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Abstract 

We present an approach to dealing with skew in par- 

allel joins in database systems. Our approach is easily 

implementable within current parallel DBMS, and per- 

forms well on skewed data without degrading the per- 

formance of the system on non-skewed data. The main 
idea is to use multiple algorithms, each specialized for 

a different degree of skew, and to use a small sample 

of the relations being joined to determine which algo- 

rithm is appropriate. We developed, implemented, and 

experimented with four new skew-handling parallel join 
algorithms; one, which we call virtual processor range 

partitioning, was the clear winner in high skew cases, 

while traditional hybrid hash join was the clear winner 

in lower skew or no skew cases. We present experimental 

results from an implementation of all four algorithms on 
the Gamma parallel database machine. To our knowl- 

edge, these are the first reported skew-handling numbers 

from an actual implementation. 

1 Introduction 

Multiprocessor database system technology has pro- 

gressed to the point where a number of companies are 

now shipping products that use parallelism to provide 
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dramatic speedup and scaleup performance. It is clear 

from the success of these systems that parallelism is 

an effective means of meeting the performance require- 

ments of large database applications. However, the basic 

technique that these systems use for exploiting intra- 

query parallelism (hash-based redistribution of relations 

on their joining attribute) [DG92] is vulnerable to the 

presence of skew in the underlying data. Simply put, if 

the underlying data is sufficiently skewed, load imbal- 
ances in the resulting parallel join execution will swamp 

any of the gains due to parallelism and unacceptable 

performance will result. 

In response to this problem, a large and growing num- 

ber of skew-handling algorithms have been proposed. In 

general terms, these algorithms do a significant amount 

of preprocessing in order to compute an execution plan 

designed to minimize load imbalances. While these algo- 
rithms may succeed in minimizing skew, invariably they 

perform much worse than the basic parallel hash join al- 

gorithm on data that is not skewed. For example, most 

of the previously proposed skew handling algorithms 

require that the relations to be joined are completely 

scanned before the join begins [HLSl, WDYTSO, K090]. 

Since the time to perform a parallel hash join is a small 

multiple of the time required to scan the two relations 

being joined, this can represent a substantial overhead, 

which is unacceptable for anything but extremely skewed 

data. 

Since there little or no empirical evidence that extreme 

degrees of skew occur commonly in practice, it is sub- 

optimal to penalize the normal case in order to benefit an 
extreme case. For this reason, we sought to develop an 
approach to join processing in which the “normal” case 

approaches the performance of the fastest known parallel 

join algorithms on non-skewed data, but that avoids the 

disastrous performance degradation that standard hash- 
based join processing suffers on skewed data. 

The basic idea in our approach is that we have mul- 

tiple algorithms, each optimized for differing degrees of 
skew. We found in our experiments that two algorithms 
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are sufficient: the usual parallel hybrid hash join algo- 

rithm [SD89], and a new algorithm that we call viti~al 

processor range partitioning, performs well on moder- 
ately skewed data at a cost slightly higher than that of 

the parallel hybrid hash join. Before settling on these 

two algorithms, we implemented three other new skew 
handling algorithms (range partitioning, weighted range 

partitioning, and a scheduling version of virtual proces- 

sor range partitioning) and performed tests on the im- 

plementation. We present detailed data on their perfor- 

mance from this implementation in this paper. To the 

best of our knowledge, these skew-handling algorithms 

are the first ones ever actually implemented in either 

a research prototype or a commercial parallel database 

system product. 

A fundamental step underlying our approach is an ini- 

tial pass of sampling the relations to be joined. The re- 

sulting set of samples is used in two ways: (1) they are 
used to predict the level of skew in the data, and hence 

to select the appropriate join algorithm to employ, and 

(2) they are used within the skew handling algorithms 

to determine the proper mapping of work to processors. 

The initial sampling in our implementation is extremely 

fast - approximately one percent of the time it would 

take hybrid hash to perform a join of the two relations 

assuming non-skewed data. 

A further desirable property of our approach is that it 
can be easily implemented within the framework of ex- 
isting parallel database systems. The modifications re- 

quired to an existing system are minimal; it took us less 

than a person-month to add this skew-handling scheme 

to the Gamma prototype. 

The remainder of this paper is organized as follows. 

Section 2 describes our algorithms and the techniques 

that they use to avoid skew. Section 3 describes the 

implementation of these algorithms within the Gamma 

parallel database machine. In Section 4 we present re- 

sults from a series of experiments with the implemen- 
tation of these algorithms. Section 5 describes related 

work on handling skew in parallel join operations in- 

cluding a comparison of these earlier techniques with 

our own. We present our conclusions in Section 6. 

2 Algorithms 

This section is composed of three parts: a description of 

the basic parallel hash join and how it is vulnerable to 
skew; the basic techniques we employ to handle skew; 
and the resulting new algorithms built using these basic 

techniques. While these techniques are described in the 

context of parallel hash joins, they are applicable to a 
wide range of parallel database algorithms. In fact, the 
fundamental problem with skew has nothing to do with 

joins. Skew can occur whenever hashing is used to par- 

allelize a task. For example, the techniques we describe 

in this section can just as well be applied if a more tradi- 
tional join algorithm such as sort merge is used at each 

processor. 

2.1 Review of Basic Parallel Hash Join 

At the highest level, the working of parallel hash join al- 

gorithms in a shared-nothing multiprocessor database 

system is simple. For concreteness, suppose that we 

are joining R and S, and that the join condition is 

R.A = S.B. Initially, both relations R and S are dis- 

tributed throughout the system; if there are L proces- 

sors, and the sizes of R and S (in tuples) are IRI and 

IS’], then approximately jRI/k tuples of R reside on disk 

at each processor. Similarly, each processor has about 

]S]/lc tuples of S on its disk. 

To perform the join, each processor executes the fol- 

lowing steps: 

Every processor in parallel reads its partition of re- 
lation R from disk, applying a hash function to the 

join attribute of each tuple in turn. This hash func- 

tion has as its range the numbers O..li-- 1; if a tuple 

hashes to value i, then it is sent to processor num- 

ber i. The set of R tuples sent to processor i in this 
step will be denoted Ri. 

Each processor i in parallel builds a memory resi- 

dent hash table using the tuples sent to it during 
step 1. (This hash table uses a different hash func- 

tion than the one used to repartition the tuples in 

step 1.) 

Each processor in parallel reads its partition of S 

from disk, applying the same hash function used in 

step 1 to each tuple in turn. As in step 1, this hash 

function is used to map the S tuples to processors. 
The set of S tuples sent to processor i in this step 

will be denoted Si. 

