsmouth 0.29 Jordan

. . . . . . 0.30 Saudi Arabia

TABLE IV
REGIONAL NETWORKS WITH RESPECT TO THEIR PRIVACY AWARENESS

PA = P(Qv 6=1111 |v∈n) AMONG ∼ 172M Facebook USERS. ONLY

REGIONS WITH AT LEAST 50K USERS ARE CONSIDERED. NOTE THE

DIFFERENT TYPES OF COUNTRIES IN THE TWO EXTREME ENDS OF THE

SPECTRUM. E.g. MANY Facebook USERS IN THE MIDDLE EAST SEEM TO

BE HIGHLY CONCERNED ABOUT PRIVACY. SCANDINAVIAN USERS ARE THE

LEAST PRIVACY CONCERNED. CANADA REGIONS SHOW UP AT BOTH ENDS,
CLEARLY SPLITTING INTO ENGLISH AND FRENCH SPEAKING PARTS.

connections between the nearest neighbors of v. The clustering
coefficient of a network is the average C over all nodes. We

find the average clustering coefficient of Facebook to be

C = 0.16, similar to that reported in [13]. Since the clustering

coefficient tends to depend strongly on the node’s degree kv,
we looked at Cv as a function of kv . Fig. 14 shows a larger

range in the degree-dependent clustering coefficient ([0.05,

0.35]) than what was found in [13] ([0.05, 0.18]).

B. Privacy awareness

We also collected the privacy settings Qv for each node v.
Qv consists of four bits, each corresponding to one privacy

attribute. By default, Facebook sets these attributes to ‘al-

low’, i.e., Qv = 1111 for a new node v. We call users who

change these default settings as ‘privacy aware’ users, and we

denote by PA the level of privacy awareness of a user v, i.e.,
privacy aware users have PA = P(Qv 6=1111).
We studied the privacy awareness in Facebook and we

report some of our findings. First, we present the distribution

of privacy settings among Facebook users in Fig. 15, which

shows that about 84% of users leave the settings unchanged,
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Fig. 16. Privacy awareness as a function of node degree in the egonets dataset.
We consider only the nodes with privacy settings set to ’**1*’, because only
these nodes allow us to see their friends and thus degree. So here PA =
P(Qv 6=1111 | kv = k, Qv=∗ ∗ 1∗).
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Fig. 17. Privacy awareness as a function of privacy awareness of node’s
neighbors in the egonets dataset. We consider only the nodes with privacy
settings set to ’**1*’, because only these nodes allow us to see their friends,
so PA = P(Qv 6=1111 | PA, Qv=∗ ∗ 1∗).

i.e., P(Qv = 1111) ≃ 0.84. The remaining 16% of users

modified he default settings, yielding PA = 0.16 across the

entire Facebook. The two most popular modifications are

Qv = 1011 (“hide my photo”) and Qv = 1101 (“hide my

friends”), each applied by about 7% of users. Second, the

privacy awareness PA of Facebook users depends on many

factors, such as the geographical location, node degree or the

privacy awareness of friends. In Table IV we classify the

regional networks with respect to PA of their members. In

Fig. 16, we show the effect of node degree on the privacy

settings of a user. We found that low degree nodes tend

to be very concerned about privacy, whereas high degree

nodes hardly ever bother to modify the default settings. This

clear trend makes sense in practice: to protect her privacy, a

privacy concerned user would carefully select her Facebook

friends, e.g., by avoiding linking to strangers. At the other

extreme, there are users who prefer to have as many ‘friends’

as possible, which is much easier with unrestricted privacy

attributes. Finally, we found that the privacy awareness of a

user is positively correlated with the privacy awareness of her

friends. We observe a clear positive correlation in Fig. 17.

