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Abstract — Distribution networks are currently undergoing 

fundamental changes due to the rise of smart solutions such as 

for instance Demand Response (DR), which increases network 

complexity and challenges the adequacy of traditional planning 

practices. This calls for the use of suitable planning 

methodologies. However, the planning problem may be too 

cumbersome for most commercial software tools, or may lead to 

complex bespoke optimisation models that may not be easy to use 

by network planners. In this light, this work proposes a recursive 

function that can be used in practical algorithms for planning of 

smart distribution networks. The recursive function can emulate 

business-as-usual planning practices and further optimise them, 

including DR options as potential substitutes for network 

reinforcement. Several case studies based on real UK networks 

highlight the robustness and flexibility of the proposed 

algorithms to address different problems, including uncertainty 

analysis and risk management. The results clearly show that the 

proposed tool leads to increased economic and social benefits, 

particularly when optimising investment strategies considering 

smart DR solutions. The model is herein distributed open-source 

as accompanying material to this paper with the aim of 

encouraging new practices required for smart distribution 

network planning beyond the traditional academic applications. 

 

Index Terms — Cost benefit analysis, Demand response, 

Distribution network planning, Network investment deferral, 

Recursive functions, Smart grid. 

1.  INTRODUCTION 

IGNIFICANT focus has recently been placed on the 
importance of distribution networks as a means to 

facilitate meeting environmental and security of supply targets 
[1][2]. Distribution networks are thus expected to 
accommodate different low carbon technologies and increased 
demand (e.g., due to the electrification of the heating sector 
[3]), while maintaining high reliability levels needed to foster 
economic growth. This would normally require massive 
capital expenditure to upgrade the traditionally passive and fit-
and-forget based distribution networks. However, new smart 
active grid solutions such as for instance based on Demand 
Response (DR) (e.g., through contract-based direct load 
control activated by aggregators [4] or price-responsive 
automated DR technologies [5]) could lower the level of 
investment required [6]. Under the smart grid paradigm, 
distribution networks will in fact evolve from passive and 

robust (but expensive) networks to active flexible networks 
capable of accommodating different resources at lower costs. 
Nonetheless, this represents a grand challenge for distribution 
network planning practices, as most traditional planning tools 
were not designed to handle the levels of flexibility and 
complexity introduced by the rise of smart active solutions. 

In light of the above, recent literature has placed significant 
focus on new planning tools that can properly model and 
address the use of DR, automation and communications 
technologies, and network reconfiguration, amongst other 
smart solutions [7][8]. The proposed tools rely on significant 
simplifications and approximations to allow the use of 
commercial optimisation software (e.g., linear approximations, 
typical seasonal profiles, limited number of decision nodes, 
and so forth) [9–11], or in a wide variety of complex 
algorithms based on meta-heuristic approaches [12–14]. This 
is still an emerging area of research, as an approach that can 
capture all the complexity inherent while optimally (and 
flexibly) planning the distribution networks under real 
conditions is yet to emerge. In addition, while these tools are 
indeed bridging the gap between current planning practices 
and the frameworks needed to adopt smart solutions, their 
underlying assumption and complex methods make their use 
in real conditions often difficult. In fact, a general consensus 
regarding the best tools available to enhance current 
distribution planning practices has not been reached yet. In 
any case, Distribution Network Operators (DNOs) are still 
hesitant to use commercial optimisation software or complex 
tools, which may favour the use of simple bespoke heuristic 
approaches. 

This work, as part of the UK DNO led Capacity to 
Customers (C2C) project [15–17], aims at developing a 
powerful and flexible (but straightforward) distribution 
network planning methodology based on recursion theory 
[18][19]. The methodology is meant to facilitate 
improvements in existing practices and also accommodate 
emerging smart active solutions (and DR in particular). More 
specifically, a recursive function that can operate based on two 
algorithms has been proposed. The first algorithm allows the 
recursive function to emulate and improve (by systematically 
assessing available options) current business-as-usual planning 
practices adopted by DNOs. The second algorithm allows the 
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Figure 1:  Traditional network operations subject to a) normal 

conditions, b) contingency, c) automatic reconfiguration after a 

contingency occurs and d) manual reconfiguration while the 

contingency is cleared. 

recursive function to operate as an optimisation engine that is 
robust enough to incorporate complex smart solutions models, 
and simple enough to be deployed in basic programming 
languages without the need of dedicated optimisation 
software. In fact, as recursive algorithms are based on 
simulations rather than on traditional mathematical 
programming techniques, DNOs can implement detailed and 
complex models of different smart grid solutions in the 
recursive function without concerning for optimisation 
difficulties that may arise due to the introduction of 
nonconvex search spaces, integer variables, nonlinear 
functions, and so forth [20]. In addition, the methodology 
(particularly of the optimisation engine) is extremely flexible 
to handle complex planning problems, as will be demonstrated 
in Section 5.5 by explicitly modelling demand growth 
uncertainty (i.e., using scenario trees) and risk management 
(i.e., using the minimax regret approach).  

Based on the above, the main contributions of this work are 
as follows: 
1. A simple, flexible and powerful methodology for 

emulating and even optimising network reinforcement 
planning practices under realistic conditions is proposed 
(and provided as open source files to facilitate 
widespread academic and, particularly, industrial 
applications). 

2. The tool can properly capture the complexity and 
quantify the value associated with smart solutions 
emerging at the distribution level such as those based on 
DR (e.g., the C2C method modelled in this work using 
technical and economic data from real trials) under real 
conditions and subject to the regulatory framework in 
place. 

3. The flexibility of the tool allows a straightforward 
implementation of risk management approaches (e.g., 
stochastic and robust optimisation). 

The proposed recursive algorithms have been implemented 
in an open source tool coded in Matlab [21], which is 
available as accompanying material of this paper at [22]. 
Apart from the recursive function (which comprises both 
recursive algorithms), the accompanying material in [22] 
includes an input file and a case study. The input file contains 
information relevant to a real UK distribution network (i.e., 
the Whalley Range network) such as connectivity, power 
flows and reliability studies, among other relevant inputs 
described in Section 4.  The case study file illustrates the 
procedure to initialize and operate the recursive function with 
the aim of replicating relevant studies presented in this paper 
(see Section 5).  

The rest of the paper is structured as follows. In Section 2, 
an overview of current distribution network operation and 
planning practices in the UK is provided. In Section 3, the 
smart solutions with DR considered within the C2C project are 
discussed in detail. In Section 4 the proposed function 
comprising two recursive algorithms is presented. Several case 
studies based on real distribution networks and a wide range 
of conditions, scenarios and planning problems and 
approaches are presented in Section 5, while the concluding 

remarks are given in Section 6. 

2.  TRADITIONAL DISTRIBUTION NETWORK PLANNING 

Under current UK standards, the distribution network is 
planned and operated to meet particular technical and 
performance requirements (e.g., P2/6 engineering standards 
[23] and regulated network performance [24]). These 
requirements are currently assessed with a spreadsheet based 
Cost Benefit Analysis (CBA) introduced by the UK regulator 
(the office of gas and electricity markets – Ofgem). 

This section provides an overview of current distribution 
network operation and planning practices, as well as a detailed 
description of Ofgem’s CBA.  