As a processor receives an incoming S tuple s, the 
processor probes the hash table built in step 2 to 

see if s joins with any tuple of R. If so, an answer 

tuple is generated. 

As mentioned above, this is a simplified description. 

For example, if not all of the R tuples received in step 2 

fit in memory, some overflow handling scheme must be 

employed. Most commonly, the overflow processing is 

handled by partitioning Ri into smaller subparts, called 
buckets, such that each bucket is small enough to fit en- 

tirely within memory. A critical factor in determining 

the performance of the algorithm is the number of buck- 
ets needed for each of the Ri; the larger the number 
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of buckets, the more I/O necessary as the tuples in the 

overflow buckets of & and Si are spooled to disk and 

then re-read to perform the join. 

From the preceding description it should be clear that 

for good parallelization the number of tuples mapped to 

each processor should be approximately equal, or else 

load imbalances will result (this form of imbalance is 

what Walton [WDJSl] terms red&&z&on skew). These 
load imbalances could be the result of a poorly designed 

hash function. However, load imbalance due to a poor 
hash function can be removed by choosing a better hash 

function; the theoretical literature on hashing gives a 

number of techniques designed to find a hash function 

that with high probability performs well [CW79]. A 

more fundamental problem arises from repeated values 

in the join attribute. By definition, any hash function 

must map tuples with equal join attribute values to the 

same processor, so there is no way a clever hash func- 

tion can avoid load imbalances that result from these 

repeated values. 

A more subtle cause of load imbalance occurs when 

the number of matching tuples varies from processor to 
processor. This form of load imbalance results if the join 

selectivity for Ri w S’i differs from the join selectivity 

for Rj W Sj. This type of load imbalance is called join 

product skew by Walton et al. [WDJ91]. 

2.2 Skew Avoidance Fundamentals 

In the next five subsections we describe the techniques 

we apply to resolving both types of skew. 

Range Partitioning 

A basic approach to avoiding redistribution skew is to 

replace hash partitioning with range partitioning. The 

idea is that instead of allocating each processor a bin of 

a hash function, each processor is allocated a subrange 

of the join attribute value. The values that delineate the 

boundaries of these ranges need not be equally spaced 

in the join attribute domain; this allows the values to be 

chosen so as to equalize the number of tuples mapped 

to each subrange. For example, if the join attribute val- 

ues appearing in the relation are {1,1,1,2,3,4,5,6}, and 

there are two processors, one could choose “3” to be the 

splitting value, sending tuples with values 1 and 2 to 

processor zero and tuples with join attribute values 3 - 

6 to processor one. 

In general, if there are Ic processors, then there will 
be k - 1 “splitting values” delineating the boundaries 

between contiguous ranges. We call these k - 1 splitting 

values the “partitioning vector.” The partitioning vec- 

tor is “exact” if it partitions the tuples in the relation 
into exactly equal sized pieces. While computing an ex- 

act partitioning vector is difficult, an attractive aspect of 

range partitioning is that it is relatively easy to deter- 

mine an approximate partitioning vector via sampling; 
that is, without examining the entire relation. This 

technique of sampling for approximate splitting vectors 

has been used previously in DBMS algorithms for evalu- 

ating non-equijoins [DNSSla] and for parallel external 

sorting [DNSSlb]. A theoretical investigation of the 

performance of sampling-based range splitting appears 
in [SN92]. 

In a two relation join, say R W S, the question arises 

whether an algorithm should attempt to balance the 

number of R tuples per node, or the number of S tuples 

per node, or the sum of the R and S tuples per node. 

The answer is not always clear, but a useful general ob- 

servation is that an imbalance in the number of building 

tuples is much worse than an imbalance in the number 

of probing tuples, since an imbalance in the number of 

building tuples per site gives rise to extra buckets in the 

local subjoins, driving up the number of I/OS signifi- 

cantly. This observation is validated by results that we 

reported in [SD891 and by our experimental results in 

Section 4. 

Subset-Replicate 

One complication arises with join processing via range 

partitioning in the presence of highly skewed data: for 

equal sized partitions, it might be necessary to map a 

single data value to multiple partitions. For example, if 

the join attribute values are (1, 1, 1, 1, 1, 1, 2, 3}, an 

equal-sized partitioning would map { 1, 1, 1, 1) to pro- 

cessor zero and { 1, 1, 2, 3) to processor one. If using 

a range partitioning that assigns single values to more 

than one partition, one must take care to ensure that 

all possible answer tuples are produced. A simple solu- 

tion would be to send all tuples with the repeated join 

attribute value to all processors to which that value is 

mapped, but this only results in multiple processors do- 

ing exactly the same work and producing the same an- 
swer tuples at multiple sites. 

It is sufficient to send all tuples with the repeated at- 

tribute value from one relation to all sites to which that 

value is mapped, and to send each tuple with the re- 

peated attribute value in the other relation to exactly 

one of the sites with repeated values. We call this tech- 

nique subset-replicate. (Subset-replicate is similar to the 

fragment-replicate technique proposed for distributed 

relational query processing by Epstein et al. [ESW78].) 
As an example, suppose we are joining R and S with 

the join predicate R.A = S.B. Furthermore, suppose 

that the relations R and S contain tuples as shown in 
Table 1. 

Suppose we wish to join R and S on two processors. 
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Table 1: Example relations R and S. 

The splitting vector in this case is a single value (since 

there are only two processors), the value “3.” Then a 

subset-replicate partitioning onto two processors po and 

pl might send the R tuples (1,3) and (2,3) to processor 

po and the R tuples (3,3) and (4,3) to processor pl. 

This is the “subset” part of the partitioning. Since the R 

tuples were subsetted, for correctness the S tuples with 
the join attribute value 3 must be replicated among both 

processors. This means that the S tuples (1, l), (2,2), 

and (3,3) will be sent to PO, while the S tuples (3,3), 

(4,4), and (4,s) will be sent to pl. 

Again the question arises whether to replicate the 

building (inner) relation and to subset the probing 

(outer) relation or vice-versa. While there are clearly 

situations where either will out perform the other, again 

a reasonable heuristic is to subset the building relation 
and replicate the probing relation. The motivation for 

this heuristic is that it is critical that the portion of the 
building relation mapped to each processor be as small 

as possible so as to minimize the number of buckets in 

the join. 

Weighting 

Another complication that arises with range partitioning 

is that it will often be the case that a join attribute 

value appears a different number of times in different 

partitions. For example, suppose that the join attribute 
values in a 12 tuple relation are {1,2,3,4,4,4,4,4,4,4,4,6}, 

and that we wish to partition over three processors po, 

pi, and ps. Then an even partitioning vector would be 

[4,4], meaning that tuples with the join attribute value 

4 should be mapped to all three processors. Since a total 

of 8 tuples have the join attribute value “4”, to balance 

the load evenly among the 3 processors, l/8 of the tuples 

with 4 as the join attribute must be directed to processor 

po (along with join attribute values 1, 2, and 3), l/2 to 
processor pi, and 318 to processor ps (along with join 

attribute value 6). 

