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Abstract

Can we recover a signalf ∈ RN from a small number of linear measurements? A series of recent

papers developed a collection of results showing that it is surprisingly possible to reconstruct certain

types of signals accurately from limited measurements. In a nutshell, suppose thatf is compressible in

the sense that it is well-approximated by a linear combination ofM vectors taken from a known basis

Ψ. Then not knowing anything in advance about the signal,f can (very nearly) be recovered from about

M logN generic nonadaptive measurements only. The recovery procedure is concrete and consists in

solving a simple convex optimization program.

In this paper, we show that these ideas are of practical significance. Inspired by theoretical devel-

opments, we propose a series of practical recovery procedures and test them on a series of signals and

images which are known to be well approximated in wavelet bases. We demonstrate empirically that it

is possible to recover an object from about3M–5M projections ontogenerically chosenvectors with

the same accuracy as the idealM -term wavelet approximation. We briefly discuss possible implications

in the areas of data compression and medical imaging.
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I. I NTRODUCTION

In many fields of science and technology, one is often able to make only a limited number of

measurements about an object of interest; particular examples include Magnetic Resonance Imaging

(MRI) in medicine and interferometric imaging in astronomy [1], [2]. Against this background, several

recent works [3]–[6] have studied in depth the problem of recovering a signal from a small number of

linear measurements. Roughly speaking, the main results of these papers state that if a signalf has a

parsimonious representation in a basisΨ, it is possible to reconstructf accurately (or even exactly) from

a small number of projections ontorandomly chosensubspaces via a tractable optimization program.

To date, this work has been been for the most part theoretical in nature and mainly concerned with

mathematical explanations for this remarkable phenomenon. However, we believe that these results can

potentially impact several areas of signal processing. The purpose of this paper is to show that these

ideas have practical import, and to demonstrate how they may deployed on real signals and images.

A. Exact Recovery of Sparse Signals

Suppose we wish to recover a finite signalf ∈ RN from a set ofK linear measurements

yk = 〈f, uk〉 k = 0, . . . ,K − 1 or y = Mf (1)

taken against vectorsuk ∈ RN (uk is thekth row ofM). Of special interest is the vastly underdetermined

case,K << N , where there are many more unknowns than observations. Clearly, one cannot expect to

recover everyf ∈ RN from the datay. However, recent work [3]–[5] has shown that iff is sparse, in

the sense thatf can be written as a superposition of a small number of vectors taken from a basisΨ,

then (1) exact recovery is possible and (2) the ’true’ signalf actually is the solution to a simple convex

optimization problem.

To make these ideas concrete, suppose that one collectsK Fourier coefficients off so that the

measurement ensembleM = FΩ is the matrix obtained by samplingK rows of theN by N discrete

Fourier transform matrix corresponding to frequencies in a setΩ. In other words, the datay is of the

form

yk = 〈f, eiωkt〉, ωk ∈ Ω ⊂
{

0,
2π
N
,
4π
N
, . . . ,

2π(N − 1)
N

}
, |Ω| = K. (2)

Now suppose thatf is sparse in the sense that only a few of its entries are non-zero; that is, we can
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write f as a superposition ofM spikes1

f(t) =
∑
τ∈T

ατδ(t− τ), (3)

for someT ⊂ {0, . . . , N − 1}, |T | = M . We do not know the locations nor the amplitudes of the spikes.

The central theorem of [3] states that for an overwhelming percentage of setsΩ with cardinality obeying

|Ω| = K ≥ Const ·M logN, (4)

f is the unique solution to the convex optimization program:

min
g∈RN

‖g‖`1 :=
∑

t

|g(t)| subject to FΩg = y. (5)

That is, it is possible—with high probability—to recoverf from the knowledge of its projection onto a

randomly selectedK-dimensional subspace (spanned by the rows ofFΩ).

The number of observations required in the Fourier domain is proportional—up to a logarithmic factor—

to the number of non-zero components off and is optimal; ifM is small, we can “undersample” the

Fourier transformf̂ drastically and still be able to recoverf without error. In addition, the recovery

procedure istractable. It simply consists of solving the convex optimization problem (5). In fact, iff is

real, (5) can be recast as a linear program (see [7] for a detailed description).

