
Practical Skew Handling in Parallel Joins

David J. Dewitt* Jeffrey F. Naughtont Donovan A. Schneidert S. Seshadrit

Abstract

We present an approach to dealing with skew in par-

allel joins in database systems. Our approach is easily

implementable within current parallel DBMS, and per-

forms well on skewed data without degrading the per-

formance of the system on non-skewed data. The main
idea is to use multiple algorithms, each specialized for

a different degree of skew, and to use a small sample

of the relations being joined to determine which algo-

rithm is appropriate. We developed, implemented, and

experimented with four new skew-handling parallel join
algorithms; one, which we call virtual processor range

partitioning, was the clear winner in high skew cases,

while traditional hybrid hash join was the clear winner

in lower skew or no skew cases. We present experimental

results from an implementation of all four algorithms on
the Gamma parallel database machine. To our knowl-

edge, these are the first reported skew-handling numbers

from an actual implementation.

1 Introduction

Multiprocessor database system technology has pro-

gressed to the point where a number of companies are

now shipping products that use parallelism to provide

*Department of Computer Sciences, University of Wisconsin-
Madison.

tDepartment of Computer Sciences, University of Wisconsin-
Madison. The work of these authors was supported in part by
NSF grant IF&9157357

tHP-Labs, Palo Alto.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
tale of the publication and its date appear, and notice is given that
copying is by permission tif the Very kge Data Bae Etuiow-
ment. TO copy otherwise, or to republish, requires a fee ad/or
special permission from the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

dramatic speedup and scaleup performance. It is clear

from the success of these systems that parallelism is

an effective means of meeting the performance require-

ments of large database applications. However, the basic

technique that these systems use for exploiting intra-

query parallelism (hash-based redistribution of relations

on their joining attribute) [DG92] is vulnerable to the

presence of skew in the underlying data. Simply put, if

the underlying data is sufficiently skewed, load imbal-
ances in the resulting parallel join execution will swamp

any of the gains due to parallelism and unacceptable

performance will result.

In response to this problem, a large and growing num-

ber of skew-handling algorithms have been proposed. In

general terms, these algorithms do a significant amount

of preprocessing in order to compute an execution plan

designed to minimize load imbalances. While these algo-
rithms may succeed in minimizing skew, invariably they

perform much worse than the basic parallel hash join al-

gorithm on data that is not skewed. For example, most

of the previously proposed skew handling algorithms

require that the relations to be joined are completely

scanned before the join begins [HLSl, WDYTSO, K090].

Since the time to perform a parallel hash join is a small

multiple of the time required to scan the two relations

being joined, this can represent a substantial overhead,

which is unacceptable for anything but extremely skewed

data.

Since there little or no empirical evidence that extreme

degrees of skew occur commonly in practice, it is sub-

optimal to penalize the normal case in order to benefit an
extreme case. For this reason, we sought to develop an
approach to join processing in which the “normal” case

approaches the performance of the fastest known parallel

join algorithms on non-skewed data, but that avoids the

disastrous performance degradation that standard hash-
based join processing suffers on skewed data.

The basic idea in our approach is that we have mul-

tiple algorithms, each optimized for differing degrees of
skew. We found in our experiments that two algorithms

27

are sufficient: the usual parallel hybrid hash join algo-

rithm [SD89], and a new algorithm that we call viti~al

processor range partitioning, performs well on moder-
ately skewed data at a cost slightly higher than that of

the parallel hybrid hash join. Before settling on these

two algorithms, we implemented three other new skew
handling algorithms (range partitioning, weighted range

partitioning, and a scheduling version of virtual proces-

sor range partitioning) and performed tests on the im-

plementation. We present detailed data on their perfor-

mance from this implementation in this paper. To the

best of our knowledge, these skew-handling algorithms

are the first ones ever actually implemented in either

a research prototype or a commercial parallel database

system product.

A fundamental step underlying our approach is an ini-

tial pass of sampling the relations to be joined. The re-

sulting set of samples is used in two ways: (1) they are
used to predict the level of skew in the data, and hence

to select the appropriate join algorithm to employ, and

(2) they are used within the skew handling algorithms

to determine the proper mapping of work to processors.

The initial sampling in our implementation is extremely

fast - approximately one percent of the time it would

take hybrid hash to perform a join of the two relations

assuming non-skewed data.

A further desirable property of our approach is that it
can be easily implemented within the framework of ex-
isting parallel database systems. The modifications re-

quired to an existing system are minimal; it took us less

than a person-month to add this skew-handling scheme

to the Gamma prototype.

The remainder of this paper is organized as follows.

Section 2 describes our algorithms and the techniques

that they use to avoid skew. Section 3 describes the

implementation of these algorithms within the Gamma

parallel database machine. In Section 4 we present re-

sults from a series of experiments with the implemen-
tation of these algorithms. Section 5 describes related

work on handling skew in parallel join operations in-

cluding a comparison of these earlier techniques with

our own. We present our conclusions in Section 6.

2 Algorithms

This section is composed of three parts: a description of

the basic parallel hash join and how it is vulnerable to
skew; the basic techniques we employ to handle skew;
and the resulting new algorithms built using these basic

techniques. While these techniques are described in the

context of parallel hash joins, they are applicable to a
wide range of parallel database algorithms. In fact, the
fundamental problem with skew has nothing to do with

joins. Skew can occur whenever hashing is used to par-

allelize a task. For example, the techniques we describe

in this section can just as well be applied if a more tradi-
tional join algorithm such as sort merge is used at each

processor.

2.1 Review of Basic Parallel Hash Join

At the highest level, the working of parallel hash join al-

gorithms in a shared-nothing multiprocessor database

system is simple. For concreteness, suppose that we

are joining R and S, and that the join condition is

R.A = S.B. Initially, both relations R and S are dis-

tributed throughout the system; if there are L proces-

sors, and the sizes of R and S (in tuples) are IRI and

IS’], then approximately jRI/k tuples of R reside on disk

at each processor. Similarly, each processor has about

]S]/lc tuples of S on its disk.

To perform the join, each processor executes the fol-

lowing steps:

Every processor in parallel reads its partition of re-
lation R from disk, applying a hash function to the

join attribute of each tuple in turn. This hash func-

tion has as its range the numbers O..li-- 1; if a tuple

hashes to value i, then it is sent to processor num-

ber i. The set of R tuples sent to processor i in this
step will be denoted Ri.

Each processor i in parallel builds a memory resi-

dent hash table using the tuples sent to it during
step 1. (This hash table uses a different hash func-

tion than the one used to repartition the tuples in

step 1.)

Each processor in parallel reads its partition of S

from disk, applying the same hash function used in

step 1 to each tuple in turn. As in step 1, this hash

function is used to map the S tuples to processors.
The set of S tuples sent to processor i in this step

will be denoted Si.

As a processor receives an incoming S tuple s, the
processor probes the hash table built in step 2 to

see if s joins with any tuple of R. If so, an answer

tuple is generated.

As mentioned above, this is a simplified description.

