
Practical Solutions for QoS-based Resource Allocation Problems�

Ragunathan (Raj) Rajkumar, Chen Lee, John P. Lehoczkyy, Daniel P. Siewiorek
Department of Computer Science

yDepartment of Statistics
Carnegie Mellon University

Pittsburgh, PA 15213
fraj+, clee, dpsg@cs.cmu.edu, yjpl@stat.cmu.edu

Abstract: The QoS-based Resource Allocation Model (Q-
RAM) proposed in [20] presented an analytical approach
for satisfying multiple quality-of-service dimensions in a
resource-constrained environment. Using this model, avail-
able system resources can be apportioned across multiple ap-
plications such that the net utility that accrues to the end-users
of those applications is maximized. In this paper, we present
several practical solutions to allocation problems that were be-
yond the limited scope of [20]. First, we show that the Q-RAM
problem of finding the optimal resource allocation to satisfy
multiple QoS dimensions (at least one of which is dependent
on another) is NP-hard. We then present a polynomial solution
for this resource allocation problem which yields a solution
within a provably fixed and short distance from the optimal
allocation. Secondly, [20] dealt mainly with the problem of
apportioning a single resource to satisfy multiple QoS dimen-
sions. In this paper, we study the converse problem of appor-
tioning multiple resources to satisfy a single QoS dimension.
In practice, this problem becomes complicated, since a single
QoS dimension perceived by the user can be satisfied using
different combinations of available resources. We show that
this problem can be formulated as a mixed integer program-
ming problem that can be solved efficiently to yield an optimal
resource allocation. Finally, we also present the run-times of
these optimizations to illustrate how these solutions can be ap-
plied in practice. We expect that a good understanding of these
solutions will yield insights into the general problem of appor-
tioning multiple resources to satisfy simultaneously multiple
QoS dimensions of multiple concurrent applications.

1. Introduction

Several applications have the ability to provide better per-
formance and quality of service if a larger share of system
resources is made available to them. Such examples abound
in many domains. Feedback control systems can provide bet-

�This work was supported in part by the Defense Advanced Research
Projects Agency under agreements E30602-97-2-0287 and N66001-97-C-
8527, and in part by the Office of Naval Research under agreement N00014-
92-J-1524.

ter control at higher rates of sampling and control actuation.
Multimedia systems using audio and video streams can pro-
vide better audio/video quality at higher resolution and/or very
low end-to-end delays. Tracking applications can track objects
at higher precision and accuracy if radar tracks are generated
and processed at higher frequencies. In many cases, compu-
tationally intensive algorithms can provide better results than
their less-demanding counterparts. Even interactive systems
can provide excellent response times to users if more process-
ing and I/O resources are made available. Conversely, many
applications can still prove to be useful and acceptable in prac-
tive even though the resources needed for their maximal per-
formance are not available. For instance, a 30 frames/second
video rate would be ideal for human viewing, but a smooth 12
fps video rate suffices under many conditions.

The QoS-based Resource Allocation Model (Q-RAM) pro-
posed in [20] addressed the following question: “How does
one allocate available resources to multiple concurrent appli-
cations?”. This question was posed in the context where ap-
plications can operate at high levels of quality or acceptably
lower levels of quality based on the resources allocated to
them. The novelty of Q-RAM is that it allows multiple Quality
of Service requirements such as timeliness, cryptography and
reliable data delivery to be addressed and traded off against
each other.

In this paper, we address some significant and open prob-
lems posed by Q-RAM. For example, much of the QoS work
focuses on allocating a single time-shared resource such as
network bandwidth. In real-time and multimedia systems, ap-
plications may need to have simultaneous access to multiple
resources such as processing cycles, memory, network band-
width and disk bandwidth, in order to satisfy their needs. The
solutions that we provide turn out to be very efficent to be used
in practice.

1.1. Q-RAM: The QoS-based Resource Allocation
Model

We now provide a brief overview of Q-RAM referring the
reader to [20] for more details. The goal of Q-RAM is to ad-



dress two problems:

� Satisfy the simultaneous requirements of multiple appli-
cations along multiple QoS dimensions such as timeli-
ness, cryptography, data quality and reliable packet de-
livery, and

� Allow applications access to multiple resources such as
CPU, disk bandwidth, network bandwidth, memory, etc.
simultaneously.