Results analogous to (4) can be derived for other measurement ensembles. In some sense, we can use

almost anyM to the same end. Specifically, suppose we generate aGaussian ensembleby choosing each

(M)k,n independently from a zero-mean, normal distribution with unit variance

(M)k,n ∼ N(0, 1) k = 0, . . . ,K − 1, n = 0, . . . , N − 1, (6)

and use it to measure a sparse signalf , y = Mf . Again, if K ≥ Const ·M logN , thenf is the unique

solution to

min ‖g‖`1 subject to Mg = y (7)

with very high probability [5]. Results of this type with similar bounds hold for other random measurement

ensembles as in the case where(M)k,n take values{−1, 1}, each with probability1/2.

When we construct theK × N measurement ensemble as in (6) and use it to measuref , we are

essentially choosing aK dimensional subspace uniformly at random from the set of allK dimensional

subspaces, and projectingf onto it. The fact that we can recoverf means that althoughK can be much

smaller thanN , the projection retains enough critical information to specifyf uniquely.

1The sparsity basisΨ here is the identity matrix.
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The Gaussian measurement ensemble easily allows to extend the results to signals that are sparse in

any fixed orthonormal basisΨ (in (3), f is sparse in the identity basis). To recover the signal, we modify

(7) to search over coefficient sequences in theΨ-domain:

min ‖α‖`1 subject to MΨα = y. (8)

Because the subspace is chosen uniformly at random, it does not matter which set of axes the signal

is aligned with. Mathematically speaking, ifM has i.i.d. Gaussian entries andΨ is orthonormal, then

the distribution of the random matrixMΨ is exactly the same as that ofM; making measurements of

f usingM and solving (8) will recover signals withM -sparse representations in theΨ domain when

K ≥ Const ·M logN . This invariance property makes the Gaussian measurement ensemble especially

attractive; we can recover sparse signals inany fixed basis from randomly sampledK measurement

vectors with very high probability.

B. Approximate Recovery of Compressible Signals

In general, real-world signals are not exactly sparse in any orthogonal basis. Instead, a commonly

discussed model [8], [9] arecompressiblesignals. A compressible signal is such that the reordered

entries of itsΨ-coefficientsα, f = Ψα, decay like a power-law; that is, when we rearrange the sequence

of in decreasing order of magnitude|α|(1) ≥ |α|(2) ≥ · · · ≥ |α|(N), thenth largest entry obeys

|α|(n) ≤ Const · n−s (9)

for somes ≥ 1. Given anM , theM -term linear combination of elements which best approximatef in

anL2-sense is obtained by keeping theM largest terms in the expansion

fM (t) =
M−1∑
n=0

α(n)ψ(n)(t).

If α obeys (9), then the error betweenfM andf also obeys a power-law:

‖fM − f‖2 ≤ Const ·M−(s−1/2).

As such, accurate approximations tof can be constructed using a small number of vectors fromΨ.

This notion of compressibility is fundamental to signal processing. Both in theory and in practice, our

ability to denoise and compress (among other things) a certain class of signals relies critically on finding

a basis in which the expansion coefficients of these signals decay rapidly. Much energy over the past

two decades has been devoted to finding bases in which certain types of signals have fast decay. Perhaps

the most notable of these, the wavelet transform [10], [11] and its later geometric extensions [12], have

January 25, 2005 DRAFT



4

found widespread use due to their suitability for general classes of piecewise smooth signals, especially

photograph-like images (see Figure 2).

No matter which of these bases we decide to use, the recovery via (8) from Gaussian measurements

works as well for signals that are compressible as it does for signals that are truly sparse. If the expansion

coefficientsα obey (9) and we makeK & M logN Gaussian measurements2 , the solutionf ]
K to (8)

has error on the same order asfM [5]:

‖f ]
K − f‖2 ≤ Const ·M−(s−1/2), K & M logN. (10)

It is worth stepping back for a moment and looking at these results in a broader context. Geometrically,

the class of signals for which we can construct accurateM -term approximations in a basisΨ is tightly

clustered around a union ofM -dimensional subspaces inRN . We have seen that we can (nearly) recover

a signal in this class after projecting it onto a subspace of dimension aboutM logN ; the projection of

the cluster onto this subspace is (almost) invertible. In addition, we do not have to search for “special”

subspaces for which this is true. Choosing a subspace in a completely random manner will work almost

all of the time.

