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Abstract

Biometric hashing is a cancelable biometric verification method that has received research interest recently. This

method can be considered as a two-factor authentication method which combines a personal password (or secret

key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical

security and privacy attacks against biometric hashing when the attacker is assumed to know the user’s password in

order to quantify the additional protection due to biometrics when the password is compromised. We present four

methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the

closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit

compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing.

Previous literature introduced simple attack methods, but we show that we can achieve higher level of security

threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a

biometric image which resembles the original image. We quantify the performance of the attacks using detection

error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric

hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced

hash generation methods are necessary to avoid these attacks.

Keywords: Biometric verification, Biometric hashing, Advanced attack model, Rainbow attack

1 Introduction
Biometric recognition provides an alternative to the tra-

ditional authentication mechanisms based on passwords

or tokens such as ID cards due to the inalienable and dis-

tinctive nature of biometric traits. Biometric recognition

systems enable fast, reliable, and secure electronic authen-

tication; however, their large-scale deployment in real-

world applications causes privacy and security concerns

[1–3]. Biometric systems are not foolproof and a criti-

cal vulnerability that is unique to biometrics systems is

the acquisition of the stored templates by adversaries [4].

Biometric data might reveal sensitive information such as
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race, gender, and certain medical conditions. Since bio-

metric traits are supposed to be permanent and unique to

an individual, stolen templates can be used as unique iden-

tifiers to link information across different applications.

Moreover, biometric modalities are limited in number,

and they cannot be easily revoked to obtain another tem-

plate as seen in the use of passwords. Therefore, it is

essential to ensure the security of biometric templates and

to protect biometric data. In the literature, several biomet-

ric template protection methods have been proposed [5]

(e.g., fuzzy commitment scheme [6] and biohashing [7]) to

overcome these concerns by securing biometric templates

(e.g., face and fingerprint). Biometric template protection

methods store a modified version of the biometric tem-

plate and reveal as little information about the original

biometric trait as possible without losing the capability to

identify a person.
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1.1 Biometric template protection and biohashing

Template protection methods can be categorized into two

groups: (i) biometric cryptosystems [5] (i.e., fuzzy com-

mitment [6], fuzzy vault [8]) and (ii) transformation-based

methods/salting [9] (i.e., biohashing [10]). Biometric cryp-

tosystems either bind secrets into biometric data to form

a secure biometric template or generate secrets from bio-

metric data with the help of some auxiliary data. The

secrets can be successfully retrieved during a genuine ver-

ification attempt. The helper or auxiliary data does not

reveal significant information about the biometric or the

key. On the other hand, transformation-based approaches

distort or randomize biometric data with the use of

non-invertible functions so that the original data cannot

be reconstructed from transformed templates. Biometric

templates are transformed based on parameters derived

from external information such as user keys or passwords.

Biohashing or biometric hashing [10] is one of the

transformation-based methods, in which the biometric

template of the user is transformed into a protected binary

string through multiplication with a pseudo-random pro-

jection matrix and quantization. Due to increased inter-

class variation and preservation of intra-class variation,

biohashing significantly improves verification accuracy

when the secret key is kept secure and unknown to the

adversaries. In this paper, we use the terms biohashing and

biometric hashing synonymously, even though we think

biometric hashing is a more descriptive name.

In addition to the increased performance of the pro-

tected templates when the secret key of a user is kept safe,

another advantage of biometric hashing lies in the ease

of revoking a transformed template by changing the asso-

ciated secret key. Furthermore, using the same biometric

data, a user can be authenticated to different services

through different biohashes generated from distinct secret

keys. This way, two records that are presented to two

different systems cannot be linked and activities of the

user is kept private (Fig. 1).

Biometric hashing uses a unique secret key in order

to randomize biometric template of each user. It is a

two-factor authentication system in which both the bio-

metric modality and the secret key of a user have to

be presented during authentication. Although biohash-

ing methods have become very popular due to their high

authentication performance and easy deployment into

match-on-card applications, research recently showed

that they might suffer from serious security and privacy

problems [4, 11–13].

We believe that it is necessary to study the security

and privacy preservation capabilities of biometric hash-

ing especially when the secret key is compromised. If the

key is always assumed to be kept secure, an authentication

system which checks the accuracy of the entered key will

achieve a zero verification error even without any need for

biometric data.

The security performance of a biohashing scheme under

the assumption of a known key is analyzed in [14, 15], and

biohashing is concluded to be a good biometric random-

ization algorithm with a high risk of compromising the

biometric information. If the secret key of a user is com-

promised, the security of the protected template is at stake

and it is only dependent on the non-invertibility of the

biohash (i.e., it should be hard for an adversary to approx-

imate the biometric feature vector from the biohash and

the secret key). The reconstruction of a sufficiently similar

feature vector that provides a close biohash to the original
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one, called a pre-image attack (masquerade attack), is a

major threat to the template protection capability of a

biometric hashing scheme. It is not sufficient to make

a function “lossy” (not one to one) in order to have

a one-way function [16]. The biohashing method of

Ngo et al. is presented as a one-way function [10];

however, we show that this is not the case (in the cryp-

tographic sense) and biometric hashing is not pre-image

attack resistant if the secret key that is used for generat-

ing a biohash is known to the adversary. Figure 2 briefly

illustrates the inversion attack for biohashes. An adversary

who possesses the biohash vector of a user and the corre-

sponding secret key can invert the biohash and obtain a

real-valued feature vector. This feature vector can be used

to directly attack the system for unauthorized authenti-

cation. In addition, the adversary can generate an image

of the biometric modality which could be used for both

attacking the system and compromising the privacy of

the user.

1.2 Attacks against biohashing—biohash inversion

In the first study that investigates the invertibility of a bio-

metric hashing algorithm, it was assumed that the biohash

of a user and the corresponding random projectionmatrix

are available to an adversary. Each dimension of the bio-

hash vector was mapped to the set {−1, 1} (by mapping

[ 0]→[−1] and [ 1]→[ 1]) and the resulting vector was

multiplied with the pseudo-inverse of the random projec-

tion matrix. A new biohash created from the estimated

biometric feature vector was used to perform imposter

attacks. A similar approach that uses the pseudo inverse of

a random projection matrix was also presented in [17]. In

[18], a new method was proposed to generate a biometric

feature from biohashes using genetic algorithms. For each

biohash in a database, the proposed genetic algorithmwas

applied to approximate the value of the biometric feature

given the corresponding secret key.

A detailed analysis of irreversibility of biohashes was

performed by Feng et al. [19] where the details of the

random projection is solved using perceptron learning. It

was assumed that the attacker does not have the secret

key of the user and the parameters of the random pro-

jection are estimated using stolen biohashes and a local

biometric database. The main difference of this study is

that the method requires several stolen biohashes from

several distinct subjects (68 subjects, 105 images/subject

for one database and 350 subjects, 40 images/subject

for another database) for parameter estimation. It was

assumed that the whole system is available to the adver-

sary as a black box and the matching scores could be

eavesdropped. A local face dataset (3500 different local

faces) was presented to the system along with a com-

mon token and every local binary template was matched

against every stolen template. Using the matching scores

and the stolen biohashes, local binary biohashes corre-

sponding to the local face database were calculated, which

were used for iterative perceptron learning to estimate the

projection parameters. Once the parameters of the ran-

dom projection were estimated, they could be used to

generate synthetic real-valued features from a stolen bio-

hash which is another perceptron problem. Our proposed

methods cannot be compared with this method where the

estimation of parameters with a single stolen biohash is

not possible and several biohashes from different subjects

are required. However, our methods require only a single

biohash for the inversion.

