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Abstract. In supervised kernel methods, it has been observed that the
performance of the SVM classifier is poor in cases where the diagonal
entries of the Gram matrix are large relative to the off-diagonal entries.
This problem, referred to as diagonal dominance, often occurs when cer-
tain kernel functions are applied to sparse high-dimensional data, such
as text corpora. In this paper we investigate the implications of diagonal
dominance for unsupervised kernel methods, specifically in the task of
document clustering. We discuss a selection of strategies for addressing
this issue, and evaluate their effectiveness in producing more accurate
and stable clusterings.

1 Introduction

In many domains it will often be the case that the average similarity of one object
to another will be small when compared to the “self-similarity” of the object to
itself. This characteristic of many popular similarity measures does not constitute
a problem for some similarity-based machine learning techniques. However, it
does pose a problem for supervised kernel methods. If, for a given kernel function,
self-similarity values are large relative to between-object similarities, the Gram
matrix of this kernel will exhibit diagonal dominance. This will result in poor
generalisation accuracy when using Support Vector Machines (Smola & Bartlett,
2000; Cancedda et al., 2003; Schölkopf et al., 2002). Recently Dhillon et al. (2004)
suggested that this issue might also impact upon the performance of centroid-
based kernel clustering algorithms, as the presence of large self-similarity values
can limit the extent to which the solution space is explored beyond the initial
state.

An unfortunate characteristic of this problem is that matrices which are
strongly diagonally dominanted will be positive semi-definite and measures to
reduce this dominance run the risk of rendering the matrix indefinite so that it no
longer represents a valid Mercer kernel. Consequently there is a tension between
diagonal dominance on the one hand and the requirement that the matrix be
positive semi-definite on the other.

In this paper we are concerned with the implications of diagonal dominance
for clustering documents using the kernel k -means algorithm. As such, we com-
pare several practical techniques for addressing the problem. We examine the



use of subpolynomial kernels, which have the effect of “flattening” the range of
values in the kernel matrix. We also explore the use of a diagonal shift to reduce
the trace of the kernel matrix. Since both techniques can render the matrix in-
definite, we evaluate the use of the empirical kernel map (Schölkopf et al., 1999)
to overcome this. Finally, we consider an algorithmic approach that involves ad-
justing the kernel k -Means algorithm to remove the influence of self-similarity
values.

The evaluation presented in Section 4 demonstrates that all these reduction
approaches have merit. An interesting point arising from the experiments is that
the techniques employing indefinite kernel matrices still produce good clusterings
and can be terminated after a tractable number of iterations without a significant
decrease in clustering accuracy. This suggests that kernel k -means may not be as
susceptible to this issue as supervised kernel-based techniques, when considering
text data. Before presenting our results, the issue of diagonal dominance in
kernel clustering is discussed in Section 2 and the details of the techniques under
evaluation are described in Section 3.

2 Dominant Diagonals in Kernel Clustering

Kernel methods involve the transformation of a dataset to a new, possibly high-
dimensional, space where non-linear relationships between objects may be more
easily identified. Rather than explicitly computing the representation φ(x) of
each object x, the application of the “kernel trick” allows us to consider the
affinity between a pair of objects xi and xj using a given kernel function κ,
which is defined in terms of the dot product

κ(xi, xj) = 〈φ(xi), φ(xj)〉 (1)

By re-formulating algorithms using only dot products and subsequently replacing
these with kernel affinity values, we can efficiently apply learning algorithms in
the new non-linear space. The kernel function κ is usually represented by an
n × n kernel matrix (or Gram matrix) K, where Kij = κ(xi, xj). Following
this notation, the squared Euclidean distance between a pair of objects in the
transformed space can be expressed as

||φ(xi)− φ(xj)||2 = Kii + Kjj − 2Kij (2)

This may be used as a starting point for the identification of structures in the
new space.