Q-RAM uses a dynamic and adaptive application framework
where each application requires a certain minimum resource
allocation to perform acceptably. An application may also im-
prove its performance with larger resource allocations. This
improvement in performance is measured by a utility function.

Q-RAM considers a system in which multiple applications,
each with its own set of requirements along multiple QoS di-
mensions, are contending for resources.

� Each application may have a minimum and/or a maxi-
mum need along each QoS dimension such as timeliness,
security, data quality and dependability.

� An application may require access to multiple resource
types such as CPU, disk bandwidth, network bandwidth
and memory.

� Each resource allocation adds some utility to the applica-
tion and the system, with utility monotonically increasing
with resource allocation.

� System resources are limited so that the maximal de-
mands of all applications often cannot be satisfied simul-
taneously.

With the Q-RAM specifications, a resource allocation decision
will be made for each application such that an overall system-
level objective (called utility) is maximized.

The system consists of n applications f�1, �2, � � �, �ng, n �
1, andm resources fR1,R2, � � �,Rmg,m � 1. Each resource
Rj has a finite capacity and can be shared, either temporally
or spatially. CPU and network bandwidth, for example, would
be time-shared resources, while memory would be a spatially
shared resource.

Let the portion of resourceRj allocated to application �i be
denoted by Ri;j. We enforce

Pn

i=1
Ri;j � Rj. The following

definitions are used:

� The application utility,Ui, of an application �i is defined
to be the value that is accrued by the system when �i is
allocated Ri = (Ri;1; Ri;j; � � � ; Ri;m). In other words,
Ui = Ui(R

i). Ui is referred to as the utility function of
�i. This utility function defines a surface along which the
application can operate based on the resources allocated
to it.

� Each application �i has a relative importance specified by
a weight wi, 1 � i � n.

� The total system utility U(R1; � � � ;Rn) is defined to
be the sum of the weighted application utilities, i.e.
U(R1; � � � ;Rn) =

Pn

i=1wiUi(Ri).

� Each application �i needs to satisfy requirements along d
QoS dimensions fQ1, Q2, � � �, Qdg, d � 1.

� The dimensional resource utility Ui;k = Ui;k(Ri) of an
application �i is defined to be the value that is accrued
by the system when �i is allocated Ri for use on QoS
dimension Qk; 1 � k � d.

� 1An application, �i, has minimal resource requirements
on QoS dimension Qk. These minimal requirements
are denoted by R

mink
i = fRmink

i;1 ; R
mink
i;2 ; � � � ; Rmink

i;m g

where Rmink
i;j � 0; 0 � j � m.

� An application, �i, is said to be feasible if it is allo-
cated a minimum set of resources for every QoS di-
mension. We denote the total minimum requirements
by Rmin

i =fRmin
i;1 ; Rmin

i;2 ; � � � ; Rmin
i;m g where Rmin

i;j =
Pd

k=1R
mink
i;j ; 1 � j � m.

The assumptions of Q-RAM that are used in this paper are:

� The applications are independent of one another.

� The available system resources are sufficient to meet the
minimal resource requirements of each application on all
QoS dimensions.

� The utility functions Ui and Ui;k are nondecreasing in
each of their arguments. In some cases, we will assume
that these functions are concave and have two continuous
derivatives.

Resource allocation schemes presented in [20] assumed a
single resource and thereby solved only the simpler problem
dealing with multiple QoS dimensions. Resource allocation
schemes in the presence of multiple resources were beyond its
scope but are the subject of Section 3 in this paper.

1.2. The Objective

The objective of Q-RAM is to make resource allocations to
each application such that the total system utility is maximized
under the constraint that every application is feasible with re-
spect to each QoS dimension. Stated formally, it determines
fRi;j; 1 � i � n; 1 � j � mg such that Ri;j �
Pd

k=1
Rmink
i;j andU is maximal among all such possible allo-

cations.
Each application has a relative weight wi, but this can be

ignored in the optimization step without loss of generality (by
scaling an application’s utility values by the same weight).

1This aspect is stated as a simplification; by choosing different implemen-
tation schemes, the minimum requirement on a resource may change. Please
see Section 3.