2.1.  Current network operation 

Traditionally, high voltage distribution networks in the UK 
(e.g., 6.6kV and 11 kV) are planned using a fit-and-forget 
approach and predictive security criteria (currently dictated by 
P2/6 engineering standards [23]). In other words, under 
current practices, it is assumed that distribution networks are 
passive and that sufficient redundancy must be in place to 
guarantee the reconnection of most customers within a 
reasonable amount of time after a contingency occurs. 

A high level description of the operation of the distribution 
network based on current practices is presented in Figure 1. 
During normal operation conditions (Figure 1a), the 
distribution network comprises groups of two or more radial 
feeders that are interconnected through Normally Open Points 
(NOPs). If a contingency occurs in one of the feeders, all 
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customers in that feeder (zones i, ii and iii) would be initially 
disconnected by the protection system, as shown in Figure 1b. 
Afterwards, the protection system isolates the fault while an 
automated reclosing scheme reconnects some customers that 
are still connected to their original feeder and isolated form 
the fault (see zone i in Figure 1c). The automatic response is 
set to reconnect as many customers as possible within 3 
minutes to avoid potential economic penalties, as distribution 
network reliability is regulated in terms of Customer 
Interruptions (CI) and Customer Minutes Lost (CML) that last 
longer than 3 minutes [24]. Then, a repair crew is sent to 
manually close the NOP to reconnect customers that have 
become isolated from their original feeder (see zone ii in 
Figure 1d). Finally, the repair crew would be sent to clear the 
fault. The customers isolated along the fault (see zone iii in 
Figure 1d) would be manually disconnected from the fault and 
either connected to the rest of the network or to a mobile 
generator if it would take several hours to clear the fault. 

This operation and restoration scheme requires additional 
emergency capacity for each feeder, as a single feeder may be 
required to supply most (or all) customers in both radials 
during a contingency. As a result, significant investments in 
spare capacity are required to maintain current distribution 
network planning and operation practices. 

2.2.  Current distribution network assessment 

Base on the latest UK regulations [25], distribution network 
upgrades should be assessed with Ofgem’s CBA framework 
[26][27]. Based on Ofgem’s CBA, investments at the 
distribution level should be quantified based on the Net 
Present Cost (NPC) criterion. The NPC is estimated based on 
capital and social costs associated with distribution level 
solutions, as denoted by (1) – (8) [26]. 

 

𝑁𝑃𝐶 = ∑ 𝐶_𝑠𝑜𝑐𝑖𝑎𝑙𝑦 + 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑦(1 + 𝑑)𝑦
45

𝑦=1  

 𝐶_𝑠𝑜𝑐𝑖𝑎𝑙𝑦 = 𝐶_𝑙𝑜𝑠𝑠𝑦 + 𝐶_𝑐𝑜2𝑦 + 𝐶_𝑐𝑖𝑦 + 𝐶_𝑐𝑚𝑙𝑦 
 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑦 = 𝐶_𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑑𝑦 + 𝐷𝑦 + 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑𝑦 
 𝐶_𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑑𝑦 = 0.15 × ∑ 𝐶𝑛,𝑦𝑛=1  

 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑𝑦 = 0.85 × ∑ 𝐶𝑛,𝑦𝑛=1  

 

𝐷𝑒𝑝𝑦 = ∑ 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑𝑦1𝐷𝑒𝑝_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
y

𝑦1=1  

 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑦 = 𝐶_𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑑𝑦 + 𝐷𝑒𝑝𝑦 + 𝐶𝐶𝑦 
 𝐶𝐶𝑦 = 𝑅𝐴𝑉𝑦 × 𝑊𝐴𝐶𝐶 

 𝑅𝐴𝑉𝑦 = 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑𝑦 − 𝐷𝑒𝑝𝑦 − 𝑅𝐴𝑉𝑦−1 
 
where 𝐶_𝑠𝑜𝑐𝑖𝑎𝑙𝑦  and 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑦 are respectively the 

social and capital costs associated with an investment strategy, 𝐶_𝑙𝑜𝑠𝑠𝑦 , 𝐶_𝑐𝑜2𝑦 , 𝐶_𝑐𝑖𝑦 and 𝐶_𝑐𝑚𝑙𝑦 are the costs attributed to 
power losses, carbon emissions, CI and CML, respectively; 𝐶_𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑑𝑦  and 𝐶_𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑𝑦  are parts of the investment 
(𝐶𝑛,𝑦)  that can be recovered immediately and over time, 
respectively; 𝐷𝑒𝑝𝑦  is the depreciation of all capitalized 
investments divided by the depreciation lifetime 
(𝐷𝑒𝑝_𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒), 𝐶𝐶𝑦 is the cost of capital, 𝑅𝐴𝑉𝑦 is the 
regulated asset value, 𝑊𝐴𝐶𝐶 is the pre-tax weighted average 
cost of capital, the subscript n denotes the n-th intervention 
associated with a network solution, and the subscripts y and y-

1 denote time periods (years).  
Ofgem’s CBA provides consistent means to assess 

distribution network reinforcement strategies formulated by 
different DNOs with the aim of facilitating the regulation of 
investments at the distribution level. However, the CBA does 
not include specific solutions (e.g., line and substation 
reinforcements) or provides a tool to formulate investment 
strategies. 

Accordingly, the DNOs have the flexibility to formulate 
their own solutions (e.g., DR deployment) and investment 
strategies. Based on this, and encouraged by economic support 
to research new distribution network solutions (e.g., the 
innovation stimulus package [28]), some DNOs are 
developing new smart distribution network solutions [29], 
such as the C2C method discussed in the next section [15]. It is 
important to note that the C2C method is used here as an 
example of DR and smart solutions, as other types of solutions 
can also be modelled and optimised with the proposed 
recursive function.  

3.  POST-CONTINGENCY DR: THE C2C METHOD 

The C2C method was proposed as a means to reduce capital 
costs at the distribution level by releasing the previously 
untapped emergency network capacity during normal 
operations via the deployment of post-contingency DR. In 
other words, the C2C solution allows the DNO to connect new 
customers rapidly without the need for network 
reinforcements even if demand exceeds the firm capacity of 
the network (e.g., exceeding P2/6 recommendations or N-1 
limits in place), as additional post-contingency capacity can be 
provided by DR if needed. Furthermore, the C2C method can 
also bring several social benefits in the form of reduced power 
losses, carbon emissions, CI and CML by operating the 
traditionally radial feeders as closed rings, and automating the 
NOPs as well as strategic points throughout the network 
(Figure 2). 

In a C2C system (Figure 2a), the network is configured as a 
ring during normal operations by closing the now automated 
NOP, and automated reclosers are added to disconnect DR 
customers if needed. This requires investments in the relevant 
automation and communications infrastructure, as well as the 
implementation of relevant algorithms to enable post-
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Figure 2:  Proposed C2C configuration subject to a) normal operation 

conditions, b) the occurrence of a contingency and c) automatic 

response while the contingency is cleared. 

contingency operations. 
The ring configuration redistributes the power flows 

throughout the network, resulting in an immediate reduction in 
power losses and associated carbon emissions in most cases 
[30][31]. In addition, the new distribution of power flows can 
affect the fault level at the point of connection, introduce 
power flows at the 33 kV level and introduce other technical 
issues to the networks. Based on existing studies, these issues 
have been deemed negligible in the 36 representative networks 
used to trial the C2C solution [15][32]. However, these issues 
might arise and become significant under other conditions, 
particularly in networks comprising distributed generation. In 
these cases, suitable power flow and protection studies should 
be carried out to fully address all the techno-economic 
implications of applying the presented DR solution. 