2.1 Kernel K-means

A variety of popular clustering techniques have been re-formulated for use in a
kernel-induced space, including the standard k-means algorithm. Given a set of



objects {x1, . . . , xn}, the kernel k-means algorithm (Schölkopf et al., 1998) seeks
to minimise the objective function

k∑
a=1

∑
xi∈Ca

||φ(xi)− µa||2 (3)

for clusters {C1, . . . , Ck}, where µc represents the centroid of cluster Cc. Rather
than explicitly constructing centroid vectors in the transformed feature space,
distances are computed using dot products only. From Eqn. (2), we can formulate
the squared object-centroid distance ||φ(xi)− µc||2 as the expression

Kii +

∑
xj ,xl∈Cc

Kjl

|Cc|2
−

2
∑

xj∈Cc
Kij

|Cc|
(4)

The first term above may be excluded as it remains constant; the second is a
common term representing the self-similarity of the centroid, which need only be
calculated once for each cluster; the third term represents the affinity between
xi and the centroid µc.

The kernelised algorithm proceeds in the same manner as standard batch
k-means, alternating between reassigning objects to clusters and updating the
centroids until convergence. In this paper we follow the standard convention of
regarding the clustering procedure as having converged only when the assignment
of objects to centroids no longer changes from one iteration to another.

2.2 Diagonal Dominance

It has been observed (Cancedda et al., 2003; Schölkopf et al., 2002) that the per-
formance of the SVM classifier can be poor in cases where the diagonal values
of the Gram matrix are large relative to the off-diagonal values. This problem,
sometimes referred to as diagonal dominance in machine learning literature, fre-
quently occurs when certain kernel functions are applied to data that is sparse
and high-dimensional in its explicit representation. It is particularly problem-
atic in text mining tasks, where linear or string kernels can often produce di-
agonally dominated Gram matrices. However, this phenomenon can also arise
with other kernel functions, such as when employing the Gaussian kernel with a
small smoothing parameter, or when using domain-specific kernels for learning
tasks in image retrieval (Tao et al., 2004) and bioinformatics (Saigo et al., 2004).
These cases are all characterised by the tendency of the average of the diagonal
entries of the kernel matrix K to be significantly larger than the average of the
off-diagonal entries, resulting in a dominance ratio

1
n

∑
i Kii

1
n(n−1)

∑
i,j,i6=j Kij

� 1 (5)

We can interpret this to mean that the objects are approximately orthogonal to
one another in this representation. In many cases a classifier applied to such a
matrix will effectively memorise the training data, resulting in severe overfitting.



The phenomenon of diagonal dominance also has implications for centroid-
based kernel clustering methods. Observe that, when calculating the dissimilarity
between a centroid µa and a document xi ∈ Ca, the expression (4) can be
separated as follows:

Kii +

∑
xj ,xl∈Ca

Kjl

|Ca|2
−

2
∑

xj∈Ca−{xi} Kij

|Ca|
− 2Kii

|Ca|
(6)

If K is diagonally dominated, the last term in Eqn. (6) will often result in xi being
close to the centroid of Ca and distant from the remaining clusters, regardless of
the affinity between xi and the other documents assigned to Ca. Consequently,
even with random cluster initialisation, few subsequent reassignments will be
made and the algorithm will converge to a poor local solution.

The problem of dominant self-similarity has previously been shown to ad-
versely affect centroid-based clustering algorithms in high-dimensional feature
spaces (Dhillon et al., 2002). Therefore, it is unsurprising that similar problems
should arise when applying their kernel-based counterparts using kernel functions
that preserve this sparseness. Dhillon et al. (2004) observed that the accuracy of
kernel k-means can decrease significantly when document-cluster distances are
dominated by self-similarity values.

For the remainder of the paper, we make use of a linear kernel that has
been normalised according to the approach described by Schölkopf & Smola
(2001), yielding values in the range [0, 1]. The matrix of this normalised kernel,
denoted here as S, corresponds to the similarity matrix of the widely used cosine
similarity measure, so that

Sij =
〈xi, xj〉√

〈xi, xi〉 〈xj , xj〉
(7)

While a kernel formulated in this way represents an intuitive choice for docu-
ment clustering, its matrix will typically suffer from diagonal dominance. Thus,
although we will always have Sii = 1∀i, it will often be the case for sparse text
data that Sij � 1 for i 6= j.