We refer to this technique for distributing replicated 
values for the subsetted relation as weighted range par- 

titioning. 

Virtual Processor Partitioning 

This and the next subsection deal with the problem of 

join product skew. For concreteness, suppose that we are 

joining two 10,000 tuple relations and that in each rela- 

tion the join attribute value “1” appears 1,000 times and 

no other join attribute value appears more than once. 
Also, assume that we have 10 processors. Then if we 

use equal sized range partitioning, all 1000 tuples with 

“1” as their join attribute value from both relations will 

be mapped to processor zero, meaning that processor 

zero will be asked to generate l,OOO,OOO result tuples. 

There is no way to remedy this problem by choosing a 

set of 9 splitting values; too many l’s will be mapped to 

some processor in every case. 

The solution to this problem is to choose many more 

partitions than there are processors. This idea has ap- 
peared many times before in the skew join literature with 

respect to hash bucket partitioning; the first reference to 

the technique is probably in [KTMo83]. We refer to the 

technique of using multiple range partitions per node as 

virtual processor partitioning. In the previous example, 

if we chose 100 buckets per processor, for a total of 1000 

buckets, we would have a fine enough granularity to re- 

solve this problem. In particular, the 1000 l’s would be 

spread among 100 buckets (subranges), each of which 

could be mapped to a different processor. This of course 

leaves open the question of how these virtual processor 
partitions are to be mapped to the actual processors. 

We considered two techniques for this, both described 

in the next subsection. 

Load Scheduling 

We consider two basic techniques for mapping virtual 

processor partitions to actual processors: 

Round robin. 

This is the simplest scheme - if there are li proces- 

sors, the ith virtual processor partition is mapped 

to actual processor i mod k. 

Processor scheduling. 

In this scheme, for each virtual processor partition 

i, we compute an estimate of the cost c; of joining 

the tuples of Ri and Si. Any formula for estimating 

the cost of a join could be used; we chose the simple 

technique of estimating that 

ci = If& lest + ISi lest + I& W Si lest 

where (Rijest is an estimate of the number of R tu- 

ples mapped to partition i, ]Silest is an estimate of 

the number of S tuples mapped to partition i, and 

1% W Silest is an estimate of the number of tuples 
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in & W S;. We computed this estimate of the size 
of & w Si by assuming that the join attribute val- 

ues in each of Ri and Si were uniformly distributed 
between the endpoints of the range for virtual pro- 

cessor partition i. Once this estimate for the cost 

of the joining of the virtual processor partitions has 

been computed, any task scheduling algorithm can 

be used to try to equalize the times required by the 
virtual processor partitions allocated to the phys- 
ical processors. We used the heuristic scheduling 

algorithm known as “LPT” [Gra69]. 

This approach is similar to that used by Wolf et 

al. [WDYTSO] in scheduling hash partitions, al- 
though in that paper the statistics used to schedule 

these partitions are gained by a complete scan of 

both relations rather than by sampling, and hash 

partitioning is used instead of range partitioning. 

2.3 Algorithm Description 

The algorithms that we implemented can be described 

in terms of the skew handling techniques defined above. 
But first we need to discuss how the approximate split- 

ting vectors are computed. For each algorithm except 

hybrid hash, we first used sampling to compute a sta- 
tistical profile of the join attribute values of the two re- 

lations to be joined. We obtained this sample by us- 

ing stratified sampling [Coc77] with each stratum con- 
sisting of the set of tuples initially residing at a pro- 

cessor. Within each processor, the samphng was per- 

formed using page-level extent map sampling. Extent 

map sampling is described in Section 3. Issues involv- 

ing stratified sampling and page level sampling are dis- 

cussed in [SN92]. We now describe the skew handling 

algorithms. 

1. Hybrid hash. 

This is just the basic parallel hybrid hash algorithm 

(with no modifications for skew handling.) A de- 

scription of this algorithm and some alternatives 

appears in [SD89]. 

2. Simple range partitioning. 

At the top level, this algorithm works as follows: 

(a) Sample the building (inner) relation. 

(b) Use the samples to compute an approximate 

partitioning vector. The number of partitions 
defined by the partitioning vector is equal to 

the number of processors. 

(c) Redistribute the building relation using the ap- 

proximate partitioning vector to determine to 
which processor the tuples should go. 

(d) Build an in-memory hash table containing 

as many building relation tuples as possible. 

Overflow tuples are partitioned into buckets 
sized so that each such bucket will fit in main 

memory [SDS9]. 

(e) Redistribute the probing (outer) relation using 

the same approximate partitioning vector as in 

step 3. 

(f) For each tuple of the probing relation probe 

the in-memory hash table, outputting a join 
result tuple for each match. If overflow oc- 

curred in step 4, probing tuples corresponding 
to one of the overflow buckets of the build- 

ing relation are written directly to disk. Once, 

all the probing tuples have been received, the 

overflow buckets of the building and probing 

relations are processed. 

3. Weighted range partitioning. 

This algorithm is the same as range partitioning ex- 

cept that instead of simple range partitioning, tu- 

ples are redistributed using weighted range parti- 

tioning. 

4. Virtual processor partitioning - round robin. 

This algorithm is the same as range partitioning ex- 

cept that instead of having the number of partitions 

equal the number of processors, the number of par- 

titions is a multiple of the number of processors. 

The exact number of partitions is a parameter of 

the algorithm. The partitions are allocated to pro- 

cessors using round robin allocation. 

5. Virtual processor partitioning - processor 

scheduling. 

This algorithm is the same as virtual processor par- 

titioning - round robin except that instead of using 

round robin allocation of partitions to processors, 
processor scheduling using LPT is used. 

3 Implement at ion Details 

In this section we describe some of the details of the 

implementation of the skew handling algorithms within 

Gamma. We begin by explaining how we sampled the 

relations, and then consider the modifications to Gamma 

that were necessary for the remainder of the algorithms. 

Sampling Implementation 

As mentioned in Section 2, we use stratified sampling 

to obtain a sample from relations distributed through- 
out the multiprocessor. In stratified sampling, if a t 
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node multiprocessor needs to take n samples, each pro- 

cessor takes n/k samples from its local partition of the 

database. Although this is not a simple random sample 
of the entire relation, a stratified sample is sufficient for 

our purposes. 