1.3. Related Work

Significant research has been carried out for making re-
source allocations to satisfy specific application-level require-
ments. The domain of operations research in particular has
spawned over several decades multiple resource allocation
problems. For example, [8] characterizes several problems
and formally summarizes known solutions to these problems.
Other work can be classified into various categories. The prob-
lem of allocating appropriate resource capacity to achieve a
specific level of QoS for an application has been studied in var-
ious contexts. For example, [6] studies the problem of how to
allocate network packet processing capacity assuming bursty
traffic and finite buffers. In [10], the problem of the establish-
ment of real-time communication channels is studied as an ad-
mission control problem. The Spring Kernel [24] uses on-line
admission control to guarantee essential tasks upon arrival.

With the advent of asynchronous transfer mode networks
and their deployment by telephone companies, Quality of Ser-
vice in terms of bandwidth and timeliness guarantees has been
studied in depth (e.g. see [2, 3]). Like most research on real-
time scheduling theory [16, 11], QoS research in networks fo-
cus on a single QoS dimension (like timeliness or bandwidth
guarantees). In addition, network and real-time scheduling re-
search have typically focused on a single resource type like
network bandwidth and CPU cycles respectively. In contrast,
we focus on multiple QoS dimensions spanning timeliness,
cryptography, and application quality requirements. We also
focus on making resource allocation decisions across multiple
resource types including processor compute cycles, network
bandwidth, and disk bandwidth.

Various system-wide schemes have been studied to arbitrate
resource allocation among contending applications. In [1], a
distributed pool of processors is used to guarantee timeliness
for real-time applications using admission control and load-
sharing techniques. The Rialto operating system [9] presents
a modular OS approach, the goal of which is to maximize the
user’s perceived utility of the system, instead of maximizing
the performance of any particular application. No theoretical
basis is provided to maximize system utility. A QoS manager
is used in the RT-Mach operating system to allocate resources
to application, each of which can operate at any resource allo-
cation point within minimum and maximum thresholds [15].
Applications are ranked according to their semantic impor-
tance, and different adjustment policies are used to obtain or
negotiate a particular resource allocation. Q-RAM can also be
considered to be a broad generalization of [17] and [23]. A
multi-dimensional QoS problem from a tracking perspective
is summarized in [12].

1.4. Organization of the Paper

The rest of this paper is organized as follows. In Section 2,
we show that the Q-RAM problem of finding the optimal re-
source allocation to satisfy multiple QoS dimensions (at least
one of which is dependent on another) is NP-hard. We then

present a polynomial solution for this resource allocation prob-
lem which yields a solution within a provably fixed and short
distance from the optimal allocation. In Section 3, we study
the problem of apportioning multiple resources to satisfy a sin-
gle QoS dimension. This problem becomes complicated, since
resources can be traded off against each other and still yield
the same utility. We formulate this problem as a mixed integer
programming problem that can be solved efficiently to yield an
optimal resource allocation. In Section 4, we present our con-
cluding remarks and discuss problems that remain unsolved.

2. Multiple QoS Dimensions and A Single Re-
source

The work reported in [20] provided optimal and near-
optimal resource allocation schemes for applications which
need a single resource, but need to satisfy one or more QoS
dimensions. Specifically, optimal resource allocation schemes
were provided for the two cases of

1. a single resource and a single QoS dimension, and

2. a single resource and multiple independent QoS dimen-
sions.

Finally, a greedy and sub-optimal algorithm was proposed for
the case of a single resource and two or more QoS dimen-
sions, where one QoS dimension is discrete and dependent on
another.2

In this section, we further study this latter problem of a sin-
gle resource and a dependent and discrete QoS dimension.
We refer to this problem as DDQSRP (Dependent Discrete
Dimension and Single Resource Problem). For the sake of
simplicity and practicality, we assume that the utility curve is
linear from R

min

i
to a maximum resource requirement Rmax

i

beyond which it becomes flat. An example of the individual
dimensional utility functions for two QoS dimensions, one in-
dependent and another dependent, and their aggregated appli-
cation utility function are illustrated in Figure 1. The first or
lowermost curve represents the utility curve for the applica-
tion when a base scheme (such as no encryption) is used. The
second curve represents the utility curve when (say) encryp-
tion using 40 bits is used. Additional utility is accrued by the
use of encryption, which results in a positive vertical offset at
the beginning of the curve. At the same time, additional com-
pute cycles are expended to perform encryption resulting in
the lateral shift of the curve to the right. In addition, as data
volume increases with improved QoS on the base dimension,
the encryption cost increases correspondingly. This results in a
“flattening” with respect to the curve of the base scheme. This
flattening effect is even more pronounced for the third curve,
corresponding to (say) encryption using 128 bits.