For example, if not all of the R tuples received in step 2

fit in memory, some overflow handling scheme must be

employed. Most commonly, the overflow processing is

handled by partitioning Ri into smaller subparts, called
buckets, such that each bucket is small enough to fit en-

tirely within memory. A critical factor in determining

the performance of the algorithm is the number of buck-
ets needed for each of the Ri; the larger the number

28

of buckets, the more I/O necessary as the tuples in the

overflow buckets of & and Si are spooled to disk and

then re-read to perform the join.

From the preceding description it should be clear that

for good parallelization the number of tuples mapped to

each processor should be approximately equal, or else

load imbalances will result (this form of imbalance is

what Walton [WDJSl] terms red&&z&on skew). These
load imbalances could be the result of a poorly designed

hash function. However, load imbalance due to a poor
hash function can be removed by choosing a better hash

function; the theoretical literature on hashing gives a

number of techniques designed to find a hash function

that with high probability performs well [CW79]. A

more fundamental problem arises from repeated values

in the join attribute. By definition, any hash function

must map tuples with equal join attribute values to the

same processor, so there is no way a clever hash func-

tion can avoid load imbalances that result from these

repeated values.

A more subtle cause of load imbalance occurs when

the number of matching tuples varies from processor to
processor. This form of load imbalance results if the join

selectivity for Ri w S’i differs from the join selectivity

for Rj W Sj. This type of load imbalance is called join

product skew by Walton et al. [WDJ91].

2.2 Skew Avoidance Fundamentals

In the next five subsections we describe the techniques

we apply to resolving both types of skew.

Range Partitioning

A basic approach to avoiding redistribution skew is to

replace hash partitioning with range partitioning. The

idea is that instead of allocating each processor a bin of

a hash function, each processor is allocated a subrange

of the join attribute value. The values that delineate the

boundaries of these ranges need not be equally spaced

in the join attribute domain; this allows the values to be

chosen so as to equalize the number of tuples mapped

to each subrange. For example, if the join attribute val-

ues appearing in the relation are {1,1,1,2,3,4,5,6}, and

there are two processors, one could choose “3” to be the

splitting value, sending tuples with values 1 and 2 to

processor zero and tuples with join attribute values 3 -

6 to processor one.

In general, if there are Ic processors, then there will
be k - 1 “splitting values” delineating the boundaries

between contiguous ranges. We call these k - 1 splitting

values the “partitioning vector.” The partitioning vec-

tor is “exact” if it partitions the tuples in the relation
into exactly equal sized pieces. While computing an ex-

act partitioning vector is difficult, an attractive aspect of

range partitioning is that it is relatively easy to deter-

mine an approximate partitioning vector via sampling;
that is, without examining the entire relation. This

technique of sampling for approximate splitting vectors

has been used previously in DBMS algorithms for evalu-

ating non-equijoins [DNSSla] and for parallel external

sorting [DNSSlb]. A theoretical investigation of the

performance of sampling-based range splitting appears
in [SN92].

In a two relation join, say R W S, the question arises

whether an algorithm should attempt to balance the

number of R tuples per node, or the number of S tuples

per node, or the sum of the R and S tuples per node.

The answer is not always clear, but a useful general ob-

servation is that an imbalance in the number of building

tuples is much worse than an imbalance in the number

of probing tuples, since an imbalance in the number of

building tuples per site gives rise to extra buckets in the

local subjoins, driving up the number of I/OS signifi-

cantly. This observation is validated by results that we

reported in [SD891 and by our experimental results in

Section 4.

Subset-Replicate

One complication arises with join processing via range

partitioning in the presence of highly skewed data: for

equal sized partitions, it might be necessary to map a

single data value to multiple partitions. For example, if

the join attribute values are (1, 1, 1, 1, 1, 1, 2, 3}, an

equal-sized partitioning would map { 1, 1, 1, 1) to pro-

cessor zero and { 1, 1, 2, 3) to processor one. If using

a range partitioning that assigns single values to more

than one partition, one must take care to ensure that

all possible answer tuples are produced. A simple solu-

tion would be to send all tuples with the repeated join

attribute value to all processors to which that value is

mapped, but this only results in multiple processors do-

ing exactly the same work and producing the same an-
swer tuples at multiple sites.

It is sufficient to send all tuples with the repeated at-

tribute value from one relation to all sites to which that

value is mapped, and to send each tuple with the re-

peated attribute value in the other relation to exactly

one of the sites with repeated values. We call this tech-

nique subset-replicate. (Subset-replicate is similar to the

fragment-replicate technique proposed for distributed

relational query processing by Epstein et al. [ESW78].)
As an example, suppose we are joining R and S with

the join predicate R.A = S.B. Furthermore, suppose

that the relations R and S contain tuples as shown in
Table 1.

Suppose we wish to join R and S on two processors.

29

Table 1: Example relations R and S.

The splitting vector in this case is a single value (since

there are only two processors), the value “3.” Then a

subset-replicate partitioning onto two processors po and

pl might send the R tuples (1,3) and (2,3) to processor

po and the R tuples (3,3) and (4,3) to processor pl.

This is the “subset” part of the partitioning. Since the R

tuples were subsetted, for correctness the S tuples with
the join attribute value 3 must be replicated among both

processors. This means that the S tuples (1, l), (2,2),

and (3,3) will be sent to PO, while the S tuples (3,3),

(4,4), and (4,s) will be sent to pl.

Again the question arises whether to replicate the

building (inner) relation and to subset the probing

(outer) relation or vice-versa. While there are clearly

situations where either will out perform the other, again

a reasonable heuristic is to subset the building relation
and replicate the probing relation. The motivation for

this heuristic is that it is critical that the portion of the
building relation mapped to each processor be as small

as possible so as to minimize the number of buckets in

the join.

Weighting

Another complication that arises with range partitioning

is that it will often be the case that a join attribute

value appears a different number of times in different

partitions. For example, suppose that the join attribute
values in a 12 tuple relation are {1,2,3,4,4,4,4,4,4,4,4,6},

and that we wish to partition over three processors po,

pi, and ps. Then an even partitioning vector would be

[4,4], meaning that tuples with the join attribute value

4 should be mapped to all three processors. Since a total

of 8 tuples have the join attribute value “4”, to balance

the load evenly among the 3 processors, l/8 of the tuples

with 4 as the join attribute must be directed to processor

po (along with join attribute values 1, 2, and 3), l/2 to
processor pi, and 318 to processor ps (along with join

attribute value 6).

We refer to this technique for distributing replicated
values for the subsetted relation as weighted range par-

titioning.

Virtual Processor Partitioning

This and the next subsection deal with the problem of

join product skew. For concreteness, suppose that we are

joining two 10,000 tuple relations and that in each rela-

tion the join attribute value “1” appears 1,000 times and

no other join attribute value appears more than once.
Also, assume that we have 10 processors. Then if we

use equal sized range partitioning, all 1000 tuples with

“1” as their join attribute value from both relations will

be mapped to processor zero, meaning that processor

zero will be asked to generate l,OOO,OOO result tuples.

There is no way to remedy this problem by choosing a

set of 9 splitting values; too many l’s will be mapped to

some processor in every case.