Our framework is a significant departure from the current zeitgeist. In some information theoretic sense,

the most efficient way to represent information about a smooth signal with isolated singularities is by

way of itsM largest wavelet coefficients [8]. However and in the scenario considered in this paper, one

would need to have available anoracle letting us know which coefficients are large beforehand. What

we are suggesting here is radically different. The observationsy = Mf are made against vectors that are

completely random; they have nothing to do with the structure of the underlying signal, and hence they

certainly do not provide a sparse or compressible representation of the signal. Yet using (8) to recover

the image fromK & M logN random observations works nearly as well as constructing the optimal

approximation fromM wavelets, both in theory (10), and in practice, as we shall see in the next section.

The inconvenience of adapting the measurements to the signal has also been avoided; the same set ofK

linear functionals can be used to recover everyM -compressible signal as (10) holds (with overwhelming

probability) for all signals obeying (9) [5].

2We use the notationK & M log N to mean that the recovery is successful ifK is at least proportional toM log N . The

constant of proportionality varies with the constant in (10).
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II. PRACTICAL RECOVERY

The theoretical results in the previous section indicate that we can recover the signal just as well

from K & M logN observations in a random basis as we could from theM bestobservations in the

sparsity basisΨ. These results are rather asymptotic in nature, and the practical viability of these ideas

depends largely upon the constants (4),(10) not being too large. In this section, we will present numerical

experiments which suggest that in practice, we can recover an approximation as close to the original

signal as the optimalM -term approximation by using about3M to 5M random observations.

For concreteness, we will takeΨ to be a discrete wavelet transform for signals of lengthN = 2J ; in

1D the coefficientsα are parameterized by a scalej and a shiftm

f(t) = Ψα =
2L−1∑
m=0

αL,mϕL,m(t) +
J∑

j=L+1

2j−1−1∑
m=0

αj,mψj,m(t). (11)

TheϕL,m are scaling functions and theψj,m are oscillatory wavelets, see [10] for details. We will refer to

the collection of coefficients at a given scale{αj,m,m = 0, . . . , 2j−1−1} as asubband. In the separable

extension of (11) to 2D, there are three subbands at each scale. All experiments in this paper use either

the ‘Haar’ or ‘Daubechies-8’ wavelets [11].

The wavelet transform is tremendously popular in the signal and image processing communities, due

in large part to its ability to provide parsimonious representations for signals that are smooth away

from isolated discontinuities (examples are shown in Figure 2). The ability to construct low-dimensional,

accurate approximations make wavelets particularly useful for image compression [13] and restoration

[14]. In the remainder of this section, we will demonstrate that from a projection onto a non-adaptive,

randomly selected subspace of similarly low dimension, we can recover equally accurate approximations

to real-world signals and images.

A. A Practical Recovery Algorithm

The recovery problem (8) is convex, and whenf is real, it can be recast as a linear program and

solved using modern interior-point methods [7]. As discussed in the last section, in doing so we recover

the signal to within near optimal accuracy. In practice, however, there are two drawbacks to recovery via

(8).

First, the iterative interior point methods, although tractable and stable, require aK × K system

of equations to be solved at each step. We will be interested in cases whereK is less than, but still a

significant fraction of, the signal lengthN . If N ≈ 106 (as for a typical image), the procedure is currently

not feasible for typical computing environments.
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Second, although (10) guarantees that the recovered signal will be close to the original in Euclidean

distance, there are often visually undesirable artifacts in the solution. A 1D example of recovery from

a projection onto a random subspace is shown in Figure 3(a); we can see that there are spurious fine-

scale oscillations in the reconstruction. Because the`1 norm functional does not distinguish between

coefficients at different scales, energy has been shifted from coarse to fine scale.

To address these shortcomings, we propose a slightly different recovery procedure than (8) that requires

a small amount ofa priori information about the signal we are to recover, but allows us to impose other

desirable characteristics on the solution. Our scheme is again iterative, but the cost of each iteration will

be much lower, essentially that of applying the measurement ensemble.