As an example, we consider the cstr dataset1, which consists of 505 technical
abstracts relating to four fields of research. For a matrix S constructed from this
data, the dominance ratio (5) is 16.54, indicating that the matrix is significantly
diagonally dominated. This can be seen clearly in the graphical representation
of the matrix in Figure 1. When applying kernel k-means using this matrix, the
large diagonal entries may prevent the identification of coherent clusters. Often
incorrect assignments in an initial partition will fail to be subsequently rectified
as the large self-similarity may obscure similarities between pairs of documents
belonging to the same natural grouping.

1 http://www.cs.rochester.edu/trs



Fig. 1. Linear kernel matrix for cstr dataset with dominant diagonal.

3 Reducing Diagonal Dominance

In this section we describe a number of practical strategies for reducing the
effects of diagonal dominance.

3.1 Diagonal Shift (DS)

To reduce the influence of large diagonal values, Dhillon et al. (2004) proposed
the application of a negative shift to the diagonal of the Gram matrix. Specifi-
cally, a multiple σ of the identity matrix is added to produce

KDS = σI + S (8)

The parameter σ is a negative constant, typically selected so that the trace of
the kernel matrix is approximately zero. For a normalised linear kernel matrix
with trace equal to n, this will be equivalent to subtracting 1 from each diagonal
value, thereby eliminating the first and last terms from the document-centroid
distance calculation (6).

However, the shift technique is equivalent to the addition of a negative con-
stant to the eigenvalues of S. As a result, KDS will no longer be positive semi-
definite and the kernel k-means algorithm is not guaranteed to converge when
applied to this matrix. Figure 2 compares the trailing eigenvalues for the ma-
trix shown in Figure 1, before and after applying a diagonal shift of σ = −1.
Notice that the modification of the diagonal entries has the effect of shifting a
large number of eigenvalues below zero, signifying that the modified matrix is
indefinite.

The application of diagonal shifts to Gram matrices has previously proved
useful in supervised kernel methods. However, rather than seeking to reduce di-
agonal dominance, authors have most frequently used the technique to ensure
that a kernel matrix is positive semi-definite. Both Saigo et al. (2004) and Wu



et al. (2005) proposed the addition of a non-negative constant to transform in-
definite symmetric matrices into valid kernels. Unfortunately, this will have the
side effect of increasing the dominance ratio. Specifically, Saigo et al. (2004) sug-
gested adding a shift σ = |λn|, where λn is the negative eigenvalue of the kernel
matrix with largest absolute value. However, as evident from Figure 2, such a
shift will often negate the benefits of the diagonal shift, resulting in a matrix
that is once again diagonally dominated. In addition, computing a full spec-
tral decomposition for a large term-document matrix will often be impractical,
although Wu et al. (2005) did suggest an approach for estimating λn.
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Fig. 2. Eigenvalues in range [100, 505] for normalised linear kernel matrix of cstr
dataset.

3.2 Subpolynomial Kernel With Empirical Kernel Map (SPM)

To address the problems introduced by large diagonals in SVMs, Schölkopf et al.
(2002) proposed the use of subpolynomial kernels. Given a positive kernel based
on the function φ, a subpolynomial kernel function is defined as

κSP (xi, xj) = 〈φ(xi), φ(xj)〉p (9)

where 0 < p < 1 is a user-defined parameter. As the value of the degree p
decreases, the ratio of diagonal entries to off-diagonal entries in the matrix KSP

also decreases. Unlike the diagonal shift technique, the non-linear transformation
directly modifies the pair-wise affinities between the off-diagonal entries in S,
which may potentially distort the underlying cluster structure.