Nagar et al. [4] have proposed a promising approach

that is comparable to our proposed methods. In that

approach, given the binary biohash vector of a subject and

the transformation parameters, a close approximation to

the original biometric features is recovered by formulat-

ing the problem as an optimization problem. A database

of unrelated biometric features was used for optimiza-

tion. For each unrelated biometric feature vector from the
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database, a new feature vector was estimated by mini-

mizing the Euclidean distance between the new feature

vector and the unrelated biometric feature vector subject

to the consistency criterion (i.e., the new biohash cre-

ated from the estimated feature vector exactly matches the

original biohash). The estimated feature vector was com-

puted by taking the weighted average of t number of trials

where the weight was the Hamming distance between

the original biohash and the estimated one. Since this

approach attempts to invert biohashes in a similar setup

with our proposed methods, we compared it with our

algorithms in terms of verification errors and computation

times.

1.3 Contributions of this paper

In this paper, we propose four different novel

optimization-based methods that aim to predict the

feature vector and/or the biometric image itself. Here,

we assume that an adversary gains access to the biohash

vector of a valid system user and the corresponding secret

key and estimates a new real-valued feature vector from

the binary biohash in order to authenticate to the system.

Novel feature estimation methods are in the focus of this

study. The first two proposed methods are based on 1-bit

compressive sensing approach and related feature recon-

struction algorithms. Compressive sensing is a new signal

acquisition technology with the potential of reducing

the number of measurements required to acquire signals

that are sparse or compressible in some domain. Rather

than uniformly sampling the signal, compressive sensing

computes inner products with a randomized dictionary

of test functions. The signal is then recovered by a convex

optimization which ensures that the recovered signal is

consistent with the measurements. One-bit measure-

ments is a more restricted case in which only the sign

information of the random measurements is preserved.

In our framework, we solve the biohash invertibility prob-

lem by using two different reconstruction approaches,

namely, linear programming [20] and binary iterative

hard thresholding [21].

We also discuss minimum norm solutions for approx-

imating feature vectors from biohashes and present L2
and L1 norm minimization for this problem. Finally, we

describe the rainbow attack to compromise the security

of a biometric hashing scheme. Rainbow attack is differ-

ent from feature approximation methods and does not

aim at predicting a new feature vector. With the help of

a huge database of biometric features along with the bio-

hash vector of a valid user and the corresponding secret

key, a biometric image that creates a sufficiently close bio-

hash to the desired one is found and used for illegitimate

authentication.

We propose practical attacks and study their perfor-

mances instead of using theoretical metrics. Furthermore,

we analyze the privacy issues related to the invertibility of

biohash templates, and as a case study, we visually inspect

reconstructed face images of the subjects. Authentication

performance of the reconstructed feature vectors in a con-

ventional verification setup, in which the plain features are

used for matching, is also investigated.

Our novel contributions regarding the reversibility of

biohashes can be stated as follows. Practical security and

privacy attacks against biohashes using 1-bit compres-

sive sensing framework are introduced. Apart from that,

minimum norm solutions are discussed in detail and

L1 norm minimization is introduced in addition to the

L2 norm minimization which appeared in the literature

before. Finally, this study introduces a type of “rainbow

attack” against biometric hashing systems. The differences

between the existing attacks and our proposed attacks

are given in Table 1 in terms of assumptions and related

security and privacy issues.

First, we review the biometric hashing scheme in

Section 2. The proposed feature approximation methods

are presented in Section 3, which is followed by descrip-

tion of the rainbow attack in Section 4. Section 5 presents

the experimental results of the proposed approaches and

finally, we summarize our findings and conclusions in

Section 6.

2 Biometric hashing
Biometric hashing schemes are simple yet powerful bio-

metric template protection methods [22–26]. Biohash is a

binary and pseudo-random representation of a biometric

template (e.g., face or fingerprint), and biometric hashing

schemes perform an automatic verification of a user based

on her biohash which is a binary string. The two inputs

to a biometric hashing scheme are (i) biometric template

and (ii) user specific secret key. A biometric feature vector

is transformed into another space using a pseudo-random

set of vectors which are generated from the user’s secret

key. Then, the result is binarized to produce a pseudo-

random bit string which is called the biohash. What is

unique or specific to each user is the random projection

matrix and it can be stored in a USB token or smart-

card. In a practical system, user-specific random matrix

is calculated based on a seed (user-specific secret key)

that is stored in a USB token or smartcard microprocessor

through a pseudo-random number generator. The seed

is the same as those users recorded during the enroll-

ment and is different among different users and different

applications [7].

In an ideal case, the distance between the biohashes

belonging to the biometric templates of the same user is

expected to be relatively small. On the other hand, the dis-

tance between the biohashes belonging to different users

is expected to be sufficiently high which enables higher

recognition rates. The user is enrolled to the system at
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Table 1 Existing biohash inversion attacks

Method Assumptions Security Privacy

Multiply with the - Random projection Attack with biohash

pseudo-inverse of matrix is available from estimated features:

the random projection - Threshold is fixed - existing key

matrix [17, 33] and it is 0 - a new key is assigned

- Wavelet FMT face and stolen again

features

Genetic algorithms - Random projection 1) Attack with biohash

[18] matrix is available from estimated features:

- Threshold is fixed - existing key

and it is 0 - a new key is assigned

- Fingercode features and stolen again

2) Average distance

between real and

approximated features

Perceptron-learning - Several biohashes Identification scenario, Adversary has

with hill climbing and of various different where biohash generated access to output

MLP modeling with subjects are available from each synthetic face of feature extractor

customized hill- (other methods assume is matched against the given a face image

climbing [19] availability of a single stolen templates and applies hill-

stolen biohash) climbing attack to

- Attacker can access generate synthetic

the matching scores of face images

the system

- Secret key of the

user is available

Solve a constrained - Random projection Attack with biohash Reconstructed

minimization of matrix is available from estimated features: face images

distance between - Threshold is available - existing key from estimated

estimated features - A database of - a new key is assigned vector using

and unrelated unrelated features and stolen again PCA inversion

feature vector [4] - Eigenface features

Methods proposed - Random projection 1) Attack with biohash Orthogonal linear

and discussed matrix is available from estimated features: face features

in this study: - Threshold is available - existing key (i.e., PCA, LDA):

- Eigenface features - a new key is assigned transformation

- Sparse recovery and is unknown matrix is known

- Min-norm solutions - a new key is assigned and its inverse

and stolen again is used to

2) Verification accuracy reconstruct

using the real features face images

as gallery and

approximated features

as probe
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the enrollment stage. Then, the user again provides her

biometric data and secret key to the system at the authen-

tication stage in order to prove her identity.