To begin, suppose that the condition for exact reconstruction is satisfied; that is, the wavelet coefficients

α are non-zero only on a small setT . LetM′ = MΨ be the measurement matrix expressed in the wavelet

domain. Sinceα is the unique solution to (8), thè1-ball B = {β : ‖β‖`1 ≤ ‖α‖`1} and the hyperplane

H = {β : M′β = y} meet at exactly one point;B ∩ H = {α}. Thus, if in addition to the random

projection valuesy = M′α, we are given thè1-norm‖α‖`1 , we can recoverα (and hencef ) by finding

the point of intersection. Since bothB andH are convex, this can be accomplished with the alternate

projections onto convex sets (POCS) algorithm [15].

From a starting pointα0 outside ofB, we iterate by alternating projections ontoH, then ontoB. The

algorithm is guaranteed to converge to a point (in this case,α) in B ∩H [15]. Both of the projections

are fairly straightforward.

Projection ontoH:

To find the closest vector̂β in H to an arbitraryβ ∈ RN , we use the formula

β̂ = β +M′∗(M′M′∗)−1(y −M′β).

The computational cost of a projection ontoH is essentially the cost of applyingM′ = MΨ

and its adjointM′∗. (If necessary,(M′M′∗)−1 can be computed beforehand; if the rows of

M are orthogonal, then(M′M′∗)−1 = IK .) Applying the wavelet transformΨ is fast — it

requiresO(N) operations. Applying theK ×N measurement matrixM will require O(KN)

operations in general, which can be prohibitively slow whenN (andK) are large. However,

if the measurement matrix is structured (as in the randomly sampled Fourier case (2)), the

complexity can be reduced toO(N logN), say.

Projection ontoB:
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Fig. 1. Piecewise cubic polynomials reconstructed perfectly from K = 600 measurements using the Gaussian

ensemble. Each example has around 200 nonzero Daubechies-8 wavelet coefficients.

To project a vectorβ onto the`1-ball B we simply apply a soft-thresholding operation

β̂(t) =


β(t)− γ β(t) > γ

0 |β(t)| ≤ γ

β(t) + γ β(t) < −γ

.

To determine the thresholdγ such that‖β̂‖`1 ≤ ‖α‖`1 , we sort the coefficients by magnitude

and perform a linear search, a procedure requiringO(N logN) operations.

Numerical examples of perfect recovery3 are shown in Figure 1. From600 observations, we are able

to recover piecewise polynomials that have around200 nonzero wavelet coefficients.

Of course, whenf can only be approximated — instead of represented exactly — by a superposition

of a small number of vectors,B∩H will in general contain more than justα. From these, we will choose

the coefficients corresponding to the signal that has smallesttotal variation (TV) by solving

min ‖Ψβ‖TV such that M′β = y, ‖β‖`1 ≤ ‖α‖`1 , (12)

where

‖g‖TV =
∑
s,t

√
(g(s+ 1, t)− g(s, t))2 + (g(s, t+ 1)− g(s, t))2

is the sum of the magnitudes of the (discretized) gradient ofg(s, t). The TV functional is well-known

in signal and image processing for its tendency to suppress spurious high-frequency features [16]–[18];

roughly speaking, (12) will choose the signal inB ∩H with the least amount of oscillation. Again, (12)

can be solved with an iterative scheme with two simple stages: a step in the direction of the (negative)

3While the theory reviewed in Section I-A is very precise in its notion of perfect recovery, the practical iterative algorithms

converge to the solution asymptotically. For the example in Figure 1, the relative reconstruction error is on the order of10−4.
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TV gradient, followed by a projection ontoB∩H using POCS. If we start the procedure from a feasible

point (by running POCS beforehand), it takes very few POCS iterations to re-project ontoB ∩H. Note

that in practice, finding an exact solution to (12) is not absolutely necessary. After finding a feasible

initial point, each descent iteration can be viewed as an improvement on the last, and the process can

be terminated at the behest of the user. In our experience, only a few iterations are needed to remove

high-frequency artifacts.