The solution to this problem is to choose many more

partitions than there are processors. This idea has ap-
peared many times before in the skew join literature with

respect to hash bucket partitioning; the first reference to

the technique is probably in [KTMo83]. We refer to the

technique of using multiple range partitions per node as

virtual processor partitioning. In the previous example,

if we chose 100 buckets per processor, for a total of 1000

buckets, we would have a fine enough granularity to re-

solve this problem. In particular, the 1000 l’s would be

spread among 100 buckets (subranges), each of which

could be mapped to a different processor. This of course

leaves open the question of how these virtual processor
partitions are to be mapped to the actual processors.

We considered two techniques for this, both described

in the next subsection.

Load Scheduling

We consider two basic techniques for mapping virtual

processor partitions to actual processors:

Round robin.

This is the simplest scheme - if there are li proces-

sors, the ith virtual processor partition is mapped

to actual processor i mod k.

Processor scheduling.

In this scheme, for each virtual processor partition

i, we compute an estimate of the cost c; of joining

the tuples of Ri and Si. Any formula for estimating

the cost of a join could be used; we chose the simple

technique of estimating that

ci = If& lest + ISi lest + I& W Si lest

where (Rijest is an estimate of the number of R tu-

ples mapped to partition i,]Silest is an estimate of

the number of S tuples mapped to partition i, and

1% W Silest is an estimate of the number of tuples

30

in & W S;. We computed this estimate of the size
of & w Si by assuming that the join attribute val-

ues in each of Ri and Si were uniformly distributed
between the endpoints of the range for virtual pro-

cessor partition i. Once this estimate for the cost

of the joining of the virtual processor partitions has

been computed, any task scheduling algorithm can

be used to try to equalize the times required by the
virtual processor partitions allocated to the phys-
ical processors. We used the heuristic scheduling

algorithm known as “LPT” [Gra69].

This approach is similar to that used by Wolf et

al. [WDYTSO] in scheduling hash partitions, al-
though in that paper the statistics used to schedule

these partitions are gained by a complete scan of

both relations rather than by sampling, and hash

partitioning is used instead of range partitioning.

2.3 Algorithm Description

The algorithms that we implemented can be described

in terms of the skew handling techniques defined above.
But first we need to discuss how the approximate split-

ting vectors are computed. For each algorithm except

hybrid hash, we first used sampling to compute a sta-
tistical profile of the join attribute values of the two re-

lations to be joined. We obtained this sample by us-

ing stratified sampling [Coc77] with each stratum con-
sisting of the set of tuples initially residing at a pro-

cessor. Within each processor, the samphng was per-

formed using page-level extent map sampling. Extent

map sampling is described in Section 3. Issues involv-

ing stratified sampling and page level sampling are dis-

cussed in [SN92]. We now describe the skew handling

algorithms.

1. Hybrid hash.

This is just the basic parallel hybrid hash algorithm

(with no modifications for skew handling.) A de-

scription of this algorithm and some alternatives

appears in [SD89].

2. Simple range partitioning.

At the top level, this algorithm works as follows:

(a) Sample the building (inner) relation.

(b) Use the samples to compute an approximate

partitioning vector. The number of partitions
defined by the partitioning vector is equal to

the number of processors.

(c) Redistribute the building relation using the ap-

proximate partitioning vector to determine to
which processor the tuples should go.

(d) Build an in-memory hash table containing

as many building relation tuples as possible.

Overflow tuples are partitioned into buckets
sized so that each such bucket will fit in main

memory [SDS9].

(e) Redistribute the probing (outer) relation using

the same approximate partitioning vector as in

step 3.

(f) For each tuple of the probing relation probe

the in-memory hash table, outputting a join
result tuple for each match. If overflow oc-

curred in step 4, probing tuples corresponding
to one of the overflow buckets of the build-

ing relation are written directly to disk. Once,

all the probing tuples have been received, the

overflow buckets of the building and probing

relations are processed.

3. Weighted range partitioning.

This algorithm is the same as range partitioning ex-

cept that instead of simple range partitioning, tu-

ples are redistributed using weighted range parti-

tioning.

4. Virtual processor partitioning - round robin.

This algorithm is the same as range partitioning ex-

cept that instead of having the number of partitions

equal the number of processors, the number of par-

titions is a multiple of the number of processors.

The exact number of partitions is a parameter of

the algorithm. The partitions are allocated to pro-

cessors using round robin allocation.

5. Virtual processor partitioning - processor

scheduling.

This algorithm is the same as virtual processor par-

titioning - round robin except that instead of using

round robin allocation of partitions to processors,
processor scheduling using LPT is used.

3 Implement at ion Details

In this section we describe some of the details of the

implementation of the skew handling algorithms within

Gamma. We begin by explaining how we sampled the

relations, and then consider the modifications to Gamma

that were necessary for the remainder of the algorithms.

Sampling Implementation

As mentioned in Section 2, we use stratified sampling

to obtain a sample from relations distributed through-
out the multiprocessor. In stratified sampling, if a t

31

node multiprocessor needs to take n samples, each pro-

cessor takes n/k samples from its local partition of the

database. Although this is not a simple random sample
of the entire relation, a stratified sample is sufficient for

our purposes.

Stratified sampling requires that each processor take
some specified number of samples from its partition

of the database. A number of techniques have been

proposed for this problem, notably sampling from Bt

trees [OR89], sampling from hash tables [ORX90], and

using a dense index on a primary key [DNSSla]. In this

section we describe a new technique that we call extent

map sampling.

Extent-based sampling requires neither an index on a

dense primary key nor an index on any other attribute.

Our scheme hinges on the fact that many systems allo-

cate pages in contiguous units called extents, and record

information about where the pages of a file are stored by

linking together the extents for the pages of the file. This

information is maintained in a small memory-resident
data structure. Moreover, the address of a page within

an extent can be found by adding an offset to the address

of the first page of this extent. Given this information,

we can select a random page or tuple as follows: gen-

erate a random number T between one and the number

of pages in the file (relation). Find the address of the

rth page of the file by chaining down the linked list of

extents. If a random page is desired, then this page can

be brought in; if a random tuple is desired, we follow

this I/O by randomly choosing one of the tuples in the

page.

The above correctly chooses a random page if the
pages in the relation have the same number of tu-

ples. However, if they do not we will need accep-

tance/rejection sampling to accept or reject a randomly

chosen page so that the inclusion probabilities for each

tuple of the relation is identical. If all pages have the

same number of tuples then we require exactly one I/O

to fetch a random tuple. If they do not, then the average

number of I/O’s required for fetching a random tuple is

the inverse of the fill-factor. Therefore, if the fill-factor

is more than 50% we would need at most two I/O’s on

an average to fetch a random tuple. This is still better

than the previous index-based methods even assuming

that the previous methods have no wasted I/O’s due to

acceptance rejectance sampling. For this reason we have

adopted extent-map sampling in our implementation.

We also used page-level sampling in our implementa-
tion. This means that after a random page has been

selected and read into memory (using extent map sam-

pling), we add every tuple on that page to the sample.

This in effect boosts the number of samples per I/O by

a factor equal to the average number of tuples per page.
This technique is most efficient if the correlation on the

join attribute within a page is low.