2A QoS dimension, Qa, is said to be dependent on another dimension,
Qb, if a change along the dimension Qb will increase the resource demands
to achieve the quality level previously achieved alongQa.



Dependent ’n’-ary QoS dimension

Aggregate

Scheme 0 *base*

Scheme 1

Scheme 2

tility

-3Resource x 10
0.00

20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00
220.00

100.00 200.00 300.00

Figure 1. One 3-ary QoS dimension w/ min-
linear-max.

We now show that the general problem of finding an optimal
resource allocation for applications with these non-concave
piecewise linear utility functions is NP-hard.

Theorem 1 Finding the optimal resource allocation with de-
pendent and discrete QoS dimensions is NP-Hard.

Proof: We prove this by showing that the inexact 0-1 knap-
sack problem which is known to be NP-hard (see for example
[18]) maps directly to a special case of our QoS problem. The
inexact 0-1 knapsack problem is as follows:

Maximize
Pn

i=1
vi

Subject to:

nX
i=1

Ri � R

where there are n objects each with size Ri and value vi,
andR is the size of the knapsack.

The above problem is identical to the following special case
of our problem. Suppose each of the users in our QoS alloca-
tion has a utility function which is a step function with a single
discontinuity, that is

Ui(r) =

�
0 if r < Ri

vi if r � Ri.

Thus user i receives a utility value of vi if and only if Ri

units of additional resource are allocated. A total of R addi-
tional units of resource are available for allocation.

An identity transformation makes the inexact 0-1 knapsack
problem a special case of our QoS problem. 2

We now provide a polynomial algorithm which yields a so-
lution for this resource allocation problem within a provably
fixed and short distance from the optimal allocation. This al-
gorithm uses the “natural” boundary of the set of discontinu-
ities in these utility functions. This boundary is the smallest

concave function lying on or above the aggregate utility func-
tion. We shall refer to this boundary as the “concave majo-
rant”.

2.1. Convex Hulls, Majorants and the Q-RAM Utility
Function

The convex hull of a set of points in the plane is the small-
est convex polygon containing all the points (for example, see
[22]). Several algorithms, such as the Graham’s Scan [22],
Jarvis’ March [7], etc., determine the convex hull of a set of
points. In our case, the concave majorant is a subset of the
path on the convex hull of the points on the aggregate utility
curve starting from the minimum resource allocation point to
a point with the highest achieved value of utility. Some ex-
amples of these concave majorants are presented in Figure 2.
Minor variations of the convex hull algorithms can be used to
determine the needed concave majorants as follows:

R R

R R

U

Utility function Concave Majorant

(a) (b)

(c) (d)

$

%

&

'

.
.

.
.

δi0
δi0

δi0

Figure 2. Examples of Concave Majorants for
Q-RAM Utility Curves. �i0 represents the maxi-
mum vertical separation of the convex majorant
from application �i’s aggregate utility curve.

Consider the discontinuity points A, B, C, D, E, F, G, H and
I corresponding to a utility function similar to the one in Figure
2-(c) plotted separately in Figure 3-(a) and 3-(b).

Jarvis’ March. Figure 3-(c) illustrates how the variant of the
Jarvis’ March works. Start from the minimum resource
allocation point (A) which is known to be in our path.
From there, travel to the point with the weakest right turn
(highest slope) drawing line segment 1 shown in 3-(c).
Repeat until we run out of points, drawing line segments



R R

U

R

$ $

$

1

2

3

4
5

R

U

(b)

(d)

%

'

*

+

,

&

(

)

%

'

*

+

,

&

(

)

%

'

*

+

,

&

(

)

$

Figure 3. Using Jarvis’ March (c) and Graham’s
Scan (d) for Determining Concave Majorants.