VII. CONCLUSION

In this paper, we developed a framework for unbiased

sampling of users in an OSN by crawling the social graph,

and we provided recommendations for its implementation in
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practice. We made the following contributions. We compared

several candidate techniques in terms of bias (BFS and RW

were significantly biased, while MHRW and RWRW provided

unbiased samples) and efficiency (we found RWRW to be the

most efficient in practice, while MHRW has the advantage

of providing a ready-to-use sample). We also introduced the

use of formal online convergence diagnostics. In addition,

we performed an offline comparison of all crawling methods

against the ground truth (obtained through uniform sampling

of userIDs via rejection sampling). We also provided guide-

lines for implementing high performance crawlers for sam-

pling OSNs. Finally, we applied these methods to Facebook

and obtained the first unbiased sample of Facebook users,

which we used it to characterize several key user and structural

properties of Facebook. We anonymized our datasets and

made them publicly available at [21]. They have been down-

loaded approximately 500 times at the time of this publication.

APPENDIX A: UNIFORM SAMPLE OF USER IDS WITH

REJECTION SAMPLING

In Section III-D we obtained an exact uniform sample of

Facebook users by directly querying the userID space. We

then used it as ground truth for comparing against the samples

collected by the crawling techniques. More specifically, we

used the following procedure:

UNI Sampling Method: First, pick a userID X uniformly

at random in the known range of IDs [0,MAXuserID]. Query

the OSN for user data for the chosen userID X . If the OSN

does not return an error message (i.e., X is valid/allocated),

include X in the sample; otherwise discard it. Repeat the

process. �

Note that the userID space is not required to be sequentially

or evenly allocated. In fact, as we explicitly show in Section

V-B3 and Fig.12, the Facebook userID space is not al-

located in a sequential way. Nevertheless, by using rejection

sampling, we are guaranteed to obtain a uniform sample of

the allocated userIDs (not of all userIDs), as the following

proposition indicates.

Proposition: UNI yields a uniform sample of the allocated

user IDs in an Online Social Network.

Proof. Let us consider that there are N allocated

and M non-allocated userIDs in the entire userID space

[0,MAXuserID]. These N and M userIDs do not need to be

consecutive. UNI picks any element, w.p. 1
N+M

and accepts

it if it is valid (w.p. Pr{accepted} = N
N+M

); otherwise it

rejects it (w.p. M
N+M

). It is easy to see the distribution of the

accepted userIDs is uniform:

Pr{X |accepted} =
1

N
.

Indeed, Pr{X |accepted} = Pr{X and accepted}
Pr{accepted} . If the userID is

valid then Pr{X |accepted} =
1

N+M
·1

N

N+M

= 1
N
; otherwise it is 0.

�

The above is just a special case of textbook rejection

sampling (e.g., see [60], Chapter 3), when the desired sam-

pling distribution is uniform. It is only repeated here for

completeness. A common misunderstanding is to interpret

UNI as a uniform sample of the entire userID space, while

it is a uniform sample only of the allocated/valid userIDs,

independently from where in the userID space these IDs may

be.

Limitations. There are some requirements for being able

to implement UNI, which are met in our measurements of

Facebook.

• First, we need to know or estimate the range of userIDs

assigned to users, or equivalently the maximum known

userID, MAXuserID. Since we use rejection sampling,

overestimating MAXuserID simply results to more re-

jections. Knowledge of the actual distribution of userIDs

in the userID space is not needed, as explained above.

• Second, we need to be able to query the OSN to return

data for the selected userID, if it is valid, or return an

error message if it does not exist. This was supported by

Facebook at the time of our experiment.

• Furthermore, UNI is efficient only if the probability of

acceptance is high. This was the case at the time of our

experiments, when the userID was 32bits, but is no longer

the case now that Facebook switched to 64bit IDs.

We emphasize that we use UNI only as a baseline for

comparing the crawling methods against ground truth.

APPENDIX B: TEMPORAL DYNAMICS

The Facebook friendship graph can be considered practi-

cally static in the timescales our crawls, consistently with our

assumption A4. Facebook is growing in general (as reported

by websites such as [69,70]) but in much longer timescales

than the duration of our crawls (which were in the order of a

few days, thanks to the efficient crawlers we developed). To

confirm that this is indeed the case in Facebook, we took

the following steps.