Implementation in Gamma

In order to investigate the performance of our skew han-

dling algorithms, we implemented the algorithms using
Gamma [DGSSO] as our experimental vehicle. Gamma
falls into the class of shared-nothing [Sto86] architec-
tures. The hardware consists of a 32 processor In-

tel iPSC/2 hypercube. Each processor is configured

with a 80386 CPU, 8 megabytes of memory, and a 330

megabyte MAXTOR 4380 (5 l/4 in.) disk drive. Each

disk drive has an embedded SCSI controller which pro-

vides a 45 Kbyte RAM buffer that acts as a disk cache
on sequential read operations. The nodes in the hyper-

cube are interconnected to form a hypercube using cus-

tom VLSI routing modules. Each module supports eight

full-duplex, serial, reliable communication channels op-

erating at 2.8 megabytes/set.

Gamma is built on top of an operating system de-
signed specifically for supporting database management

systems. NOSE provides multiple, lightweight pro-

cesses with shared memory. A non-preemptive schedul-

ing policy is used to help prevent convoys [BGMPTS]

from occurring. NOSE provides communications be-

tween NOSE processes using the reliable message pass-

ing hardware of the Intel iPSC/2 hypercube. File ser-

vices in NOSE are based on the Wisconsin Storage Sys-

tem (WiSS) [CDKK85].

The services provided by WiSS include sequential files,

byte-stream files as in UNIX, B+ tree indices, long data

items, an external sort utility, and a scan mechanism. A
sequential file is a sequence of records that may vary in

length (up to one page) and that may be inserted and

deleted at arbitrary locations within a file. Optionally,

each file may have one or more associated indices that

map key values to the record identifiers of the records

in the file that contain a matching value. One indexed

attribute may be designated to be a clustering attribute

for the file.

Before beginning this work, Gammaalready contained

the code needed to perform a parallel hybrid hash join.

The critical code that needed to be added to the sys-

tem in order to incorporate our new skew handling join

algorithms were

1. code to do the parallel stratified page level extent

map sampling,

2. code to sort the resulting samples and build the

required approximate splitting vectors, and

3. code to redistributes tuples using the new distribu-

tion types (e.g., subset-replicate) required by our
algorithms.

32

Items 1 and 2 above were straightforward. We now dis-

cuss the changes to the redistribution code in more de-
tail.

Basic parallel hybrid hashing in Gamma makes use of

a data structure called a split table [DGS+SO, DG92].

This data structure contains entries that are (hash

bucket, processor number) pairs. If Ic processors are be-

ing used to execute a relational operation, then the split

tables have Ic entries. The semantics are such that any

tuple that hashes to a given hash bucket should be sent

to the processor number in the split table entry for that

hash bucket. Each processor executing an operation has
a copy of this split table. In a given processor, associ-

ated with the split table are Ic outgoing buffer pages, one

for each processor. When a tuple maps to a given hash

bucket, it is added to the corresponding buffer page;

when this page fills, a message containing this page is

sent to the target processor.

To add basic range partitioning, we added a new type

of split table called a range split table. This was a simple

modification; the only change is that entries of the split

table correspond to ranges of join attribute values in-

stead of corresponding to hash buckets. When deciding

where to send a tuple, instead of hashing the join at-

tribute value to find the corresponding entry, the range
split table is searched to find the range containing the
join attribute value. If a tuple t maps to more than one

range (e.g., if there are repeated values in the split ta-

ble), then, during redistribution of the building (inner)

relation, one of the duplicate ranges is selected at ran-

dom and t is sent to the corresponding processor. During
redistribution of the probing (outer) relation, t is sent

to the processors corresponding to all of the containing

subranges.

To add weighted range partitioning, we augmented the

basic range split table to contain weights for the upper

and lower boundary values of each range in the table.

These weights are computed from the sorted set of sam-

ples at the time when the partitioning values are being

computed. Then, during the redistribution of the build-
ing relation, instead of sending tuple t to a randomly

selected subrange, a subrange is selected with a prob-

ability that reflects the weights in the weighted-range

split table.

The most obvious way to add virtual processor range

partitioning would be to expand these basic range split-

ting tables to add more entries than processors. The

difficulty in doing so is that the lower level Gamma code

assumes that there will be exactly one outgoing buffer

page for every entry in the split table. For large numbers

of virtual processors, the space required by this scheme
is prohibitive. For example, for 30 processors and 50

virtual processor ranges per processor it would require
1500 output buffers (I2 megabytes with 8K byte network

packets) per node. This is more than the total amount

of memory per node in our sytem.

To solve this problem we used a two-level split table.

The upper level table contains the same number of en-

tries as the number of virtual processor partitions. The
lower level table contains one entry per processor. Each

entry in the upper table consists of a (range, lower split

table entry number) pair. When a tuple is being pro-

cessed to decide to which processor it should be sent,

first a lookup is performed on the upper table to deter-
mine the set of virtual processor ranges in which the join
attribute value of the tuple appears. Next the entries for

these ranges are examined to determine to which lower

level entries the tuple belongs. From this set of entries in
the lower level table the system can determine to which

processors the tuple should be sent. Only one buffer
page per destination processor is used.

4 Experiments and Results

Test Data

For the purposes of this experiment we wanted to use a
set of test data that was simple and intuitively easy to

understand, yet that would stress all of our skew han-

dling algorithms. One option would have been to gener-

ate relations with attributes drawn from standard sta-

tistical distributions (like Zipf and normal.) We decided

against this because we found that relations with such

attributes make the experiments much harder to under-

stand and control. For example, suppose we wish to

perform a set of joins on a pair of relations, varying the

level of skew in both relations, yet keeping the answer

size approximately constant? This is difficult to do with

sets of Zipfian distributions.

To remedy this problem we generated relations with a

number of integer attributes, each with various amounts

of “scalar skew” - that is, in an N tuple relation, in

each attribute the constant “1” appears in some fixed

number of tuples, while the remaining tuples contain

values uniformly distributed between two and N. The
use of such a distribution has three major benefits. First,

it makes it easy to understand exactly what experiment

is being performed. Second, it is easy to keep the answer
size constant over varying amounts of skew. Finally, it

captures the essence of the Zipfian distribution (a small

number of highly skewed values with the bulk of the

values appearing very infrequently) without suffering its

drawbacks. The term “scalar skew” is due to Walton

et al. [WDJSl]. This is also the model of skew used by

Omiecinski [Omigl].
The exact description of the attributes are as follows.

In each case, we are assuming a relation of N tuples,
and that N 2 100,000. The attributes relevant to our

33

experiments are xl, x10, x100, x1000, x10000, x20000,

x30000, x40000, and x50000. The number following the

“x” in each case is the number of tuples in which the
value “1” appears in the join attribute (these tuples are
chosen at random). The remainder of the tuples have

a join attribute value chosen randomly from 2 to N,

where N is the number of tuples in the relation. For
example, the x10 attribute has the semantics that the

value “1” appears in exactly ten randomly chosen tuples.
The remaining N - 10 tuples contain values uniformly

chosen at random between 2 and N. The rationale for

choosing these attributes should become more apparent

in the following set of experiments. In addition to the

attributes listed above, each tuple contained a string at-

tribute to pad the length of each tuple to 100 bytes. In

all of our experiments below we used relations of 500,000

tuples. Thus, each relation occupies approximately 50

megabytes of disk space.