In this case, if a contingency occurs, all customers in both 
feeders would be initially disconnected (Figure 2b). This 
results in an increase in short-term interruptions for less than 3 
minutes. However, due to the increased automation levels, 
most costumers can be restored within 3 minutes (Figure 2c); 
effectively decreasing the regulated CI and CML. A 
description of the restoration protocols based on the enhanced 
automation and information infrastructure associated with the 
C2C method can be found in [15][33]. Information from Trials 
to date suggest that the increased short-term interruptions have 
not been noticed by customers, potentially due to the low 
frequency of contingencies (once every three years or even 
less frequently) [34].  

In light of this, the C2C method is a DR application that 
allows DNOs to operate the networks beyond traditional 
security limits by, for instance, allowing (immediate) new 

connections without investing in costly additional network 
security capacity. Security limits are still met by disconnecting 
DR customers during emergency conditions whenever needed. 
This does not imply that DR customers will be disconnected 
after every contingency occurs. In fact, DR would only be 
needed if the contingency occurs near the yearly peak times 
when demand is close to the security constrained firm capacity 
of the network. Considering that these peak time conditions 
only occur a couple of hours per year (typically in winter in 
the UK) and that contingencies are infrequent (one event every 
three years or less frequently), DR would seldom be required. 
Regardless, DR customers would still receive periodic 
payments for their availability, which can make post-
contingency DR attractive for some customers [15][35][36]. It 
is worth noting that all customers connected to the C2C trial 
networks were considered potential DR providers. That is, 
C2C contracts were offered to existing and new customers 
subject to the DR needs of the network (i.e., DR is not 
contracted when it is not required). These customers were 
offered reduced connection charges (for new customers), 
lower distribution fees, direct payments and other 
combinations of incentives with an average value of 23 
k£/MW peak per year (see [37] for an overview of customer 
engagement studies and payment options). 

In this work, in line with what is actually implemented in 
the C2C project, the DR costs (𝐶𝐷𝑅) are assumed to comprise 
an investment in an enhanced automation and reconfiguration 
scheme for the network (𝐶𝐷𝑅𝑁𝑒𝑡𝑤𝑜𝑟𝑘), customer automation 

(𝐶𝐷𝑅𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟) and an annual payment for DR customers 

(𝐶𝐷𝑅,𝑦), as shown in (9).  
 𝐶𝐷𝑅 = 𝐶𝐷𝑅𝑁𝑒𝑡𝑤𝑜𝑟𝑘 + 𝐶𝐷𝑅𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 + ∑ 𝐶𝐷𝑅,𝑦𝑛=1  

 
These costs are introduced into Ofgem’s CBA as parts of 

the investments associated with one of the n-th solutions (𝐶𝑛,𝑦) 
(i.e., the C2C solution in this case). 

4.  RECURSION BASED NETWORK PLANNING METHODOLOGY 

The introduction of DR (and other smart active solutions) 
adds complexity to the formulation of distribution network 
upgrade strategies, as DR could be deployed as an alternative 
to or in combination with traditional line and substation 
reinforcements. The latter may be particularly attractive as DR 
can defer or avoid costly upgrades, whereas low cost upgrades 
could reduce the amount of DR eventually required. 

Two algorithms deployed in a bespoke recursive function 
are proposed in this work as a means to emulate business-as-
usual planning practices and optimise (using a novel 
optimisation engine) investment strategies in smart 
distribution networks. The recursive function can be 
implemented in most commercial programming environments 
(e.g., C++, Java) and has been specifically implemented in an 
open source Matlab tool. The tool, which is available at [22] 
as accompanying material to this paper, can thus enable DNOs 
to perform comprehensive business-as-usual planning 
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Figure 3:  High level flow diagram of the proposed method. 

practices automatically, as well as complex optimisations 
without the need of dedicated optimisation software. 
Furthermore, since, as aforementioned, recursive functions are 
based on simulations rather than formal mathematical 
programming techniques, DNOs can readily implement 
detailed and relatively complex models of different solutions 
(e.g., the C2C method) and regulatory frameworks (e.g., 
Ofgem’s CBA).  

This section provides a general overview of the proposed 
recursive function, and its permutations for smart distribution 
network planning (considering DR options) based on the 
“business-as-usual” and “optimisation” algorithms. 

4.1.  Overview of the proposed recursive function 

Generally speaking, a recursive function is a function that 
creates copies of itself (instances) [18][19]. This type of 
functions can solve a problem by dividing it into smaller sub-
problems that are addressed by “child” instances. Each “child” 
instance further divides the problems into even smaller sub-
problems addressed by additional “child” instances, and so 
forth. Eventually, termination conditions are reached when the 
sub-problems are small enough to be solved, and each sub-
problem has been addressed by an instance. At this point, each 
instance reports the solution of its sub-problem to its “parent” 
instance, which devises a solution (for a larger sub-problem) 
using the information provided by all its “child” instances and 
reports this solution to its own “parent” instance. This process 
is repeated until the information reaches the original recursive 
function, which receives enough information to solve the 
complete problem. Accordingly, recursive functions can solve 
large problems using information from the collaborative 
operation of all instances [18][19]. That is, a relatively simple 
recursive function can handle large and complex problems, as 
the problem addressed by each instance is greatly simplified.  

It is important to note that iterative approaches can be used 
as an alternative to recursive functions [38][39]. On the one 
hand, iterative approaches may be faster and easier to code 
than recursive functions for some applications. On the other 
hand, the simplifications made by recursive functions (i.e., 
each instance only addresses a given set of interventions 
subject to a specific load profile) can be easier to understand 
and more suitable to the operation of DNOs. Furthermore, (i) 
computational complexity is not an issue for the proposed 
algorithm under the realistic conditions explored in this work 
(see Section 5.4), as it can normally find solutions within a 
couple of minutes, and (ii) recursive functions tend to 
facilitate the analysis of decision trees, which is critical for the 
potential future applications of the proposed approach 
explored in Section 5.5. 

In light of the above, this work proposes a methodology 
based on a simple recursive function that can address the 
complex distribution network planning problem. Generally 
speaking, the proposed methodology (see Figure 3) consists of 
preparing all inputs required by the function, and initialising 
and calling the recursive function (see also the case study file 
in [22]). 

The inputs considered in this work are based on the 

information that would normally be collected by DNOs via a 
preliminary network analysis to populate Ofgem’s CBA 
framework [40]. More specifically, the inputs are calculated 
off-line and comprise a list of interventions selected for the 
study (e.g., network and substation upgrades and the C2C 
method), as well as information relevant for the calculation of 
power flows (e.g., for the estimation of power losses, and 
network and substation capacity voltage, thermal and security 
limits), network reliability, carbon emissions and economic 
indicators in light of a particular demand growth scenario. 
This information should and can readily be updated within the 
accompanying Matlab scripts if other solutions or assessment 
frameworks are to be used (see also the input file in [22]). 