In the below subsection, we describe the random

projection (RP) based biohashing scheme proposed by

Ngo et al. [10] for face verification.

2.1 Enrollment stage

Feature extraction At this phase, face images in the

training set, which are collected during the enrollment

stage, are used. The set has training face images belonging

to the registered users, Ii,j ∈ ℜm×n where i = 1, . . . ,K and

K denotes number of users, j = 1, . . . , L and L denotes

number of training images per user. Each face image is

represented as a vector, y ∈ ℜ(mn)×1. Then, principle com-

ponent analysis (PCA) [27] is applied to the face images in

the training set for feature extraction:

x = A(y − μ), (1)

where A ∈ ℜk×(mn) is the PCA matrix trained by the face

images in the training set, μ is the mean face vector, and

x ∈ ℜk×1 is the vector containing PCA coefficients.

Random projection At this phase, a pseudo-random

projection (RP) matrix, R ∈ ℜℓ×k , is generated to trans-

form the PCA coefficient vectors. The RPmatrix elements

are independent and identically distributed (i.i.d) and gen-

erated from a Gaussian distribution with zero mean and

unit variance by using a pseudo-random number gener-

ator (PRNG) with a seed derived from the user’s secret

key. The RP matrix projects the PCA coefficients onto an

ℓ-dimensional space:

z = Rx, (2)

where z ∈ ℜℓ×1 is an intermediate biohash vector.

Quantization At this phase, the elements of the inter-

mediate biohash vector z are binarized with respect to a

threshold:

b(k) =

{

1, z(k) ≥ β

0, otherwise
(3)

where b ∈ {0, 1}ℓ denotes the biohash vector of the user

and β denotes the quantization threshold which can be 0

(sign operator) or mean value of the intermediate biohash

vector z, depending on the system design.

After enrollment, biometric hashes are stored in a

database or in a smart card.

2.2 Authentication stage

At this stage, a claimer sends his face image Ĩ ∈ ℜm×n and

his secret key to the system. Then, the system computes

the claimer’s test biometric hash vector by using the same

procedures in the enrollment phase. The user is authenti-

cated when the Hamming distance between benroll (which

denotes the biohash of the user generated at the enroll-

ment stage) and bauth (which denotes the biohash of the

user generated at the authentication stage) is below a

pre-determined distance threshold ǫ as follows:

n
∑

k=1

benroll(k) ⊕ bauth(k) ≤ ǫ (4)

where ⊕ denotes the binary XOR (exclusive OR) opera-

tor. The distance threshold ǫ is an integer between 0 and n

(number of bits in a biohash). In a biometric hashing sys-

tem, the selection of ǫ depends on system design, and it is

chosen such that the desired false acceptance rate (FAR)

and false rejection rate (FRR) are satisfied.

The system computes the Hamming distance between

the test biometric hash vector and the claimed user’s ref-

erence biometric hash vector stored in the database. If the

Hamming distance is below the pre-determined distance

threshold, the claimer is accepted; otherwise, the claimer

is rejected (Fig. 1).

3 The proposed feature approximationmethods

from biohash
In this section, we introduce intrusion attacks via recon-

struction of the biometric feature vector from biohashes.

In this context, intrusion is defined as gaining access

to a biometric recognition system by presenting falsified

authentication data to the system [4]. We use the follow-

ing notation throughout our analysis of biometric hashing

scheme: b represents the biohash vector of a valid sys-

tem user and it is obtained by an adversary to perform

intrusion attacks through feature approximation, R is the

user specific random projection matrix and known to the

adversary, x is the original biometric feature vector that

b is created from and it is neither known nor accessible

by the attacker, and x̂ is the feature vector (or pre-image)

that is approximated through inversion of b. Note that, x̂

does not necessarily correspond to a valid biometric fea-

ture vector (i.e., PCA coefficients for faces or fingerprint

minutiae information). However, using x̂, one can produce

a biohash vector that allows unauthorized access to the

biometric system (Fig. 3). Once x̂ is obtained, an attacker

might also reconstruct the biometric modality and use it

for illegitimate access to a system, i.e., in our case, this is

the face image (it is also assumed that the attacker knows

the PCA matrix used in feature extraction). In this study,

we consider that the intrusion to the system can happen in

two ways before the random projection step. An attacker

either provides a digital face image (reconstructed face

image) to the system prior to the feature extraction step

or uses the approximated feature vector as input to the

random projection.
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Fig. 3 Attacks. Illustration of the proposed attack

The success probability of such an attack to the biomet-

ric hashing system can be measured as P(d(sign(Rx̂),b)

< ǫ)1, where d(·) is the Hamming distance between two

biohashes (i.e., the number of disagreeing bits). This met-

ric is also called the intrusion rate due to inversion for the

same biometric system (IRIS) by Nagar et al. [4]. In the

next sections, we present various methods to obtain a fea-

ture vector x̂ that allows illegitimate access to a biometric

system given b and the transformation parameters.

3.1 One-bit compressive sensing approach

One-bit compressive sensing studies efficient acquisition

of sparse (or more structured) signals via linear measure-

ment systems, and only 1-bit permeasurement is retained.

While the key application of this problem has been in

the area of signal acquisition, it has also found applica-

tions in several learning related problems. Boufounos et al.

[28] introduced the problem of 1-bit compressive sensing

where only 1 bit of the linear measurement, specifically

its sign, is observed. Random projection-based biometric

hashing can be viewed in the same context as 1-bit com-

pressive sensing. If the threshold used in quantization of

the projected signal is 0 (such that the sign of the signal is

kept), each bit of a biohash is the sign of the inner prod-

uct of the feature vector (x) with a measurement vector

(in biometric hashing, each row of the random projection

matrix (R):

bi = sign(〈Ri, x〉). (5)

The biometric hashing procedure is compactly

expressed using:

b = sign(Rx), (6)

where b is the biohash vector, R is the matrix repre-

senting the random projection matrix (the measurement

system), and the 1-bit quantization function sign(.) is

applied element-wise to the vector Rx.

For consistent reconstruction from 1-bit measurements,

the measurements are treated as sign constraints that

are enforced in the reconstruction to recover the signal.

In the reconstruction, L1 norm of the feature vector is

minimized to obtain a sparse solution. When the PCA

coefficients of face images are analyzed, it is noted that

most of the coefficients are small in magnitude and only

about 25 % of them is enough to obtain ∼ 70 % of the

total energy as seen in Fig. 4. Therefore, it is reasonable

to assume that PCA vectors are sparse. Also, as stated by

Candes and Wakin [29], “compressive sampling exploits

the fact that many natural signals are sparse in the sense

that they have concise representations when expressed in

the proper basis.” Even if the original signal is not sparse,

a basis can be found in which most coefficients are small,

and the relatively few large coefficients capturemost of the

information and this allows for the use of sparse recovery

in the problem of biohash inversion.

In addition, to enforce reconstruction at a non-trivial

solution, one needs to artificially resolve the amplitude

ambiguity. Thus, an energy constraint is imposed that the

reconstructed signal lies on the unit L2-sphere:

‖x‖2 =

(

∑

i

x2i

)1/2

= 1. (7)

The signal on the unit sphere that is consistent with the

measurements is found by solving:

x̂ = argmin
x

‖x‖1

s.t. sign(Rx̂) ≡ b (8)

and ‖x̂‖2 = 1.