All experiments were conducted using 30 processors

with disks. Speedup or scaleup experiments were not

performed as we were more interested in focusing on the

relative performance of the different algorithms. Fur-

thermore, previous join [DGGt86, DGSf90, DGS88,

DNSSla, SD891 and sorting [DNSSlb] tests demon-

strated that the Gamma provides linear speedup and

scaleup over a wide range of different hardware and soft-

ware configurations.

Single Skew Experiments

In the first set of experiments we ran the building rela-

tion was skewed and the probing relation was uniform.

This models a very common sort of join in practice -

joins between a key of one relation and the correspond-
ing foreign key in another. Each data point is the av-

erage of 5 experiments. For the range, weighted range,

and virtual processor range partition round robin the

number of samples on the building relation was fixed

at 14,400 (the probing relation is not sampled in these

algorithms.) For the virtual range partition processor

scheduling algorithm, we took 14,400 samples of both

the building and probing relations. For the virtual pro-

cessor range partitioning algorithms we use 60 virtual

processors per processor. The results of the experiment
appear in Table 2.

In Table 2, entries marked “DNF” means that the al-

gorithm did not finish. The reason these tests did not

finish was that in those cases marked “DNF”, the al-

gorithms mapped more tuples with “1”s in the join at-
tribute to a single processor than can simultaneously fit

in the memory of that processor. In the current Gamma

implementation, the per-node hybrid hash code does not

handle this extreme case. We see that Hybrid Hash
(HH) is clearly the algorithm of choice for the zero skew

case (xl W xl). This is because when compared to the

skew handling algorithms, (1) Hybrid Hash does not in-

cur the overhead of collecting the samples, sorting the
samples, and computing an approximate splitting vec-

tor, and (2) in Hybrid Hash, to determine a destination

processor during redistribution one need only compute a

hash function, while in all the other algorithms it is nec-

essary to search a sorted list for the appropriate range

entry.

The difference in performance for Range Partitioning

(Range) and Weighted Range Partitioning (W. Range)

at zero skew is an artifact of the implementation -
Weighted Range Partitioning was implemented second

and uses a more efficient table search during repartition-

ing. We expect that if Range Partitioning were reimple-

mented using this new code, it would be slightly faster

at zero skew since it doesn’t need to check the weights
before choosing a destination in the subset phase.

At xlOK, both Range Partitioning and Weighted

Range Partitioning effect the same partitioning, send-
ing the tuples with l’s in the join attribute along with

about 6K other tuples to processor zero. However, at

x20K, Range Partitioning sends all 20K tuples with l’s

to processor zero, while Weighted Range Partitioning

sends about 16K of these tuples to processor zero and

4K of these tuples (plus about 12K other tuples) to pro-
cessor one. Weighted Range Partitioning performs worse

on xlOK than on xl because even though the same num-

ber of tuples are distributed to each processor in both

cases, in the xlOK case the join hash table for processor

zero contains one bucket with 1OK tuples (the bucket

to which “1” is mapped.) At 2OK the situation is even

worse, as there is a bucket with about 16K ones in that

case.

Virtual Processor Range Partitioning with Round

Robin allocation (VP-RR) starts off at zero skew with

slightly higher overhead than Weighted Range because

during redistribution, to determine a destination proces-

sor it must search a much bigger range table (bigger by

a factor of 60.) Virtual Processor Range Partitioning

with Processor Scheduling (VP-PS) has even more over-

head, since it must sample and sort the probing relation

and then run the LPT scheduling algorithm. However,

in the skewed cases both these algorithms outperform

Range and W. Range because they map the tuples with
l’s to more processors, avoiding the large hash table en-

try effect.

Next we wanted to test the effect that a skewed prob-
ing relation would have on the algorithms. Note that

since the first four algorithms do not sample the probing

relation, these algorithms use the same splitting vector

independent of the skew in the probing relation. For

this reason, the performance deteriorates rapidly, so we
do not go beyond xl W x201(. Note that Hybrid Hash

34

Alg. xl w xl xlOK W xl x20K W xl x30K W xl x401(W xl x501(W xl

HH 33.0 52.2 79.5 DNF DNF DNF
Range 43.1 43.4 58.9 DNF DNF DNF

W. Range 41.8 41.9 51.7 52.2 52.9 52.6
VP-RR 43.9 44.2 44.0 43.4 43.8 43.3
VP-PS 47.7 47.3 47.5 47.6 47.9 47.6

Table 2: Effect of skewed building relation.

does relatively well here. VP-PS samples the probing

relation, but its estimates of the per virtual processor

execution times were too inaccurate to provide good per-

formance.

Algorithm (xl W xl 1 xl W xlOK 1 xl W x20K

HH 1 33.0 1 44.5 55.3

Table 3: Effect of skewed probing relation.

An alternative approach to handling single relation

skew would be to sample the probing relation, then use

these samples to compute a splitting vector that could

be used for both the building and probing relations. We
did not pursue this approach for the following reason: if

the probing relation is highly skewed, and we distribute
the building relation using a splitting vector that evenly

distributes the probing relation, then greatly varying

numbers of building tuples are sent to each processor.

This in turn causes some processor(s) to use many more

buckets that would be necessary if the building relation

were evenly distributed, which will cause performance

to suffer.

Join Product Skew

In this subsection we present experiments in which both

relations that participate in the join are skewed. In gen-

eral, this sort of skew is much harder to deal with than

skew in a single relation. Intuitively, the problem is that

in join product skew, a relatively small number of re-

peats can cause a tremendous blowup in the number of

tuples generated in the join. For example, if we join

the two relations using the join clause xl0000 W x10000,
the result will have lo8 tuples generated due to matches

of tuples with ones in the join attributes. This result

would be 20G bytes. In addition to exceeding the ca-
pacity of our disk drives, we don’t think such queries

make any sense. Accordingly, we decided to experiment

with more modest skews. The first set of experiments

below shows the performance of the algorithms using

the same configuration (number of samples, number of

virtual processors per node) as in Table 2.

Algorithm xlOK W x10 xlK W xl00 xl00 W xl000

3
Table 4: Performance on data with join product skew

The joins in Table 4 were designed so that the result

size is roughly comparable to that in Tables 2 and 3. In

each case the result contains about 6OOK tuples, 1OOK of

which are due to joining tuples that contain ones in the

join attribute. It is clear that only the virtual processor

algorithms have significant success in dealing with this
sort of skew. Intuitively, the reason is that in each of the

Range and Weighted Range algorithms, the skew in the

relation is not enough to cause tuples with one’s in the

join attribute to be sent to more than one processor.

With the exception of the xl00 W xl000 join, both

of the virtual processor algorithms have enough virtual

buckets that the one’s are mapped to enough proces-

sors to distribute the work. For the xl00 W ~1000 join,

the round robin algorithm fails to distribute the one’s

because there are so few in the building relation. The

virtual processor range partitioning processor scheduling
algorithm also fails to distribute the one’s into multiple

buckets, again because its estimates of the work required

per virtual processor are too inaccurate.