Once the inputs have been defined via off-line studies, the 
recursive function is initialised by setting the initial year of 
study to zero (𝑦 = 0), and defining that none of the n-th 
potential interventions has been recommended (𝑛 = 0) and a 
solution is yet to be found (𝑁𝑃𝐶 = ∞). The instance that 
receives this information defines itself as the original recursive 
function and creates instances of itself (children, 
grandchildren and so forth) to find an investment strategy, 
which comprises a set of recommended interventions 
throughout every year defined in the load growth scenario. For 
this purpose, the recursive function and all of its instances use 
the following three stages process (see Figure 3 and Figure 4):  
1. Internal process: At this stage, the recursive function 

(or any instance) models the distribution network in a 
single specific year. For example, the original recursive 
function would assess the current network without 
interventions under existing demand conditions (i.e., year 
zero). The assessment involves the estimation of costs, 
power losses and other parameters relevant to Ofgem’s 
CBA (see (1)–(9)) for the specific network under 
assessment in a particular year. This process also 
involves assessing the feasibility of the network in terms 
of voltage, thermal and security limits. 

End 

Initialize recursive function: 
- y=0 (year zero) 
- n=1 (current system conditions) 
- NPC=∞ (No solution found yet) 

 

Inputs: 
- List of interventions (𝑛  ∀(𝑛 ∈ 𝑁)) 
- Network characteristics   -power flows 
-Carbon emissions        -Economic data 
-Demand growth scenario -Reliability data 

 

Recursive function: 
- Termination 
- Internal process 
- Recursions 
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Figure 4:  High level flow diagram of the recursive function used 

under either business-as-usual or optimisation mode. 

2. Recursions: The operation of the recursive function 
varies depending on whether the function is using the 
business-as-usual or the optimisation algorithms (this is 
discussed in detail in the next subsections). However, 
generally speaking, at this stage the function formulates 
different combinations of the n-th available interventions 
denoted in a list 𝑛  ∀(𝑛 ∈ 𝑁) (e.g., doing nothing, 
deploying the C2C method, reinforcing the network 
and/or upgrading the substation) and creates “child” 
instances to assess them. Following the example, the 
original recursive function would create “child” instances 
to assess each available intervention or combination of 
interventions in the next year (year 1). Each “child” 
instance would create additional “child” instances to 
assess interventions in year 2 and so forth until 
termination conditions are met.  

3. Termination: An instance terminates if (i) it has reached 
the end of the planning horizon (45 years for UK 
distribution networks), (ii) it is not allowed to create 
“child” instances or (iii) all its “child” instances have 
terminated. Reaching the end of the planning horizon 
implies that a feasible investment strategy has been 
formulated; in which case the instance assess the 
investment strategy (based on Ofgem’s CBA in this 
work; although other approaches can be used) and 
reports the results to its “parent” instance (e.g., NPC and 
investment strategy). An instance may not be allowed to 
create “child” instances based on constraints imposed in 
the business-as-usual or optimisation algorithms 
(discussed below); in which case the instance reports that 
a feasible investment strategy could not be found (i.e., 
NPC=∞). Finally, an instance may receive feedback from 
all its child instances (i.e., NPCs and investment 
strategies); in which case it reports the most attractive 
result (investment strategy with the lowest NPC) to its 
“parent” instance. 

This three stages process is used for two planning 
applications, namely, to emulate business-as-usual practices as 
well as to optimise investment strategies based on two 
algorithms, as is discussed in detail in the following 
subsections. 

4.2.  “Business-as-usual” recursive algorithm 

Based on business-as-usual practices, the distribution 
networks are only upgraded whenever the normal operation of 
the network becomes infeasible; moreover, only the cheapest 
available solutions are implemented. That is, capital 
investments are only made to upgrade networks whenever 
additional firm capacity (or in case DR as an example of smart 
active solution) is needed to ensure that the networks meet 
technical and performance standards (as dictated by 
regulations and P2/6 engineering recommendations in the 
UK). The recursive algorithm proposed to emulate business-
as-usual practices uses the logic presented in Figure 4 when 
the switches are turned to the right (i.e., connecting the lines 
marked as “Business-as-usual mode”). 

In this case (see Figure 4), the recursive function (and all its 

instances) would only propose interventions when needed to 
meet thermal, voltage or security considerations (i.e., 
feasibility). For example, assume that the current network is 
feasible throughout the demand growth scenario considered. 
In this case, after initialisation (see Figure 3), the function 
would begin by modelling the network in year zero. As the 
network is feasible in this year, the function would only create 
one instance to assess the current network in year one (this is 
achieved by setting 𝑛𝑀𝑎𝑥 = 𝑛). All subsequent instances 
would do the same until reaching termination conditions (in 
year 45, in the specific case); in which situation they would 
report that the best alternative (the only alternative considered 
in this case) is to avoid deploying any intervention. Now 
assume that the network is infeasible in a given year. In such a 
case, the relevant instance would consider the deployment of 
the n-th available interventions (𝑛𝑀𝑎𝑥 = 𝑁 or a subset of 𝑁) 
as a means to meet feasibility, and would call “child” 
instances to address each potential intervention. This time, 
several instances may reach termination conditions; in which 
case several investment strategies with different associated 
NPCs would be identified. The relevant “parent” instances 
(ultimately the original recursive function) would select the 
investment strategy with the lowest NPC. 

This operation is in line with business-as-usual practices as 
interventions are only triggered by feasibility considerations 
and only the lowest cost investment strategy is selected. 
However, the proposed approach can be considered an 
improvement compared with existing planning approaches, as 
it systematically assesses a wide range of available 
alternatives. In practice, only a limited number of investment 
strategies may be considered, as the project planner may have 
to formulate and assess each strategy manually. 
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Figure 5: The Whalley 6.6 kV distribution network. 

 
 

4.3.  “Optimisation” recursive algorithm 

The proposed recursive function can operate as an 
optimisation engine using the logic presented in Figure 4 when 
the switches are turned to the left (i.e., connecting the lines 
marked as “Optimisation mode”). 

The optimisation technique used by the recursive function 
is similar to an exhaustive search as it considers all potential 
combinations of interventions throughout the planning 
horizon. On the one hand, this is the most straightforward and 
robust optimisation technique available as it is simple to 
understand (and easy to explain to DNOs, regulators and other 
actors) and guarantees finding the optimal solution under all 
conditions (even for complex mixed integer, nonlinear and 
nonconvex problems). On the other hand, this approach tends 
to be overlooked (particularly for academic applications) due 
to its simple nature and because it can be computationally 
expensive or even infeasible in most applications [41][42]. In 
this light, the recursive function has been designed to 
significantly reduce the computational costs of the search by 
systematically terminating all instances that face an infeasible 
investment strategy (e.g., in this work, whenever the network 
fails to meet P2/6 recommendations), which also prevents 
them from spreading. In other words, rather than using a full 
exhaustive search that can be computationally prohibitive, the 
recursive function uses a smarter reduced search that 
minimises computational burden while still guaranteeing 
optimality. Thanks to this adjustment, the methodology 
modifies the simple and clear exhaustive searches for 
modelling the complex distribution planning problem under 
realistic conditions.  

As an example, assume again a network that is feasible 
throughout the planning horizon. After initialisation (see 
Figure 3), the original recursive function would create “child” 
instances to assess the different potential interventions to be 
deployed in year 1 (i.e., considering 𝑛𝑀𝑎𝑥 = 𝑁). Most of these 
“child” instances would have fewer alternatives to upgrade the 
system as some interventions would become infeasible (e.g., 
NOP automation cannot be deployed twice, lines cannot be 
reinforced to a lower capacity level, and so forth). 
Accordingly, the number of feasible interventions drops 
rapidly after a few generations of “child” instances. Now 
consider that the current distribution network is infeasible in 
some years subject to the demand growth scenario, as would 
be likely the case if the DNO is assessing alternatives to 
upgrade the system. This would lead to many infeasible 
conditions that would result in the early termination of 
numerous instances (which would not spread) and thus to a 
reduction of the search space and computational burden as 
only a few instances would reach termination at the end of the 
planning horizon. As in the business-as-usual case, after 
reaching termination conditions, the instances report their 
findings to their “parent” instances and this information 
exchange procedure ultimately allows the recursive function 
(now in optimisation mode) to identify the most attractive 
investment strategy. 