As the compressive sensing measurements are quan-

tized to 1 bit, it is clear that the scale (absolute amplitude)

of the signal is lost and it is not immediately evident that
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the remaining information is enough for signal recon-

struction. Nonetheless, there is a strong empirical evi-

dence stating that signal reconstruction is possible [28].

One-bit compressive sensing by linear programming [20]

and binary iterative hard thresholding [21] are two the-

oretical reconstruction methods that we implement sep-

arately for obtaining inverse images of biohashes and

finding biometric feature vectors that provide biohash

vectors which are acceptable by the verification system

(i.e., with a distance to the original biohash vector that is

less than a threshold).

3.1.1 One-bit compressive sensing by linear programming

The study in [20] has showed that x can be accurately

estimated from extremely quantized measurement vector

in (6). Note that b contains no information about the

magnitude of x and only the normalized vector x/‖x‖2
can be recovered. It has been shown that the signal can

be accurately recovered by solving the following convex

minimization program:

min ‖x̂‖1

s.t. BRx̂ ≥ 0 (9)

and ‖Rx̂‖1 = m,

where B = diag(b).

The first constraint, BRx̂ ≥ 0, keeps the solution con-

sistent with the original biohash vector and it is defined by

the relation 〈Ri, x̂〉 · bi ≥ 0 for i = 1, 2, . . . ,m where Ri is

the ith row of the random projectionmatrixR. The second

constraint in the original problem definition (8) contains

L2-norm which is a quadratic term and can be replaced

with the linear L1-norm, so that the optimization becomes

a linear program. The second constraint, ‖Rx̂‖1 = m,

serves to prevent the program from returning zero solu-

tion, and it is linear as it can be represented as one linear

equation
∑m

i=1 bi〈Ri, x̂〉 = m, wherem is the length of the

biohash vector. Therefore, (9) is a convex minimization

problem and can easily be represented as a linear program

(see Algorithm 1).

Algorithm 1 Approximate biometric feature vector x̂

using Linear Programming

Input: b, R

Output: x̂

calculate A such that Ax̂ ≥ 0 using b and R

calculate Aeq such that Aeqx̂ = m using R

set f to calculate L1 norm of x̂

use simplex method to solve for x̂

3.1.2 Binary iterative hard thresholding

Binary iterative hard thresholding (BIHT) [21] is a mod-

ification of iterative hard thresholding (IHT) which is a

real-valued algorithm designed for compressive sensing

[30]. Proposed for the recovery of K-sparse signals, IHT

algorithm consists of two steps. The first step is a gradient

descent to reduce the least squares objective ‖y−Rx‖22/2.

At each iteration, IHT proceeds by setting al+1 = xl +

RT (y − Rx). The second step imposes a sparse signal

model by selecting the K elements of al+1 that are largest

in magnitude.
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BIHT algorithm modifies the first step of IHT and min-

imizes a consistency-enforcing objective. Given an initial

estimate x0 = 0 and 1-bit measurements b, at each

iteration l, BIHT computes:

al+1 = xl +
τ

2
RT

(

b − sign
(

Rxl
))

(10)

xl+1 = ηK

(

al+1
)

,

where τ is a scalar that controls the gradient descent

step size, and the function ηK computes the best K-term

approximation of al+1 (see Algorithm 2). In our experi-

ments, we choose K as 25 % of the feature vector length,

i.e., K = 50 for 200 dimensional feature vectors and

K = 256 for 1024 dimensional feature vectors. As stated

in Section 3.1, 25 % of the PCA coefficients captures 70 %

of the total energy. In addition, we analyzed PCA coeffi-

cients of natural face images (see Fig. 4) and concluded

that 25 % of the coefficients that are largest in magni-

tude are enough to reconstruct a typical face image that is

visually similar to the original face image.

Algorithm 2 Approximate biometric feature vector x̂

using BIHT

Input: b, R, K

Output: x̂

initialize x0 all zeros

while |b − sign(Rxl)|1 > 0 do

al+1 = xl + τ
2R

T (b − sign(Rxl))

sort elements of al+1 and set the all but the largest

K components to 0,

end while

set x̂ ← al+1

3.2 Minimum L1 and L2 norm solutions

In this section, we present and discuss minimum norm-

based feature reconstruction methods for biohashes in

addition to the solutions we propose in 1-bit compressive

sensing framework.

Biohash vector is obtained through quantization from

an intermediate vector z which is the output of a random

projection, i.e., z = Rx. If one can estimate the quanti-

zation step and find an intermediate vector ẑ by inverting

the biohash vector, a minimum norm solution can be used

to estimate the biometric feature vector (x̂) as:

min ‖x̂‖n s.t. ẑ = Rx̂. (11)

In this work, we study minimum norm solutions for n =

1 and n = 2, namely L1 and L2 norms.

3.2.1 Inversion of the quantization step

Solutions in a 1-bit compressive sensing framework

implicitly handle the quantization of the randomly pro-

jected feature zwithin the optimization process. However,

L1 and L2 norm-based reconstruction requires an explicit

inversion of the thresholding step of the biometric hashing

scheme.

In order to invert the quantization process, an adver-

sary who possesses the biohash (b) of a valid system user

and corresponding random projection matrix (R) uses an

arbitrary biometric feature vector xf to simulate the bio-

metric hashing procedure through random projection and

obtain an intermediate vector zf = Rxf . Next, the sample

mean and standard deviation of zf are calculated,μ and σ ,

respectively. Mapping the elements of the compromised

biohash vector b from {0,1} to {−1, 1} is performed as:

b̂(i) =

{

1, b(i) = 1,

−1, b(i) = 0,
(12)

where b̂ is the mapped biohash vector. Finally, using the

values calculated from the arbitrary biometric features,

the intermediate vector ẑ is estimated as:

ẑ(i) = μ + b̂(i)σ . (13)

To be consistent with the solutions described in a 1-bit

compressive sensing approach, we assume that the signs

of the elements of the intermediate vector z is used to

obtain the biohash (i.e., the threshold at the quantiza-

tion step is 0). However, various quantization methods

and thresholding mechanisms are proposed in the litera-

ture for biometric hashing, one of them being the mean

value of the intermediate vector and another one being

its median value. If the system uses the mean value of

the intermediate vector as the quantization threshold, the

mean value of the zf can be calculated. In our experi-

ments, the threshold equals to 0; thus, the mean value

is not used, and the intermediate vector is computed as

ẑ(i) = b̂(i)σ .

3.2.2 Minimum L2 norm solution

Once an adversary creates an intermediate vector ẑ, the

following L2 normminimization provides an estimate fea-

ture vector x̂ that is consistent with the observation b =

sign(Rx̂).

min ‖x̂‖2 s.t. ẑ = Rx̂. (14)

The closed form solution that gives the minimum L2
norm for the estimated feature vector is given by the

MoorePenrose pseudo-inverse. For linear systemsAx = b

with non-unique solutions (i.e., under-determined sys-

tems), the pseudo inverse is used to reconstruct the

solution of minimum Euclidean norm ‖x‖2 among all
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solutions. So the solution to the aboveminimization prob-

lem to estimate the feature vector from biohash b is

calculated as x̂ = R†ẑ.