It is clear that the performance of the virtual processor

range partition algorithms is critically dependent upon
the number of virtual processors per processor. Table 5
explores the performance of the round robin variant on

the join xl0000 W xl00 for various numbers of proces-

sor per node. (Since in our experiments the processor

scheduling variant was uniformly worse than the round
robin variant, we omit the data points for that algo-

35

rithm.) The table shows the clear trend that the more

virtual processors, the better the performance. The rea-
son for this is that the tuples with “1”s are being dis-
tributed over more and more (actual) processors, achiev-

ing better load balancing.

Phase min seconds max seconds

Building 15.55 16.48
Complete Join 48.72 49.77

Table 7: Maximum and minimum times over all proces-

virt.
sors, xl0000 W x10, virtual processor range partitioning.

procs. (1 1 5 1 10 (20 1 30 1 60

exec. sec. 1 147.2 1 95.3 1 64.0 1 54.0 1 51.8 1 49.7
5 Related Work

Table 5: Dependence on number of virtual processors,

xl0000 W x100, virtual processor range partitioning.

Finally, we wanted to illustrate the dependence of vir-
tual processor range partitioning on the number of sam-

ples. Table 6 lists the average time as a function of the

number of samples for the virtual processor range parti-

tion round robin algorithm as a function of the number

of samples for the join xl0000 W x100. Again, since vir-

tual processor range partitioning with round robin allo-

cation was uniformly the best skew handling algorithm,

we only present data for it. Note that the performance is

relatively stable independent of the number of samples.

The general trend is that taking too few samples results

in poor load balancing, while taking too many samples
results in too much overhead due to sampling (notice in

Table 6 that the overall running times dip from 1800 to

3600 samples and then begin to rise again.)

There has been a wealth of research in the area of paral-

lel join algorithms. Originally, join attribute values were

assumed to be uniformly distributed and hence skew was

not a problem (see, for example, [BFKS87, Bra87, DG85,

DGS88, KTMo83].) As parallel join algorithms have ma-

tured, this uniformity assumption has been challenged

(see, eg., [LY90, SDSS]). In this section, we examine

a number of previously proposed algorithms for dealing
with data skew and compare these algorithms with our

own.

5.1 Walton, Dale, and Jenevein

Walton et al. [WDJSl] present a taxonomy of skew in

parallel databases. First, they distinguish between ai-

tribute value srl-ew (AL’S) which is skew inherent in the

dataset, and partition skew which occurs in parallel ma-

chines when the load is not balanced between the nodes.

AVS typically leads to partition skew but other factors

are also involved. These include:

number of samples 1800 3600 7200 14400

execution time (set) 49.0 47.8 49.0 49.7

Table 6: Dependence on number of samples, xl0000 w

x10, virtual processor range partitioning.

1. Tuple Placement Skew (TPS): The initial distribu-

tion of tuples may vary between the nodes.

2. Selectivity Skew (SS): The selectivity of selection

predicates may vary between nodes, for example, in

the case of a range selection on a range-partitioned

attribute.

Finally, we would like emphasize that the virtual pro-

cessor range partition round robin is exceedingly suc-

cessful at balancing the load among the processors dur-

ing the execution. Table 7 gives maximum and mini-

mum times (over all processors) to complete the build-
ing phase (that is, redistributing the building relation

and building an in-memory hash table) and the entire

join of xl000 W x10. As before, we used 14400 samples

and 60 virtual processors per processor. Note that the

total time (49.77 seconds) differs from the time reported
in for this join in Table 4. This is because the times pre-

sented in that table are averages over five runs, whereas

the times in Table 7 are from a single run. The dif-

ference between the maximum and minimum times for

the building phase is less than 6%; the difference for the
total execution time is about 2%.

3. Redistribution Skew (RS): Nodes may receive differ-

ent numbers of tuples when they are redistributed

in preparation for the actual join.

4. Join Product Skew (JPS): The join selectivity on

individual nodes may differ, leading to an imbalance

in the number of output tuples produced.

Walton et al. use an analytical model in order to com-

pare the scheduling hash-join algorithm of [WDYTSO]

and the hybrid hash-join algorithm of Gamma [SD89,
DGS+SO]. The main result is that scheduling hash effec-

tively handles RS while hybrid hash degrades and even-

tually becomes worse than scheduling hash as RS in-

creases. However, unless the join is significantly skewed,

the absolute performance of hybrid hash is significantly

better than that of scheduling hash.

36

5.2 Schneider and Dewitt

In [SD89], we explored the effect of skewed data distri-
butions on four parallel join algorithms in an 8 processor

version of the Gamma database machine. The experi-
ments were designed such that TPS and SS were absent.

For the tested AVS (normally distributed values), the

hash function used in the redistribution phase was quite

effective in balancing the load and hence RS was low.

Likewise, JPS was low.

The overall results were that the parallel hash-based
join algorithms (Hybrid, Grace, and Simple) are more

sensitive to RS resulting from AVS in the “building” re-

lation (due to hash table overflow) but are relatively in-

sensitive to RS for the “probing” relation. Experiments
with “double-skew” (which lead to JPS) were not run

but we extrapolated that the problems would be worse

because this case is a superset of the RS for the building

relation.

5.3 Kitsuregawa and Ogawa

Kitsuregawa and Ogawa [K090] describe two algo-

rithms, bucket-converging parallel hash-join and bucket-

spreading parallel hash join. The bucket-converging hash

join is a basic parallelization of the GRACE join algo-

rithm [KTMo83]. Relation R is read from disk in par-
allel and partitioned into p buckets (where p is much

larger than lc, the number of nodes). Since each bucket

is statically assigned to a particular node, all of R is

redistributed during this phase of the algorithm. Next,

the size of each bucket is examined, and, if necessary,
enough buckets are redistributed so that the sum of the

sizes of the buckets at each processor is balanced. Rela-

tion S is processed similarly. In the last phase, all of the

respective buckets of R and S on each node are joined

locally.

As they point out, the first phase of this algorithm (the
initial repartitioning) is very susceptible to RS. As an

alternative, they propose a bucket-spreading hash join

algorithm. In this algorithm, relations R and 5’ are par-

titioned into p buckets as before but each bucket is hor-

izontally partitioned across all available processors dur-

ing the initial repartitioning phase. During the second

phase of the algorithm, a very sophisticated network, the

Omega network, is used to redistribute buckets onto the

nodes for the local join operation. The Omega network

contains logic to balance the load during the bucket re-
distribution.

Simulation results are presented for the two algo-

rithms where AVS is modeled using a Zipfian distribu-

tion. When the data is uniformly distributed, the two

algorithms are almost identical. The bucket-spreading
algorithm is shown to effectively reduce RS in the pres-

ence of increasing AVS, while the bucket-converging al-

gorithm suffers.

When compared to our weighted-range and virtual

processor algorithms, both of these algorithms are likely
to have higher response times. In particular, our al-

gorithms redistribute both the joining relations exactly
once. Their bucket-spreading algorithm redistributes

both relations twice. In addition, if the two relations
do not fit in memory, an extra write and read of both

relations to disk will be required between the two repar-

titioning phases. The bucket-converging algorithm, on

the other hand, incurs extra redistribution and I/O costs

only for those buckets that must be redistributed in or-

der to balance the load among the processors. However,

as they point out, this algorithm is very susceptible to

RS.