Since κSP may no longer be a valid kernel, the authors suggest the use of
the empirical kernel map method (Schölkopf et al., 1999) to render the matrix
positive definite. This involves mapping each document xi to an n-dimensional
feature vector

φm(xi) = (κ(xi, x1), . . . , κ(xi, xn))T (10)



By using this feature representation, we can derive a positive definite kernel
matrix by simply computing the dot products

KSPM = KSPKSP
T (11)

In practice, normalising all rows of KSP to unit length prior to computing the
dot product leads to significantly superior results.

An important issue that must be addressed when using a subpolynomial
kernel is the selection of the parameter p. If the value is too large the Gram matrix
will remain diagonally dominated, while a value of p that is too small will obscure
cluster structure as all documents will become approximately equally similar.
Schölkopf et al. (2002) suggest the use of standard cross-validation techniques for
selecting p. However, this may not be feasible in cases where other key parameters
such as the number of clusters k must also be determined by repeatedly clustering
the data.

3.3 Diagonal Shift With Empirical Kernel Map (DSM)

While the empirical map technique was used by Schölkopf et al. (2002) to pro-
duce a valid kernel from the matrix of a subpolynomial kernel, this approach can
be applied in combination with other reduction methods. Thus, even if we alter
the diagonal of the kernel matrix in an arbitrary manner so that it becomes
indefinite, we may still recover a positive definite matrix that will guarantee
convergence for the kernel k-means algorithm.

Here we consider the possibility of applying a negative shift so as to minimise
the trace of the matrix as described previously. This is followed by the construc-
tion of the empirical map KDSM = KDSKDS

T , after normalising the rows of
KDS to unit length. While this approach does reduce the dominance ratio 5, it
should be noted that the application of the dot product will produce a kernel
matrix with trace greater than zero.

3.4 Algorithm Adjustment (AA)

When attempting to apply supervised kernel methods to matrices that are not
positive semi-definite, Wu et al. (2005) distinguished between two fundamental
strategies: spectrum transformation approaches that perturb the original matrix
to produce a valid Gram matrix, and algorithmic approaches that involve alter-
ing the formulation of the learning algorithm. A similar distinction may be made
between diagonal dominance reduction techniques. We now discuss an algorith-
mic approach that involves adjusting the kernel k-means algorithm described by
Schölkopf et al. (1998) to eliminate the influence of self-similarity values.

If one considers the distance between a document xi and the cluster Ca to
which it has been initially assigned, a dominant diagonal will lead to a large value
in the third term of Eqn. (4). As noted in Section 2.2, this will often cause xi to
remain in Ca during the reassignment phase, regardless of the affinity between xi

and the other documents in Ca. A potential method for alleviating this problem



is to reformulate the reassignment step as a “split-and-merge” process, where
self-similarity values are not considered. Rather, we seek to assign each document
to the nearest centroid, where the document itself is excluded during centroid
calculation.

Formally, each document xi is initially removed from its cluster Ca, leaving
a cluster Ca − {xi} with centroid denoted µa′ . For each alternative candidate
cluster Cb, b 6= a, we consider the gain achieved by reassigning xi to Cb rather
than returning it back to Ca. This gain is quantified by the expression

∆ab = ||φ(xi)− µa′ ||2 − ||φ(xi)− µb||2 (12)

Note that from Eqn. (4), the diagonal value Kii is not considered in the com-
putation of ∆ab. If arg max b ∆ab > 0, then xi is reassigned to that cluster Cb

which results in the maximal gain. Otherwise, xi remains in cluster Ca. As with
the standard formulation of kernel k-means, centroids are only updated after all
n documents have been examined.

This strategy could potentially be applied to improve the performance of
the standard k-means algorithm in sparse spaces where self-similarity values
have undue influence. However, the repeated adjustment of centroids in a high-
dimensional space is likely to be impractical. Fortunately, in the case of kernel
k-means we can efficiently compute ∆ab by caching the contribution of each
document to the common term in Eqn. (4), making it unnecessary to recalculate
the term in its entirety when evaluating each document for reassignment.