We can further restrict the feasible set by imposing a few additional constraints. In some ways, the

condition (9) is a bit lax in that it does not place any restrictions whatsoever on where the large wavelet

coefficients can appear. For signals and images such as those in Figure 2, we expect the large wavelet

coefficients to appear at coarse scales (small values ofj in (11)). To account for this, we will constrain the

`1-norm of eachsubbandαj = {αj,m,m = 0, . . . , 2j−1−1} of the wavelet transform. In the experiments

which follow, we will assume that the values‖αj‖`1 are known. Admittedly, this falls slightly outside of

our framework of making only random linear measurements of the signalf . However, we emphasize that

our primary purpose here is to explore the potential performance of recovery from random projections, and

we will benefit from establishing a few benchmarks. In addition, there is little doubt that future research

will provide competitive alternatives to these additional assumptions. Equipped with the‖αj‖`1 ’s , our

program (12) becomes

min ‖Ψβ‖TV such that M′β = y, ‖βj‖`1 ≤ ‖αj‖`1 , j = L, . . . , J (13)

B. Examples

We start with four 1D examples withN = 1024 taken from the well-known Donoho-Johnstone [14]

collection of synthetic test signals. The ’Cusp’, ’Heavisine’, ’Doppler’, and ’Blocks’ signals shown in

Figure 2(a)–(d) are all smooth away from isolated singularities, and hence are compressible in the wavelet

domain. SinceN is of modest size here, applyingM directly is not a computational burden, and select

M by sampling a matrix with i.i.d. Gaussian entries which we then orthonormalize. The results for

several values ofK are shown in Figure 3 and Table I; using (13) reconstructs the signal from3M–5M

random projections with the same accuracy as the bestM -term wavelet approximation.

Recovering 2D images from random projections via (13) works equally well. In two dimensions,

however, applying theK × N measurement matrix is unwieldy, and we therefore sample the random

projection in a different way. We consider applying random Fourier matricesin the wavelet domain(where

f becomes a decaying spike train). In theory and for coefficient sequences behaving as in (9), we can
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Fig. 2. Test signals and images. (a) ’Cusp’, (b) ’Heavisine’, (c) ’Doppler’, (d) ’Blocks’, (e) ’Lena’, (f) ’Camera’,

(g) ’Boats’, (h) ’Peppers’

recoverf from FΩα essentially as well as fromM′α [5]. In addition, there is of course a fast algorithm

(the FFT) to applyFΩ andF ∗
Ω, so that the projections ontoH can be rapidly computed. We will be careful

to count each measured Fourier coefficient ofα as two observations:y2k = Re〈α, ei2πωk/N 〉, y2k+1 =

Im〈α, ei2πωk/N 〉.

The venerable ’Lena’, ’Cameraman’, ’Boats’, and ’Peppers’ images are shown in Figure 2(e)–(h).

On each imagef , we computed the the solutionf ] to (13) for various values ofK and different

measurement matricesFΩΨ. The empirical recovery errors‖f − f ]‖2 are tabulated in Table II and

compared against those for the optimalM -term wavelet approximations. Examples are shown in Figures

4 and 5 Again, the recovery from3M–5M random projections is comparable to the bestM -term wavelet

partial reconstruction.

As our final example, we will consider the common task in medical imaging of reconstructing an image

from a limited number of Fourier samples4. The sampling domains can follow any one of a number of

4In most scenarios, these are samples of a continuous-space image that do not lie on a cartesian grid, making the situation

somewhat more complicated. We are considering a simplified version here, where we are given samples of digital images that

lie on the usual discrete Fourier grid.
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TABLE I

Recovery results for 1D synthetic test signals of length N = 1024. Column K denotes the number of observations,

EK is the average recovery error over 10 experiments, and Knla is the number of coefficients in the lowest-order

wavelet approximation that achieves error EK . The ’Blocks’ signal is recovered perfectly for all values of K shown.