Based on the above, the computational burden associated 
with the application of the proposed optimisation algorithm is 

expected to be modest when assessing realistic distribution 
networks that may require upgrades in the short-term. Further 
discussion is provided below (i.e., Section 5.4), where the time 
complexity of the algorithms is tested under different 
conditions. 

5.  CASE STUDIES 

In this section, a real UK distribution networks (i.e., one of 
the 36 C2C trial networks) is used to illustrate the capabilities 
of the proposed methodology to emulate business-as-usual 
practices and optimise investment strategies also considering 
DR options. It is shown that the use of an optimisation engine 
greatly increases the economic attractiveness of smart DR 
based solutions (e.g., the C2C method in this case). 
Afterwards, the robustness of the approach to handle different 
types of systems and the associated time complexity are tested 
by extending the case study to all 36 C2C trial networks. 
Finally, the flexibility of the methodology (particularly of the 
optimisation engine) to handle complex planning problems is 
shown by explicitly modelling demand growth uncertainty 
(i.e., using scenario trees) and risk management (i.e., using the 
opportunity loss criterion also known as minimax regret). 

5.1.  Case study description  

As showed in Figure 3, the first step of the proposed 
methodology is to define the relevant inputs for the assessment 
of a particular distribution network based on the 
characteristics of the network and several preliminary 
analyses. 

For this example, consider the Whalley Range network, 
which is a 6.6 kV distribution network comprising 10 feeders 
(32 nodes) connected to a 26.50 MW substation. This study 
focuses on two of these feeders (see Figure 5), which are 
currently being used for C2C trials and supply 4131 customers 
(mainly urban customers). 

The DNO responsible for this network (i.e., ENWL) 
envisions three potential demand growth scenarios, which may 
result in demand exceeding the firm capacity of the substation 
and lines of this system as shown in Figure 6 [43].  

It can be seen in the figure that firm capacity of the lines is 
expected to be reached after demand grows by 3% and, if the 
lines are reinforced (i.e., in this case up to 800m of the 3km of 
lines – mostly near the point of connection – can be 
reinforced), firm capacity would be reached once again after a 
22% demand growth. The costs of the first and second line 
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Figure 7: Expected power losses associated with different network 

configurations, upgrades and reinforcements. 
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Figure 8: Example of  CI and CML associated with different network 

configurations and automation levels, and use of DR. 
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Figure 6: Scenarios considered for the study. 
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reinforcements are estimated to be 63 k£ and 84 k£, 
respectively, and the associated planning and construction lead 
time is expected to be two years. Substation firm capacity 
would instead be reached after demand increases by 10%. 
Reinforcing the substation costs 338 k£ and takes roughly 
three years. 

The network and substation costs and capacities were 
determined based on inputs from ENWL and conventional AC 
power flow calculations (MatPower [44] was used; however, 
other tools could be used). For this purpose the hourly power 
flows of the network were sequentially simulated throughout a 
year (i.e., 8760 simulations) in light of the demand growth 
scenarios (three scenarios for 45 years)1. Firm capacity was 
thus determined based on thermal and voltage limits, and 
security considerations based on P2/6 criteria [23] (i.e., 
assuming the potential failure of the lines connected to the 
point of connection) and emergency ratings (i.e., the elements 
can withstand a 20% overload above their firm capacity for up 
to two hours within a 24 hours period). The power flow 
calculations (only for normal operation) were used to 
determine relevant power losses associated with the substation 
and the network. See Figure 7 for an overview of the power 
losses associate with different configurations and 
reinforcements.  

The characteristics of the considered DR intervention were 
determined based on information from the C2C trial networks 
to date. Accordingly, the DR intervention costs are assumed to 
comprise (i) a single payment of 19 k£ for upgrading the 
network’s automation levels (including automating the NOP), 
(ii) a single payment of 24 k£/MW for customer automation 
and (iii) an annual payment of 23 k£/MW for the availability, 
administration and billing of peak DR capacity. The lead time 
for planning and deploying the DR intervention is estimated to 
be roughly a year. It is considered that there is sufficient DR 
capacity available to meet future demand needs without 
reinforcing the network in any scenario; although it may be 
costly to deploy the required amount of DR in some cases. 

The CI and CML reliability indices were calculated based 
on sequential Monte Carlo simulations subject to different 
levels of DR availability (expressed in %) and considering 

                                                           
1 For the sake of computational efficiency, overlapping power flows 

associated with the same demand growth in different years and scenarios were 
taken from the same simulation. 

typical radial networks without automation and ring networks 
with increased automation levels [45]. However, in practice, 
estimates of these parameters based on DNO’s experiences 
may also be used. An example of the CI and CML calculated 
for this case study is presented in Figure 8.  

Based on recommendations and inputs from Ofgem 
[26][27], power losses are priced at 48.42 £/MWh, CI at 
£15.44 per interruption and CML at £0.38 per minute lost. 
Annual forecasts for greenhouse gasses conversion factors 
(e.g., 0.503 t/MWh in 2016) and traded carbon prices (£/t in 
2016) were also taken from Ofgem’s CBA [26]. See [22][40] 
for further details on the inputs needed to populate Ofgem’s 
CBA and the recursive function used in this study. 

 

5.2.  Results from the recursion algorithms  

After being initialized (see Figure 3), the proposed 
recursive function first uses the business-as-usual algorithm to 
formulate Traditional and Active investment strategies. The 
Traditional investment strategies (Table I) comprise line and 
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Table I: Description of the Traditional investment strategy. 

Scenario Description 

1 Reinforce the lines in year 4, upgrade the substation in year 9 
and reinforce the lines again in year 18. 

2 Reinforce the lines in year 9 and the substation in year 17. 
3 Reinforce the lines in year 5. 

 
Table II: Description of the Active investment strategy. 

Scenario Description 

1 DR intervention in year 4. 
2 DR intervention in year 9. 
3 DR intervention in year 5. 

 
Table III: Description of the OTrad strategy. 

Scenario Description 

1 Reinforce the lines in year 4 (double reinforcement), upgrade 
the substation in year 9. 

2 Reinforce the lines in year 9 and the substation in year 17. 
3 Reinforce the lines in year 5. 

 

Table IV: Description of the OSmart strategy. 

Scenario Description 

1 DR intervention in year 1, reinforce the lines in year 4 
(double reinforcement) and upgrade the substation in year 
13. 

2 DR intervention in year 1 and line reinforcement in year 9. 
3 DR intervention in year 1. 

 
Table V: NPC comparison of the different strategies. 

Scenario NPC (£ x 103) 
Traditional Active Smart OTrad OSmart 

1 918 1229 918 899 794 
2 757 718 718 757 527 
3 545 475 475 545 465 

 
Table VI: Potential NPC savings (%) from using optimised strategies. 