3.2.3 Minimum L1 norm solution

Similar to the minimum L2 norm solution, minimum L1
norm solution aims at solving the following minimization

problem.

min ‖x̂‖1 s.t. ẑ = Rx̂. (15)

In a 1-bit compressive sensing approach by linear pro-

gramming, L1 norm of the estimated feature vector is

minimized according to the constraints that include the

quantization step. However, minimum L1 norm solu-

tion handles the quantization step separately, and the

minimization is carried out over the intermediate real-

valued vector ẑ. The minimization problem still has linear

constraints and minimization of L1 norm can easily be

expressed as a linear program and solved accordingly.

For both L1 and L2 norm minimizations, if the PCA

dimension is less than the biohash length (i.e., if the ran-

dom projection step does not reduce the dimension), the

linear system is over-determined and an exact solution

might not possibly exist (i.e., solutions could be incon-

sistent with the observations). Instead, it is possible to

minimize the residual between the observation and the

solution (i.e., ‖ẑ−Rx̂‖n) and to obtain a feature vector that

provides biohashes that is close to the original one.

3.3 Reconstructing the face image

As long as the feature extraction step uses an orthog-

onal transformation matrix, it is possible to invert the

feature extraction process simply by using the pseudo

inverse of the transformation matrix and a face image can

be reconstructed easily. The principal component analy-

sis uses an orthogonal transformation, which means that

the columns of the PCA matrix are perpendicular to each

other and hence one can reconstruct the face image ŷ from

x̂ by using the property of an orthogonal matrix A† = AT :

ŷ = AT x̂ + μ, (16)

where A ∈ ℜk×(mn) is the PCA matrix, A† is the pseudo-

inverse of A, and μ is the mean face vector.

3.4 Other thresholdingmethods—apart from the “sign”

operator

In cases where the thresholding after the random pro-

jection step is not the sign operator, some alternatives

can also be formulated within our proposed framework.

Assuming that an adversary has the full knowledge of the

system, i.e., the specific thresholding method, he can also

invert the biohashes.

3.4.1 Fixed or user-specific threshold

Apart from using the sign operator, one can use a pre-

defined fixed threshold or user specific threshold, i.e.,

b = sign(Rx − T) where T denotes the threshold. Entries

of T can be the same number or different numbers at

each dimension. T can also be specific to each user (it is

shown as Ti where i denotes the subject number). By aug-

menting the threshold vector to the random projection

matrix, R̂ =
[

R −Ti

]

, we can reformulate the biohashing

operation as b = sign
(

R̂
[

x 1
]

)

and perform the same

operations for inverting biohashes.

3.4.2 Mean value is the threshold

An alternative way of thresholding the intermediate vector

is to use the mean value of the intermediate biohash vec-

tor z = Rx as the threshold and to calculate the biohash

vector as

b = sign(Rx − mean(Rx)). (17)

Thresholding step can be integrated into the random

projection step by using the modified random projection

matrix R̂:

R̂ =

[

R −
1 · R

N

]

, (18)

where N is the biohash length, 1 is a matrix of ones, and

the biohash vector becomes b = sign(R̂x). An adversary

can use the modified matrix R̂ and all inversion methods

that we discuss are still valid in this setup.

4 Rainbow attack
In the previous section, we propose four different opti-

mizationmethods for recovering features from an original

biohash vector that is stolen by an attacker. Having the

corresponding secret key and using the knowledge of sys-

tem parameters, one can estimate a real-valued feature

vector x̂ with the consistency criterion such that b =

sign(Rx̂) in order to gain illegitimate access to the bio-

metric system. Rainbow attack is different from these

methods in the sense that it does not aim at inverting a

biohash vector to obtain a valid pre-image. Instead, using

the knowledge of the system and the secret key of the user,

with the help of a large database of biometric features, an

adversary may find a face image which, when combined

with the secret key of the user, result in a biohash vector

that is sufficiently close to the original biohash b.

In the cryptography literature, a rainbow table is a

precomputed table for reversing cryptographic hash func-

tions, usually for cracking password hashes. Any com-

puter system that requires password authentication must

contain a database of passwords, either hashed or in plain-

text, and utilize different methods to store passwords.
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Because the tables are vulnerable to thefts, storing pass-

words as plain texts is dangerous. Most databases there-

fore store a cryptographic hash of a user’s password in the

database. When a user enters his password for authenti-

cation, it is hashed and compared to the stored password

entry of that user (which is also hashed before being stored

in the database). If the two hashes match, the access is

granted. A rainbow table is a large dictionary with pre-

calculated hashes and the passwords from which they

were calculated. When an attacker steals a long list of

password hashes from the system, he can quickly check if

any of them are in the rainbow table. If that is the case, the

rainbow table will also contain the original string that they

were hashed from.

A biometric authentication system that protects bio-

metric templates using biometric hashing methods oper-

ates in a similar way; the biohash of a user is stored and

compared to the query biohash during verification. If an

adversary having a large database of biometric features

of various users steals the biohash of a system user and

knows his secret key, the adversary can compute bio-

hashes of each biometric feature in the database using the

random projection matrix of the user and create a table

of biohashes and their corresponding feature vectors. If

any of the biohashes in the table is sufficiently close to the

stolen biohash (i.e., their Hamming distance is less than a

threshold), the corresponding feature vector can be used

for illegitimate access to the biometric system.

Different from previously described attacks which try

to approximate a feature vector that gives a close biohash

vector to the stolen one, the rainbow attack is a practical

attack that aims to compromise the security of a bio-

metric hashing scheme. Furthermore, assuming that one

authentication factor (the secret key of a user) is known,

the rainbow attack also provides privacy threat since look

alike faces can be found.

5 Experiments and results
In this section, the performance of our proposed attack

methods are analyzed and discussed. The database that is

used and the experimental setup are described, and attack

models and their corresponding error rates are given.

5.1 Database and experimental setup

In order to provide the performance analysis of the secu-

rity of biohashes based on the feature approximation

methods, we implement our proposed methods on a face

verification setup.

We have obtained face verification results on BioSecure-

ds2 [31] face database. Faces are detected in an automatic

fashion using Viola-Jones face detector [32], and detected

face images are resized to 64 × 64 pixels. In order to nor-

malize a gray-scale face image, its mean intensity value is

extracted from each pixel and each pixel is divided to its

standard deviation. The resulting face images have zero

mean and unit variance.

The BioSecure-ds2 face database consists of 210 users,

equally balanced in female and men. There are two ses-

sions for each person. For each person and for each

session, there exist six colored images (two webcam

acquisitions and four standard camera acquisitions—two

with flash and two without flash). Standard camera acqui-

sitions of 210 users, 8 images per person, are used in our

experiments.