First, we compared our metrics of interest between the UNI

sample of Table II and a similarly sized UNI sample obtained

45 days later. Fig 18 shows the distribution of node degree

and privacy settings. One can easily observe that the two

distributions we obtained were virtually identical. The same

was true in all other comparisons we did on the same metrics

of interest in the each sample across different days.

Second, during the period that we performed our crawls (see

table II), Facebook was growing at a rate of 450K/day as

reported by websites such as [69,70]. With a population of

∼200M users during that period, this translates to a growth

of 0.22% of users/day. Each of our crawls lasted around

4-7 days (during which, the total Facebook growth was

0.9%-1.5%); in fact, our convergence analysis shows that the

process converged even faster, i.e., in only one day. Therefore,

the relative node growth of Facebook users was negligible

during our crawls.

Third, we evaluated the edge growth of the Facebook

graph by conducting the following experiment. In November

2010 we ran 20 independent RW crawls and collected 20 ×
10K = 200K user samples within 12 hours. This is our user

sample |S|0 at Day 0. For the next 5 days, we re-visit the exact

same nodes in the same order and check their edges to see if

there is any change. These will be our user samples |S|1..|S|5,
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Fig. 18. PDF of two user properties for UNI samples obtained 45 days apart

100 101 102 103 10410-3

10-2

10-1

Day 1
Day 5

100 101 102 103 10410-2

10-1

100

101

102

Day 1
Day 5

∆
k
v
/
k
v

∆
k
v

kvkv

(a) Relative degree and absolute degree change as a function of node degree

10-3 10-2 10-1 100 1010.0

0.2

0.4

0.6

0.8

1.0

CD
F

Day 1
Day 2
Day 3
Day 4
Day 5

100 101 102 1030.0

0.2

0.4

0.6

0.8

1.0

CD
F

Day 1
Day 2
Day 3
Day 4
Day 5

∆kv/kv ∆kv

(b) Cumulative Distribution Function of relative degree and absolute degree
change

Fig. 19. Daily growth of social graph for five days

at Days 1,..,5 and their collection is approximately equally

spaced in time. Let us define ∆kdayv = |kdayv − k0v| as the

absolute degree change where day ∈ [1..5] and∆kdayv /kdayv as

the relative degree change. Fig 19(a) shows the absolute degree

and relative degree change as a function of node degree for

Days 1,5. We observe that at Day 5 the relative degree change

varies between 0.5%-2% depending on the node degree. In

summary, the total relative change at Day 5 is estimated as

1

|S|

∑

v∈|S|

∆kd5v
kd5v

which is 1.13%. Fig 19(b) shows the CDF of relative and

absolute degree change for Days 1..5. It can be seen that 50%

and 80% of the users at Day 5 and Day 1 respectively have

an absolute degree change of one or zero. Additionally, 70%

and 95% of the users at Day 5 and Day 1 respectively have a

relative degree change of less than 1%.

Last, and perhaps most importantly, another way to eval-

uate the effect of edge growth in the estimation of the

degree distribution (or any other property) is to compare
1
|S|

∑

v∈|S| (∆kd5v )2 , which is the node degree variance due to

temporal dynamics at day 5, to 1
|S|

∑

v∈|S| (k − kd5v )2 , which

is the variance of the node degree distribution at day 5. The

former value is estimated at 556 while the latter at 617, 829,
which makes the node degree variance due to the temporal

dynamics at least three orders of magnitude smaller than the

distribution variance, i.e., essentially noise.

These results are expected, since we deal with the social

graph, which is much more static than other types of graphs,

i.e., the interaction graph on OSNs or P2P graphs [18,41] that

are known to have high churn. In the latter case, considering

the dynamics becomes important. However, they appear not to

be problematic for this particular study.