Stratified sampling requires that each processor take 
some specified number of samples from its partition 

of the database. A number of techniques have been 

proposed for this problem, notably sampling from Bt 

trees [OR89], sampling from hash tables [ORX90], and 

using a dense index on a primary key [DNSSla]. In this 

section we describe a new technique that we call extent 

map sampling. 

Extent-based sampling requires neither an index on a 

dense primary key nor an index on any other attribute. 

Our scheme hinges on the fact that many systems allo- 

cate pages in contiguous units called extents, and record 

information about where the pages of a file are stored by 

linking together the extents for the pages of the file. This 

information is maintained in a small memory-resident 
data structure. Moreover, the address of a page within 

an extent can be found by adding an offset to the address 

of the first page of this extent. Given this information, 

we can select a random page or tuple as follows: gen- 

erate a random number T between one and the number 

of pages in the file (relation). Find the address of the 

rth page of the file by chaining down the linked list of 

extents. If a random page is desired, then this page can 

be brought in; if a random tuple is desired, we follow 

this I/O by randomly choosing one of the tuples in the 

page. 

The above correctly chooses a random page if the 
pages in the relation have the same number of tu- 

ples. However, if they do not we will need accep- 

tance/rejection sampling to accept or reject a randomly 

chosen page so that the inclusion probabilities for each 

tuple of the relation is identical. If all pages have the 

same number of tuples then we require exactly one I/O 

to fetch a random tuple. If they do not, then the average 

number of I/O’s required for fetching a random tuple is 

the inverse of the fill-factor. Therefore, if the fill-factor 

is more than 50% we would need at most two I/O’s on 

an average to fetch a random tuple. This is still better 

than the previous index-based methods even assuming 

that the previous methods have no wasted I/O’s due to 

acceptance rejectance sampling. For this reason we have 

adopted extent-map sampling in our implementation. 

We also used page-level sampling in our implementa- 
tion. This means that after a random page has been 

selected and read into memory (using extent map sam- 

pling), we add every tuple on that page to the sample. 

This in effect boosts the number of samples per I/O by 

a factor equal to the average number of tuples per page. 
This technique is most efficient if the correlation on the 

join attribute within a page is low. 

Implementation in Gamma 

In order to investigate the performance of our skew han- 

dling algorithms, we implemented the algorithms using 
Gamma [DGSSO] as our experimental vehicle. Gamma 
falls into the class of shared-nothing [Sto86] architec- 
tures. The hardware consists of a 32 processor In- 

tel iPSC/2 hypercube. Each processor is configured 

with a 80386 CPU, 8 megabytes of memory, and a 330 

megabyte MAXTOR 4380 (5 l/4 in.) disk drive. Each 

disk drive has an embedded SCSI controller which pro- 

vides a 45 Kbyte RAM buffer that acts as a disk cache 
on sequential read operations. The nodes in the hyper- 

cube are interconnected to form a hypercube using cus- 

tom VLSI routing modules. Each module supports eight 

full-duplex, serial, reliable communication channels op- 

erating at 2.8 megabytes/set. 

Gamma is built on top of an operating system de- 
signed specifically for supporting database management 

systems. NOSE provides multiple, lightweight pro- 

cesses with shared memory. A non-preemptive schedul- 

ing policy is used to help prevent convoys [BGMPTS] 

from occurring. NOSE provides communications be- 

tween NOSE processes using the reliable message pass- 

ing hardware of the Intel iPSC/2 hypercube. File ser- 

vices in NOSE are based on the Wisconsin Storage Sys- 

tem (WiSS) [CDKK85]. 

The services provided by WiSS include sequential files, 

byte-stream files as in UNIX, B+ tree indices, long data 

items, an external sort utility, and a scan mechanism. A 
sequential file is a sequence of records that may vary in 

length (up to one page) and that may be inserted and 

deleted at arbitrary locations within a file. Optionally, 

each file may have one or more associated indices that 

map key values to the record identifiers of the records 

in the file that contain a matching value. One indexed 

attribute may be designated to be a clustering attribute 

for the file. 

Before beginning this work, Gammaalready contained 

the code needed to perform a parallel hybrid hash join. 

The critical code that needed to be added to the sys- 

tem in order to incorporate our new skew handling join 

algorithms were 

1. code to do the parallel stratified page level extent 

map sampling, 

2. code to sort the resulting samples and build the 

required approximate splitting vectors, and 

3. code to redistributes tuples using the new distribu- 

tion types (e.g., subset-replicate) required by our 
algorithms. 

32 



Items 1 and 2 above were straightforward. We now dis- 

cuss the changes to the redistribution code in more de- 
tail. 

Basic parallel hybrid hashing in Gamma makes use of 

a data structure called a split table [DGS+SO, DG92]. 

This data structure contains entries that are (hash 

bucket, processor number) pairs. If Ic processors are be- 

ing used to execute a relational operation, then the split 

tables have Ic entries. The semantics are such that any 

tuple that hashes to a given hash bucket should be sent 

to the processor number in the split table entry for that 

hash bucket. Each processor executing an operation has 
a copy of this split table. In a given processor, associ- 

ated with the split table are Ic outgoing buffer pages, one 

for each processor. When a tuple maps to a given hash 

bucket, it is added to the corresponding buffer page; 

when this page fills, a message containing this page is 

sent to the target processor. 

To add basic range partitioning, we added a new type 

of split table called a range split table. This was a simple 

modification; the only change is that entries of the split 

table correspond to ranges of join attribute values in- 

stead of corresponding to hash buckets. When deciding 

where to send a tuple, instead of hashing the join at- 

tribute value to find the corresponding entry, the range 
split table is searched to find the range containing the 
join attribute value. If a tuple t maps to more than one 

range (e.g., if there are repeated values in the split ta- 

ble), then, during redistribution of the building (inner) 

relation, one of the duplicate ranges is selected at ran- 

dom and t is sent to the corresponding processor. During 
redistribution of the probing (outer) relation, t is sent 

to the processors corresponding to all of the containing 

subranges. 

To add weighted range partitioning, we augmented the 

basic range split table to contain weights for the upper 

and lower boundary values of each range in the table. 

These weights are computed from the sorted set of sam- 

ples at the time when the partitioning values are being 

computed. Then, during the redistribution of the build- 
ing relation, instead of sending tuple t to a randomly 

selected subrange, a subrange is selected with a prob- 

ability that reflects the weights in the weighted-range 

split table. 