M-dimensional PCA coefficients are calculated for all 8

samples of 210 subjects (a total of 1680 (210 × 8) face

images are used in our experiments). Two different PCA

dimensions (M = 200 and M = 1024) are used in this

study. M = 200 is a typical choice for PCA dimension of

face images. We also analyze M = 1024 in order to see

what extent the increased feature dimension affects inver-

sion process. PCA training is done using the first session

images only. Applying standard biometric hashing proce-

dure, a bit string is created by inner product between the

pseudo-random number and M-dimensional PCA coeffi-

cients and deciding each bit based on the sign of the each

vector entry. Using random projection matrices of differ-

ent sizes, one can obtain bit strings of various lengths.

We present our results using bit strings of lengths 128,

256, 512 and 1024, in order to analyze how the proposed

methods perform for different biohash lengths.

In a verification setting, we use all possible combina-

tions for matching genuine pairs and the first sample of

each subject is chosen for imposter matches (5880 (210 ×

8 × 7/2) genuine comparisons and 21945 (210 × 209/2)

imposter comparisons) in order to evaluate the perfor-

mance of the biometric hashing scheme. For validating

the consistency of approximated features using the pro-

posed methods, we compare the biohashes created from

these features with the original biohashes leading to one

imposter score for each sample in the database (1680

imposter matches). Equal error rates (EER) in each case

are reported.

5.2 Performance of the biometric hashing scheme

First, we apply the general biometric hashing scheme

described in Section 2 on the BioSecure-ds2 face database.

For comparison, we also include face verification results

of PCA vectors by using Euclidean distance as the match-

ing method. The equal error rates for this method before

applying biometric hashing to PCA vectors are 11.893 and

12.482 % for vectors of length 200 and 1024, respectively.

Equal error rates for biohash vectors of various lengths are

given in Table 2.

For all bit lengths, the performance of the biometric

hashing scheme is better than the baseline PCA approach

and lower EERs are obtainedwith the protected templates.

In cases where an adversary steals the secret key of a
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Table 2 Equal error rates (%) for biohash vectors of different lengths

PCA 200 PCA 1024

Bit length Biohash Biohash (stolen key) Biohash Biohash (stolen key)

128 6.295 12.571 6.593 13.565

256 4.570 11.457 4.813 12.216

512 4.137 11.595 4.328 11.634

1024 2.875 11.118 2.934 11.553

user but does not possess the claimed person’s biometric

information, the adversary sends his own biometric (or an

arbitrary biometric) and the secret key of the genuine user

in order to be authenticated. This is a serious threat to

the system as the pseudo-random vectors generated using

the secret key have a considerable influence on the gener-

ated bit string, therefore, on the matching score. However,

even if the attacker knows the secret key, the verification

accuracy of the biometric hashing system is still in the

same range with the performance of the unprotected PCA

vectors.

One obvious addition to the biometric hashing scheme

is the direct comparison of secret keys (i.e., the one stored

during enrollment and the one presented during authen-

tication) prior to biohash comparison. This way 0 % (zero)

EER is achieved if the attacker does not have the secret

key of a valid user. The error rates presented in Table 2

are the results of biohash comparison, and if key check-

ing mechanism is applied as illustrated in Fig. 1, the EERs

for the first scenario would be 0 %. So that, here, we study

the added security coming from the biometrics with the

use of biohashes in cases where an attacker obtains the

secret key.

5.3 Performance of the feature approximation from

biohash methods

Since the database that we use has 1680 samples from 210

subjects, using their PCA coefficients and secret keys of

each subject, we create 1680 biohashes, each correspond-

ing to a different sample. It is assumed that an adversary

obtains the biohash and the secret key of a user and

with this knowledge he aims to find a feature vector by

inverting the biohash. With this new feature vector, a new

biohash can be calculated and used for authentication

purposes. For each biohash in the database, we obtain a

new feature vector and create its corresponding biohash.

We use the new biohash to perform an imposter attack

to the original one and we do not attack to other genuine

samples. We use all possible combinations to match gen-

uine pairs (5880 (210 × 8 × 7/2)), and the number of

imposter comparisons is 1680 (one for each biohash). The

performance of each method is reported in terms of the

equal error rate (EER), and higher EER shows the success

of the attacker (i.e., 100 % EER means that the inversion of

all biohashes in the database is successful and the approx-

imated features provide biohash that matches with the

original one).

In order to evaluate the security that biometric hashing

provides, we follow three consecutive scenarios:

Advanced attack model (AAM): The attacker, who

knows the system details and possesses the biohash of

a user and his secret key, calculates an estimate feature

vector. Using this feature vector and the secret key of the

subject, a new biohash is created and compared with the

original one.

Security after key change (SAKC): Upon the detection

of a security breach, the secret key of the user is changed

by the system administrator. Using the previous biomet-

ric data, a new biohash is created from the new secret key

and stored as the new gallery template in the system. The

adversary does not have access to neither the new secret

key nor the new biohash. The adversary makes an authen-

tication attempt using the feature vector found in the

advanced attack model and the previous (or an arbitrary)

secret key. It should be noted that these errors are avail-

able only when the system does not perform key checking

prior to biohash comparison. As the attacker does not

know the secret key of the user, the EER in a key-checking

system is 0 %.

However, for the sake of completeness, a no key-

checking system is also considered and EERs in this case

are also reported. EERs presented in Table 3 correspond

to the attack in which the adversary has the true (original)

biometric features but does not possess the associated

secret key. These numbers provide a lower bound on the

long-term security error, where the secret key of the user

is changed and is not known to the attacker.

Attack in the long term (ALT): The adversary obtains

the new secret key of the user but not the new biohash.

Table 3 Equal error rates (%) when the adversary has the true

biometric features but does not possess the associated secret key

PCA dimension
Biohash length

128 256 512 1024

200 6.199 4.290 4.243 2.917

1024 6.497 4.902 4.375 3.044
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Using the feature vector found in the advanced attack

model and the new secret key, the adversary makes

an authentication attempt. This is different from the

advanced attack model in the sense that the biohash vec-

tor of the user is not known to the adversary and the

authentication attempt is performed using the approxi-

mated feature vector which is obtained from the previous

biohash of the user.

5.3.1 Results for 1-bit compressive sensing approaches

We use two different feature approximation methods,

namely linear programming (LP) and binary iterative hard

thresholding (BIHT), in the 1-bit compressive sensing

framework. The success rates of both methods are pre-

sented in Tables 4 and 5. For the advanced attack model,

the number of exact reconstructions, i.e., the number of

estimated features that provide the exact same biohashes

(such that the Hamming distance between the original

biohash and the forged biohash is 0), is 1680 for all bit

lengths. For every sample in the database, regardless of

the PCA dimension, both methods are able to find a fea-

ture vector that provides the exact same biohash and that

is also reflected by 100 % EERs.

In the security after key change scenario, when the

secret key of the user is changed but not known to

the adversary, EERs are in the same line with the cases

where the adversary has access only to one of the fac-

tors, either true biometric or true secret key (see Tables

2 and 3). In the attack in the long-term (ALT) scenario, it

is possible for the attacker to have unauthorized access to

the system most of the time, especially if the PCA length

is shorter and the biohash length is longer (see the ALT

column in Tables 4 and 5).