APPENDIX C: MHRW VS. RWRW

Although both MHRW and RWRW achieve asymptotically

unbiased samples, experimental results on Facebook in

Fig. 9 showed that RWRW outperforms MHRW in terms of

sampling efficiency. This is consistent with what was reported

by Rasti et al. [17] in the context of unstructured peer-to-peer

networks. We investigate this further, by taking the following

steps: (i) we run simulations on a broad range of Internet

topologies, (ii) we attempt to gain more intuition via simplified

analysis, and (iii) we show a counterexample where MHRW

is better than RWRW in a specific pathological case. Our

conclusion is that RWRW is more efficient than MHRW in

most topologies that are likely to arise in practice.

A. Simulation results

We compare RWRW with MHRW on a broad range of large,

real-life, but fully known Internet topologies described in

Table V. As our main source of data we use the SNAP Graph

Library [71]. We show the results in Fig. 20. The number on

the bottom-left corner of every plot indicate how much longer

MHRW should be than RWRW so as to achieve the same error.

One can see that, in all cases, MHRW requires 1.5-7 times

more (unique) samples to achieve the same estimation quality

as RWRW. Recall that in our Facebook measurement, this

advantage of RWRW over MHRW is about 3.0 (see Fig. 9).

B. Intuition

Why does RWRW perform so much better than MHRW on

real-life Internet topologies? There are three aspects that play

a major role here, as discussed below.
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1) MHRW strongly re-samples low-degree nodes: By de-

sign, MHRW prefers visiting low-degree nodes over high-

degree ones, which compensates for the node degree bias

observed under RW. However, counter-intuitively, MHRW

does not visit significantly more unique low-degree nodes than

RW does. Instead, it strongly re-samples the already-visited

low-degree nodes. Indeed, under MHRW, the probability of

leaving the node u at any iteration is

pu =
∑

w∈Neighbors of u

1

ku
·min(1,

ku
kw

) (2)

Therefore, the number of rounds MHRW stays in node u is

a geometric random variable Geom(pu) with parameter pu
and mean 1/pu. In some graphs, 1/pu may be in the order of

thousands.

2) Re-sampling geometric process introduces variance:

RWRW compensates for the bias of RW by dividing each

measured value of node u by its degree ku, which is a

fixed number. In contrast, MHRW achieves it by re-sampling

node u, as shown above, which is a random process on its own

that introduces additional variance. We demonstrate this using

the example below. Consider a star topology with node v∗

in the middle and nodes V being its one-hop neighbors. Let

V ′ ⊂ V be the nodes of some type of interest. Our goal is to

estimate the fraction θ = |V ′|
|V | . To this end, we use RW and

MHRW to collect a sample S ⊂ V of nodes (for simplicity,

we intentionally ignore node v∗) of size N = |S|. Clearly, we
can estimate θ by

θ̂ =
1

N

∑

v∈S

1v∈V ′ .

RW alternates between v∗, and nodes chosen from V
uniformly at random, with replacements. Therefore,

θ̂RW =
Binom(θ,N)

N
and

V[θ̂RW ] =
1

N2
· V[Binom(θ,N)] =

θ(1− θ)

N
.

In contrast, MHRW stays at any node from V for some num-

ber of rounds that follow a geometric distribution Geom(q).
In our example, Eq.(2) yields parameter q = 1/|V |. Therefore,
MHRW spends on average |V | rounds at every visited node

from V , which means that MHRW spends a large fraction

of its N samples (fraction
|V |−1
|V | on average) for re-sampling

the same nodes, which drastically limits the performance of

the MHRW estimator. In practice, however, re-sampling an

already known node is free in terms of required bandwidth.

Therefore, it makes sense to count all consecutive visits as 1

towards the sample size N , which yields

θ̂MHRW =
q

N

Binom(θ,N)
∑

1

Geom(q).

Because Binom(θk, N) and Geom(q) are independent, after

some calculations, we get:

V[θ̂MHRW ] =
θ(1 − θ)

N
+

θ(1− q)

N
>

θ(1 − θ)

N
= V[θ̂RW ].