5.4 Hua and Lee

Hua and Lee [HL91] proposed three algorithms for pro-

cessing parallel joins in the presence of AVS. The first al-

gorithm, tuple interleavzng parallel hash join, is based on

the bucket-spreading hash join algorithm of Kitsuregawa

and Ogawa [K090]. The major difference is that instead
of relying on a specially designed intelligent network for

mapping buckets to nodes, this decision is handled in

software by a coordinator node.

The second algorithm, Adaptive Load Balancing par-

allel hash join, tries to avoid much of the massive data

redistribution incurred by the tuple interleaving algo-
rithm. In the case of mild skew, a more selective redis-

tribution is likely to perform better. In this algorithm,

relations R and 5’ are partitioned into p buckets where

each bucket is statically assigned to a single node. In-

stead of immediately performing local joins, though, a

partition tuning phase is executed in which a best-fit

decreasing heuristic is used to determine which buck-

ets to retain locally versus which ones to redistribute.

This algorithm is basically identical to Kitsuregawa and

Ogawa’s bucket-converging algorithm,

The final algorithm, Extended Adaptive Load Balanc-

ing parallel hash join, is designed for the case of severe

skew. Relations R and S are partitioned into p buck-

ets where each bucket is stored locally. Next, all nodes

report the size of each local bucket to the coordinator

who decides on the allocation of buckets to nodes. The

allocation decision is broadcast to all the nodes and all

the buckets are redistributed across the network. Local

joins of respective buckets are then performed on each
node. The basic form of this algorithm is identical to

that of Wolf et al. [WDYTSO]. The algorithms differ in

the computation of the allocation strategy.

The three algorithms are compared using an analytical
model. The basic results are that the tuple interleaved

37

and extended adaptive load balancing algorithm are un-

affected by skew in the size of partitions while the perfor-

mance of the adaptive load balancing algorithm and the
bucket-converging algorithm eventually cross over and

become much worse as the skew increases.

Since the first two algorithms are basically identical to

those of Kitsuregawa, they have the same relative per-

formance to our algorithms. Like our algorithms, the

extended adaptive load balancing parallel hash join algo-

rithm repartitions each relation exactly once. However,
unless both relations fit in memory, an extra read and

write of both relations occurs during the initial bucket

forming phase. The cost of this step is certainly higher

than the cost we incur sampling one or both relations

(about l/2 second each in our implementation).

5.5 Wolf, Dias and Yu

Wolf et al. [WDYTSO], propose an algorithm for paral-

lelizing hash joins in the presence of severe data skew.

The scheduling hash algorithm is as follows. Relations

R and S are read, local selections or projections are ap-
plied, and the results are written back locally as a set
of coarse hash buckets. Additionally, statistics based on

a finer hash function are maintained for each bucket.

Next, a scheduling phase occurs in which a coordina-

tor collects all the fine and coarse bucket statistics and

computes an allocation of buckets to nodes. The alloca-

tion strategy is broadcast to all nodes and relations R

and S are redistributed across the network accordingly.

Hash-joins are then performed locally for each bucket.

Several heuristics are proposed for computing the allo-

cation strategy in the scheduling phase including longest

processing time first, first fit decreasing, and skew.

An analytical model is used to briefly compare the

strategies. AVS is modeled with a zipfian distribution.

No TPS or SS skew occurs. A double-skew (skew in

both join relations) style join is specifically modeled.

The load-balancing heuristics are shown to be highly

effective in balancing the load especially as the number

of processors becomes large. However, no comparison

is made with the performance of other join algorithms

(skew handling or non-skew handling.)

Like Hua’s extended adaptive load balancing paral-

lel hash join algorithm, this algorithm incurs an extra

read and write of both relations during the initial bucket

forming phase. The cost of this step will certainly be

higher than the cost of sampling both relations. How-
ever, it may be the case that the increased accuracy
in skew information that is obtained by looking at ev-

ery tuple will sufficiently improve the variance in the

response time among the processors that the cost of the
extra read and write pass is worthwhile. Without im-
plementing both algorithms on the same hardware and

software base it is probably impossible to determine pre-

cisely which algorithm provides the best overall perfor-

mance.

5.6 Omiecinski

Omiecinski [Omigl] proposed a load balancing hash-
join algorithm for a shared memory multiprocessor.

The algorithm is based on the bucket-spreading algo-

rithm of Kitsuregawa and Ogawa [K090]. It differs in

that it doesn’t rely on special-purpose hardware, it as-

signs buckets to processor(s) using a first-fit decreasing
heuristic, and it has other optimizations for the shared-

memory environment.

Analytical and limited experimental results from a 10

processor Sequent machine show that the algorithm is

effective in limiting the effects of AVS even for double-

skew joins. (AVS is modeled by having a single value

account for X% of the relation while the other l-X% of

the values are uniformly distributed.)

6 Conclusion

The algorithms for skew handling proposed in this pa-

per represent a simple way to augment existing parallel

database systems to make their performance more ro-

bust in the presence of skewed joins. The modifications

needed to install these changes in an existing system are

simple - all that is needed is to add extent-map sam-

pling (or some equivalent), support for subset-replicate

virtual processor split tables, and finally a small amount

of code to analyze the samples and build the necessary

split tables.

The experiments we performed suggest the following

approach to running multiprocessor joins:

1. Take a pilot sample of both relations involved in the

join.

2. Inspect the resulting set of samples to determine

which relation is more highly skewed (by counting

the number of repeated samples in each.)

3. If neither of the relations appears skewed, revert to

simple hybrid hash.

4. If at least one of the relations appears to be skewed,

use the virtual processor range partition round

robin join algorithm. The most skewed relation
should be the building relation.

This scheme incorporates a number of heuristics, and,

like all optimizer heuristics, it can be tricked into choos-
ing a sub-optimal plan in some situations. Yet it is sim-

ple, implementable, and in general runs non-skewed joins

38

in time comparable to that of standard hybrid hash (the

overhead outlined above takes just a few seconds in our

implementation) and runs skewed joins without suffer-
ing the terrible worst-case performance that would result

from running hybrid hash on highly skewed data.

A number of interesting open questions remain to be

addressed in future work. First, as our experiments illus-
trate, the virtual processor range partitioning algorithm

depends critically on the number of virtual processors

chosen. The optimal number for this parameter depends

upon the system configuration (most importantly the

number of processors) and how little skew you are will-
ing to tolerate. The values we used in our experiments

(60 virtual processors per processor) are reasonable and

performed well over the test data, but we do not claim

that they are globally optimal.

Second, in this work we did not address the question of

how to handle joins in which the operands are of greatly

different size. Our experience from these experiments

suggest that a critical point is to keep the number of

buckets of the building relation to a minimum. There are
two ways that a large number of buckets could result: a

large building relation, or a skewed building relation. A

reasonable heuristic is that if the relations are of roughly

comparable size, the more skewed relation should be the

building relation; if they are of very different size, then
the smaller relation should be the building relation and

skew should be handled by building a split table based

upon samples of the probing relation. We intend to ex-

periment with this heuristic in future work.