Cusp Heavisine Doppler Blocks

K EK Knla EK Knla EK Knla EK Knla

100 0.1559 31 4.0211 23 3.0732 16 0 67

150 0.0390 45 1.2661 40 1.7101 29 0 67

200 0.0129 57 0.2734 61 1.0186 40 0 67

250 0.0057 63 0.0239 89 0.6613 51 0 67

300 0.0021 69 0.0084 98 0.4222 67 0 67

350 0.0009 75 0.0038 103 0.2379 85 0 67
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Fig. 3. Top: ‘Cusp’ recovery example using a Gaussian ensemble with K = 150. (a) Solution to (8). Energy has

“leaked” into the fine-scale subbands, causing unwanted high-frequency oscillations. (b) Solution to (12). Minimizing

the TV functional removes the unwanted oscillations. (c) Wavelet approximation with same error,Knla = 46. Bottom:

‘Doppler’ recovery example with K = 320. (d) Solution to (12). (e) Wavelet approximation, Knla = 82.

January 25, 2005 DRAFT



11

TABLE II

Recovery results for 256× 256 images. PSNRK is the peak signal to noise ratio between the original image f and

the recovered image f ], PSNRK(f, f ]) := 20 log10(‖f − f ]‖2/255).

Lenna Camera Boats Peppers

K PSNRK Knla PSNRK Knla PSNRK Knla PSNRK Knla

10000 26.5 1769 26.2 2024 26.7 2050 21.6 1966

15000 28.7 3125 28.7 3562 29.8 3896 25.3 4005

20000 30.4 4501 30.9 5415 31.8 5474 27.5 5638

25000 32.1 6148 33.0 7539 33.7 7207 29.4 7366

(a) (b)

(c) (d)

Fig. 4. 256 × 256 image recovery: ‘Lena’. (a) Recovered from K = 25000 random projections via (12), PSNR =

32.1 dB. (b) Optimal 6148-term wavelet approximation with same PSNR as (a). (c) Zoom of (a). (d) Zoom of (b).
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(a) (b)

(c) (d)

Fig. 5. 256 × 256 image recovery: ‘Boats’. (a) Recovered from K = 20000 random projections via (12), PSNR =

31.8 dB. (b) Optimal 7207-term wavelet approximation with same PSNR as (a). (c) Zoom of (a). (d) Zoom of (b).

patterns, one of the most prevalent is the ‘star-shaped’ domain shown in Figure 6(a), where we are given

high-resolution samples along a relatively small number of equally spaced lines through the origin. As

in (2), our measurement ensemble is a partial Fourier transformM = FΩ.

The reconstruction framework is slightly different here; the samples are not randomly selected, rather

they are dictated by the imaging device. (The fact that the results from the previous section hold with high

probability means that solving (7) will be effective for most sampling configurations.) But in the end,

the basic problem is the same: we wish to recover an image from its projection onto a low dimensional

subspace.

We also do not have access to the`1 norms of the wavelet coefficients of the underlying image. Because

of this, we will recover the image by solving (12) in Lagrange form

min ‖Ψβ‖TV + λ · ‖β‖`1 such that M′β = y (14)
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for a “user specified” value ofλ ≥ 0. The choice ofλ prescribes the importance of the solution having

small `1 norm in the wavelet domain versus having small TV norm in the spatial domain. Note that (12)

and (14) are essentially the same in that the`1 constraint in (12) will dictate the value ofλ used in (14).

We can also extend (14) (as we did with (13)) to accommodate a different parameterλj for each scale.

The top row of Figure 6(b)–(d) shows the reconstruction result for the classic Shepp-Logan phantom

from a sampling domain consisting of22 radial lines. The recovery is perfect5. In light of our previous

results, this is to be expected, since the phantom is piecewise-constant: not only are most of its wavelet

coefficients exactly zero (it is strictly sparse), but also that it has very small total variation. For comparison,

column (b) shows the ‘minimum energy’ reconstruction obtained by setting the unobserved Fourier

coefficients to zero (this is comparable to a basic filtered backprojection). The bottom row of Figure 6

shows a similar result. The image is again very simple; it is simply a superposition of 10 ellipses. However,

notice that even the fine-scale features (such as the small ellipse in the upper left) are recovered perfectly

by solving (12).