Dataset nodes edges Description

AS 26K 53K CAIDA AS Relationships Datasets, 2004
Email 225K 341K Email network of a large Institution [72]
WWW 326K 1 118K Web graph of Notre Dame, 1998 [73]

P2P 63K 148K Gnutella p2p network, 08-2002 [72]
Slashdot 77K 546K Slashdot social network, 11-2008 [74]

TABLE V
REAL-LIFE INTERNET TOPOLOGIES USED IN SIMULATIONS. ALL GRAPHS

ARE CONNECTED AND UNDIRECTED (WHICH REQUIRED PREPROCESSING

IN SOME CASES).

average degreedegree distribution fraction 0.5

Sample length |S| Sample length |S|Sample length |S|

Fig. 20. Performance of MHRW and RWRW in simulations on Internet
topologies described in Table V. We use MHRW and RWRW to collect
samples. Based on 1000 such samples, we estimate three different graph
parameters (below). We draw the median estimation error of MHRW (red
triangles) and RWRW (green circles) as a function of sample length |S|
counted in unique nodes. (The actual samples include repetitions and are
therefore longer than |S|.) (left) Node degree distribution. Error metric is
the Kolmogorov-Smirnov (KS) statistic, i.e., the max vertical distance between
CDFs. (middle) Average node degree. (right) Fraction f=0.5 of labeled
nodes. We select at random fraction f=0.5 of all nodes and use MHRW and
RWRW to estimate f . The numbers in the bottom-left corner of each figure
indicate how much longer MHRW should be than RWRW to achieve the same
error, on average.

3) MHRW avoids high-degree nodes, missing good mixing

opportunities: Finally, in networks that arise in practice, nodes

of high degree are more likely to act as hubs, i.e., to span

different parts of the graph than the low-degree nodes whose

connections are usually more local. Therefore, by avoiding

hubs, MHRW misses mixing opportunities. In contrast, RW

exploits them.

C. Counter-example

Although RW outperformed MHRW on all real-life topolo-

gies we tested, it is not true that RW is always more efficient.
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(a) Tested topology
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Fig. 21. An example where MHRW performs better than RW. (a) Tested
toy graph. It consists of two cliques connected by a 6-hop path. We sample it
with RW and MHRW initiated at random nodes. (b) Normalized Root Mean
Square Error (NMSE) of the estimation of the average node number (true
average is equal to 13), as a function of total sample length. The standard
deviation error bars (not shown) are comparable with the symbol size.

We show one – carefully constructed and rather unrealistic

– counterexample in Fig. 21(a). Here, every node carries a

value equal to its number, and our goal is to estimate the

average value θ (in this example θ = 13). If the sampling

process stays in the clique v1 . . . v10, then the value will

be strongly underestimated (probably resulting in θ̂ ≃ 5.5.
Similarly, staying in the clique v16 . . . v25 yields θ̂ ≃ 20.5. In
order to achieve a good estimate θ̂ ≃ θ, our process should

be able to switch between the two cliques.

Inside a clique, say inside v1 . . . v10, RW and MHRW

behave almost identically. The differences appear once we

enter the line section at v11. MHRW will typically stay on

this line for many iterations (which is not good per se), and

eventually end up in one of the cliques with roughly the

same probabilities (which is good). In contrast, RW at v11
has a much higher chance to return to clique v1 . . . v10, which
significantly slows down mixing and thus harms estimation

performance. Similar reasoning applies when leaving clique

v16 . . . v25 at node v15. Therefore, MHRW should system-

atically outperform RW in this example. This intuition is

confirmed by the simulation results in Fig. 21(b).

D. Summary

In some pathological cases, like the one presented in Fig. 21,

MHRW may outperform RWRW. In more practical examples,

at least in all real-life topologies we tried, RWRW requires 1.5-

7 times fewer unique samples to achieve the same estimation

quality as MHRW, which directly translates into several-fold

bandwidth gains. For this reason, we strongly recommend

RWRW for sampling nodes in OSN and other Internet topolo-

gies. However, fully characterizing the relation between graph

structure and convergence of MHRW, RWRW is out of the

scope of this paper.
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