The most obvious way to add virtual processor range 

partitioning would be to expand these basic range split- 

ting tables to add more entries than processors. The 

difficulty in doing so is that the lower level Gamma code 

assumes that there will be exactly one outgoing buffer 

page for every entry in the split table. For large numbers 

of virtual processors, the space required by this scheme 
is prohibitive. For example, for 30 processors and 50 

virtual processor ranges per processor it would require 
1500 output buffers (I2 megabytes with 8K byte network 

packets) per node. This is more than the total amount 

of memory per node in our sytem. 

To solve this problem we used a two-level split table. 

The upper level table contains the same number of en- 

tries as the number of virtual processor partitions. The 
lower level table contains one entry per processor. Each 

entry in the upper table consists of a (range, lower split 

table entry number) pair. When a tuple is being pro- 

cessed to decide to which processor it should be sent, 

first a lookup is performed on the upper table to deter- 
mine the set of virtual processor ranges in which the join 
attribute value of the tuple appears. Next the entries for 

these ranges are examined to determine to which lower 

level entries the tuple belongs. From this set of entries in 
the lower level table the system can determine to which 

processors the tuple should be sent. Only one buffer 
page per destination processor is used. 

4 Experiments and Results 

Test Data 

For the purposes of this experiment we wanted to use a 
set of test data that was simple and intuitively easy to 

understand, yet that would stress all of our skew han- 

dling algorithms. One option would have been to gener- 

ate relations with attributes drawn from standard sta- 

tistical distributions (like Zipf and normal.) We decided 

against this because we found that relations with such 

attributes make the experiments much harder to under- 

stand and control. For example, suppose we wish to 

perform a set of joins on a pair of relations, varying the 

level of skew in both relations, yet keeping the answer 

size approximately constant? This is difficult to do with 

sets of Zipfian distributions. 

To remedy this problem we generated relations with a 

number of integer attributes, each with various amounts 

of “scalar skew” - that is, in an N tuple relation, in 

each attribute the constant “1” appears in some fixed 

number of tuples, while the remaining tuples contain 

values uniformly distributed between two and N. The 
use of such a distribution has three major benefits. First, 

it makes it easy to understand exactly what experiment 

is being performed. Second, it is easy to keep the answer 
size constant over varying amounts of skew. Finally, it 

captures the essence of the Zipfian distribution (a small 

number of highly skewed values with the bulk of the 

values appearing very infrequently) without suffering its 

drawbacks. The term “scalar skew” is due to Walton 

et al. [WDJSl]. This is also the model of skew used by 

Omiecinski [Omigl]. 
The exact description of the attributes are as follows. 

In each case, we are assuming a relation of N tuples, 
and that N 2 100,000. The attributes relevant to our 
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experiments are xl, x10, x100, x1000, x10000, x20000, 

x30000, x40000, and x50000. The number following the 

“x” in each case is the number of tuples in which the 
value “1” appears in the join attribute (these tuples are 
chosen at random). The remainder of the tuples have 

a join attribute value chosen randomly from 2 to N, 

where N is the number of tuples in the relation. For 
example, the x10 attribute has the semantics that the 

value “1” appears in exactly ten randomly chosen tuples. 
The remaining N - 10 tuples contain values uniformly 

chosen at random between 2 and N. The rationale for 

choosing these attributes should become more apparent 

in the following set of experiments. In addition to the 

attributes listed above, each tuple contained a string at- 

tribute to pad the length of each tuple to 100 bytes. In 

all of our experiments below we used relations of 500,000 

tuples. Thus, each relation occupies approximately 50 

megabytes of disk space. 

All experiments were conducted using 30 processors 

with disks. Speedup or scaleup experiments were not 

performed as we were more interested in focusing on the 

relative performance of the different algorithms. Fur- 

thermore, previous join [DGGt86, DGSf90, DGS88, 

DNSSla, SD891 and sorting [DNSSlb] tests demon- 

strated that the Gamma provides linear speedup and 

scaleup over a wide range of different hardware and soft- 

ware configurations. 

Single Skew Experiments 

In the first set of experiments we ran the building rela- 

tion was skewed and the probing relation was uniform. 

This models a very common sort of join in practice - 

joins between a key of one relation and the correspond- 
ing foreign key in another. Each data point is the av- 

erage of 5 experiments. For the range, weighted range, 

and virtual processor range partition round robin the 

number of samples on the building relation was fixed 

at 14,400 (the probing relation is not sampled in these 

algorithms.) For the virtual range partition processor 

scheduling algorithm, we took 14,400 samples of both 

the building and probing relations. For the virtual pro- 

cessor range partitioning algorithms we use 60 virtual 

processors per processor. The results of the experiment 
appear in Table 2. 

In Table 2, entries marked “DNF” means that the al- 

gorithm did not finish. The reason these tests did not 

finish was that in those cases marked “DNF”, the al- 

gorithms mapped more tuples with “1”s in the join at- 
tribute to a single processor than can simultaneously fit 

in the memory of that processor. In the current Gamma 

implementation, the per-node hybrid hash code does not 

handle this extreme case. We see that Hybrid Hash 
(HH) is clearly the algorithm of choice for the zero skew 

case (xl W xl). This is because when compared to the 

skew handling algorithms, (1) Hybrid Hash does not in- 

cur the overhead of collecting the samples, sorting the 
samples, and computing an approximate splitting vec- 

tor, and (2) in Hybrid Hash, to determine a destination 

processor during redistribution one need only compute a 

hash function, while in all the other algorithms it is nec- 

essary to search a sorted list for the appropriate range 

entry. 

The difference in performance for Range Partitioning 

(Range) and Weighted Range Partitioning (W. Range) 

at zero skew is an artifact of the implementation - 
Weighted Range Partitioning was implemented second 

and uses a more efficient table search during repartition- 

ing. We expect that if Range Partitioning were reimple- 

mented using this new code, it would be slightly faster 

at zero skew since it doesn’t need to check the weights 
before choosing a destination in the subset phase. 

At xlOK, both Range Partitioning and Weighted 

Range Partitioning effect the same partitioning, send- 
ing the tuples with l’s in the join attribute along with 

about 6K other tuples to processor zero. However, at 

x20K, Range Partitioning sends all 20K tuples with l’s 

to processor zero, while Weighted Range Partitioning 

sends about 16K of these tuples to processor zero and 

4K of these tuples (plus about 12K other tuples) to pro- 
cessor one. Weighted Range Partitioning performs worse 

on xlOK than on xl because even though the same num- 

ber of tuples are distributed to each processor in both 

cases, in the xlOK case the join hash table for processor 

zero contains one bucket with 1OK tuples (the bucket 

to which “1” is mapped.) At 2OK the situation is even 

worse, as there is a bucket with about 16K ones in that 

case. 