Scenario OTrad savings 

compared with: 
OSmart savings compared with: 

Traditional Smart Traditional Active OTrad 

1 2% 13% 13% 35% 12% 
2 0% 27% 30% 27% 30% 
3 0% 2% 15% 2% 15% 

 

substation reinforcements deployed before reaching firm 
capacity subject to planning and construction lead times. 
Similarly, the Active strategies (Table II) avoid traditional 
interventions by deploying DR interventions. In practice, 
DNOs would use the business-as-usual approach to assess 
different strategies to select the most attractive alternative. 
Accordingly, a Smart strategy for the business-as-usual case is 
formulated as the best alternatives between the Traditional 
and Active strategies in terms of their associated NPC. 

As a second step, the recursive function uses the 
optimisation algorithm to improve the Traditional and Smart 
strategies (considering decision nodes for the first 20 years of 
the planning horizon). For example, the optimised Traditional 
(OTrad) strategy now has the flexibility to perform 
interventions and oversize reinforcements to mitigate social 
costs even before reaching firm capacity. As shown in Table 
III, this flexibility allowed the OTrad strategy to oversize the 
network in Scenario 1. 

The optimised Smart (OSmart) strategy has the flexibility 
to combine traditional and active solutions. As shown in Table 
IV, this strategy tends to combine the different solutions and 
even deploy them before firm capacity is reached. This is 
expected to provide economic gain from deferred (or avoided) 
reinforcements and reduced DR costs, as well as significant 
social benefits in terms of losses reductions as shown in 
Figure 7. For example, when performing DR interventions 
before firm capacity is reached, only network automation costs 
are initially incurred, as the associated annual availability 
payment for DR customers (and customer automation) can be 
postponed until firm capacity is reached. 

The performance of the different investment strategies in 
the different scenarios in terms of their NPC are presented in 
Table V. 

Based on business-as-usual practices, the Traditional 
strategy only outperforms the Active strategy in Scenario 1 
where significant demand growth results in high DR 
availability payments. In other scenarios, more modest DR 
payments allow the deferral and/or avoidance of some 
traditional solutions, which makes the Active strategy more 
economically attractive than the Traditional strategy. In this 
case, DR interventions are only considered as alternatives to 
potentially costly traditional reinforcements, which results in 
deploying the Traditional strategy in Scenario 1 and the Active 
strategy in Scenario 2 and Scenario 3 as a Smart strategy for 
business-as-usual practices.  

Based on the optimised strategies, it can be seen that 
optimising the Traditional strategy provides little value (only 
in Scenario 1 in this example). This is attributed to the little 
value to be gained from the flexibility to deploy costly 
traditional line and substation reinforcements before firm 
capacity is reached. However, once DR interventions are also 
considered, the optimisation engine can formulate 
economically attractive combinations of traditional and active 
smart solutions deployed at different times (e.g., deploying 
DR interventions to avoid costly reinforcements and deploying 
the cheapest reinforcements to mitigate DR costs). As a result 
of this flexibility, the OSmart strategy outperforms all other 

strategies in all scenarios, as shown in Table V and Table VI. 
This highlights that the use of an optimisation engine is 
particularly attractive in light of smart active solutions such as 
the C2C method. It is worth noting that the results presented in 
this section can be replicated using the case study file 
provided in [22]. 

5.3.  Sensitivity studies  

With the aim of testing the robustness of the proposed 
recursive function, the case study is extended here to all 36 
C2C trial networks under different conditions. More 
specifically, sensitivity studies of the key assumptions (i.e., 
line and DR costs) are performed to demonstrate the 
robustness of the proposed tool, as well as to highlight the 
conditions that encourage or discourage the use of the DR and 
the optimisation algorithm.  

The sensitivity studies address normal conditions based on 
current costs estimates for each network, as well as two 
adverse conditions for DR. The adverse conditions represent 
cases where traditional line reinforcement costs are reduced to 
only 25% of their estimated value and DR costs are increased 
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Table VII: Average expected NPC performance of the different 

strategies in the 36 trials and networks subject to different conditions. 

Conditions Scen. NPC (£x103) 

Traditional Active Smart OTrad OSmart 

Normal 
1 1164 1373 1164 1159 945 
2 890 811 811 889 588 
3 597 555 555 597 469 

25% line 
costs 

1 1045 1373 1045 1043 838 
2 819 811 811 819 518 
3 519 555 519 519 423 

200% DR 
costs 

1 1164 2094 1164 1159 980 
2 890 1033 890 889 633 
3 597 561 561 597 472 

 

Table VIII: Average savings from adopting optimised strategies in the 

36 trials and networks subject to different conditions. 
Condition Scenario OTrad savings 

compared 

with: 

OSmart savings compared 

with 

Traditional Smart OTrad 

Normal 
1 0.5% 19% 18% 
2 0.1% 27% 34% 
3 0.1% 16% 21% 

25% line 
costs 

1 0.2% 20% 20% 
2 0% 27% 37% 
3 0% 16% 18% 

200% DR 
costs 

1 0.5% 16% 15% 
2 0.1% 39% 29% 
3 0.1% 16% 21% 

 

to 200% of their original value. These conditions challenge the 
DR intervention, which is a low cost alternative to defer or 
avoid costly network interventions. It is important to note that, 
even though other key parameters, such as substation 
headroom and DR availability could be addressed (see [43] for 
additional sensitivity studies using other tools), the most 
critical conclusions for this work can be drawn from the three 
conditions selected.  

The results in Table VI and Table VII show that, under 
normal conditions and using the business-as-usual algorithm, 
the performance of the Traditional and Active strategies and 
the associated Smart strategy follow the same trend as in the 
previous case study. However, in other cases, the DR 
intervention becomes unattractive as an alternative to avoid 
cheap and few reinforcements (Scenario 3 under 25% line 
costs conditions) or too expensive to compete with typically 
costly reinforcements (Scenario 2 under 200% DR costs 
conditions). This implies that, in order to deploy smart 
solutions under business-as-usual practices, it is critical to 
identify the conditions that make these solutions economically 
attractive. For instance, even if a DR intervention is deemed 
attractive in Scenario 2 under current conditions, DNOs would 
be hesitant to follow this strategy if DR costs are uncertain as 
the solution may become too costly in the future. 

Now, using the optimisation algorithm to improve the 
different strategies, it can be corroborated that optimising the 
Traditional strategy to create the OTrad strategy provides 
little value under most conditions. Conversely, the OSmart 
strategy, which considers both traditional and active smart 
solutions, is still significantly more attractive than other 
strategies, even subject to adverse conditions for DR 
interventions (see Table VIII). 

The results in Table VIII show that the OSmart strategy 
outperforms all other solutions by at least 15% in all cases 
considered in this study. This strategy can be significantly 
valuable under both adverse and favourable conditions for DR 
interventions, as it can combine active smart and traditional 
solutions to limit the costs of either solution should it become 
capital intensive. These results clearly show that the use of 
simple but practical planning methodologies such as the one 
presented in this work can facilitate significant costs savings 
for DNOs (and customers) via an improved utilization of 
smart solutions compared with business-as-usual practices.  