2, 3 4 and 5. This algorithm is conceptually simple but is
of complexity O(n2).

Graham’s Scan. Figure 3-(d) illustrates how Graham’s Scan
works. Again, start from the minimum resource alloca-
tion point A which is known to be in our path. Draw
lines from this point to all other points and sort them ac-
cording to their slopes. Travel to B, the point along the
highest slope. From there, travel to D, the point with the
next highest slope. If ABD is not concave, backtrack to
the previous point where concavity is still true and draw a
line from there toD; else, continue. Travel to the next un-
visited point with the highest slope. Backtracking when
necessary, repeat until either no points remain or a max-
imal point is reached. This algorithm is of complexity
O(n logn) in general and O(n) with pre-sorted points.

Both Jarvis’ March and the Graham’s Scan algorithms de-
scribed above can be optimized further under Q-RAM as
shown in Figure 3-(b). Draw a line from the starting point
(A) to one of the maximal points (H is preferable but I is ac-
ceptable as well). Any points that lie below this line can be
ignored by both of the above schemes.

2.2. Polynomial Concave Majorant Optimization Al-
gorithm for DDQSRP

1. For each application, determine the convex hull of the
points on its utility function.

2. Pick the subset of the path on the convex hull starting
from the minimum resource allocation point to the maxi-
mal resource allocation point. That is, obtain the concave
majorant of the aggregate utility function.

3. Run the algorithm as described in [20] using the Kuhn-
Tucker conditions (see [19], chapter 5): Allocate the
available resource to each application in decreasing order
of the slope of the concave majorant until the resource
runs out or all applications obtain their maximum useful
resource allocation. This yields an optimal resource allo-
cation based on the concave majorants.

The determination of the concave majorant has a computa-
tional complexity of O(n) (or O(n logn) if the discontinuity
points are not pre-sorted). The resource allocation algorithm
has a computational complexity of O(k logk) where k = nm

where n is the number of applications and m is the number of
discontinuities in each concave majorant.

We now prove that the above algorithm yields a resource al-
location that is within a short distance of the optimal resource
allocation.

Remark: The Q-RAM utility model assumes that the utility
gains due to the introduction of an n-ary and dependent QoS
dimension are also themselves non-decreasing and concave.

Notation: Let the maximum vertical separation of the con-
vex majorant from application �i’s aggregate utility curve be
�i.

Notation: Let �0 = max1�i�n�i.

Theorem 2 The maximum deviation from the optimal re-
source allocation for DDQSRP using the polynomial concave
majorant algorithm is �0.

Proof:
The proof is based on the properties of the concave majo-

rant. First, the vertex points on a concave majorant are points
from the original point set. Therefore, in our case, each of the
discontinuity points on the concave majorant also corresponds
to a discrete point on the aggregate utility function.

Second, by definition, the concave majorant is piece-wise
concave. The Kuhn-Tucker conditions are used to allocate the
available resource first to the application with the maximum
slope at its allocation point. When this is carried out on piece-
wise concave functions, all but at most one of the applications
will be at one of the discontinuity points [20].

Finally, the application of the Kuhn-Tucker conditions leads
to an optimal resource allocation if the concave majorants are
treated as the actual utility curves. Let the total utility ob-
tained on the concave majorants be Umajorant. Let the actual
total utility obtained by the applications be Uactual. Let the to-
tal utility obtained by an optimal allocation on the actual util-
ity curves be Uoptimal. Since at most one resource allocation
point may lie above an actual utility curve, and the concave
majorants lie at or above the actual utility curves, we have,

Umajorant � Uactual

Since the concave majorants lie at or above the actual utility
curves, and Umajorant is optimal for the concave majorants,
we must have

Umajorant � Uoptimal



We therefore have,

Umajorant � Uoptimal � Uactual

The largest difference between the utility obtained on the
concave majorants and the actual utility occurs when Uactual

is separated from Uoptimal by the maximal vertical distance
between the concave majorant and an actual utility curve. The
maximal separation between an aggregate utility function and
its concave majorant cannot be larger than �0. The theorem
follows. 2.