Finally, as the number of processors in the system

grows to the thousands, the overhead of sorting and an-

alyzing the samples will grow (the cost of obtaining the

samples does not, as we can use a constant number of

samples per processor as the system scales.) It is not
clear that this overhead will grow as fast as the cost of

performing the join itself (if one is using 1000 proces-

sors for a join, presumably it is a big join!), but still

there is room for reducing this overhead by doing some

of the processing in parallel instead of doing everything

at a central coordinating processor. For example, as a

first step every processor could sort its local set of sam-

ples before sending them to the coordinator, which could

then do a simple merge instead of a sort.

7 Acknowledgments

This research was supported by donations from DEC,

IBM (through an IBM Research Initiation Grant), NCR,

and Tandem. Without their generous support, this re-
search would not have been possible.

References

[BFKS87]

[BGMP79]

[Bra871

[CDKK85]

[Coc77]

[CW79]

[DG85]

[DG92]

[DGG+86]

[DGS88]

C. Baru, 0. Frieder, D. Kandlur, and M. Se-
gal. Join on a cube: Analysis, simulation,
and implementation. In M. Kitsuregawa and

H. Tanaka, editors, Database Machines and

Knowledge Base Machines. Kluwer Aca-
demic Publishers, 1987.

M. W. Blasgen, J. Gray, M. Mitoma, and
T. Price. The convoy phenomenon. Operat-

ing System Review, 13(2), 1979.

Kjell Bratbergsengen. Algebra operations

on a parallel computer - performance eval-
uation. In M. Kitsuregawa and H. Tanaka,

editors, Database Machines and Knowledge

Base Machines. Kluwer Academic Publish-

ers, 1987.

H-T. Chou, David J. Dewitt, Randy H.

Katz, and Anthony C. Klug. Design and im-
plementation of the Wisconsin Storage Sys-

tem. Software-Practice and Experience,

15(10):943-962, October 1985.

William G. Cochran. Sampling Techniques.

John Wiley and Sons, Inc., New York, New
York, 3 edition, 1977.

J. Lawrence Carter and Mark N. Wegman.

Universal classes of hash functions. Journal

of Computer and System Sciences, 18:143-
154, 1979.

David M. Dewitt and Robert Gerber. Mul-
tiprocessor hash-based join algorithms. In

Proceedings of the Twelfth International

Conference on Very Large Databases, pages

151-164, Stockholm, Sweden, 1985.

D. Dewitt and J. Gray. Parallel database

systems: The future of high performance
database processing. Communications of

the ACM, 1992. To appear.

David J. Dewitt, Robert H. Gerber, Goetz

Graefe, Michael L. Heytens, Krishna B. Ku-

mar, and M. Muralikrishna. GAMMA -

a high performance dataflow database ma-

chine. In Proceedings of the Twelfth Interna-

tional Conference on Very Large Databases,
pages 228-237, Kyoto, Japan, August 1986.

David J. Dewitt, Shahram Ghande-

harizadeh, and Donovan Schneider. A per-
formance analysis of the GAMMA database

39

[DGS+90]

[DNSSla]

[DNSSlb]

[ESW78]

[Gra69]

[HL91]

[K090]

[KTMo83]

[LY90]

machine. In Proceedings of the SIGMOD In-

ternational Conference on Management of

Data, pages 350-360, Chicago, Illinois, May

1988.

D. Dewitt, S. Ghandeharizadeh, D. Schnei-
der, A. Bricker, H.-I Hsiao, and R. Ras-

mussen. The Gamma database machine

project. IEEE Transactions on Knowledge

and Data Engineering, 2(l), March 1990.

David J. Dewitt, Jeffrey F. Naughton, and

Donovan A. Schneider. A comparison of
non-equijoin algorithms. In Proceedings of

the Eighteenth International Conference on

Very Large Databases, Barcelona, Spain,

August 199 1.

David J. Dewitt, Jeffrey F. Naughton,

and Donovan A. Schneider. Parallel ex-

ternal sorting using probabilistic splitting.

In PDIS, Miami Beach, Florida, December

1991.

Robert Epstein, Michael Stonebraker, and

Eugene Wong. Distributed query process-

ing in a relational database system. In

Proceedings of the ACM-SIGMOD Interna-

tional Conference on Management of Data,

1978.

R. Graham. Bounds on multiprocessing tim-

ing anomalies. SIAM Journal of Computing,

17:416 - 429, 1969.

Kien A. Hua and Chiang Lee. Handling data

skew in multiprocessor database computers

using partition tuning. In Proceedings of

the 17th International Conference on Very

Large Databases, pages 525-535, Barcelona,

Spain, August 1991.

Masaru Kitsuregawa and Yasushi Ogawa.

Bucket spreading parallel hash: A new, ro-

bust, parallel hash join method for data

skew in the Super Database Computer
(SDC). In Proceedings of the Sizteenth In-

ternational Conference on Very Large Data

Bases, Brisbane, England, August 1990.

M. Kitsuregawa, H. Tanaka, and T. Moto-

oka. Application of hash to data base ma-
chine and its architecture. New Generation

Computing, l(l), 1983.

M. Seetha Lakshmi and Philip S. Yu. Effec-

tiveness of parallel joins. IEEE Transactions

[Omi91]

[OR891

[ORX90]

[SD891

[SN92]

[Sto86]

[WDJSl]

[WDYTSO]

on Knowledge and Data Engineering, 2(4),

December 1990.

Edward Omiecinski. Performance anal-
ysis of a load balancing hash-join algo-
rithm for a shared memory multiproces-

sor. In Proceedings of the Seventeenth In-

ternational Conference on Very Large Data

Bases, Barcelona, Spain, September 1991.

Frank Olken and Doron Rotem. Random

sampling from Bs-trees. In Proceedings of

the Fifteenth International Conference on

Very Large Databases, pages 269-278, Am-

sterdam, The Netherlands, August 1989.

Frank Olken, Doron Rotem, and Ping Xu.

Random sampling from hash files. In Pro-

ceedings of the ACM SIGMOD Conference

on Management of Data, pages 375-386, At-

lantic City, New Jersey, May 1990.

Donovan A. Schneider and David J. Dewitt.

A performance evaluation of four parallel

join algorithms in a shared-nothing multi-

processor environment. In Proceedings of

the ACM-SIGMOD International Confer-

ence on Management of Data, pages llO-
121, Portland, Oregon, June 1989.

S. Seshadri and Jeffrey F. Naughton. Sam-

pling issues in parallel database systems. In

Proceedings of the EDBT Conference, Vi-

enna, Austria, March 1992.

M. Stonebraker. The case for shared noth-

ing. Database Engineering, 9(l), 1986.

Christopher B. Walton, Alfred G. Dale, and
Roy M. Jenevein. A taxonomy and perfor-

mance model of data skew effects in parallel

joins. In Proceedings of the Seventeenth In-

ternational Conference on Very Large Data

Bases, Barcelona, Spain, September 1991.

Joel L. Wolf, Daniel M. Dias, Philip S. Yu,

and John J. Turek. An effective algorithm

for parallelizing hash joins in the presence

of data skew. IBM T. J. Watson Research

Center Tech Report RC 15510, 1990.

40