Virtual Processor Range Partitioning with Round 

Robin allocation (VP-RR) starts off at zero skew with 

slightly higher overhead than Weighted Range because 

during redistribution, to determine a destination proces- 

sor it must search a much bigger range table (bigger by 

a factor of 60.) Virtual Processor Range Partitioning 

with Processor Scheduling (VP-PS) has even more over- 

head, since it must sample and sort the probing relation 

and then run the LPT scheduling algorithm. However, 

in the skewed cases both these algorithms outperform 

Range and W. Range because they map the tuples with 
l’s to more processors, avoiding the large hash table en- 

try effect. 

Next we wanted to test the effect that a skewed prob- 
ing relation would have on the algorithms. Note that 

since the first four algorithms do not sample the probing 

relation, these algorithms use the same splitting vector 

independent of the skew in the probing relation. For 

this reason, the performance deteriorates rapidly, so we 
do not go beyond xl W x201(. Note that Hybrid Hash 
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Alg. xl w xl xlOK W xl x20K W xl x30K W xl x401( W xl x501( W xl 

HH 33.0 52.2 79.5 DNF DNF DNF 
Range 43.1 43.4 58.9 DNF DNF DNF 

W. Range 41.8 41.9 51.7 52.2 52.9 52.6 
VP-RR 43.9 44.2 44.0 43.4 43.8 43.3 
VP-PS 47.7 47.3 47.5 47.6 47.9 47.6 

Table 2: Effect of skewed building relation. 

does relatively well here. VP-PS samples the probing 

relation, but its estimates of the per virtual processor 

execution times were too inaccurate to provide good per- 

formance. 

Algorithm ( xl W xl 1 xl W xlOK 1 xl W x20K 

HH 1 33.0 1 44.5 55.3 

Table 3: Effect of skewed probing relation. 

An alternative approach to handling single relation 

skew would be to sample the probing relation, then use 

these samples to compute a splitting vector that could 

be used for both the building and probing relations. We 
did not pursue this approach for the following reason: if 

the probing relation is highly skewed, and we distribute 
the building relation using a splitting vector that evenly 

distributes the probing relation, then greatly varying 

numbers of building tuples are sent to each processor. 

This in turn causes some processor(s) to use many more 

buckets that would be necessary if the building relation 

were evenly distributed, which will cause performance 

to suffer. 

Join Product Skew 

In this subsection we present experiments in which both 

relations that participate in the join are skewed. In gen- 

eral, this sort of skew is much harder to deal with than 

skew in a single relation. Intuitively, the problem is that 

in join product skew, a relatively small number of re- 

peats can cause a tremendous blowup in the number of 

tuples generated in the join. For example, if we join 

the two relations using the join clause xl0000 W x10000, 
the result will have lo8 tuples generated due to matches 

of tuples with ones in the join attributes. This result 

would be 20G bytes. In addition to exceeding the ca- 
pacity of our disk drives, we don’t think such queries 

make any sense. Accordingly, we decided to experiment 

with more modest skews. The first set of experiments 

below shows the performance of the algorithms using 

the same configuration (number of samples, number of 

virtual processors per node) as in Table 2. 

Algorithm xlOK W x10 xlK W xl00 xl00 W xl000 

3 
Table 4: Performance on data with join product skew 

The joins in Table 4 were designed so that the result 

size is roughly comparable to that in Tables 2 and 3. In 

each case the result contains about 6OOK tuples, 1OOK of 

which are due to joining tuples that contain ones in the 

join attribute. It is clear that only the virtual processor 

algorithms have significant success in dealing with this 
sort of skew. Intuitively, the reason is that in each of the 

Range and Weighted Range algorithms, the skew in the 

relation is not enough to cause tuples with one’s in the 

join attribute to be sent to more than one processor. 

With the exception of the xl00 W xl000 join, both 

of the virtual processor algorithms have enough virtual 

buckets that the one’s are mapped to enough proces- 

sors to distribute the work. For the xl00 W ~1000 join, 

the round robin algorithm fails to distribute the one’s 

because there are so few in the building relation. The 

virtual processor range partitioning processor scheduling 
algorithm also fails to distribute the one’s into multiple 

buckets, again because its estimates of the work required 

per virtual processor are too inaccurate. 

It is clear that the performance of the virtual processor 

range partition algorithms is critically dependent upon 
the number of virtual processors per processor. Table 5 
explores the performance of the round robin variant on 

the join xl0000 W xl00 for various numbers of proces- 

sor per node. (Since in our experiments the processor 

scheduling variant was uniformly worse than the round 
robin variant, we omit the data points for that algo- 
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rithm.) The table shows the clear trend that the more 

virtual processors, the better the performance. The rea- 
son for this is that the tuples with “1”s are being dis- 
tributed over more and more (actual) processors, achiev- 

ing better load balancing. 

Phase min seconds max seconds 

Building 15.55 16.48 
Complete Join 48.72 49.77 

Table 7: Maximum and minimum times over all proces- 

virt. 
sors, xl0000 W x10, virtual processor range partitioning. 

procs. ( 1 1 5 1 10 ( 20 1 30 1 60 

exec. sec. 1 147.2 1 95.3 1 64.0 1 54.0 1 51.8 1 49.7 
5 Related Work 

Table 5: Dependence on number of virtual processors, 

xl0000 W x100, virtual processor range partitioning. 

Finally, we wanted to illustrate the dependence of vir- 
tual processor range partitioning on the number of sam- 

ples. Table 6 lists the average time as a function of the 

number of samples for the virtual processor range parti- 

tion round robin algorithm as a function of the number 

of samples for the join xl0000 W x100. Again, since vir- 

tual processor range partitioning with round robin allo- 

cation was uniformly the best skew handling algorithm, 

we only present data for it. Note that the performance is 

relatively stable independent of the number of samples. 

The general trend is that taking too few samples results 

in poor load balancing, while taking too many samples 
results in too much overhead due to sampling (notice in 

Table 6 that the overall running times dip from 1800 to 

3600 samples and then begin to rise again.) 

There has been a wealth of research in the area of paral- 

lel join algorithms. Originally, join attribute values were 

assumed to be uniformly distributed and hence skew was 

not a problem (see, for example, [BFKS87, Bra87, DG85, 

DGS88, KTMo83].) As parallel join algorithms have ma- 

tured, this uniformity assumption has been challenged 

(see, eg., [LY90, SDSS]). In this section, we examine 

a number of previously proposed algorithms for dealing 
with data skew and compare these algorithms with our 

own. 

5.1 Walton, Dale, and Jenevein 

Walton et al. [WDJSl] present a taxonomy of skew in 

parallel databases. First, they distinguish between ai- 

tribute value srl-ew (AL’S) which is skew inherent in the 

dataset, and partition skew which occurs in parallel ma- 

chines when the load is not balanced between the nodes. 