5.4.  Computational complexity 

The sensitivity studies presented above (i.e., 324 
simulations comprising 36 networks assessed in 3 scenarios 
under 3 different conditions) were performed in roughly 21h 
using an i5-3470 3.2GHz processor and 4GB of RAM. In 
addition, 10h of simulations were required to perform the off-
line studies required for populating the recursive function (see 
inputs file in [22]). These off-line studies included (i) loading 
network and solution data (from excel) and formatting the data 
to meet Matlab requirements, (ii) formulating profiles with an 
hourly resolutions for the annual demand growth forecasted in 
each scenario, (iii) performing power flow studies based on 
the demand profiles (hourly resolution for every year in the 

scenario) and network configurations (i.e., radial or ring) and 
reinforcements and (iv) performing sequential Monte Carlo 
simulations (in average 400 000 contingencies are simulated 
per network) based on the different profiles, configurations, 
reinforcements and DR levels. It is worth highlighting that 
these studies can be performed in parallel (for different 
networks and conditions), which can significantly reduce 
computational time if suitable computing resources are 
available. 

The time required for the studies is clearly acceptable for 
planning purposes. However, this may not be true in other 
cases where networks of different sizes and different number 
of interventions and decision nodes may be considered. 
Accordingly, the sensitivity studies were repeated for the 36 
networks available and assuming different number of 
interventions and decision nodes.  

The size of the networks considered (ranging from 10 to 
133 nodes) mainly impacts the time required to perform off-
line studies as shown in Figure 9.  In this work, the time 
required for the off-line studies associated with most networks 
was less than 10 minutes, while longer computational time 
(roughly an hour) was required for three of the largest 
networks. The specific network configuration can of course 
also affect the load flow convergence, which can be seen in 
terms of “spikes” in Figure 9. This effect challenges the 
validity of particular trend lines to estimate the effects that 
larger networks may have on the time complexity of the 
algorithm. Regardless, taking a pessimistic point of view, it 
may be reasonable to assume exponential growth. 
Accordingly, based on an exponential curve fitted to the data 
presented in Figure 9, one hour and 24h of off-line studies are 
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Figure 10: Time required to find optimal (e.g., OTrad and OSmat) 

investments based on a different number of A) decision nodes and B) 

interdependent interventions. 
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Figure 9: Time required for the off-line calculations and recursive 

function based on the size of the networks. 
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expected for the analysis of networks with roughly 150 nodes 
and 416 nodes, respectively. In general, it is important to 
emphasize that off-line computational time can vary 
significantly depending on the specific software used and 
dedicated power system simulation tools are likely to result in 
reduced computational time with respect to the use of Matlab 
(Matpower) as done here. 

The results in Figure 9 also highlight that, due to the 
particular use of off-line studies, in this study, the impact of 
the size of the network on the time required by the recursive 
function is not significant. Nevertheless, the analysis of larger 
networks may require the consideration of an increased 
number of interventions. This can affect the computational 
complexity of the recursive function as explored below. 

The results presented in Figure 10 show the time 
complexity of the recursive algorithm as a function of the 
number of decision nodes under consideration and 
interventions. The number of decision nodes indicate the 
periods (years in this example) within the planning horizon 
(45 years) when interventions can be made (i.e., C2C, line 
reinforcements and substation upgrades in this exercise). For 
example, interventions can be made from year 1 to year 20 in 
the 20 decision nodes case. It is worth noting that, even though 
decision nodes can be placed in any other years (e.g., every 
two years from year 1 to year 39), in this work decision nodes 
have been placed annually at the beginning to the planning 
horizon because (i) interventions are seldom required in the 
long-term (i.e., after 20 years) due to the demand growth 
scenarios under consideration, (ii) intervention in the long-
term have a low value due to discounting and (iii) the largest 
search space (and most computationally demanding analysis) 
can typically be found by placing the decision nodes at the 
beginning of the planning horizon. 

The consideration of additional interventions is expected to 
increase the computational complexity of the algorithm, 
particularly if the interventions are interdependent (e.g., line 
reinforcements and the C2C method). In order to illustrate this 
effect, consider the flexibility that the C2C method provides to 
the distribution planner to defer line reinforcements. Similarly, 
line reinforcements provide headroom to defer implementing 
the C2C method. This effect increases the size of the feasible 
search space that the recursive function must explore 

compared with other cases with independent interventions 
(e.g., line and substation upgrades). Accordingly, with the aim 
of taking a pessimistic approach, the impact of the number of 
interventions on computational complexity is assessed using 
interdependent interventions. More specifically, one (C2C), 
two (C2C and line reinforcement) and three (C2C and line and 
substation upgrades) interventions are considered. 

It can be seen (from Figure 10) that the time required by the 
function to find a solution is heavily influenced by the 
characteristics of the scenarios.  Fast demand growth scenarios 
(i.e., Scenario 1) require the deployment of solutions in the 
short-term, which in turn allow the algorithm to neglect 
significant sections of the search space and reduce 
computational burden. Conversely, planning the network in 
scenarios with little or no short-term demand growth (i.e., 
Scenario 2) requires the consideration of larger sections of the 
search space. Accordingly, as mentioned before, the proposed 
approach is more attractive for the planning of networks that 
may require upgrades in the short-term. It is worth noting that 
these impacts of the scenarios on the performance of the 
engine highlight the benefits from smartness to reduce the 
search space based on the conditions of the system. Without 
this intelligence, the performance of the exhaustive search 
would be independent of the scenario, as it would always 
explore all potential combination of conditions (potentially 
becoming computationally infeasible). 

Based on the pessimistic data of Scenario 2, the relevant 
time complexity can be approximated with a quadratic 
function. This can be attributed to the ability of the algorithm 
to reduce the search space; otherwise, the growth would be 
exponential. Based on the quadratic growth, the proposed 
algorithm is expected to find optimal solutions within an hour 
for cases with up to 58 decision nodes or 6 interventions. The 
algorithm would also be expected to find solutions for up to 
270 decision nodes and 50 interventions in roughly 24 hours. 
Taking a more pessimistic approach and assuming time 
complexity grows exponentially, the function is expected to 
find optimal solutions for studies with up to 35 decision nodes 
and 3 interventions within an hour, and up to 5 interventions 
or 50 decisions nodes in about 24 hours. 

The results provide strong evidence that the time 
complexity of the algorithm is acceptable for planning 
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Figure 11: Smart investment strategy for a scenario tree. 
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purposes. In addition, the computational burden of the 
proposed function could further be reduced based on 
techniques (e.g., as those used with branch-and-bound 
algorithms [15][46]) to select the most relevant areas of the 
search space to explore first, and terminate instances before 
reaching the end of the planning horizon. Another 
modification to the algorithm that may reduce computational 
burden (requiring changing the algorithm so as to focus on the 
whole problem rather than on reduced sub-problems addressed 
by instances) is the use of iterations instead of recursions 
[38][39]. The abovementioned potential improvements to the 
proposed algorithm are left for future work. 

5.5.  Additional applications 

The studies presented so far highlight the robustness of the 
proposed recursive function to be applied under a wide range 
of conditions that are in line with current planning practices 
(e.g., considering independent scenarios and risk neutrality). 
However, the introduction of publically available optimisation 
engines such as the proposed recursive function may allow 
DNOs to perform more detailed and realistic (but complex) 
planning studies. More specifically, the proposed 
methodology allows the introduction of (i) bespoke models 
and constraints (as most optimisation software and engines do) 
and (ii) complex nonlinear, nonconvex and/or integer 
problems (e.g., the power flow constraints and DR 
intervention models), which can be challenging to address by 
commercial software. 

Based on the above and as an illustrative example of how 
planning practices could evolve in light of the availability of 
flexible optimisation engines, the proposed recursive function 
is extended to explicitly address uncertainty and risks. 