Boundary conditions are issues of LP implementation,

i.e., small Rx values before thresholding (for sign oper-

ator, values are close to zero). This leads to numerical

inconsistencies about the inequality criteria of the linear

program (i.e., BRx ≥ 0) and can be solved by replac-

ing the inequality constraint with BRx ≥ ǫ, where ǫ

Table 4 Equal error rates (%) for 1-bit compressive sensing

approaches—linear programming (LP) method

PCA Bit length AAM SAKC ALT

200 128 100.00 7.262 48.333

256 100.00 5.225 65.570

512 100.00 4.018 78.958

1024 100.00 3.308 89.987

1024 128 100.00 7.530 40.187

256 100.00 5.128 53.342

512 100.00 4.286 68.907

1024 100.00 3.444 80.863

Table 5 Equal error rates (%) for 1-bit compressive sensing

approaches—BIHT method

PCA Bit length AAM SAKC ALT

200 128 100.00 7.381 33.767

256 100.00 4.851 49.388

512 100.00 3.958 74.809

1024 100.00 3.367 90.536

1024 128 100.00 6.667 16.314

256 100.00 5.306 19.887

512 100.00 4.252 28.759

1024 100.00 3.474 47.653

is the minimum positive number available in MATLAB

(machine epsilon).

5.3.2 Results for minimumnorm solutions

The same set of experiments on the invertibility of bio-

hashes is conducted using the proposed minimum norm

solutions (see Tables 6 and 7). For biohashes created from

PCA vector of length 1024, both methods are able to find

a pre-hash vector that can be used to create the same

biohash for each sample in the database. As in the 1-

bit compressive sensing approach, the number of exact

reconstructions is also 1680 in this case. However, when

less number of PCA coefficients are used in the system

(i.e., the PCA feature vectors are 200 dimensional), there

is a slight decrease in the equal error rates. Biohashes cre-

ated from the estimated feature vectors are not exactly

same with the original ones (i.e., the Hamming distance

between them is greater than zero) which is reflected by

the slight deviation from 100 % EER.

In the SAKC scenario, the performances of minimum

norm solutions are similar to the 1-bit compressive sens-

ing solutions. If the new key of the user is stolen (the ALT

scenario), 1-bit compressive sensing approaches provide

significantly higher error rates which shows the success of

the attack method.

Table 6 Equal error rates (%) for minimum norm solutions—L2
norm

PCA Bit length AAM SAKC ALT

200 128 100.00 7.113 31.233

256 99.843 5.196 34.753

512 99.239 4.018 72.513

1024 98.444 3.219 86.599

1024 128 100.00 7.117 17.623

256 100.00 5.544 21.003

512 100.00 4.256 28.703

1024 100.00 3.474 36.947
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Table 7 Equal error rates (%) for minimum norm solutions—L1
norm

PCA Bit length AAM SAKC ALT

200 128 100.00 6.815 30.965

256 97.113 5.106 28.563

512 92.491 3.839 61.173

1024 92.751 3.431 77.564

1024 128 100.00 6.577 17.534

256 100.00 5.723 20.765

512 100.00 4.196 28.346

1024 100.00 3.474 36.947

Figure 5 illustrates the detection error tradeoff curves

for the attacks using the proposed methods under the

ALT scenario (together with the results of the the study

in [4]). Table 8 shows the corresponding FAR1000 val-

ues (false reject rates when the FAR = 10−3). The attack

performance of the reconstructed feature vectors from

biohashes of 1024-bits can be compared among different

methods. For brevity, we do not include all results for

different biohash lengths.

A special case of solving the norm minimization prob-

lem is when the PCA feature vector dimension is equal to

the length of biohash in bits. In approximating the 1024

dimensional PCA vector from biohash of length 1024 bits,

there is a single unique solution. However, the condition

number of the random projection matrix is so high and

this leads to inaccurate solutions. We improve the solu-

tion by decreasing the condition number of the random

projection matrix. In this common practice, 20 % of the

maximum singular value of the matrix R is added to its

Table 8 FAR1000 values for the proposed methods under the

scenario attack in the long term

Method 200 → 1024 1024 → 1024

LP 97.9932 95.9864

BIHT 97.6190 66.1565

L2 94.1190 54.7789

L1 89.3027 54.7789

all singular values. This way, the condition number of R

decreases by ∼ 102.

5.3.3 Computation times for the proposed feature

approximationmethods

The proposed feature approximation methods are imple-

mented in MATLAB and the experimental results are

run on a 2.5 GHz with 64 GB of RAM PC using 64-

bit Windows Server 2008 operating system. From a given

biohash of length 1024-bits and the corresponding secret

key, we estimate the PCA feature vectors with four pro-

posed methods, for PCA dimensions of 200 and 1024,

respectively (Table 9). It is intuitive that for all methods

it is faster to estimate a 200-dimensional feature vector.

Among the four proposed methods, L2-norm minimiza-

tion is the first to estimate a 200-dimensional feature

vector from a biohash of length 1024-bits. On the other

hand, when the feature vector to be estimated is 1024-

dimensional, the BIHTmethod performs faster than other

methods.

5.4 Results for the rainbow attack

The rainbow attack is different from feature approxi-

mation methods and its success mainly depends on the

availability of a huge biometric database. In this study,
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Fig. 5 DET curves for the proposed methods under the scenario Attack in the Long Term. a Reconstruction of 200 dimensional PCA feature vectors

from biohash of length 1024 bits. b Reconstruction of 1024 dimensional PCA feature vectors from biohash of length 1024 bits
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Table 9 Computation time required to estimate a feature vector

from a given biohash (in seconds)

Method 1024 → 200 1024 → 1024

LP 12.681736 144.288818

BIHT 0.192342 0.294719

L2 0.108523 1.681796

L1 11.451703 26.453929

Method in [4] for t = 1 28.244039 185.517469

Method in [4] for t = 20 572.584385 4700.410120

we simulate the rainbow attack where an adversary has

the secret key and the biohash of the user. We use the

BioSecure-ds2 database and take the attacked user out of

the set. We calculate the biohashes of the remaining face

images with the secret key of the user and search for the

one that is closest to the user’s biohash. In this manner,

we describe three different scenarios:

Collusion model (CM): Keys are known to the

attacker and using an available database, he finds the

faces that provide the closest biohash given the secret

key of the valid user.

Security after key change (SAKC): Secret keys of

users are changed by the system administrator. The

attacker does not know the new key but uses the face

found in the CM scenario.

Attack in the long term (ALT): The attacker obtains

the new key. He uses the face found in the CM

scenario and the new key to create biohashes.

The equal error rates for the rainbow attack on bio-

hashes for these three scenarios are given in Table 10.

Our visual inspection shows that faces which create close

biohashes when combined with the same secret key are

visually alike. This should also be regarded as a threat to

the privacy of the user, as well as a threat to the security of

the system (Fig. 6).