AVS typically leads to partition skew but other factors 

are also involved. These include: 

number of samples 1800 3600 7200 14400 

execution time (set) 49.0 47.8 49.0 49.7 

Table 6: Dependence on number of samples, xl0000 w 

x10, virtual processor range partitioning. 

1. Tuple Placement Skew (TPS): The initial distribu- 

tion of tuples may vary between the nodes. 

2. Selectivity Skew (SS): The selectivity of selection 

predicates may vary between nodes, for example, in 

the case of a range selection on a range-partitioned 

attribute. 

Finally, we would like emphasize that the virtual pro- 

cessor range partition round robin is exceedingly suc- 

cessful at balancing the load among the processors dur- 

ing the execution. Table 7 gives maximum and mini- 

mum times (over all processors) to complete the build- 
ing phase (that is, redistributing the building relation 

and building an in-memory hash table) and the entire 

join of xl000 W x10. As before, we used 14400 samples 

and 60 virtual processors per processor. Note that the 

total time (49.77 seconds) differs from the time reported 
in for this join in Table 4. This is because the times pre- 

sented in that table are averages over five runs, whereas 

the times in Table 7 are from a single run. The dif- 

ference between the maximum and minimum times for 

the building phase is less than 6%; the difference for the 
total execution time is about 2%. 

3. Redistribution Skew (RS): Nodes may receive differ- 

ent numbers of tuples when they are redistributed 

in preparation for the actual join. 

4. Join Product Skew (JPS): The join selectivity on 

individual nodes may differ, leading to an imbalance 

in the number of output tuples produced. 

Walton et al. use an analytical model in order to com- 

pare the scheduling hash-join algorithm of [WDYTSO] 

and the hybrid hash-join algorithm of Gamma [SD89, 
DGS+SO]. The main result is that scheduling hash effec- 

tively handles RS while hybrid hash degrades and even- 

tually becomes worse than scheduling hash as RS in- 

creases. However, unless the join is significantly skewed, 

the absolute performance of hybrid hash is significantly 

better than that of scheduling hash. 
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5.2 Schneider and Dewitt 

In [SD89], we explored the effect of skewed data distri- 
butions on four parallel join algorithms in an 8 processor 

version of the Gamma database machine. The experi- 
ments were designed such that TPS and SS were absent. 

For the tested AVS (normally distributed values), the 

hash function used in the redistribution phase was quite 

effective in balancing the load and hence RS was low. 

Likewise, JPS was low. 

The overall results were that the parallel hash-based 
join algorithms (Hybrid, Grace, and Simple) are more 

sensitive to RS resulting from AVS in the “building” re- 

lation (due to hash table overflow) but are relatively in- 

sensitive to RS for the “probing” relation. Experiments 
with “double-skew” (which lead to JPS) were not run 

but we extrapolated that the problems would be worse 

because this case is a superset of the RS for the building 

relation. 

5.3 Kitsuregawa and Ogawa 

Kitsuregawa and Ogawa [K090] describe two algo- 

rithms, bucket-converging parallel hash-join and bucket- 

spreading parallel hash join. The bucket-converging hash 

join is a basic parallelization of the GRACE join algo- 

rithm [KTMo83]. Relation R is read from disk in par- 
allel and partitioned into p buckets (where p is much 

larger than lc, the number of nodes). Since each bucket 

is statically assigned to a particular node, all of R is 

redistributed during this phase of the algorithm. Next, 

the size of each bucket is examined, and, if necessary, 
enough buckets are redistributed so that the sum of the 

sizes of the buckets at each processor is balanced. Rela- 

tion S is processed similarly. In the last phase, all of the 

respective buckets of R and S on each node are joined 

locally. 

As they point out, the first phase of this algorithm (the 
initial repartitioning) is very susceptible to RS. As an 

alternative, they propose a bucket-spreading hash join 

algorithm. In this algorithm, relations R and 5’ are par- 

titioned into p buckets as before but each bucket is hor- 

izontally partitioned across all available processors dur- 

ing the initial repartitioning phase. During the second 

phase of the algorithm, a very sophisticated network, the 

Omega network, is used to redistribute buckets onto the 

nodes for the local join operation. The Omega network 

contains logic to balance the load during the bucket re- 
distribution. 

Simulation results are presented for the two algo- 

rithms where AVS is modeled using a Zipfian distribu- 

tion. When the data is uniformly distributed, the two 

algorithms are almost identical. The bucket-spreading 
algorithm is shown to effectively reduce RS in the pres- 

ence of increasing AVS, while the bucket-converging al- 

gorithm suffers. 

When compared to our weighted-range and virtual 

processor algorithms, both of these algorithms are likely 
to have higher response times. In particular, our al- 

gorithms redistribute both the joining relations exactly 
once. Their bucket-spreading algorithm redistributes 

both relations twice. In addition, if the two relations 
do not fit in memory, an extra write and read of both 

relations to disk will be required between the two repar- 

titioning phases. The bucket-converging algorithm, on 

the other hand, incurs extra redistribution and I/O costs 

only for those buckets that must be redistributed in or- 

der to balance the load among the processors. However, 

as they point out, this algorithm is very susceptible to 

RS. 

5.4 Hua and Lee 

Hua and Lee [HL91] proposed three algorithms for pro- 

cessing parallel joins in the presence of AVS. The first al- 

gorithm, tuple interleavzng parallel hash join, is based on 

the bucket-spreading hash join algorithm of Kitsuregawa 

and Ogawa [K090]. The major difference is that instead 
of relying on a specially designed intelligent network for 

mapping buckets to nodes, this decision is handled in 

software by a coordinator node. 

The second algorithm, Adaptive Load Balancing par- 

allel hash join, tries to avoid much of the massive data 

redistribution incurred by the tuple interleaving algo- 
rithm. In the case of mild skew, a more selective redis- 

tribution is likely to perform better. In this algorithm, 

relations R and 5’ are partitioned into p buckets where 

each bucket is statically assigned to a single node. In- 

stead of immediately performing local joins, though, a 

partition tuning phase is executed in which a best-fit 

decreasing heuristic is used to determine which buck- 

ets to retain locally versus which ones to redistribute. 

This algorithm is basically identical to Kitsuregawa and 

Ogawa’s bucket-converging algorithm, 

The final algorithm, Extended Adaptive Load Balanc- 

ing parallel hash join, is designed for the case of severe 

skew. Relations R and S are partitioned into p buck- 

ets where each bucket is stored locally. Next, all nodes 

report the size of each local bucket to the coordinator 

who decides on the allocation of buckets to nodes. The 

allocation decision is broadcast to all the nodes and all 

the buckets are redistributed across the network. Local 

joins of respective buckets are then performed on each 
node. The basic form of this algorithm is identical to 

that of Wolf et al. [WDYTSO]. The algorithms differ in 

the computation of the allocation strategy. 

The three algorithms are compared using an analytical 
model. The basic results are that the tuple interleaved 
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and extended adaptive load balancing algorithm are un- 

affected by skew in the size of partitions while the perfor- 

mance of the adaptive load balancing algorithm and the 
bucket-converging algorithm eventually cross over and 

become much worse as the skew increases. 

Since the first two algorithms are basically identical to 

those of Kitsuregawa, they have the same relative per- 

formance to our algorithms. Like our algorithms, the 

extended adaptive load balancing parallel hash join algo- 

rithm repartitions each relation exactly once. However, 
unless both relations fit in memory, an extra read and 

write of both relations occurs during the initial bucket 

forming phase. The cost of this step is certainly higher 

than the cost we incur sampling one or both relations 

(about l/2 second each in our implementation). 

5.5 Wolf, Dias and Yu 

Wolf et al. [WDYTSO], propose an algorithm for paral- 

lelizing hash joins in the presence of severe data skew. 

The scheduling hash algorithm is as follows. Relations 

R and S are read, local selections or projections are ap- 
plied, and the results are written back locally as a set 
of coarse hash buckets. Additionally, statistics based on 

a finer hash function are maintained for each bucket. 

Next, a scheduling phase occurs in which a coordina- 

tor collects all the fine and coarse bucket statistics and 

computes an allocation of buckets to nodes. The alloca- 

tion strategy is broadcast to all nodes and relations R 

and S are redistributed across the network accordingly. 

Hash-joins are then performed locally for each bucket. 

Several heuristics are proposed for computing the allo- 

cation strategy in the scheduling phase including longest 

processing time first, first fit decreasing, and skew. 

An analytical model is used to briefly compare the 

strategies. AVS is modeled with a zipfian distribution. 

No TPS or SS skew occurs. A double-skew (skew in 

both join relations) style join is specifically modeled. 

The load-balancing heuristics are shown to be highly 

effective in balancing the load especially as the number 

of processors becomes large. However, no comparison 

is made with the performance of other join algorithms 

(skew handling or non-skew handling.) 

Like Hua’s extended adaptive load balancing paral- 

lel hash join algorithm, this algorithm incurs an extra 

read and write of both relations during the initial bucket 

forming phase. The cost of this step will certainly be 

higher than the cost of sampling both relations. How- 
ever, it may be the case that the increased accuracy 
in skew information that is obtained by looking at ev- 

ery tuple will sufficiently improve the variance in the 

response time among the processors that the cost of the 
extra read and write pass is worthwhile. Without im- 
plementing both algorithms on the same hardware and 

software base it is probably impossible to determine pre- 

cisely which algorithm provides the best overall perfor- 

mance. 

5.6 Omiecinski 

Omiecinski [Omigl] proposed a load balancing hash- 
join algorithm for a shared memory multiprocessor. 

The algorithm is based on the bucket-spreading algo- 

rithm of Kitsuregawa and Ogawa [K090]. It differs in 

that it doesn’t rely on special-purpose hardware, it as- 

signs buckets to processor(s) using a first-fit decreasing 
heuristic, and it has other optimizations for the shared- 

memory environment. 

Analytical and limited experimental results from a 10 

processor Sequent machine show that the algorithm is 

effective in limiting the effects of AVS even for double- 

skew joins. (AVS is modeled by having a single value 

account for X% of the relation while the other l-X% of 

the values are uniformly distributed.) 

6 Conclusion 

The algorithms for skew handling proposed in this pa- 

per represent a simple way to augment existing parallel 

database systems to make their performance more ro- 

bust in the presence of skewed joins. The modifications 

needed to install these changes in an existing system are 

simple - all that is needed is to add extent-map sam- 

pling (or some equivalent), support for subset-replicate 

virtual processor split tables, and finally a small amount 

of code to analyze the samples and build the necessary 

split tables. 

The experiments we performed suggest the following 

approach to running multiprocessor joins: 

1. Take a pilot sample of both relations involved in the 

join. 

2. Inspect the resulting set of samples to determine 

which relation is more highly skewed (by counting 

the number of repeated samples in each.) 

3. If neither of the relations appears skewed, revert to 

simple hybrid hash. 

4. If at least one of the relations appears to be skewed, 

use the virtual processor range partition round 

robin join algorithm. The most skewed relation 
should be the building relation. 

This scheme incorporates a number of heuristics, and, 

like all optimizer heuristics, it can be tricked into choos- 
ing a sub-optimal plan in some situations. Yet it is sim- 

ple, implementable, and in general runs non-skewed joins 
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in time comparable to that of standard hybrid hash (the 

overhead outlined above takes just a few seconds in our 

implementation) and runs skewed joins without suffer- 
ing the terrible worst-case performance that would result 

from running hybrid hash on highly skewed data. 

A number of interesting open questions remain to be 

addressed in future work. First, as our experiments illus- 
trate, the virtual processor range partitioning algorithm 

depends critically on the number of virtual processors 

chosen. The optimal number for this parameter depends 

upon the system configuration (most importantly the 

number of processors) and how little skew you are will- 
ing to tolerate. The values we used in our experiments 

(60 virtual processors per processor) are reasonable and 

performed well over the test data, but we do not claim 

that they are globally optimal. 

Second, in this work we did not address the question of 

how to handle joins in which the operands are of greatly 

different size. Our experience from these experiments 

suggest that a critical point is to keep the number of 

buckets of the building relation to a minimum. There are 
two ways that a large number of buckets could result: a 

large building relation, or a skewed building relation. A 

reasonable heuristic is that if the relations are of roughly 

comparable size, the more skewed relation should be the 

building relation; if they are of very different size, then 
the smaller relation should be the building relation and 

skew should be handled by building a split table based 

upon samples of the probing relation. We intend to ex- 

periment with this heuristic in future work. 

Finally, as the number of processors in the system 

grows to the thousands, the overhead of sorting and an- 

alyzing the samples will grow (the cost of obtaining the 

samples does not, as we can use a constant number of 

samples per processor as the system scales.) It is not 
clear that this overhead will grow as fast as the cost of 

performing the join itself (if one is using 1000 proces- 

sors for a join, presumably it is a big join!), but still 

there is room for reducing this overhead by doing some 

of the processing in parallel instead of doing everything 

at a central coordinating processor. For example, as a 

first step every processor could sort its local set of sam- 

ples before sending them to the coordinator, which could 

then do a simple merge instead of a sort. 
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