In this work, uncertainty is modelled under the rationale 
that demand growth can be reasonably predicted in the short 
term, whereas it can change substantially in the long term. 
This is consistent with realistic conditions faced by DNOs as 
emerging new solutions that can greatly impact the 
distribution level in the long term (e.g., deployment of energy 
efficiency, electric vehicles, renewables and so forth), would 
take several years to materialise and would, thus, have a 
negligible impact in the short term. Accordingly, DNOs may 
be interested in investment strategies that are robust enough to 
meet demand growth in the short term, and flexible enough to 
be adjusted (at low costs) to the scenario that materialises in 
the long term. These types of flexible investments can be 
produced with the proposed recursive function if extended 
with scenario trees [47][48]. 

A scenario tree uses a limited number of scenarios (one in 
this case) to model short term uncertainty, whereas long term 
uncertainty is modelled by dividing the scenarios into several 
branches (three in this case). Such a tree (see Figure 11) is 
included in the proposed recursive function by modelling 
demand (𝐷𝑒𝑚𝑦) with (10) during a single (low uncertainty) 

scenario that lasts 𝑇 years (5 years in this example), while 
using (11) to create branches connecting to three different 
(high uncertainty) demand scenarios right after year 𝑇 (i.e., 𝐷1,𝑦, 𝐷2,𝑦 and 𝐷3,𝑦), and using (12) to allow demand growth to 

follow the specific scenarios afterwards.  
 𝐷𝑒𝑚𝑆𝑐𝑒𝑛,𝑦 = 𝐷𝑆𝑐𝑒𝑛,𝑦     ∀𝑦 ≤ 𝑇, 𝑆𝑐𝑒𝑛 = 1 
 𝐷𝑒𝑚𝑆𝑐𝑒𝑛,𝑦 = {𝐷1,𝑦𝐷2,𝑦𝐷3,𝑦}     ∀𝑦 = 𝑇 + 1, 𝑆𝑐𝑒𝑛 = 1 

 𝐷𝑒𝑚𝑆𝑐𝑒𝑛,𝑦 = 𝐷𝑆𝑐𝑒𝑛,𝑦     ∀𝑦 > 𝑇 + 1, 𝑆𝑐𝑒𝑛 ∈ [1,3] 
 
After the aforementioned modifications, the recursive 

function and its instances now create “child” instances in light 
of available scenarios (as well as available interventions) in 
every year and the “parent” instances map the scenario tree 
based on the feedback provided by each “child” instances2. 
Accordingly, considering the aforementioned scenario tree and 
the recursive function in optimisation mode, it is 
recommended to deploy a DR intervention in year one. 
Afterwards, it is recommended to reinforce the lines in year 6 
(double reinforcement) and upgrade the substation in year 9 in 
Scenario 1, and reinforce the lines (single reinforcement) in 
year 9 in Scenario 2 (see Figure 11).  

This strategy uses DR to manage demand growth in the 
short term, while providing flexibility for the DNO to avoid 
further investments (Scenario 3), perform low cost 
interventions (Scenario 2) or costly interventions (Scenario1) 
in response to the unfolding of uncertainty. The investment 
strategy results in NPCs of 799 £x103, 528 £x103 and 466 
£x103 in Scenario 1, Scenario 2 and Scenario 3, respectively. 
That is, the average expected NPC of the investment strategy 
based on this particular tree is 598 £x103 (also assuming that 
all scenarios have the same probability of occurrence). These 
results can be replicated using the case study file provided in 
[22].  

The abovementioned strategy is the most attractive under 
uncertainty in terms of the average (risk neutral) NPC. 
However, in practice, the DNO may be risk averse and prefer 
strategies that minimise costs in the worst case scenario (i.e., 
799 £x103 in Scenario 1 in this example). In such case, risk 
management tools such as, for example, the opportunity cost 

                                                           
2 In other words, the recursive function can adapts to any type of scenario 

tree, regardless of its shape. 
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Figure 12: Smart investment strategy for a scenario tree considering a 

constraint for the maximum NPC in Scenario 1. 
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constraints represented by (13) and (14) (see [47][49] for more 
details) can be implemented as part of the internal processes of 
the recursive function in optimisation mode. Accordingly, a 
limit (𝐿𝑖𝑚𝑖𝑡) can be imposed on the opportunity cost 
(𝐶_𝑂𝑝𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1), namely the maximum NPC increase in the 
worst case scenario (Scenario 1 in this example) associated 
with optimising the investment strategy in light of the full tree 
(𝑁𝑃𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1𝑇𝑟𝑒𝑒 ) instead of the specific scenario 
(𝑁𝑃𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1𝑆𝑚𝑎𝑟𝑡 ). The introduction of such a constraint results 
in the formulation of the investment strategy presented in 
Figure 12. 

 𝐶_𝑂𝑝𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 = 𝑁𝑃𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1𝑇𝑟𝑒𝑒 − 𝑁𝑃𝐶𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1𝑆𝑚𝑎𝑟𝑡  
 𝐶_𝑂𝑝𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1 ≤ 𝐿𝑖𝑚𝑖𝑡 
 
In this case, the NPC in the worst case scenario (Scenario 

1) has been reduced to 795 £x103 (note that the minimum NPC 
in this scenario is 794 £x103), at the expense of increasing the 
expected NPC in Scenario 2 (now 545 £x103) and Scenario 3 
(now 487 £x103), as well as the average NPC (now 609 
£x103). These results can also be replicated using the case 

study file provided in [22]. 
It is worth emphasizing that the recursive function 

effectively operates as flexible optimisation software for 
distribution network planning. Accordingly, a wide range of 
interventions, constraints, scenarios and so forth can be easily 
modelled by including the relevant models in the provided 
open source recursive function model [22].  

6.  CONCLUSION 

This work has presented a distribution network planning 
methodology based on recursive functions and provided as an 
open-source Matlab tool that can emulate traditional business-
as-usual distribution planning practices and even optimise 
them, also considering the presence of smart solutions such as 
DR. The tool is based on exhaustive algorithms (typically 
overlooked due to their high computational burden) that have 
been extended through recursion theory to systematically 
reduce the search space and, thus, computational costs. This 
makes the methodology simple, easy to understand and highly 
powerful at the same time, facilitating its practical use by 
DNOs and therefore reaching outside the more traditional 
academic realm.  

A wide range of potential applications of the proposed 
recursive function have been illustrated based on real UK 
networks and the actual implementations of post-contingency 
DR for network support in the C2C project. Different scenarios 
and cases subject to current planning practices (presented as 
sensitivity studies) and new problems and proposed planning 
practices (i.e., considering scenario trees and risk management 
constraints) have been presented to illustrate the robustness 
and flexibility of the models proposed. 

The results show that the recursive function based on the 
business-as-usual is an improvement to traditional planning 
practices as it can systematically formulate and assess 
investment strategies. This process is currently done manually 

for a limited number of investment strategies. Furthermore, 
the recursive function can also improve the investment 
strategies by deploying an optimisation algorithm, which 
results in significant economic and social benefits particularly 
in light of smart active solutions (e.g., DR). The results also 
demonstrate that the proposed tool is robust enough to handle 
different types of networks under diverse conditions, as well 
as flexible enough to allow the consideration of additional 
constraints and considerations (e.g., scenario trees and risk 
management constraints). 

Work in progress aims at exploring detailed models for 
emerging smart interventions and new distribution planning 
practices, particularly to address uncertainty in more detail. 
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