3.5 Comparison of Reassignment Behaviour

Dhillon et al. (2002) observed that spherical k-means often becomes trapped at
an initial clustering, where the similarity of any document to its own centroid is
much greater than its similarity to any other centroid. As discussed previously,
a diagonally dominated kernel matrix frequently elicits similar behaviour from
the kernel k-means algorithm. Consequently, the algorithm will converge after
relatively few reassignments have been made to a local solution that is close to
the initial partition. If the initial clusters are randomly selected, it is possible
that the final clustering will be little better than random. In addition, multiple
runs may produce significantly different partitions of the same data.

To gain a clearer insight into this problem, we examine the reassignment be-
haviour resulting from the application of each of the reduction strategies. Figure
3 illustrates the expected number of reassignments occurring during the first 10
iterations of the kernel k-means algorithm when applied to the cstr dataset. It
is evident that applying the algorithm to the original dominated matrix results
in significantly fewer reassignments, which can be viewed as a cursory search of
the solution space. It is interesting to note that these reassignment patterns are
replicated to varying degrees across all the datasets considered in our evaluation
in Section 4.

Clearly the number of reassignments may not necessarily be a good predictor
of clustering accuracy. However, the experimental results presented in the next
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Fig. 3. Average number of assignments per iteration for cstr dataset over first 10
iterations.

section do suggest a significant correlation between depth of search and clus-
tering accuracy. In particular, the methods DS and AA, which show equivalent
reassignment behaviour, frequently perform well.

4 Empirical Evaluation

4.1 Experimental Setup

In order to assess the reduction methods described in Section 3, we conducted
a comparison on eight datasets that have previously been used in the evalua-
tion of document clustering algorithms (see Table 1). For further information
regarding these document collections, consult Greene & Cunningham (2005).
To pre-process the datasets we applied stop-word removal and stemming tech-
niques. We subsequently removed terms occurring in less than three documents
and applied standard TF-IDF normalisation to the feature vectors.

Dataset Description Documents Terms k Ratio

bbc News articles from BBC 2225 9635 5 24.18
bbcsport Sports news articles 737 4613 5 16.19
classic3 CISI/CRAN/MED 3893 6733 3 39.47
classic CACM/CISI/CRAN/MED 7097 8276 4 46.47
cstr Computer science technical abstracts 505 2117 4 16.54
ng17-19 Overlapping newsgroups 2625 11841 3 28.70
ng3 Approximately disjoint newsgroup 2900 12875 3 30.13
reviews Entertainment news articles (TREC) 4069 18391 5 27.18

Table 1. Details of experimental datasets, including original dominance ratios.

We initialised the clustering procedure with random clusters and averaged
the results over 250 trials. For each trial, a maximum of 100 assignment iterations



was permitted. We set the number of clusters k to correspond to the number of
natural classes in the data. For experiments using a subpolynomial kernel, we
tested values for the degree parameter from the range [0.4, 0.9]. Values for p < 0.4
invariably resulted in excessive flattening of the range of values in the kernel
matrix, producing partitions that were significantly inferior to those generated
on the original matrix.

When comparing the accuracy of document clustering techniques, external
class information is generally used to assess cluster quality. We employ the nor-
malised mutual information (NMI) measure proposed by Strehl & Ghosh (2002),
which provides a robust indication of the level of agreement between a given clus-
tering and the target set of natural classes.

An alternative approach to cluster validation is based on the notion of cluster
stability (Roth et al., 2002), which refers to the ability of a clustering algorithm
to consistently produce similar solutions across multiple trials on data originat-
ing from the same source. It is well documented that the k-means algorithm and
its variations are particularly sensitive to initial starting conditions. This makes
them prone to converging to different local minima when using a stochastic ini-
tialisation strategy. Therefore, when selecting a diagonal reduction method, we
seek to identify a robust approach that will allow us to consistently produce ac-
curate, reproducible clusterings. In our experiments we assessed the stability of
each candidate method by calculating the average normalised mutual informa-
tion (ANMI) (Strehl & Ghosh, 2002) between the set of all partitions generated
on each dataset.