It is possible that �0 can be large in some systems, since the
inclusion of a scheme (such as cryptography to encrypt sen-
sitive data) may yield significant utility for an application. In
such cases, it may seem acceptable to treat the inclusion of
the scheme as the minimum requirement for the application.
Correspondingly, �0 can be reduced. Even if this were not
possible, it is encouraging to note that a simple polynomial al-
gorithm yields a resource allocation that is close to the optimal
resource allocation, which would take an exponential amount
of time to find.

A brute-force exponential algorithm to find the exact opti-
mal resource allocation for DDQSRP is outlined in [21].

3. Single QoS Dimension and Multiple Resources

In this section, we will study the problem of apportioning
shares of multiple resources to multiple concurrent applica-
tions each of which has to satisfy only a single QoS dimen-
sion. We will first motivate the problem and define the solu-
tion space available to a resource allocation scheme which is
meant to solve this problem.

3.1. The Multiple Resource Problem

Consider an audio-conferencing application where an audio
stream is being transmitted from a source to a destination. The
stream must be processed at the source processor, transmitted
across the network (across one or more hops) and must then be
processed again by the destination for playback on a speaker.
For the audio stream to be processed on time, all elements on
its path would require adequate resources. The sampling rate
of the audio stream is a QoS dimension of interest in this con-
text. If sufficient resources are available on the end-processors
and the intermediate network elements, a higher audio sam-
pling rate is desirable. However, beyond a CD-Quality sam-
pling rate, any increased utility to the users is very marginal.
In other words, this QoS dimension fits the requirements of
Q-RAM.

Consider multiple such streams in the system (such as an IP
telephony service provider). The goal of Q-RAM is to allo-
cate available resources to each of these streams such that the
overall accrued utility is maximized. This problem may seem
straightforward and a direct converse of the multiple QoS di-
mension/single resource problem solved earlier in Section 2.

However, one key aspect of this problem tends to be compli-
cated and is discussed next.

3.2. Resource Trade-Offs

Tradeoffs across resources are possible. If processing re-
sources are (relatively) scarce, and network bandwidth is plen-
tiful, the source node may transmit the data in raw form con-
suming less processor cycles and more network bandwidth.
Conversely, if processing resources are relatively plentiful and
network bandwidth meager, available processor cycles can be
used to compress the data and thereby consume less of the net-
work bandwidth. Different compression schemes also make
different tradeoffs with more compression time spent leading
to higher compression ratios.

Consider the application utility function defined in Figure
4-(a). As the sampling rate increases, utility improves but be-
yond a point, it saturates and flattens. For the sake of illus-
tration, consider only two resources (CPU cycles and network
bandwidth) and two schemes (with and without compression).
In addition, assume that the compression is lossless such that
there is no perceived QoS difference to the user whether com-
pression is used or not. The resource consumption functions
for this data stream on the CPU and network bandwidth re-
sources are plotted in Figure 4-(b). If no compression is used,
demand on the CPU is less and demand on the network band-
width is higher. The converse is true if compression is used.
In either case, the demands on the two resources increase as
the sampling rate is increased.

We assume in the rest of this section that the resource con-
sumption functions are linear. As a result, the resource utility
functions which combine the application utility function and
the resource consumption functions are as plotted in Figure
4-(c). It is informative to note that points marked (1) on the re-
source utility functions are chosen in tandem; that is, if point
(1) is chosen on the CPU utility function, point (1) must be
chosen on the network bandwidth utility function. The same
holds true for points (2), (3) and (4) respectively (and all other
pairs of points inbetween).

In general, a total of M schemes is assumed to be available,
with M = 2 in the example of Figure 4.

3.3. Notation

We shall use the following notation in this section.
Notation: Rj is the amount available on resource j.
Notation: ajik represents the minimum resource demand for

application �i on resource j when scheme k is used to satisfy
the application requirements.

Notation: b
j
ik represents the additional resource demand

(beyond the minimum requirement of a
j
ik) that application

�i can fruitfully use on resource j when scheme k is in use.
In other words, if application �i were allocated more than
a
j

ik+b
j

ik amount of resource j, no additional increase in utility
will accrue.



Sampling Rate

Ui
max

(a)

Application Utility Function

Resource Consumption Functions

System Utility Functions

CPU

(d)

U

No
compression

With
compression

Network
Bandwidth

No
compression

With
compression

(2)(2)(1) (1)

(3) (3)(4)(4)
Ui

max Ui
max

U

(e)

Sampling Rate

CPU

Sampling Rate

No
compression

With
compression

Network
Bandwidth

No
compression

With
compression

(b) (c)

Figure 4. Resource Tradeoffs and Its Impact on Utility Functions.