Table 10 Equal Error Rates (%) for the rainbow attack

PCA Bit Length CM SAKC ALT

200 128 53.597 6.964 38.571

256 49.787 4.762 40.179

512 47.177 4.043 41.820

1024 46.054 3.342 43.469

1024 128 56.467 7.440 38.746

256 51.786 5.795 41.417

512 48.206 4.524 42.543

1024 46.794 3.296 43.439

Fig. 6 Rainbow attack. Faces that provide close biohashes

5.5 Privacy assessment for the proposedmethods

5.5.1 Visual results of the attacks

A critical implication of the reversibility of biohashes is

the relation between the reconstructed feature vectors and

the original biometric information (face) of the users. For

assessing to what extent the privacy of the user is at stake

if his/her biohash is inverted via our proposed methods,

we compare face images reconstructed using the original
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PCA vectors and the estimated features. Assuming the

attacker knows the details of feature extraction (PCA

matrix and mean vector), we reconstruct face images with

the approximated feature vectors using (16). In the follow-

ing figures (Figs. 7, 8, 9, and 10), we present the original

face image of the user, the reconstructed face image from

original PCA coefficients, and the four reconstructed face

images from obtained PCA coefficients through L2, L1, LP,

and BIHT methods, respectively.

The first two set of images (Figs. 7 and 8) belong to two

different subjects from the database and the reconstruc-

tion is carried out on biohashes with length of 1024 bits

which are obtained from 200-dimensional PCA features.

All four methods provide face images that look similar to

the subject’s original face image.

Figures 9 and 10 illustrate the results for the same two

subjects. The length of the biohashes used is 1024 bits;

however, the only difference is the number of PCA coef-

ficients used, which is 1024 instead of 200. It is immedi-

ately clear that estimating 1024-dimensional PCA features

is harder than estimating 200-dimensional PCA features

and the reconstructed face images show the difficulty

in obtaining faces that are visually similar to the origi-

nal face image. Among the four proposed methods, only

LP solution stands out for obtaining face images that

look alike the original face of the subject. Figure 11 illus-

trates the reconstruction of the face images using the LP

method for various PCA feature vector dimensions and

biohash bit lengths. It is clear that the reconstruction

is visually more successful when the length of the PCA

feature to be estimated is smaller and the biohash length is

larger.

5.5.2 Cross-linking different systems

In addition to visually threatening the privacy of the

system users, estimating feature vectors from biohashes

might threaten their privacy in other biometric recogni-

tions systems which use the same biometric characteristic

(i.e., face information). To check whether reconstructed

feature vectors are close to the original PCA feature vec-

tors or not, we include face verification results of PCA

vectors, (i.e., reconstructed feature vector is compared to

corresponding original feature vector). The Euclidean dis-

tance is used to match two PCA vectors and each PCA

vector is normalized in order to have zero mean and unit

variance prior to comparison. The normalization step is

required since the scale of the original PCA coefficients

and the reconstructed ones might be different. We do not

include all verification results for brevity, but the EERs for

PCA-based face verification when 200-dimensional fea-

ture vectors are estimated from 1024-bit biohashes are

given in Table 11 and the corresponding DET curves are

shown in Fig. 12.

6 Conclusions
Biometric template protection is a critical problem that

needs to be addressed to enhance the public acceptance of

biometric technologies, and it is essential to develop a set

of measures which can evaluate the strength of template

protection techniques. Although biometric cryptosystems

Fig. 7 Reconstructed face images. Reconstructed from biohashes of length 1024 bits—PCA dimension 200
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Fig. 8 Reconstructed face images. Reconstructed from biohashes of length 1024 bits—PCA dimension 200

can be analyzed using information theoretical metrics

such as entropy and mutual information, the suitability

of theoretical analysis of the transformation-based meth-

ods is based on the hardness of the invertibility of the

transformation.

When a user’s biohash is obtained by an adversary, it can

seriously undermine the security of the biometric system

and privacy of users. If the secret key of a user is known

to the adversary, the biometric feature of the user can

be reconstructed from the user’s biohash which might

harm the subject’s privacy and lead to illegitimate authen-

tication to a system. Biometric hashing is claimed to be

irreversible due to the random projection and quantiza-

tion steps; however, our study shows that an attacker is

Fig. 9 Reconstructed face images. Reconstructed from biohashes of length 1024 bits—PCA dimension 1024
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Fig. 10 Reconstructed face images. Reconstructed from biohashes of length 1024 bits—PCA dimension 1024

able to invert the transformed template to obtain a close

approximation to the original biometric template.

This paper proposes four novel ways to approximate the

original biometric feature from the transformed template

in a biometric hashing scheme and reveals security and

privacy problems concerning the associated biometric

system. We define three different attack scenarios under

which we analyze the protection capability of biohashing.

From the security point of view, these attacks enable an

adversary to recover a biometric template under realistic

assumptions and perform intrusion attacks to the biomet-

ric system. This study is the first to analyze the inversion

of biohashes in a 1-bit compressive sensing framework.

Experimental results show the superiority of this approach

Fig. 11 Reconstructed face images. Reconstructed using LP method for different biohash bit lengths (128, 256, 512, and 1024)
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Table 11 Equal error rates (%) for direct feature level

comparisons—200-dimensional PCA feature vectors and biohash

length = 1024 bits

LP 91.161

BIHT 91.773

L2 88.338

L1 78.720

over minimum norm solutions. Biohashes that are created

from feature vectors obtained by using LP and BIHT solu-

tions to the 1-bit compressive problem are equal to the

original biohashes stored during enrollment, and this is a

serious threat to the security of the system. In addition,

this study introduces rainbow attack in order to find a bio-

metric template from a biometric database and use it to

obtain a biohash that is same with or close to the original

biohash of a subject.

Biometric hashing scheme is a generic template pro-

tection scheme that can be applied to various types of

biometric features. In this paper, we focus on an orthog-

onal linear transform of face images, namely PCA (i.e.,

Eigenfaces). Several other studies on biohashing also use

PCA ([4, 10]) or LDA ([19]) (i.e., Fisherface) which is

another orthogonal linear transform that is invertible.

Using the knowledge of the linear transform and its inver-

sion, we analyze the privacy issues by reconstructing face

images.

If the adversary knows system details (i.e., the PCA

matrix, user’s secret key, and other parameters), the

obtained feature vectors can be used to reconstruct face

images of the subject which is a direct threat to the pri-

vacy of system users. The quality of the reconstructed
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Fig. 12 Feature level comparison. DET curves for direct feature level

comparisons—200-dimensional PCA feature vectors and biohash

length = 1024 bits

images depends on the number of bits and length of the

original feature vector, and the images illustrated in the

last section visually confirm the success of the meth-

ods in reverting the biohash vectors. In this work, we

study feature reconstruction and image reconstruction

is carried out separately. Directly approximating images

from biohash vectors may also be possible by integrating

the PCA transformation with random projection matrix

and solving the optimization problem by enforcing spar-

sity in the DCT or block-DCT domain. However, our

initial experiments in this direction indicate that image

level approximation approach lowers the performance

both in security perspective (evaluated through EERs) and

privacy perspective (evaluated through visual inspection

of the reconstructed face images) due to the fact that

the number of dimensions to be approximated is higher

for images.

In the future, the effects of various improvements pro-

posed for biometric hashing schememight be investigated

for security and privacy analysis by carrying out similar

attacks on the improved versions of biometric hashing.

In addition, weaknesses of the biometric hashing scheme

should be explored and possible modifications should

be introduced for better security and privacy protection

capability in the light of the inversion attacks proposed in

this study.
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