4.2 Analysis of Results

Our experiments indicate that all of the reduction approaches under consider-
ation have merit. In particular, Table 2 shows that the AA and DS methods
yield improved clustering accuracy in all but one case. Generally, we observed
that diagonal dominance reduction has a greater effect on some datasets than
on others. While the difference in reassignment behaviour after reduction is less
pronounced on datasets such as classic3, there is no strong correlation between
the distribution of the affinity values in the kernel matrix and the increase in
accuracy. However, it is apparent from Table 3 that applying kernel k-means to
a dominated kernel matrix consistently results in poor stability. It is clear that
the restriction placed upon the number of reassignments made in these cases
frequently results in less deviation from the initial random partition, thereby
increasing the overall disagreement between solutions.

Diagonal Shift (DS). Table 2 shows that the negative diagonal shift approach
frequently produced clusterings that were more accurate than those generated
on the original dominated kernel matrices. As noted in Section 3.1, this method
provides no guarantee of convergence. However, our results support the asser-
tion made by Dhillon et al. (2004) that, in practice, lack of convergence may
not always be a problem. Frequently we observed that a comparatively stable



Dataset Original DS DSM AA p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9

bbc 0.81 0.83 0.81 0.83 0.81 0.82 0.81 0.81 0.81 0.81
bbcsport 0.72 0.80 0.78 0.80 0.69 0.75 0.76 0.76 0.76 0.78
classic3 0.94 0.94 0.90 0.94 0.88 0.89 0.89 0.89 0.89 0.90
classic 0.74 0.75 0.75 0.75 0.71 0.73 0.75 0.74 0.74 0.74
cstr 0.64 0.74 0.74 0.74 0.57 0.69 0.71 0.72 0.73 0.73
ng17-19 0.38 0.40 0.46 0.40 0.45 0.46 0.46 0.45 0.47 0.45
ng3 0.82 0.83 0.84 0.84 0.84 0.85 0.86 0.85 0.85 0.83
reviews 0.58 0.59 0.60 0.58 0.61 0.62 0.62 0.61 0.61 0.60

Table 2. Accuracy (NMI) scores for reduction methods, with linear kernels and sub-
polynomial kernels for various values of p.

Dataset Original DS DSM AA p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9

bbc 0.82 0.86 0.90 0.87 0.94 0.94 0.92 0.92 0.90 0.89
bbcsport 0.64 0.79 0.82 0.79 0.77 0.80 0.80 0.80 0.79 0.81
classic3 0.98 0.98 0.97 0.98 0.99 1.00 0.99 0.99 1.00 0.99
classic 0.86 0.89 0.81 0.90 0.79 0.79 0.80 0.80 0.80 0.79
cstr 0.60 0.78 0.83 0.79 0.82 0.82 0.82 0.81 0.81 0.81
ng17-19 0.45 0.48 0.60 0.47 0.62 0.64 0.63 0.61 0.62 0.60
ng3 0.81 0.83 0.92 0.85 1.00 1.00 0.99 0.97 0.94 0.91
reviews 0.77 0.81 0.84 0.80 0.92 0.98 0.95 0.90 0.87 0.84

Table 3. Stability (ANMI) scores for reduction methods, with linear kernels and sub-
polynomial kernels for various values of p.

partition is identified after a relatively few number of iterations. At this stage
the algorithm proceeds to oscillate indefinitely between two nearly identical so-
lutions without ever attaining convergence. As a solution to this problem, we
chose to terminate the reassignment procedure after five consecutive oscillations
were detected. This resulted in no significant adverse effect on clustering accu-
racy. However, the lack of complete convergence did impact upon the stability
of the partitions generated using the DS method, as apparent by the relatively
low ANMI scores reported in Table 3.

Diagonal Shift With Empirical Kernel Map (DSM). While the applica-
tion of the empirical kernel map technique subsequent to a diagonal shift does
guarantee convergence after relatively few iterations, the map also has the effect
of increasing the dominance ratio, resulting in accuracy gains that are not so sig-
nificant as those achieved by the DS approach. The higher level of consistency
between partitions generated using this method does suggest that it represents a
good trade-off between accuracy and stability. However, there remains the addi-
tional computational expense of constructing the matrix KDSM , which requires
O(n3) time.

Subpolynomial Kernel With Empirical Kernel Map (SPM). For sub-
polynomial kernel reduction method, our experimental findings underline the



difficulty of setting the degree parameter p. The gains in accuracy resulting
from this approach were significant, though less consistent than those achieved
by the other methods. On certain datasets, such as the 3ng and reviews col-
lections, specific values of p lead to a large improvement in both accuracy and
stability, while in other cases there was little or no improvement. This suggests
that the alteration of cluster structure induced by the subpolynomial function
may prove beneficial in some cases, but not in others. Therefore, while a value of
p = 0.6 was found to perform best on average, we conclude that the selection of a
value for p is largely dataset dependent. Once again, the expense of calculating
the empirical map must be taken into consideration when making use of this
reduction method.

It is interesting to note that employing a subpolynomial kernel without sub-
sequently rendering the kernel matrix positive definite still resulted in complete
convergence in all experiments. However, the accuracy and stability scores re-
turned in these cases were generally lower. As with the DSM approach, the
application of the empirical map resulted in a marked increase in cluster stabil-
ity.

Algorithm Adjustment (AA). The adjusted kernel clustering algorithm, as
described in Section 3.4, yielded improvements in accuracy that were marginally
better than those produced by the diagonal shift method (DS), while also achiev-
ing slightly higher cluster stability scores. The correlation between the two meth-
ods is understandable given their similar reassignment behaviour. This stems
from the fact that applying a negative diagonal shift of σ = −1 to a matrix with
trace equal to n effectively eliminates the dominant last term in Eqn. (6), lead-
ing to document-centroid distances that are approximately the same as those
achieved using the “split-and-merge” adjustment. It should be noted that, while
the AA reduction method frequently failed to achieve complete convergence,
the oscillation detection technique described previously resolved this problem
satisfactorily on all datasets.

5 Conclusion

We have considered a range of practical solutions to the issues introduced by
diagonally dominated kernel matrices in unsupervised kernel methods. Further-
more, we have demonstrated the effectiveness of the solutions when performing
the task of document clustering. From our evaluation it is apparent that the pres-
ence of disproportionately large self-similarity values precipitates a reduction in
the number of reassignments made by the kernel k-means algorithm. This may
limit the extent to which the solution space is explored, causing the algorithm to
become stuck close to its initial state. In cases where the initialisation strategy is
stochastic or unsuitable, this can result in a appreciable decrease accuracy and
cluster stability.

For practical purposes, the diagonal shift and adjusted k-means techniques
both represent efficient strategies for reducing diagonal dominance. However, it



is possible that the tendency of these methods to become trapped in a cycle of
oscillating reassignments may prove problematic under certain circumstances.
Applying the empirical kernel map technique subsequent to a negative diagonal
shift leads to a good trade-off between accuracy and stability, although the cost
of computing the empirical map may be prohibitive for large datasets. This fac-
tor is also relevant when employing subpolynomial kernels to reduce diagonal
dominance. In addition, for this latter reduction method we conclude that the
choice of the degree p is largely dataset dependent. The requirement of an ad-
ditional user-selected parameter in the clustering process makes this approach
less attractive than the other methods we have discussed.

An interesting direction for future research would be to investigate the fac-
tors that determine the extent to which diagonal dominance reduction affects
clustering accuracy. In addition, we believe that the techniques described in this
paper will also have merit in the application of unsupervised kernel methods
to other domains such as bioinformatics and image retrieval, where the ratio of
diagonal to off-diagonal entries in the kernel matrix will often be significantly
higher.
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