A more realistic example is shown in Figure 7. Here we take a high-resolution angiogram (image of

blood vessels in the brain), project it onto a Fourier star-domain with 80 lines, and reconstructed using

(12). By searching for an image that matches the observations while having rapidly decaying wavelet

coefficients and small TV norm, we are able to retain much of the detail of the original, while eliminating

many of the artifacts that appear in the backprojection.

III. D ISCUSSION

This paper introduced promising early experiments suggesting that it is possible to reconstruct an

object accurately from a few random projections. Indeed, our experiments show consistently that one can

recover an object from the knowledge of about3M to 5M random coefficients, with the same accuracy

as if one had knowledge of theM most significant wavelet coefficients. Although, this seems like an

unexpected feat, we would like to emphasize that this is only the tip of the iceberg as there are many

ideas in the literature that would certainly further enhance our reconstruction algorithms. We mention a

few such possibilities.

• Undecimated Wavelet Transforms.It is known that in certain areas of signal processing such as

“de-noising,” it is best to use undecimated wavelet transforms as opposed to orthogonal bases of

5These results were also presented in [3]. We include them as an example of perfect sparse recovery for the simplified

tomography problem to complement the example of approximate compressible recovery shown in Figure 7
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(a) (b) (c) (d)

Fig. 6. Exact reconstruction from limited Fourier domain observations. Top row: Shepp-Logan phantom, Bottom row:

Superposition of 11 ellipses. (a) Observation locations in the Fourier domain. Fourier coefficients along 22 radial lines

are observed, K = 5481 in all. (b) Original images. (c) Minimum energy reconstruction. (d) Recovered via (12). Both

reconstructions match the originals exactly. In both instances, (12) was minimized using the Haar wavelet transform

and λ = 0.01.

wavelets. Therefore, it is likely that searching for the sparsest decomposition in an undecimated

wavelet tree while fitting the data would improve upon the results presented in this paper.

• Combined representations.We limited our exposition to wavelet bases although it is clear that other

representations might offer enhanced sparsity [12], [17]. In addition, a popular approach nowadays

consists in combining several representations as to provide the flexibility of efficiently representing

different feature types with different basis functions [2]. It is clear that our methodology is compatible

with these ideas as one could easily search for the sparsest decomposition in a combined dictionary of

waveforms, e.g. a dictionary including for example local cosines for textures , wavelets for point-like

singularities, and curvelets for edges.

• Other variational functionals.This paper focussed on the Total-Variation norm while obviously,

there are many other ways of regularizing the object we wish to reconstruct, see the vast literature

on inverse problems [1].
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(a) (b) (c)

(d) (e)

Fig. 7. Angiogram example, with observations along 80 lines in the Fourier domain, K = 16129. (a) Original. (b)

Backprojection, PSNR = 22.15 dB. (c) Recovered via (12) using the Daubechies-8 wavelet and λ = 1/2, PSNR =

26.81 dB. (d) Zoom of (b). (e) Zoom of (c).

• Additional constraints.Finally, in many application of interest, we often have a priori information

that can easily be incorporated in the reconstruction strategy. In medical imaging or astronomy for

example, it is often the case that the object under study is nonnegative. It is our experience that adding

seemingly uninformative constraints of this type may in fact boost significantly the performance of

the reconstruction algorithm.

In addition to imaging applications, the results presented in this paper have the potential for impact

in signal compression. Our recovery framework suggests a straightforward, yet completely novel, coding

scheme (see [5] for a more detailed discussion). The encoder is very simple: it takes measurements of

the signal against random linear functionals and quantizes them. The decoder takes these observations

and recovers (a close approximation to) the signal by solving an optimization problem similar to (12).
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The advantages to such a coding scheme are manifold. First, we do not need to adapt the measurements

to the signal at all (compare to transform coding in a sparsity basis, where encoding the locations of

significant coefficients is critical). Second, the decoding is robust to missing information. Each projection

coefficient is equally (un)important; if some are lost, there is little overall effect. Finally, the unique

asymmetry of the computational burden (almost all of it lies on the decoder) makes the scheme particularly

appealing in situations where measurements are being taken by low-power sensors, and sent to a central

location. The design of a full-fledged encoding scheme, and the corresponding rate-distortion analysis,

is a topic of current research. We hope to report on our progress in a future paper.
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