Notation: uik is the maximum utility accrued by application
�i when scheme k is used.

3.4. The Case of M = 4

Let (Xi, Yi) represent M = 4 possible schemes for achiev-
ing a given quality of service. For example, consider the fol-
lowing. Data is transmitted as is (no compression) and 3 possi-
ble compression schemes using different amounts of resources
and thereby generating different amounts of data.

Each application �i, 1 � i � n, has an associated maximal
value uik, 1 � k � 4, when scheme k is chosen. Let Fi be the
fraction of �i’s useful range of resource allocation (above its
minimal allocation), with 0 � Fi � 1.3

3That is, if �i is allocated a total rj
i

of resourceRj under scheme k, for

any k, Fi = (rji � a
j

ik
) � b

j

ik
. Q-RAM assumes that rji � a

j

ik
for some

value of k.

Objective: maximize

nX

i=1

(ui1FiXiYi + ui2Fi(1�Xi)Yi

+ui3FiXi(1� Yi) + ui4Fi(1�Xi)(1� Yi))

subject to:

0 � Fi � 1 and resource constraints:

Let 1 � j � m index resources, and Xi, Yi = 0 or 1. Since
Rj is the amount available on resource j, the resource con-
straints can be stated as follows.

Resource Constraints:



8j; 1 � j � m;

nX

i=1

(aji1 + b
j
i1Fi)XiYi +

nX

i=1

(aji2 + b
j
i2Fi)(1�Xi)Yi

+
nX

i=1

(aji3 + b
j
i3Fi)Xi(1� Yi)

+
nX

i=1

(aji4 + b
j
i4Fi)(1�Xi)(1� Yi) � Rj

Expanding, the jth resource constraint becomes

nX

i=1

a
j
i4 +

nX

i=1

b
j
i4Fi

+
nX

i=1

(aji1 � a
j
i2 � a

j
i3 + a

j
i4)XiYi

+
nX

i=1

(bji1 � b
j
i2 � b

j
i3 + b

j
i4)XiYiFi

+
nX

i=1

(aji3 � a
j
i4)Xi +

nX

i=1

(aji2 � a
j
i4)Yi

+
nX

i=1

(bji3 � b
j
i4)XiFi +

nX

i=1

(bji2 � b
j
i4)YiFi � Rj

The objective function and these resource constraints are
non-linear in fFig, fXig and fYig containing terms of the
form XiFi, YiFi, XiYiFi and XiYi. These constraints can be
linearized by introducing substitutions and adding extra (lin-
ear) constraints to the problem4.

We use the following substitutions:

XiYi = Zi

XiFi = fi

YiFi = gi

ZiFi = hi

Note that XiYiFi = ZiFi = hi.
The objective function now becomes

nX

i=1

(ui4Fi + (ui1 � ui2)Zi + (ui2 � ui4)fi

+(ui3 � ui4)gi + (ui4 � ui3)hi)

which is linear in the new variables, and we insert the fol-
lowing additional constraints:

4We would like to thank Professor Egan Balas of the Graduate School of
Industrial Administration at Carnegie Mellon University for suggesting the
linearization technique for the case ofM = 2 upon which this is based.

fi � 0
gi � 0
hi � 0
fi � Fi � 0
gi � Fi � 0
hi � Zi � 0
�fi + Fi +Xi � 1
�gi + Fi + Yi � 1
�hi + Fi + Zi � 1:

We also need to enforce

XiYi = Zi

where Xi; Yi; Zi are binary 0-1 variables. This can be done
by adding the constraints

Zi �Xi � 0
Zi � Yi � 0
Xi + Yi � Zi � 1

The optimal resource allocation problem we call the Multi-
Resource Single QoS dimension Problem (MRSQP) thus re-
duces to the following.

Multi-Resource Single QoS Dimension Problem (MRSQP):

Objective: maximize

nX

i=1

(ui4Fi + (ui1 � ui2)Zi + (ui2 � ui4)fi

+(ui3 �


