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Practical speed meter designs for quantum nondemolition gravitational-wave interferometers
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In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detec-
tors ~e.g., LIGO-III and EURO!, one strategy is to monitor the relative momentum or speed of the test-mass
mirrors, rather than monitoring their relative position. A previous paper analyzed a straightforward but imprac-
tical design for aspeed-meter interferometerthat accomplishes this. This paper describes some practical
variants of speed-meter interferometers. Like the original interferometric speed meter, these designsin prin-
ciple can beat the gravitational-wave standard quantum limit~SQL! by an arbitrarily large amount, over an
arbitrarily wide range of frequencies. These variants essentially consist of a Michelson interferometer plus an
extra ‘‘sloshing’’ cavity that sends the signal back into the interferometer with opposite phase shift, thereby
cancelling the position information and leaving a net phase shift proportional to the relative velocity.In
practice, the sensitivity of these variants will be limited by the maximum light powerWcirc circulating in the
arm cavities that the mirrors can support and by the leakage of vacuum into the optical train at dissipation
points. In the absence of dissipation and with squeezed vacuum~power squeeze factore22R.0.1) inserted into
the output port so as to keep the circulating power down, the SQL can be beat byh/hSQL

;AWcirc
SQLe22R/Wcirc at all frequencies below some chosenf opt.100 Hz. Here Wcirc

SQL

.800 kW(f opt/100 Hz)3 is the power required to reach the SQL in the absence of squeezing.~However, as the
power increases in this expression, the speed meter becomes more narrow band; additional power and reopti-
mization of some parameters are required to maintain the wide band. See Sec. III B.! Estimates are given of the
amount by which vacuum leakage at dissipation points will debilitate this sensitivity~see Fig. 12!; these losses
are 10% or less over most of the frequency range of interest (f *10 Hz). The sensitivity can be improved,
particularly at high freqencies, by using frequency-dependent homodyne detection, which unfortunately re-
quires two 4-km-long filter cavities~see Fig. 4!.

DOI: 10.1103/PhysRevD.66.122004 PACS number~s!: 04.80.Nn, 03.67.2a, 42.50.Dv, 95.55.Ym
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I. INTRODUCTION

This paper is part of the effort to explore theoretica
various ideas for a third-generation interferomet
gravitational-wave detector. The goal of such detectors i
beat, by a factor of 5 or more, thestandard quantum limit
~SQL!—a limit that constrains interferometers@1# such as
the first generation of the Laser Interferometric Gravitatio
Wave Observatory~LIGO-I! which have conventional opti
cal topology@2,3#, but does not constrain more sophisticat
‘‘quantum nondemolition’’~QND! interferometers@4,5#.

The concepts currently being explored for thir
generation detectors fall into two categories:external read-
out and intracavity readout. In interferometer designs with
external readout topologies, light exiting the interferome
is monitored for phase shifts, which indicate the motion
the test masses. Examples include conventional interfer
eters and their variants~such as LIGO-I@2,3#, LIGO-II @6#,
and those discussed in Ref.@7#!, as well as the speed-mete
interferometers discussed here and in a previous paper@8#. In
intracavity readout topologies, the gravitational-wave fo
is fed via light pressure onto a tiny internal mass, who
displacement is monitored with a local position transduc
Examples include the optical bar, symphotonic state, and
tical lever schemes discussed by Braginsky, Khalili, a
Gorodetsky@9–11#. These intracavity readout interferom
eters may be able to function at much lower light pow
than external readout interferometers of comparable sens
ity because the QND readout is performed via the local
0556-2821/2002/66~12!/122004~24!/$20.00 66 1220
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sition transducer~perhaps microwave-technology based!, in-
stead of via the interferometer’s light; however, the desig
are not yet fully developed.

At present, the most complete analysis of candidate
signs for third-generation external-readout detectors has b
carried out by Kimble, Levin, Matsko, Thorne, and Vyatch
nin @7# ~KLMTV !. They examined three potential designs f
interferometers that could beat the SQL: a squeezed-in
interferometer, which makes use of squeezed vacuum b
injected into the dark port; a variational-output scheme
which frequency-dependent homodyne detection was u
and a squeezed-variational interferometer that combines
features of both.~Because the KLMTV designs measure t
relative positions of the test masses, we shall refer to them
position meters, particularly when we want to distinguis
them from the speed meters that, for example,
variational-output techniques.! Although at least some of the
KLMTV position-meter designs have remarkable perfo
mance in the lossless limit, all of them are highly suscepti
to losses.

In addition, we note that the KLMTV position meter
each require four kilometer-scale cavities~two arm cavities
1two filter cavities!. The speed meters described in this p
per require at least three kilometer-scale cavities@two arm
cavities1one ‘‘sloshing’’ cavity ~described below!#. If we
use a variational-output technique, as KLMTV did, the r
sulting interferometer will have five kilometer-scale caviti
@two arm cavities1one sloshing cavity1two filter cavities
~again, see below!#. The speed meter described
©2002 The American Physical Society04-1
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this paper can achieve a performance significantly better
a conventional position meter, as shown in Fig. 1.~By ‘‘con-
ventional,’’ we mean ‘‘without any QND techniques.’’ An
example is LIGO-I.! The squeezed-input speed meter~SISM!
noise curve shown in Fig. 1 beats the SQL by a factor ofA10
in amplitude and hasfixed-anglesqueezed vacuum injecte
into the dark port@this allows the interferometer to operate
a lower circulating power than would otherwise be necess
to achieve that level of sensitivity, as described by Eq.~3!
below#. The squeezed-variational position meter~SVPM!,
which requires squeezed vacuum andfrequency-dependen
homodyne detection, is more sensitive than the squee
input speed meter over much of the frequency range of
terest, but the speed meter has the advantage at low freq
cies. It should also be noted that the squeezed-variati
position meter requires four kilometer-scale cavities~as de-
scribed in the previous paragraph!, whereas the squeezed
input speed meter requires three.

If frequency-dependent homodyne detection is added
the squeezed-input speed meter, the resulting squee
variational speed meter~SVSM! can be optimized to beat th
squeezed-variational position meter over the entire freque
range. Figure 1 contains two squeezed-variational sp
meter curves; one is optimized to match the squeezed-i
speed meter curve at low frequencies, and the other is o
mized for comparison with the squeezed-variational posti
meter curve~resulting in less sensitivity at high frequencies!.

FIG. 1. Comparison of noise curves~with losses! of several
interferometer configurations. Each of these curves has been
mized in a way that is meant to illustrate their relative advanta
and disadvantages. The conventional position meter~CPM! @7# has
Wcirc5820 kW and bandwidthg5cT/4L52p3100 Hz. The
squeezed-input speed meter~SISM!—optimized to agree with the
conventional position meter at high frequencies—has po
squeeze factore22R50.1, optimal frequencyvopt52p3105 Hz,
extraction rated52vopt , and sloshing frequencyV5A3vopt . The
squeezed-variational position meter~SVPM! @7# has the same pa
rameters as the conventional position meter, with power sque
factor e22R50.1. There are two squeezed-variational speed-m
curves~SVSM!. One ~black dashes! uses the same parameters
the squeezed-input speed meter. The other~solid curve! has been
optimized to compare more directly with the squeezed-variatio
position meter; it hasV52p395 Hz andd52p3100 Hz ~note
that our d is equivalent to the bandwidthg used to describe the
interferometers in Ref.@7#!.
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The original idea for a speed meter, as a device for m
suring the momentum of a single test mass, was conce
by Braginsky and Khalili@12# and was further developed b
Braginsky, Gorodetsky, Khalili, and Thorne~BGKT! @13#. In
their appendix, BGKT sketched a design for an interferom
ric gravity wave speed meter and speculated that it would
able to beat the SQL. This was verified in Ref.@8# ~Paper I!,
where it was demonstrated that such a device couldin prin-
ciple beat the SQL by an arbitrary amount over a wide ran
of frequencies. However, the design presented in that pa
which we shall call thetwo-cavity speed-meterdesign, had
three significant problems: it required~i! a high circulating
power (;8 MW to beat the SQL by a factor of 10 in nois
power at 100 Hz and below!, ~ii ! a large amount of powe
coming out of the interferometer with the signal~;0.5 MW!,
and ~iii ! an exorbitantly high input laser powe
(*300 MW). The latter two problems are effectively elim
nated by the alternate class of speed meters presented h
designs that are based on the same QND mechanism
scribed in Refs.@8,12,13# but implemented by differen
optical configurations. In addition, techniques for reduci
the needed circulating power are also discussed. These
provements bring interferometric speed meters into the re
of practicality.

A simple version of thethree-cavity speed-meterdesign to
be discussed in this paper is shown in Fig. 2. In~an idealized
theorist’s version of! this speed meter, the input laser lig
@with electric field denotedI (z) in Fig. 2# passes through a
power-recycling mirror into a standard Michelson interfe
ometer. The relative phase shifts of the two arms are adju
so that all of the input light returns to the input port, leavin
the other port dark@i.e., the interferometer is operating in th
symmetric mode soD(h)50 in Fig. 2#. In effect, we have a
resonant cavity shaped like'. When the end mirrors move
they will put a phase shift on the light, causing some light
enter the antisymmetric mode~shaped like£) and come out
the dark port. So far, this is the same as conventional in
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s

r
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FIG. 2. Simple version of three-cavity design for speed-me
interferometer. The main laser input port is denoted byI (z), where
z5t2z/c. The signal is extracted at the bottom mirror@denoted
Q(h), where h5t1z/c]. The difference between the one- an
two-port versions is the mirror shown in gray.
4-2
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PRACTICAL SPEED METER DESIGNS FOR QUANTUM . . . PHYSICAL REVIEW D66, 122004 ~2002!
ferometer designs~but without the optical cavities in the tw
interferometer arms!.

Next, we feed the light coming out of the dark po
@D(h)# into a sloshing cavity@labeledK(h) and L(z) in
Fig. 2#. The light carrying the position information sloshe
back into the ‘‘antisymmetric cavity’’ with a phase shift o
180°, cancelling the position information in that cavity a
leaving only a phase shift proportional to the relative velo
ity of the test masses.1 The sloshing frequency is

V5
cATs

2L
, ~1!

whereTs is the power transmissivity of the sloshing mirror,L
is the common length of all three cavities, andc is the speed
of light. We read the velocity signal@Q(h)# out at an extrac-
tion mirror ~with transmissivityTo), which gives a signal-
light extraction rate of

d5
cTo

L
. ~2!

1The net signal is proportional to the relative velocities of the t
masses, assuming that the frequenciesv of the test masses’ motion
are v!V5(sloshing frequency). However, the optimal regime
operation for the speed meter isv;V. As a result, the outpu
signal contains a sum over odd time derivatives of position~see the
discussion in Sec. III A!. Therefore, the speed meter monitors n
just the relative speed of the test masses, but a mixture of all
time derivatives of the relative positions of the test masses.

FIG. 3. Schematic diagram showing the practical version of
three-cavity speed-meter design, which reduces the power flow
through the beam splitter. Three additional mirrors, with transm
sivity Ti , are placed around the beam splitter. The ‘‘1 ’’ and ‘‘ 2 ’’
signs near the mirrors indicate the sign of the reflectivities in
junction conditions for each location. The mirror shown in gr
closes the second port of the interferometer.
12200
-

We have used the extraction mirror to put the sloshing ca
parallel to one of the arms of the Michelson part of the
terferometer, allowing this interferometer to fit into the e
isting LIGO facilities. The presence of the extraction mirr
essentially opens two ports to our system. We can use b
outputs, or we can add an additional mirror to close one p
~the gray mirror in Fig. 2!. We will focus on the latter case in
this paper.

The sensitivityh of this interferometer, compared to th
SQL, can be expressed as2

h

hSQL
;A Wcirc

SQL

e2RWcirc

.A800 kW

e2RWcirc

, ~3!

where Wcirc is the power circulating in the arms,Wcirc
SQL

.800 kW(f opt/100 Hz)3 is the power required to reach th
SQL in the absence of squeezing~for the arms of lengthL
54 km and test masses with massm540 kg), ande2R is the
power squeeze factor.3 With no squeezed vacuum, th

t

t
d

2It should be noted that, as the power increases in Eq.~3!, the
speed-meter performance becomes more narrow band. Additi
power and a re-optimization of some of the speed meter’s par
eters are required to maintain the same bandwidth at higher s
tivities. See Sec. III B for details.

3For an explanation of squeezed vacuum and squeeze factors
for example, KLMTV and references cited therein. In particul
their work was based on that of Caves@14# and Unruh@4#. Also,
KLMTV state that a likely achievable value for the squeeze fac
~in the LIGO-III time frame! is e2R.10, so we use that value in ou
discussion.

e
g
-

e

FIG. 4. Schematic diagram showing the practical three-ca
speed-meter design with squeezed vacuum injected at the dark
and two filter cavities on the output. Note that the circulator is
four-port optical device that separates the injected~squeezed! input
and the interferometer’s output.
4-3
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P. PURDUE AND Y. CHEN PHYSICAL REVIEW D66, 122004 ~2002!
squeeze factor ise2R51, so the circulating powerWcirc must
be 8 MW in order to beat the SQL atf opt.100 Hz by a
factor of A10 in sensitivity. With a squeeze factor ofe2R

510, we can achieve the same performance withWcirc

.800 kW, which is the same as LIGO-II is expected to b
This performance~in the lossless limit! is the same as tha

of the two-cavity~Paper I! speed meter for the same circ
lating power, but the three-cavity design has an overwhe
ing advantage in terms of required input power. Howev
there is one significant problem with this design that we m
address: the uncomfortably large amount of laser pow
equal toWcirc , flowing through the beam splitter. Even wit
the use of squeezed vacuum, this power will be too high

This type of problem was addressed by Weiss and Dre
who showed, respectively, that inserting optical delay lin
@15# or Fabry-Pe´rot ~FP! cavities @16# into the arms can
achieve a high circulating power with relatively low inp
power at the beam splitter. In particular, using FP cavities
the arms is now the standard design for most conventio
interferometers, such as LIGO-I. However, applying the
techniques alone will alter the propagation of t
gravitational-wave sidebands inside the interferometer
jeopardize the performance of our speed meter. Fortuna
there is a technique, based on the work of Mizuno@17# that
allows us to use FP cavities in the arms without affecting
propagation of the sidebands. This method requires an a
tional mirror between the beam splitter and the extract
mirror, placed such that light with the carrier frequency re
nates in the subcavity formed by this mirror and the arm
internal mirrors. We shall call this design thepractical three-
cavity speed meter; the three new mirrors are labeledTi in
Fig. 3.

As claimed by Mizuno@17# and tested experimentally b
Freise et al.@18# and Mason@19#, when the transmissivity o
the third mirror decreases from 1, the storage time of si
band fields in the arm cavity due to the presence of the
ternal mirrors will decrease. This phenomenon is called re
nant sideband extraction~RSE!; consequently, the third
mirror is called the RSE mirror. One special case, which is
great interest to us, occurs when the RSE mirror has the s
transmissivity as the internal mirrors. In this case, the eff
of the internal mirrors on the gravitational-wave sideban
should be exactly cancelled out by the RSE mirror. The th
new mirrors then have just one effect: they reduce the ca
power passing through the beam splitter—and they can d
by a large factor.

Indeed, we have confirmed that this is true for our spe
meter, as long as the distances between the three addit
mirrors ~the length of the ‘‘RSE cavity’’! are small~a few
meters!, so that the phase shifts added to the slightly o
resonance sidebands by the RSE cavity are negligible.
can then adjust the transmissivities of the power-recyc
mirror and of the three internal mirrors to reduce the amo
of carrier power passing through the beam splitter to a m
reasonable level.

With this design, the high circulating power is confined
the Fabry-Pe´rot arm cavities, as in conventional LIGO de
signs. There is some question as to the level of power
12200
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mirrors will be able to tolerate in the LIGO-III time frame
Assuming that several megawatts is not acceptable, we s
show that the circulating power can be reduced by inject
fixed-angle squeezed vacuum into the dark port, as indica
by Eq. ~3!.

Going a step farther, we shall show that if, in addition
injected squeezed vacuum, we also use frequency-depen
~FD! homodyne detection, the sensitivity of the speed me
is dramatically improved at high frequencies~above f opt

.100 Hz); this is shown in Fig. 1. The disadvantage of t
is that FD homodyne detection requires two filter cavities
the same length as the arm cavities~4 km for LIGO!, as
shown in Fig. 4.

Our analysis of the losses in these scenarios indicates
our speed meters with squeezed vacuum and/or variatio
output are much less sensitive to losses than a position m
using those techniques~as analyzed by KLMTV!. Losses for
the various speed meters we discuss here are generally
low and are due primarily to the losses in the optical e
ments ~as opposed to mode-mismatching effects!. Without
squeezed vacuum, the losses in sensitivity are less than
in the range 50–105 Hz, lower at higher frequencies,
higher at low frequencies. Injecting fixed-angle squeez
vacuum into the dark port allows this speed meter to ope
at a lower power@see Eq.~3!#, thereby reducing the domi
nant losses~which are dependent on the circulating pow
because they come from vacuum fluctations contributing
the back action!. In this case, the losses are less than 4%
the range 25–150 Hz. As before, they are lower at high
quencies, but they increase at low frequencies. Using
homodyne detection does not change the losses significa

This paper is organized as follows: In Sec. II we give
brief description of the mathematical method that we use
analyze the interferometer. In Sec. III A, we present the
sults in the lossless case, followed in Sec. III B by a disc
sion of optimization methods. In Sec. III C, we discuss so
of the advantages and disadvantages of this design, inclu
the reasons it requires a large circulating power. Then in S
IV, we show how the circulating power can be reduced
injecting squeezed vacuum through the dark port of the
terferometer and how the use of frequency-dependent ho
dyne detection can improve the performance at high frequ
cies. In Sec. V, we discuss the effect of losses on our sp
meter with the various modifications made in Sec. IV, and
compare our interferometer configurations with those
KLMTV. Finally, we summarize our results in Sec. VI.

II. MATHEMATICAL DESCRIPTION
OF THE INTERFEROMETER

The interferometers in this paper are analyzed using
techniques described in Paper I~Sec. II!. These methods are
based on the formalism developed by Caves and Schum
@20,21# and used by KLMTV to examine more convention
interferometer designs. For completeness, we will summ
rize the main points here.

The electric field propagating in each direction down ea
segment of the interferometer is expressed in the form
4-4
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Efield~z!5A4p\v0

Sc
A~z!. ~4!

Here A(z) is the amplitude@which is denoted by othe
letters—B(z), P(z), etc.—in other parts of the interferom
eter; see Fig. 2#, z5t2z/c, v0 is the carrier frequency,\ is
the reduced Planck’s constant, andS is the effective cross-
sectional area of the light beam; see Eq.~8! of KLMTV. For
light propagating in the negativez direction, z5t2z/c is
replaced byh5t1z/c. We decompose the amplitude in
cosine and sine quadratures,

A~z!5A1~z!cosv0z1A2~z!sinv0z, ~5!

where the subscript 1 always refers to the cosine quadra
and 2 to sine. Both arms and the sloshing cavity have len
L54 km, whereas all of the other lengthszi are short com-
pared toL. We choose the cavity lengths to be exact h
multiples of the carrier wavelength soei2v0L/c51 and
ei2v0zi /c51. There will be phase shifts put onto the sideba
light in all of these cavities, but only the phase shifts due
the long cavities are significant.

The aforementioned sidebands are put onto the carrie
the mirror motions and by vacuum fluctuations. We expr
the quadrature amplitudes for the carrier plus the sideba
in the form

Aj~z!5Aj~z!1E
0

`

@ ã j~v!e2 ivz1ã j
†~v!eivz#

dv

2p
. ~6!

HereAj (z) is the carrier amplitude,ã j (v) is the field ampli-
tude ~a quantum mechanical operator! for the sideband a
sideband frequencyv ~absolute frequencyv06v) in the j

quadrature, andã j
†(v) is the Hermitian adjoint ofã j (v); cf.

Eqs. ~6!–~8! of KLMTV, where commutation relations an
the connection to creation and annihilation operators are
cussed. In other portions of the interferometer~Fig. 2!, Aj (z)
is replaced by, e.g.,Cj (z); Aj (z), by Cj (z); ã j (v), by
c̃ j (v), etc.

Since each mirror has a power transmissivity and com
mentary reflectivity satisfying the equationT1R51, we can
write out the junction conditions for each mirror in the sy
tem, for both the carrier quadratures and the sidebands@see
particularly Eqs.~5! and~12!–~14! in Paper I#. We shall de-
note the power transmissivities for the sloshing mirror asTs,
for the extraction~output! mirror asTo , the power-recycling
mirror asTp , for the beam-splitter asTb50.5, for the inter-
nal mirrors asTi , and for the end mirrors asTe; see Figs. 2
and 3.

The resulting equations can be solved simultaneousl
get expressions for the carrier and sidebands in each seg
of the interferometer. Since those expressions may be q
complicated, we use the following assumptions to simp
our results. First, we assume that only the cosine quadra
is being driven~so that the carrier sine quadrature terms
all zero!. Second, we assume that the transmissivities ob

1@To@Ts@Te and 1@$Tp ,Ti%@Te. ~7!
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The motivations for these assumptions are that~i! they lead
to speed-meter behavior;~ii ! as with any interferometer, the
best performance is achieved by making the end-mir
transmissivitiesTe as small as possible; and~iii ! good per-
formance requires a light extraction rate comparable to
sloshing rate,d;V @cf. the first paragraph of Sec. III B in
Paper I#, which with Eqs.~1! and ~2! implies To;ATs so
To@Ts. Throughout the paper, we will be using these a
sumptions, together withvL/c!1, to simplify our expres-
sions.

III. SPEED METER IN THE LOSSLESS LIMIT

For simplicity, in this section we will setTe50 ~end mir-
rors perfectly reflecting!. We will also neglect the~vacuum-
fluctuation! noise coming in the main laser port (ĩ 1,2) since
that noise largely exits back toward the laser and produ
negligible noise on the signal light exiting the output port. A
a result of these assumptions, the only~vacuum-fluctuation!
noise that remains is that which comes in through the ou
port (p̃1,2). An interferometer in which this is the case and
which light absorption and scattering are unimportantR
1T51 for all mirrors, as we have assumed! is said to be
‘‘lossless.’’ In Sec. V, we shall relax these assumptions; i
we shall consider lossy interferometers.

It should be noted that the results and discussion in
section and in Sec. IV apply to both the simple and practi
versions of the three-cavity speed meter~Figs. 2 and 3!. The
two versions are completely equivalent~in the lossless limit!.

A. Mathematical analysis

The lossless interferometer output for the speed meter
Fig. 2 and 3, as derived by the analysis sketched in the
vious section, is then

q̃152
L* ~v!

L~v!
p̃1 , ~8a!

q̃25
2ivAv0dWcirc

A\cLL~v!
x̃2

L* ~v!

L~v!
p̃2 . ~8b!

Here p̃ j (v) is the side-band field operator@analogue of
ã j (v) in Eq. ~6!# associated with the dark-port inputP(z),
andq̃ j (v) associated with the outputQ(h); see Fig. 2. Also,
in Eqs.~8!, L(v) is a c number given by

L~v!5V22v22 ivd ~9!

@recalling that V5cATs/2L is the sloshing frequency,d
5cTo /L the extraction rate#, the asterisk inL* (v) denotes
the complex conjugate,x̃(v) is the Fourier transform of the
relative displacement of the four test masses—i.e., the F
rier transform of the difference in lengths of the interferom
eter’s two arm cavities—andWcirc is circulating power in the
each of the interferometer’s two arms. Note that the circu
4-5
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P. PURDUE AND Y. CHEN PHYSICAL REVIEW D66, 122004 ~2002!
ing power~derived as in Sec. II B of Paper I! is related to the
carrier amplitudeB1 in the arms by4

Wcirc5
1

2
\v0B1

25
4\v0I 1

2

TiTp
, ~10!

whereI 1 is the input laser amplitude~in the cosine quadra
ture!. Readers who wish to derive the input-output relatio
~8! for themselves may find useful guidance in Appendix
of KLMTV @7# and in Secs. II and III of Paper I@8#, which
give detailed derivations for other interferometer designs

Notice that the first term in Eq.~8b! containsx̃ only in the
form v x̃; this is the velocity signal@actually, the sum of the
velocity and higher odd time derivatives of position becau
of the L(v) in the denominator#. The test masses’ relativ
displacementx̃(v) is given by

x̃5 x̃e2 x̃n5Lh̃2
8iA\v0dWcirc

mvAcLL~v!
p̃1 , ~11!

where x̃e is the Fourier transform of the relative displac
ment of the mirrors of the ‘‘east’’ arm andx̃n is the same for
the ‘‘north’’ arm. The last term is the back action produc
by fluctuating radiation pressure~derived as in Sec. II B of
Paper I!.

It is possible to express Eqs.~8! in a more concise form
similar to Eqs.~16! in KLMTV:

q̃15D p̃15 p̃1e2ic, ~12a!

q̃25D p̃21A2k
h̃

hSQL
eic, D p̃25~ p̃22k p̃1!e2ic.

~12b!

Here

tanc52
V22v2

vd
~13!

is a phase shift put onto the light by the interferometer,

k5
16v0dWcirc

mcLuL~v!u2
~14!

is a dimensionless coupling constant that couples the gra
wave signalh̃ into the outputq̃2, and

hSQL5A 8\

mv2L2
~15!

4Equation~10! refers specifically to the practical version of th
three-arm interferometer~Fig. 3!. The simple~Fig. 2! version would
be

Wcirc5
1

2
\v0B1

25
\v0I 1

2

Tp
.
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is the standard quantum limit for a conventional interfero
eter such as LIGO-I or VIRGO@1#.

In Fig. 5, we plot the coupling constantk as a function of
frequency for several values ofd. As the graph shows,k can
be roughly constant for a rather broad frequency bandv
&V, when d is chosen to be;V ~as it will be when the
interferometer is optimized!. Combining this with the fact
that hSQL}1/v, we infer from Eqs.~12! that the outputsig-

nal at frequenciesv&V is proportional tovh̃, or equiva-
lently v x̃, which is the relative speed of the test masses~as
mentioned above!.

The termsD p̃1 and D p̃2 in Eqs. ~8! representquantum
noise~shot noise, radiation-pressure noise, and their corr
tions!. We shall demonstrate below that, in the frequen
bandv&V where the interferometer samples only the spe
there is no back-action~radiation-pressure! noise. This might
not be obvious from Eqs.~12!, especially because they hav
an identical form~except for the frequency dependence ofk)
as the input-output relations of a conventional interferome
where the term proportional toK ~their version ofk) is the
radiation-pressure noise. Indeed, if one measures the ‘‘s
quadrature of the output,q̃2, as is done in a conventiona
interferometer, this speed meter turns out to be SQL limit
as are conventional interferometers.

Fortunately, the fact thatk is constant~and equal tok0)
over a broad frequency band will allow the aforemention
cancellation of the back action, resulting in a QND measu
ment of speed. To see this, suppose that, instead of me
ing the output phase quadratureq̃2, we use homodyne detec
tion to measure a generic, frequency-independent quadra
of the output:

q̃F5D p̃1cosF1S D p̃21A2k
h

hSQL
eicD sinF, ~16!

whereF is a fixed homodyne angle. Then from Eqs.~8!, we
infer that the noise in the signal, expressed in gravitation
wave strain unitsh, is

hn5
hSQL

A2k
eic@ p̃1~cotF2k!1 p̃2#. ~17!

By making cotF5k0[(constant value ofk at v&V), the
radiation pressure noise inhn will be cancelled in the broad
band wherek5k0, thereby making this a QND interferom
eter.

We assume for now that ordinary vacuum enters the o
put port of the interferometer; i.e.,p̃1 and p̃2 are quadrature
amplitudes for ordinary vacuum~we will inject squeezed
vacuum in Sec. IV A!. This means@Eq. ~26! of KLMTV #
that their~single-sided! spectral densities are unity and the
cross-correlations are zero, which, when combined with
~17!, implies a spectral density of

Shn
5~hSQL!

2j2. ~18!
4-6
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Here

j2[
~cotF2k!211

2k
~19!

is the fractional amount by which the SQL is beaten~in units
of squared amplitude!. This expression forj2 is the same as
that for the speed meters in Paper I@Eq. ~35!# and BGKT
@Eq. ~40!#, indicating the theoretical equivalency of the
designs. In those papers, an optimization is given for
interferometer. Instead of just using the results of that o
mization, we shall carry out a more comprehensive study
it.5

B. Optimization

The possible choices of speed meter parameters ca
investigated intuitively by examining the behavior ofk. To
aid us in our exploration, we choose~as in BGKT and Pape
I! to expressuL(v)u2 @Eq. ~9!# as

uL~v!u25~v22vopt
2 !21d2~vopt

2 1d2/4!, ~20!

where

vopt5AV22d2/2, ~21!

5It should be noted that the expressions given in Sec. III A
accurate to 6% or better over the frequency range of interest
achieve 1% accuracy, we expand to the next-highest order.
result can be expressed as a re-definition of the sloshing frequ

V2→V825V22dds/2,

whereds5cTs/2L. Thenk retains the same functional form:

k→k85
16v0dWcirc

mcL„~V822v2!1v2d2
…

.

As a result, the optimization described in Sec. III B applies equ
well to k8 andV8 as to the originalk andV.

FIG. 5. The coupling constantk(v) in arbitrary ~logrithmic!
units with v measured in units ofV. The three curves correspon
to the same light power~such thatkmax55 for the middle curve!,
but d50.1V, d50.5V, andd5A2V.
12200
e
i-
f

be

is the interferometer’s ‘‘optimal frequency,’’ i.e., the fre
quency at whichuL(v)u reaches its minimum. Combining
with Eq. ~14!, we obtain

k5
V I

3 d

~v22vopt
2 !21d2~vopt

2 1d2/4!
, ~22!

where

V I
3[

16v0Wcirc

mLc
~23!

is a frequency scale related to the circulating power. Atvopt,
k reaches its maximum~see Fig. 6!

kmax5
V I

3

d~vopt
2 1d2/4!

. ~24!

By setting

cotF5kmax, ~25!

we get the maximum amount by which a speed meter
beat the SQL

jmin
2 5

1

2kmax
5

d~vopt
2 1d2/4!

2V I
3

. ~26!

As v differs from vopt in either direction,k decreases
from kmax. This causes the noise to increase since~i! the
term (cotF2k)2 in the numerator ofj2 @Eq. ~19!# increases
and ~ii ! the denominator ofj2 decreases. In order to hav
broadband performance, we should make the peak ofk(v)
as flat as possible. As we can see from both Eq.~22! and Fig.
6, the shape of the peak can be adjusted by changingd: for
the same optical power, a largerd means a wider peak but
smaller maximum. Therefore, changingd is one method of
balancing sensitivity against bandwidth. Some examples
shown in Figs. 6, 7, and 8, wherek(v), j2(v), andSh(v),
respectively, are plotted for configurations with the samevopt
and optical powerWcirc , but with several values ofd.

To be more quantitative, a simple analytic form forj2(v)
can be obtained by inserting Eqs.~22!, ~24!, and ~26! into
Eq. ~19! to get

j2~v!5F11D1
1

4jmin
4

D2

~11D!Gjmin
2 . ~27!

Here

D[
~v22vopt

2 !2

d2~vopt
2 1d2/4!

~28!

is a dimensionless offset from the optimal frequencyvopt.
From Eq.~28!, it is evident thatD, and thusj2, are the same
for v50 andv5A2vopt @see also Eq.~47! of BGKT or Eq.
~49! of Paper I#. For definiteness, let us impose that
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o
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j2~0!5j2~A2vopt!5
3

2
jmin

2 ~29!

as is done by BGKT. Forjmin
2 50.1, this gives d

51.977vopt'2vopt ~as assumed in BGKT and Paper!.
Plugging these numbers into Eq.~26! and combining with
Eq. ~23! gives

Wcirc~d52vopt!5
mLcvopt

3

8v0jmin
2

.8.4 MWS vopt

2 p3100 HzD
3S m

40 kgD
3S L

4000 kmD S 1.7831015 Hz

v0
D S 0.1

jmin
2 D .

~30!

Therefore, whenvopt is chosen at 2p3100 Hz, this speed
meter ~with d52vopt) requiresWcirc.8.4 MW to beat the
SQL by a factor of 10 in power (jmin

2 50.1). @Note that,
keepingd52vopt, the speed meter reaches the SQL w
Wcirc

SQL5840 kW, comparable to the value given by KLMT
Eq. ~132! for conventional interferometers with 40-kilogra
test masses.# The j2 andSh curves for this configuration ar
plotted as solid lines in Figs. 7 and 8, respectively.

Please note that Eq.~30! should be applied with caution
because significantly changingjmin

2 in the above equation
~without changing the ratio betweend andvopt) will change
the wide-band performance of the interferometer, since th

FIG. 6. The coupling constantk(v) with v measured in units of
vopt . The solid curve is determined by settingd52vopt and kmax

55 ~this value ofkmax comes from specifying that we want to be
the SQL by a factor of 10; see Fig. 7!. If, in addition, we setvopt

52p3100 Hz, then all the parameters have been specified~due to
the various relationships between them! and are equal to the value
given in Table I. If we maintain the same power but changed, then
V can be adjusted to maintain the samevopt @see Eq.~21!#. Ex-
amples of such a change are shown ford50.5vopt andd54vopt .
Note that these two choices ofd are more extreme than would b
desirable in practice, but they are shown here to illustrate m
clearly the effect onk of changing the ratio betweend andvopt .
12200
re

is some ‘‘hidden’’ power dependence in Eq.~29!. To deter-
mine the behavior of the speed meter with significan
higher power or lowerjmin

2 while maintaining the same wide
band performance, we must re-apply the requirement~29! to
determine the appropriate ratio betweend andvopt. For ex-
ample, solving Eqs.~26! and ~29! simultaneously forjmin

2

and d, with chosen valuesWcirc520 MW and vopt52p
3100 Hz, givesd52.334vopt andjmin

22 .17. Keeping this in
mind, a general expression for the circulating power is

Wcirc5
mLc~vopt

2 1d2/4!d

32v0 jmin
2

5
209 kW

jmin
2 F ~vopt

2 1d2/4!d

~2p3100 Hz!3G S m

40 kgD S L

4000 kmD
3S 1.7831015 Hz

v0
D , ~31!

where the relationship betweend and vopt determines
whether the noise curve is deep but narrow or wide but s
low @with the requirement~29! giving the latter#.

So far, we have only changedd to modify the perfor-
mance of the speed meter. Another method is to changevopt.
In this case, the shape of the noise curve changes very l
but the minima occur at different frequencies, causing
interferometer to have either broader bandwidth or hig
sensitivity ~relative to the SQL!. This is shown in Fig. 9.
Maintaining condition ~29! with vopt chosen at 2p
3150 Hz, we get a broader but shallower curve~short
dashes!; this configuration beats the SQL by a factor
jmin

22;4.7, up tof ;240 Hz. Withvopt52p375 Hz, we get
a narrower but deeper curve~long dashes!, which beats the
SQL by a factor ofjmin

22;17, up to f ;100 Hz. The power
was kept fixed atWcirc58.2 MW. One more potential opti

re

FIG. 7. The squared amount by which the speed meter beat
SQL with a given circulating power, which is determined by setti
~for the solid curve! jmin

2 50.1 and the condition~29!. Note that the
requirement onjmin

2 sets the power relative to the SQL pow
Wcirc

SQL, the value of which is dependent onvopt . ~For vopt

5100 Hz, we haveWcirc58 MW.! If we hold the power fixed and
changed to 1.5vopt and 2.5vopt , we get the other two curves.
4-8
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PRACTICAL SPEED METER DESIGNS FOR QUANTUM . . . PHYSICAL REVIEW D66, 122004 ~2002!
mization method is to choose ak with a peak that is not quite
flat and then choose a cotF that is slightly smaller than
kmax. This will give a wider bandwidth on either side o
vopt, at the price of decreased sensitivity at the region n
vopt ~see dotted line in Fig. 8!.

For simplicity, we will choose a typical~but somewhat
arbitrary! set of parameters for the lossless interferomete
Fig. 2. These values, given in Table I, will be used~except as
otherwise noted! for subsequent plots and calculations co
paring this speed-meter design to other configurations.

C. Discussion of three-cavity speed-meter design

In this section, we discuss how the three-cavity spe
meter design compares to the two-cavity design presente
Paper I, focusing on the three major problems of that des
it required~i! a high circulating power,~ii ! a large amount of
power coming out of the interferometer with the signal, a
~iii ! an exorbitantly high input laser power.

FIG. 8. Noise curves corresponding to thej2 curves in Fig. 7,
the caption of which describes the parameters used here as
The dotted line is an example of a noise curve for whichk is not
quite flat and cotF was chosen to be slightly smaller thankmax ~see
the end of Sec. III B for details!.

FIG. 9. Noise curves for varying optimal frequencies. The so
curve hasf opt5100 Hz and is identical to the solid curve of Fig.
Maintaining the same power and the condition imposed by Eq.~29!,
we show two examples of noise curves with other optimal frequ
cies, specificallyf opt575 Hz andf opt5150 Hz.
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ar

f

-

-
in

n:

d

With the three-cavity speed meter, we are able to replic
the performance of the two-cavity design in Paper I, b
without the exorbitantly high input power. The reason w
our three-cavity speed meter does not need a high in
power is the same as for conventional interferometers
both cases, the excited cavities are fed directly by the la
According to Bose statistics, carrier photons will b
‘‘sucked’’ into the cavities, producing a strong amplificatio
This was not the case in the two-cavity speed meter of Pa
I. There, an essentially empty cavity stood between the in
and the excited cavity, thereby thwarting Bose statistics
resulting in a required input laser power much greater th
the power that was circulating in the excited cavity~see Pa-
per I for more details!. In this paper, we have returned to
case where the laser is driving an excited cavity direc
thereby allowing the input laser power to be small relative
the circulating power.

Because the cavity from which we are reading out
signal does not contain large amounts of carrier light~by
contrast with the two-cavity design!, this three-cavity speed
meter does not have large amounts of power exiting the
terferometer with the velocity signal, unlike the two-cavi
design. By making use of the different modes of the Mic
elson interferometer, we have solved the problem of the
orbitantly high input power and the problem of the amou
of light that comes out of the interferometer.

The problem of the high circulating powerWcirc , unfor-
tunately, is not solved by the three-cavity design. This
actually a common characteristic of ‘‘external-readout’’ inte
ferometer designs capable of beating the SQL. The rea
for this high power is the energetic quantum limit~EQL!,
which was first derived for gravitational-wave interferom
eters by Braginsky, Gorodetsky, Khalili and Thorne@22#. The
EQL arises from the phase-energy uncertainty principle

DEDf>
\v0

2
, ~32!

whereE is the stored energy in the interferometer andf is
the phase of the light. The uncertaintyDE of the stored light

ell.

-

TABLE I. Three-arm speed-meter interferometer parameters
their fiducial values, as used throughout except where other pa
eters are specified.

Parameter Symbol Fiducial value

carrier frequency v0 1.7831015 s21

mirror mass m 40 kg
arm length L 4 km
sloshing mirror transmissivity Ts 0.0008
output mirror transmissivity To 0.017
end mirror transmissivity Te 231025

internal and RSE mirror trans. Ti 0.005
optimal frequency vopt 2p3100 Hz
sloshing frequency V 2p3170 Hz
extraction rate~half-bandwidth! d 2p3200 Hz
SQL circulating power Wcirc

SQL 820 kW
4-9
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P. PURDUE AND Y. CHEN PHYSICAL REVIEW D66, 122004 ~2002!
energy during the measurement process must be l
enough to allow a small uncertaintyDf in the stored light’s
optical phase, in which the GW signal is contained. For
interferometer with coherent light~so DE5\v0AE/\v0),
the EQL dictates that the energy stored in the arms mus
larger than6

Ej;
mL2v2Dv

4v0j2
~33!

in order to beat the SQL by a factor ofj near frequencyv
with a bandwidthDv @Eq. ~1! of Ref. @11# and Eq.~29! of
Ref. @22##. In a broadband configuration withDv;v, we
have

Ej;
mL2v3

4v0j2
. ~34!

For comparison, in the broadband regime of the speed m
we have, from Eq.~26!,

jmin
2 5

mL2d~vopt
2 1d2/4!

4Ev0
;

mL2vopt
3

4Ev0
, ~35!

where the stored energy isE52WcircL/c. Comparison be-
tween Eqs.~34! and ~35! confirms that our speed meter
EQL limited.

As a consequence of the EQL, designs with coherent l
will all require a similarly high circulating power in order t
achieve a similar sensitivity. Moreover, given the sharp
pendenceE}v3, this circulating power problem will be
come much more severe when one wants to improve se
tivities at high frequencies.

Nevertheless, the EQL in the form~33! above only applies
to coherent light. Using nonclassical light will enable t
interferometer to circumvent it substantially. One possi
method was invented by Braginsky, Gorodetsky, and Kha
@10# using a special optical topology and intracavity sign
extraction. A more conventional solution for our extern
readout interferometer is to inject squeezed light into
dark port, as we shall discuss in Sec. IV A~and as was also
discussed in the original paper@22# on the EQL!.

IV. SQUEEZED VACUUM AND FD HOMODYNE
DETECTION

In this section, we discuss two modifications to the thr
cavity speed-meter design analyzed in Sec. III A. This d
cussion applies to both the simple and practical versio
shown in Figs. 2 and 3; the modifications are shown in F
4. The first modification is to inject squeezed vacuum~with
fixed squeeze angle! into the output port of the speed mete
as shown in Fig. 4. This will reduce the amount of pow
circulating in the interferometer. The second modificatio

6For interferometers at low powers, where radiation-pressure
fects are not important, this coherent-light EQL agrees with M
zuno’s sensitivity theorem~Sec. III A of Ref. @17#!.
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also shown in Fig. 4, is the introduction of two filter cavitie
on the output, which allow us to performfrequency-
dependenthomodyne detection~described in KLMTV! that
will dramatically improve the performance of the spe
meter at frequenciesf * f opt.

A. Injection of squeezed vacuum into dark port

Because the amount of circulating power required by
speed meter remains uncomfortably large, it is desirable
reduce it by injecting squeezed vacuum into the dark p
The idea of using squeezed light in gravitational-wave int
ferometers was first conceived by Caves@14# and further
developed by Unruh@4# and KLMTV. We shall start in this
section with a straightforward scheme that will decrease
effective circulating power without otherwise changing t
speed meter performance.

As discussed in Sec. IV B and Appendix A of KLMTV,
squeezed input state is related to the vacuum input state~as-
sumed in Sec. III A! by a unitary squeeze operatorS(R,l)
@see Eqs.~41! and ~A5! of KLMTV #

u in&5S~R,l!u0&. ~36!

HereR is the squeeze amplitude andl is the squeeze angle
both of which in principle can depend on sideband f
quency. However, the squeezed light generated using no
ear crystals@23,24# has frequency-independentR and l in
our frequency band of interest, i.e.,f ,10 kHz @25#; and in
this section, we shall assume frequency independence.

The effect of input squeezing is most easily understood
terms of the following unitary transformation:

u in&→S†~R,l!u in&5u0& ~37a!

p̃ j→S†~R,l! p̃ jS~R,l!, ~37b!

q̃ j→S†~R,l!q̃ jS~R,l!, ~37c!

wherej 51,2. This brings the input state back to vacuum a
transforms the input quadratures into linear combinations
themselves, in a rotate-squeeze-rotate way@Eq. ~A8! of
KLMTV, in matrix form#:

S p̃1

p̃2
D→S p̃1s

p̃2s
D

5S†~R,l!S p̃1

p̃2
D S~R,l!

5S cosl 2sinl

sinl cosl
D S e2R 0

0 eRD S cosl sinl

2sinl cosl
D

3S p̃1

p̃2
D . ~38!

In particular, the GW noise can be calculated by using
squeezed noise operator@Eq. ~29! of KLMTV #

f-
-

4-10
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hns5S†~R,l!hnS~R,l!, ~39!

and the vacuum state.
A special case—the case that we want—occurs whenR is

constant andl5p/2. Then there is no rotation between th
quadratures but only a frequency-independent squeezin
stretching,

p̃1→ p̃1s5eRp̃1 , ~40a!

p̃2→ p̃2s5e2Rp̃2 . ~40b!

Consequently, Eqs.~12! for the output quadraturesq̃1,2s

5S†(R,p/2)q̃1,2S(R,p/2) are transformed into

q̃1s5eRp̃1e2ic ~41a!

q̃2s5e2RF ~ p̃22ke2Rp̃1!e2ic1Ake2R
h̃

hSQL
eicG . ~41b!

The corresponding noise can be put into the same form
Eq. ~17!,

hns5
hSQL

Akeff

eic@ p̃1~cotFeff2keff!1 p̃2#, ~42!

with

cotFeff[e2RcotF, keff[e2Rk. ~43!

Since k is proportional to the circulating power@see Eqs.
~14!#, gaining a factore2R in k is equivalent to gaining this
factor in Wcirc .

In other words, by injecting squeezed vacuum w
squeeze factore2R and squeeze anglel5p/2 into the inter-
ferometer’s dark port, we can achieve precisely the sa
interferometer performance as in Sec. III A, but with a low
circulating light power that is given byWcirc, SISM
5e22RWcirc, OSM. ~Here ‘‘SISM’’ means ‘‘squeezed-inpu
speed meter’’ and ‘‘OSM’’ means ‘‘ordinary speed meter.!
Since squeeze factorse22R;0.1 are likely to be available in
the time frame of LIGO-III@7#, this squeezed-input spee
meter can function withWcirc, SISM.0.1Wcirc, OSM.

B. Frequency-dependent homodyne detection

One can take further advantage of squeezed light by u
frequency-dependent~FD! homodyne detection at the inte
ferometer output@26–30#. As KLMTV have shown, FD ho-
modyne detection can be achieved by sending the ou
light through one or more optical filters~as in Fig. 4! and
then performing ordinary homodyne detection. If its imp
mention is feasible, FD homodyne detection will drama
cally improve the speed meter’s sensitivity at high frequ
cies ~above f opt5100 Hz). Note that the KLMTV design
that used FD homodyne detection was called a ‘‘variation
output’’ interferometer; consequently, we shall use the te
‘‘variational-output speed meter’’ to refer to our speed me
with FD homodyne detection. Continuing the analogy, wh
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we have both squeezed-input and FD homodyne detec
we will use the term ‘‘squeezed-variational speed mete
The following discussion is analogous to Secs. IV and V
KLMTV.

For a generic frequency-dependent7 squeeze anglel(v)
and homodyne detection phaseF(v), we have, for the
squeezed noise operator@Eqs.~39! and ~38!#,

hns52
hSQL

Ak
eicA11k̃2

3„p̃1$coshR cosC̃2sinhR cos@C̃22~C̃1l!#%

2 p̃2$coshR sinC̃2sinhR sin@C̃22~C̃1l!#%…,

~44!

where

cotC̃[k̃[k2cotF. ~45!

The corresponding noise spectral density@computed by using
the ordinary vacuum spectral densities,Sp̃1

5Sp̃2
51 and

Sp̃1p̃2
50, in Eq. ~44!# is

Sh5
~hSQL!

2

k
~11k̃2!$e22R1sinh 2R@12cos 2~C̃1l!#%.

~46!

Note that these expressions are analogous to KLMTV E
~69!–~71! for a squeezed-variational interferometer~but the
frequency dependence of theirK is different from that for
our k). From Eq.~46!, Sh can be no smaller than the cas
when

k̃50, cos 2~C̃1l!51. ~47!

The optimization conditions~47! are satisfied when

cotF5k, l5p/2, ~48!

which corresponds to frequency-dependent homodyne de
tion on the ~frequency-independent! squeezed-input spee
meter discussed in the previous section.

As it turns out, the condition cotF5k can readily be
achieved by the family of two-cavity optical filters invente
by KLMTV and discussed in their Sec. V and Appendix
We summarize and generalize their main results in our A
pendix A. The two filter cavities are both Fabry-Pe´rot cavi-
ties with ~ideally! only one transmitting mirror. They are
characterized by their bandwidths,dJ , ~where J5I, II de-
note the two cavities! and by their resonant frequencies,v0
1jJdJ ~the ones nearestv0). The output light from the

7For generality of the equations, we allow the squeeze angle
the homodyne phase both to be frequency dependent, but
squeeze angle will be fixed~frequency independent! later in the
argument@specifically, in Eq.~48!#.
4-11
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P. PURDUE AND Y. CHEN PHYSICAL REVIEW D66, 122004 ~2002!
squeezed-input speed meter is sent through the two fil
and then a homodyne detection with frequency-independ
phaseu is performed on it.

For the squeezed-variational speed meter~shown in Fig.
4! with the parameters in Table I, plusjmin

2 50.1, d
52vopt, L454vopt

4 , ande22R50.1, we have

k5
4 vopt

4

~v22vopt
2 !218 vopt

4
~49!

and the required filter and detection configuration isj I
51.7355, d I52p391.57 Hz, j II521.1133, d II52p
3114.3 Hz, andu5p/2. @These values are reached by so
ing Eqs.~C4! of KLMTV, or by using the simpler method
described in Appendix A of this paper.# The resulting perfor-
mance is plotted in Fig. 10. Note the substantial impro
ment atv*vopt. In the case of position-meter interferom
eters with optical filters~the interferometers analyzed b
KLMTV !, the optical losses due to the filter cavities contr
ute significantly to the noise spectral density and drastic
reduce the ability to beat the SQL. It turns out that t
squeezed-variational speed meter is less sensitive to
losses, as we shall see in Sec. V.

V. OPTICAL LOSSES

In order to understand the issue of optical losses in
speed meter, we shall start by addressing itsinternal losses.
These include scattering and absorption at each optical
ment, finite transmissivities of the end mirrors, and imperf
tions of the mode-matching between cavities. The effec
external losses~i.e., losses in the detection system and a
filter cavities! will be discussed separately. Note that t
analysis in this section includes the internal and RSE m
rors, so it applies primarily to the speed meter designs
Figs. 3 and 4.

FIG. 10. Comparison of typical noise curves for frequenc
dependent and fixed-angle homodyne detection. The FD homo
angleF(v) is that of Eqs.~48! and~49!; the fixed homodyne angle
F is that of Eq.~43!; the circulating power ise22R50.1 times that
of Table I; and all other parameters are identical for the two in
ferometers and are given in Table I.
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A. Internal losses

In this subsection, we will consider only noise resultin
from losses associated with optical elements inside the in
ferometer. These occur

~i! in the optical elements: arm cavities, sloshing cav
extraction mirror, port-closing mirror, beam splitte
RSE mirror;

~ii ! due to mode-mismatching;8

~iii ! and due to the imperfect matching of the transmiss
ties of the RSE and internal mirrors.9

Since the optical losses will dominate, we focus only on t
type of loss here. The loss at each optical element will
crease the amplitude of the sideband light~which carries the
gravitational-wave information! and will simultaneously in-
troduce additional vacuum fluctuations into the optical tra
Schematically, for some sidebandã(v), the loss is described
by

ã~v!→A12E~v!ã~v!1AE~v!ñ~v!, ~50!

where E is the ~power! loss coefficient, andñ(v) is the
vacuum field entering the optical train at the loss point.

It should be noted that there are various methods
grouping these losses together in order to simplify calcu
tions. For example, we combine all of the losses occurring
the arm~or sloshing! cavities into one loss coefficient ofL
;2031026 @according to KLMTV Eq.~93!#. Then we as-
sume that the end mirrors have transmissivityTe52
31025, thereby absorbing all of the arm losses into one te
@see KLMTV Eq.~B5! and preceding discussion#.

Assuming that the noise entering at the end mirrors of
arm cavities is denotedñe1,2 and ñn1,2 for the east and north
arms, respectively, at the end mirror of the sloshing cav
s̃1,2, at the port-closing mirrorw̃1,2, and at the RSE mirror
m̃n1,2 andm̃s1,2 @representing the losses described in the p
vious paragraph; see Appendix for details#, the output of the
lossy three-cavity speed-meter system~Fig. 3; the simplified
and practical versions are no longer equivalent, since th
will be additional losses due to the presence of the inter
and RSE mirrors! is

q̃152
L* ~v!

L~v!
p̃11

ivAdde

L~v!
~ ñe12ñn1!1

VA2dde

L~v!
s̃1

2
ATe~V22v21 ivds!

L~v!
w̃12

ivA2dde

L~v!
m̃s1

1
vA2Ldde~v2 id i!

Acd iL~v!
m̃n1 , ~51a!

8According to our simple analysis in Appendix C, this effect w
be insignificant in comparison with the losses in the optical e
ments, so we shall ignore it.

9This effect is negligibly small so we shall ignore it; see Append
D for details.

-
ne

-
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TABLE II. Loss factorsE N
S due to shot noise andE N

R due to radiation pressure for each type of loss source in the interferometer.

Source N E N
S ~shot noise! E N

R ~radiation pressure noise!

arm cavities,
extract. mirror,
sloshing cavity

AES A«AES

To

vd
uL(v)u 2

eic

2
A«AES

To
port-closing
mirror close A«close

V22v2

uL(v)u 2
ieic

2
A«close

RSE cavity
‘‘in’’ to arms RSEin A«RSETi

4To
S 11

v2

d i
2 D vd

uL~v!u
eic2 ib iA«RSETo

Ti

v(d i1d)1 iV2

vd

RSE cavity
‘‘out’’ to slosh RSEout A«RSETi

4To
S 11

v2

d i
2 D vd

uL~v!u
eic1 ib iA«RSETo

Ti

v(d i2d)2 iV2

vd

local oscillator,
photodiode, OPC A«OPC 0
and circulator

filter cavities F A«F 0
a

s-
ns.
he

d
er
xi-
ins
her.

d
fer-

,

r
-

at,

al

ted
se
q̃25
2ivAv0ToWcirc*

LA\L~v!
x̃2

L* ~v!

L~v!
p̃21

VA2dde

L~v!
s̃2

1
ivAdde

L~v!
~ ñe22ñn2!2

ATe~V22v21 ivds!

L~v!
w̃2

2
ivA2dde

L~v!
m̃s21

vA2Ldde~v2 id i!

Acd iL~v!
m̃n2 , ~51b!

where

x̃5Lh̃2
4A2\v0Wcirc*

mcv2L~v!
F ivA2cd

AL
p̃11

ivAcde

AL
m̃s1

2
Ade@V22 iv~d1d i!#

Ad i

m̃n12
VAcde

AL
s̃1

1 ivAddew̃12
ivAcde

A2L
~ ñe12ñn1!G ~52!

with

de5cTe/2L, ds5cTs/2L,

d i5cTi/4L, de5cE/2L. ~53!

Note that the expression for the circulating power now h
the form

Wcirc* 5
1

2
\v0B1

25
4\v0TiTpI 1

2

~TiTp14Te!
2

~54!

@cf. Eq. ~10!#.
12200
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Equations~51a!, ~51b! are approximate expressions@ac-
curate to about 6%, as were Eqs.~8!; see footnote 5#, where
the assumptions~7! regarding the relative sizes of the tran
missivities were used to simplify from the exact expressio
Alternatively, they can be derived analytically by keeping t
leading order of the small quantitiesvL/c;ATs;To;Ti ,
plus the various loss factors; see Sec. VI of KLMTV an
Sec. IV of Paper I for details of the derivations for oth
inteferometer designs. In addition to confirming the appro
mate formulas, such a derivation can also clarify the orig
of various noise terms and their connections to one anot

B. Internal and external losses in compact form

In order to simplify the above Eqs.~51! and ~52!, we
definek* in the same way as we definedk @Eq. ~14! or ~22!#
but with Wcirc→Wcirc* . Let E N

S andE N
R represent the shot an

radiation-pressure noises for the various parts of the inter
ometer, specified byN. In Table II, expressions forE N

S and
E N

R are given forN5AES ~arm cavities, extraction mirror
and sloshing cavity combined!, close ~port-closing mirror!,
RSEin ~RSE cavity in the north direction, or going ‘‘in’’ to
the arms!, and RSEout ~RSE cavity in the south direction, o
going ‘‘out’’ of the arms!. The various«N represent the char
acteristic ~and frequency-independent! fractional losses for
each of these terms; values are given in Table III. Note th
by definition,E N

S are required to be real, whileE N
R may have

imaginary parts. For more information, including physic
explanations of each of these terms, see Appendix B.

It is simple at this point to include the losses associa
with optical elements external to the interferometer. The
include losses associated with

~i! the local oscillator used for homodyne detection,
4-13
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TABLE III. Fiducial values for the fractional losses occurring in various parts of the interferometer. T
losses and their values are discussed in more detail in Appendix B.

Loss source Symbol Value

arm cavity «arm 231025

sloshing cavity «slosh 231025

extraction mirror «ext 231025

RSE cavity «RSE 231025

port-closing mirror «close 231025

local oscillator « lo 0.001
photodiode «pd 0.001
circulator «circ 0.001
mode-mismatch into filters «mm 0.001
Combined loss source terms
arms, extraction mirror, and sloshing cavitya «AES 631025

local oscillator, photodiode, and circulator «OPC 0.003
filter cavities~with mode mismatch! «F 0.005

aThis loss does have some weak frequency dependence, shown in Eq.~B8!, which will cause it to increase
slightly at very low frequencies.
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~ii ! the inefficiency of the photodiode;
~iii ! the circulator by which the squeezed vacuum is

jected;
~iv! and the external filter cavities used for the variation

output scheme.

These can be addressed in the same manner as the l
inside the speed meter. We need only include two more te
in the summation,N5OPC for the local oscillator, photodi
ode, and circulator andN5F for the filters. Again, these
terms are shown in Tables II and III and described in m
detail in Appendix B.

Using theseE N
S andE N

R , we can rewrite the input-outpu
relations~51! in the same form as Eqs.~12! as follows:

S q̃1

q̃2
D 5e2icS 1 0

2k* 1D S p̃1

p̃2
D 1(N e2iaNS E N

S 0

2k* E N
R E N

S D
3S nN1

nN2
D 1A2k*

h

hSQL
eicS 0

1D , ~55!

FIG. 11. Moduli-squared of the loss factors shown in Table II.
general, the black curves are the radiation-pressure noise an
gray curves are the shot noise. The parameters used for this plo
given in Tables I and III.
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where theaN are uninteresting phases that do not affect
noise.

The relative magnitudes of the loss terms are shown
Fig. 11. From the plot, we can see that there are several
terms—specifically, the shot noise from the AES, OPC, a
filter cavities~if any!—that are of comparable magnitude
high frequencies and dominate there. The AES radiati
pressure term dominates at low frequencies, and the R
radiation-pressure terms are also significant. Since the lar
noise sources at low frequencies are radiation-pressure te
they will be dependent on the circulating power. Cons
quently, those terms will become smaller when the circu
ing power is reduced, as when squeezed vacuum is inje
into the dark port. This will be demonstrated in Fig. 12 b
low.

To compute the noise spectral density, we suppose
output at homodyne angleF is measured, giving

Shn
~v!5

~hSQL!
2

2k* H @~cotF2k* !211#

1(N @ uE N
ScotF2E N

Rk* u21~E N
S !2#J , ~56!

where we have assumed all of the vacuum fluctuation sp
tral densities are unity and the cross-correlations are z
this is the same technique that we used to derive Eqs.~18!
and ~46! and that was used in Paper I and KLMTV. Give
the complicated behaviors ofE N

S and E N
R , including these

loss terms in the optimization of the homodyne phaseF(v)
is unlikely to be helpful. Therefore, we will use cotF
5kmax* , as in the lossless case. This gives us a total no
with losses:

Shn
~v!5

~hSQL!
2

2k* H @~kmax* 2k* !211#

1(N @ uE N
Skmax* 2E N

Rk* u21~E N
S !2#J . ~57!

the
are
4-14
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PRACTICAL SPEED METER DESIGNS FOR QUANTUM . . . PHYSICAL REVIEW D66, 122004 ~2002!
When we inject squeezed vacuum into the dark port, we
output operators

S q̃1s

q̃2s
D 5e2icS 1 0

2k* 1D S eRp̃1

e2Rp̃2
D

1(N e2iaNS E N
S 0

2k* E N
R E N

S D S nN1

nN2
D

1A2k*
h

hSQL
eicS 0

1D ~58!

that can be regarded as acting on the ordinary vacuum s
of the input. Once again assuming that the vacuum fluc
tion spectral densities are unity and the cross-correlations
zero, the squeezed-input noise spectral density with ho
dyne detection at phaseF is

Shns
~v!5

~hSQL!
2

2k* H @~cotF2k* !2e2R1e22R#

1(N @ uE N
ScotF2E N

Rk* u21~E N
S !2#J . ~59!

C. Performance of lossy speed meters and comparisons
with other configurations

Examples of lossy speed meter noise curves with
without squeezed vacuum@Eqs.~57! and~59!# are shown in
Fig. 12. Note that, as mentioned before, the losses are
significant when squeezed vacuum is used to reduce the
culating power, since the radiation-pressure noise com
from the losses is reduced. In the ordinary speed meter~no
squeezed vacuum!, the losses increaseAShn

by 5 –9 % in the

band 50–105 Hz. The losses have little effect above
range, but below it, noise increases significantly, mostly d

FIG. 12. Noise curves showing the effects of losses. No
curves for lossy versions of the ordinary~OSM!, squeezed-input
~SISM!, and squeezed-variational~SVSM! speed meters are shown
along with a curve of the lossless ordinary speed meter for c
parison. All speed meter curves here have the same parameted
52vopt , V5A3vopt , vopt52p3100 Hz, andTi50.005. The rest
of the parameters are given in Tables I and III.
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to the radiation-pressure noises shown in Fig. 11. For
squeezed-input speed meter~power squeeze-factore22R

50.1), the losses increaseAShn
by 3–4 % in the band

25–150 Hz. Again, the losses have little effect above t
range. At low frequencies, however, the losses get q
large: 11% at 10 Hz, 32% at 5 Hz, and 73% at 3 Hz. Los
in the squeezed-variational speed meter are much the s
as in the squeezed-input speed meter. The slight differenc
low frequencies is due to the fact that the lossless squee
variational speed meter is slightly better in that regime th
the ordinary or squeezed-input speed meter.

The noise curves of squeezed-input speed meters~with
ordinary homodyne detection! compared with the SQL are
shown in Fig. 13, along with the noise of a convention
position meter with the same optical power. These sp
meters beat the SQL in a broad frequency band, despite
losses. In particular, the noise curve for the speed meter
Wcirc5800 kW ~and f opt5107 Hz) matches the curve of th
conventional position meter at high frequencies, while
beats the SQL by a factor of;8 ~in power! below
;150 Hz. In terms of the signal-to-noise ratio for neutr
star binaries, for example, this configuration improves up
the conventional design by a factor of 3.6 in signal-to-no
ratio, which corresponds to a factor of 43 increase in ev
rate. If it is possible to have a higher circulating power, s
Wcirc52 MW, the squeezed-input speed meter would
able to beat the SQL by a factor of;14, corresponding to a
factor of 4.6 in signal-to-noise and 97 in event rate.~Such a
noise curve is shown in Fig. 13.!

The broadband behaviors of the speed meters with lo
are particularly interesting. We start by looking at the expr
sion for the noise spectral density, Eq.~59!. An ideal ~loss-
less! speed meter in the broadband configuration beats
SQL from 0 Hz up tov;vopt, by roughly a constant factor
becausek is roughly constant in this band.This is the essen
tial feature of the speed meter; see Sec. III. Focusing on thi
region, we have, approximately~for lossy squeezed-inpu
and squeezed-variational speed meters!

e

-
:

FIG. 13. Comparison of noise curves of a conventional posit
meter~CPM! and squeezed-input speed meters~SISM! with circu-
lating powersWcirc5820 kW andWcirc52 MW. The speed meters
have f opt5107 Hz, with V and d determined by Eq.~29!. Other
parameters used are those in Tables I and III withTi50.005 and
e22R50.1.
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Shns
~v!'

hSQL
2

2kmax* Fe22R1(N uEN
S u21k* max

2 (N uEN
S2EN

Ru2G .
~60!

Qualitatively, we can see that if the losses are not severe
kmax* is relatively small~such that the later two terms in th
above equation are small compared to the power squ
factore22R), the losses do not contribute significantly to t
total noise. If, in addition, the dominant loss factors are~al-
most! frequency independent, then the noise due to los
gives a rather constant contribution, as shown by curve
Fig. 12. In particular, the large bandwidth is preserv
~There is a slight exception to this statement in the abse
of squeezed input. Without squeezed input, the circula
power is higher, causingkmax* to be 10 times larger than th
other cases. Consequently, the frequency dependence ofEAES

R

will appear in the output.!
As kmax increases, the noise from the losses may beco

dominant. In fact, when one minimizes the noise spec
density with respect tokmax* , one obtains the following loss
dominated result:

Sh
L~v!'hSQL

2 AS (N uEN
S2EN

Ru2D S e22R1(N uEN
S u2D ,

~61!

which is achieved if and only if

kmax* 5kL[Ae22R1(N uEN
S u2

(N uEN
S2EN

Ru2

. ~62!

This kL is rather constant and is comparable in magnitude
the values ofk* (v) of our speed meters, suggesting that t
speed meters can become loss-limited over a broad ban
frequencies. Contrast this with the KLMTV position mete
whereK* (v) grows asv22 at low frequencies; see Fig. 14

FIG. 14. Comparison of the squeezed-variational speed me
k* with the equivalent coupling constantK* ~as defined by
KLMTV ! for the squeezed-variational position meter. Parame
areWcirc5820 kW, g5d52p3100 Hz, andV52p3173 Hz.
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This is a fundamental property of displacement meters.As a
result, a position meter optimized at some frequencyf opt may
be able to reach its ‘‘loss limit’’~the equivalent ofSh

L) at that
frequencyf opt, but doing so will result in a sharp growth o
noise at frequencies belowf opt. In contrast, a speed mete
similarly optimized is able to stay at the noise level of
loss limit Sh

L over a wide band of frequencies belowf opt; see
Fig. 15. While it is unfortunate that losses limit the perfo
mance of interferometers, the speed meter is at least ab
retain a wide-band sensitivity even in the presence of a
limit.

To give a specific example of this loss-limit phenomeno
we compare the noise curves of the squeezed-variationa
sition and speed meters~SVPM and SVSM, respectively!.
We first notice that, with the same circulating power, t
position-meterK* and our ~squeezed-variational! speed-
meterk agree10 if d5g ~whereg is the bandwidth of the
arm cavities, as defined in KLMTV! and if we consider high
frequencies (v*$g, V%). Figure 14 shows an example o
this @with Wcirc5820 kW, g5d52p3100 Hz, V52p
3173 Hz]. The noise curves of the two interferometers
shown in Fig. 15.

As expected, the two noise curves in Fig. 15 agree at v
high frequencies. At intermediate frequencies, the sp
meter’sk* is larger than the position meter’sK* , and thus
the speed meter~SVSM! has better sensitivity than the pos
tion meter~SVPM!. As the frequency decreases, the spe
meter reaches its loss limit first and stays at that limit fo
wide range of frequencies. The position meter, however, o
touches its loss limit and then increases rapidly.

VI. CONCLUSIONS

We have described and analyzed a speed-meter inte
ometer that has the same performance as the two-cavity
sign analyzed in Paper I, but it does so without the subs
tial amount of power flowing through the system or t

10In fact,K* can be obtained from the speed meterk* by putting
V→0 andd→g.

r’s

rs

FIG. 15. Comparison of noise curves for a squeezed-variatio
position meter~SVPM; analyzed in KLMTV! and for a squeezed
variational speed meter~SVSM; analyzed in this paper!. Parameters
used are those in Tables I and III withTi50.005 ande22R50.1.
Also shown are the loss limits described in Sec. V C.
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PRACTICAL SPEED METER DESIGNS FOR QUANTUM . . . PHYSICAL REVIEW D66, 122004 ~2002!
exorbitantly high input laser power required by the tw
cavity speed meter. It was also shown that the injection
squeezed vacuum withe22R50.1 into the dark port of the
interferometer will reduce the needed circulating power
an order of magnitude, bringing it into a range that is co
parable to the expected circulating power of LIGO-II, if on
wishes to beat the SQL by a factor ofA10 in amplitude.
Additional improvements to the sensitivity, particularly
high frequencies, can be achieved through the use
frequency-dependent homodyne detection.

In addition, it was shown that this type of speed-me
interferometer is not nearly as susceptible to losses as t
presented in KLMTV. Its robust performance is due, in pa
to the functional form of the coupling factork, which is
roughly constant at low frequencies. This helps to maint
the speed meters’ wideband performance, even in the p
ence of losses. Losses for the various speed meters we
cuss here are generally quite low. The dominant source
loss-induced noise at low frequencies (f & f opt) are the
radiation-pressure noise from losses in the arm, extract
and sloshing cavities. Because this type of noise is depen
on the circulating power, it can be reduced by reducing
power by means of squeezed input.
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APPENDIX A: FP CAVITIES AS OPTICAL FILTERS

As proposed by KLMTV@Sec. V B and Appendix C#,
Fabry-Pe´rot cavities can be used as optical filters to achie
frequency-dependent homodyne detection. Here we s
briefly summarize and generalize their results.

Suppose we have one FP cavity of lengthLFP and reso-
nant frequencyv02jFPdFP. Also suppose this cavity has a
input mirror with finite transmissivityTFP and a perfect end
mirror. When sideband fields at frequencyv06v emerge
from the cavity, they have a phase shift

a6[2 arctan~jFP6v/dFP!, ~A1!

where

dFP5
cTFP

4LFP
~A2!

is the half bandwidth of the cavity.@Note that Eq.~A1! is
KLMTV Eqs. ~88! and ~C2!, but a factor of 2 was missing
from their equations. Fortunately, this appears to be a ty
graphical error only in that particular equation; the factor
2 is included in their subsequent calculations.# As a result of
this phase shift, the input (b̃1,2) –output (b1,2) relation for
sideband quadratures at frequencyv will be @KLMTV Eqs.
~78!#
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S b̃1

b̃2
D 5ei amRapS b1

b2
D , ~A3!

where

am[
1

2
~a12a2!, ap[

1

2
~a11a2!, ~A4!

and

Rf[S cosf 2sinf

sinf cosf D . ~A5!

If a frequency-independent homodyne detection at ph
shift u follows the optical filter, the measured quantity w
be @KLMTV Eqs. ~81! and ~82!#

b̃u5eiambz , ~A6!

where

z~v!5u2ap[u2
1

2
~a11a2!. ~A7!

If more than one filter is applied in sequence (I, II,. . . ,)
and followed by homodyne detection at angleu, the mea-
sured quadrature will be@Eq. ~83!#

z~v!5u2
1

2
~a I11a I21a II11a II21••• !. ~A8!

@Note that thisz(v) ~KLMTV’s notation! is the same homo-
dyne angleF(v) that we want to produce.# By adjusting the
parametersjJ anddJ , one might be able to achieve the F
homodyne phases needed. KLMTV worked out a particu
case for their design@their Secs. V B, V C, and Appendix C#.

Here we shall seek a more complete solution that work
a large class of situations. With the help of Eq.~A1!, Eq.
~A8! can be written in an equivalent form

11 i tanz

12 i tanz
5e2iu )

J5I,II, . . . ,s56

12 i tan~aJs/2!

11 i tan~aJs/2!
,

5e2iu )
J5I,II, . . . ,s56

v2s~2jJdJ2 idJ!

v2s~2jJdJ1 idJ!
.

~A9!

Suppose the required tanz(v) is a rational function inv2,

tanz~v!5

(
k50

n

Bkv
2k

(
k50

n

Akv
2k

, ~A10!

whereAk and Bk are real constants withAn
21Bn

2.0. Then
Eq. ~A9! requires that, for allv,
4-17
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(
k50

n

~Ak1 iBk!v
2k

5Deiu )
J5I,II, . . . ,s56

@v2s~2jJdJ2 idJ!#,

~A11!

where D can be any real constant. Equation~A11! can be
solved as follows. First, match the roots of the polynomi
of v on the two sides of the equation; denote these roots
6vJ with J51,2, . . . ,n. Then we can deduce thatn filters
are needed, and their complex resonant frequencies mu
offset fromv0 by

vJ52dJjJ2 idJ , J5I, II, . . . , ~A12!

where6v I, II, . . . @with I(vJ).0] are the 2n roots of

(
k50

n

~Ak1 iBk!v
2k. ~A13!

After this, the polynomials on the two sides of Eq.~A11! can
only differ by a complex coefficient whose argument det
mines u. In fact, by comparing the coefficients ofv2n on
both sides, we have

u5arg~A2n1 iB2n!. ~A14!

APPENDIX B: SEMI-ANALYTICAL TREATMENT
OF THE LOSS TERMS

In this appendix, we present a semi-analytic treatmen
each source of noise included in Sec. V A. We will use
notation similar to Eqs.~12!, but in matrix form:

S q̃1

q̃2
D 5S q̃1

q̃2
D

lossless

1Nloss source, ~B1!

where Nloss sourceis a vectorial representation of whichev
source of loss we are considering at the moment. Eac
these terms is associated with a vacuum field of the fo
AE(v)ñ(v) @cf. Eq. ~50!#, which enters the interferomete
and increases the level of noise present. For generality, w
E(v) be frequency dependent. The~constant! characteristic
fractional losses for each type of loss will be denoted by«
with an appropriate subscript. Each loss term appearin
Table II is presented in a subsection below.

1. Arms, extraction mirror, and sloshing cavity „AES…

The losses in the arms allow an unsqueezed vacuum
A«armñarm to enter the optical train. By idealizing this field a
arising entirely at the arm’s end mirror, propagating the fi
through the interferometer to the output port, we obtain
following contribution to the output noise:
12200
s
y

be

-

f

of

let

in

ld

d
e

Narm52A«arm

To
Feic

vd

uL~v!u S 1 0

0 1D 1e2icS 0 0

k* /2 0D G
3S ñarm1

ñarm2
D , ~B2!

where the vacuum operators from the two arms are comb
as

ñarmj5
ñe j2ñn j

A2
. ~B3!

The first term~independent ofk* ) is the shot-noise contri-
bution, while the second term~proportional tok* ) is the
radiation-pressure noise. It turns out that several of the o
loss sourcesN have a similar mathematical form.

We consider, specifically, the loss from the extraction m
ror, which effectively allowsA«extñext into the optical train.
By propagating this field through the interferometer to t
output port, we obtain the following contribution to th
noise:

Next5A«ext

To
Feic

vd

uL~v!u S 1 0

0 1D 1e2icS 0 0

k* /2 0D G
3S ñext1

ñext2
D . ~B4!

The loss from the sloshing cavity is a bit different: th
imperfect end mirror of the sloshing cavity produces
vacuum noise fieldA«sloshñslosh which exits the cavity with
the form

A 4«slosh/Ts

11v2/~ds/2!2
eibsñslosh1,2'A«slosh

iV

v
ñslosh1,2,

~B5!

where bs[arctan(2v/ds)'p/2 for most of the frequency
band of interest. The associated noise is

Nslosh52A«slosh

To

iV

v Feic
vd

uL~v!u S 1 0

0 1D
1e2icS 0 0

k* /2 0D G S ñslosh1

ñslosh2
D . ~B6!

Since the vacuum fieldsñarm, ñext, and ñslosh are indepen-
dent and uncorrelated, we can effectively combine these
noises into a single expression

NAES5A«AES

To
Feic

vd

uL~v!u S 1 0

0 1D 1e2icS 0 0

k* /2 0D G
3S ñAES1

ñAES2
D , ~B7!
4-18
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with

«AES;EAES~v![«arm1«ext1«sloshV
2/v2. ~B8!

We expect that«arm;«slosh;«ext;231025, as discussed in
the paragraph following Eq.~50! and as shown in Table III

2. Port-closing mirror

The imperfection of the closing mirror has two effects:~i!
it directly introduces a fluctuation2A«closeRoñclose into the
output, giving a shot noise

Nclose
shot direct52A«closeRoS ñclose1

ñclose2
D ; ~B9!

and ~ii ! it introduces a fluctuationA«closeToñclose into the
light that passes from the arms into the sloshing cavity, g
ing ~after propagation through the sloshing cavity and int
ferometer and into the output!

Nclose
indirect52A«closeFeic

vd

uL~v!u S 1 0

0 1D 1e2icS 0 0

k* /2 0D G
3S ñclose1

ñclose2
D . ~B10!

Combining these two expressions gives, to leading order~in
the various transmissivities and the small parametersvL/c
and«close),

Nclose5A«closeF ieic
V22v2

uL~v!u S 1 0

0 1D 2e2icS 0 0

k* /2 0D G
3S ñclose1

ñclose2
D . ~B11!

Since«close is simply the loss from the port-closing mirro
itself, we can assume that«close&231025. Then, this and
the above expression~B11! show that the output noise from
the closing mirror isTo times smaller than the AES loss@Eq.
~B8!#.

3. The RSE cavity

The losses in the region between the internal mirrors
the RSE mirror, i.e., the RSE cavity, are more complica
than the previous cases. As before, we suppose that, du
each propagation from one end to the other of the RSE c
ity, a fraction «RSE of the light power is dissipated and re
placed by a corresponding vacuum field,A«RSEñin or
A«RSEñout ~depending on whether the light is propagating
towards the arms or out towards the extraction mirror a
sloshing cavity!. These two fieldsñin and ñout are indepen-
dent vacuum fields. At the leading order in«RSE, we have a
modified version of the ‘‘input-output’’ relation for the RS
cavity:
12200
-
-

d
d
ing
v-

d

S B

D D 5S 12
11Ri

2Ti
«RSE

ARi

Ti
«RSE

ARi

Ti
«RSE 12

11Ri

2Ti
«RSE

D S A

CD

1A«RSE

Ti
S 1 2ARi

2ARi 1
D S ñin

ñout
D , ~B12!

where A,B,C,D are the field amplitudes shown in Fig. 3
Note that, for simplicity, we are looking at only one arm; w
could equally well use the other~substitutingB→F and C
→G) or the proper combination of both. Also, notice that
«RSE50, then we findB5A andD5C, which illustrates the
fact that the internal and RSE mirrors have no effect on
sidebands~described in Sec. I where we introduced the R
mirror!.

From Eq. ~B12!, we find that the loss inside the RS
cavity has two effects. First, it makes the cancellation of
effect of the internal and the RSE mirrors imperfect.~Recall
that an RSE mirror with the same transmissivity as the in
nal mirrors effectively cancels the effect of the internal m
rors on the sidebands; this was discussed in Sec. I.! This
imperfect cancellation will not be important in our situatio
Indeed, there is no corresponding term appearing in
input-output relation given in Eqs.~51!.

Secondly, the loss inside the RSE cavity adds two vacu
fields to light that travels through the RSE cavity in oppos
directions@i.e., from A to B ~IN! and from C to D~OUT!#.
We denote them by

ÑIN[A«RSE

Ti
~ ñin2ARiñout!, ~B13a!

ÑOUT[A«RSE

Ti
~2ARiñin1ñout!. ~B13b!

Note thatñin and ñout ariseinside the RSE cavity as a resu
of the loss that occurred there and thatÑIN andÑOUT are the
vacuum fluctuationsemerging from the RSE cavity. As a
result,ÑIN andÑOUT exist in different locations:ÑIN denotes
the vacuum field inside the arm cavity withB, and ÑOUT
denotes the vacuum field at the RSE mirror, heading towa
the extraction mirror and sloshing cavity withD. This is
depicted in Fig. 16.

FIG. 16. Schematic diagram of a simplified version of the R

cavity. The quantitiesñin and ñout enter inside the RSE cavity
whereasNin andNout are external to the cavity and exist in differe
locations.
4-19
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The fieldsÑIN andÑOUT both have a power spectral de
sity a factor;1/Ti larger than the one-time loss coefficien
This can be explained by the fact that the sideband li
bounces back and forth inside the RSE cavity roughly;1/Ti
times before exiting. As a result, the~power! loss coefficient
is amplified by the same factor. However, since these fie
are quite correlated~both contain similar amounts ofñin and
ñout), we need to analyze them carefully.

For the shot noise, we need to find the amplitude of
vacuum fluctuations that the loss introduces into the out
To understand the effect of this type of loss, we ask h
much vacuum fluctuation is added to the fieldD by ÑIN and
ÑOUT. The answer is obtained by propagatingÑIN one round
trip inside the interferometer’s arm~s! and then combining it
with ÑOUT. This gives

D→D1@ÑOUT1e2ivL/cÑIN#

'D1A«RSETi

4 S 11
v2

d i
2 D ~eib iñin1e2 ib iñout!,

~B14!

whered i[Tic/4L and b i[arctan(v/di) . Propagating this to
the output, we get the shot noise contribution to be

NRSE
shot5A«RSETi

4To
S 11

v2

d i
2 D eic

vd

uL~v!u Fe1 ib iS ñin1

ñin2
D

1e2 ib iS ñout1

ñout2
D G . ~B15!

This noise is not of the magnitude that Eqs.~B13! would
appear to indicate. Instead of having a coefficient
;A«RSE/Ti, it has a much smaller value whenv&d i . The
reason is that the two vacuum fluctuations traveling in op
site directions are anticorrelated and largely cancel e
other, since they are summed in the outgoing fieldD. This
cancellation becomes less perfect asv grows and become
much larger thand i . This effect is shown in Fig. 11.

For the RSE contribution to the radiation-pressure no
we are interested in how much the two noise fieldsÑIN and
ÑOUT contribute to the carrier amplitude fluctuationat the
position of the test masses. Therefore, we ask what the su
of ÑIN andÑOUT is when they combine at the end mirrors
the arm cavities. SinceÑOUT is superposed onD, ÑOUT must
be propagated through the sloshing cavity and back to
arm cavity, where it is combined withÑIN . There is a phase
factor ofeivL/c due to the propagation from the internal m
ror to the end mirror~in addition to the phases acquired o
the way to and inside the sloshing cavity; these are expla
below!, producing
12200
t

s

e
t.

f

-
h

e,

e

d

B→B1eivL/cF ÑIN2ÑOUT~12To!
e2ibs

12Toe
2ibs

G
'B12ToA«RSE

Ti
Fv~d i1d!1 iV2

vd
ñin

1
v~d i2d!2 iV2

vd
ñoutG , ~B16!

where bs5arctan(2v/ds) is the phase associated with th
sloshing cavity. Propagating the newB to the output pro-
duces a radiation-pressure contribution

NRSE
rad pres5A«RSETo

Ti
e2icS 0 0

2k* 0D Fv~d i1d!1 iV2

vd S ñin1

ñin2
D

1
v~d i2d!2 iV2

vd S ñout1

ñout2
D G . ~B17!

As before, this noise does not have a magnitude;A«RSE/Ti;
it is much smaller. The reason is that whenÑOUT travels to
the sloshing cavity and back to the arms, it gains two ph
shifts. First is a constant phase shift ofp, due to the distance
it traveled~twice! between the RSE and sloshing mirror. Th
other is from the sloshing cavity, where for frequencies mu
larger than the bandwidthds of the sloshing cavity, this phas
shift is roughlyp. Adding these two phase shifts,ÑOUT will
appear roughly unchanged when it combines withÑIN in the
arm cavity. Since these two vacuum fields are anticorrela
there is again an effective cancellation between the
noises at frequencies aboveds. This cancellation become
less complete at low frequencies; see Fig. 11.

We assume the fractional loss«RSE;231025, since it
arises primarily from losses in the RSE cavity’s optical e
ments ~mirrors and beam splitter!. ~See Appendix C for a
discussion of the noise due to mode mismatching, which
do not consider here.!

4. Detection and filter cavities

First, we consider the losses involved in the detection
the signal~without filter cavities!. Two important sources o
photon loss are mode mismatching associated with the l
oscillator used for frequency-independent homodyne de
tion (« lo) and the inefficiency of the photodiode («pd). In a
squeezed-input speed meter, there will also be a circul
~with fractional loss «circ) through which the squeeze
vacuum is fed into the system and through which the out
light will have to pass. These losses have no frequency
pendence, so they are modeled by an equation of the form
Eq. ~50! with

EOPC~v!5«OPC5« lo1«pd1«circ ~B18!

@cf. KLMTV Eq. ~104!#. The contribution to the noise is the
4-20
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NOPC5A«OPCS ñOPC1

ñOPC2
D , ~B19!

where theñOPCj are linear combinations of the individua
~independent! vacuum fields entering at each location~so the
spectral densities of these fields are unity and there are
cross-correlations! and propagated to the output po
KLMTV assumed that each of these losses is about 0.0
giving «OPC;0.003.

We next turn our attention to optical filters on the outp
~as in the case of frequency-dependent homodyne dete
for a squeezed-variational speed meter, discussed in
IV B !. Such cavities will have losses that may contribu
significantly to the noises of QND interferometers, as h
been seen in KLMTV. In their Sec. VI, KLMTV carried ou
a detailed analyses of such losses; our investigation is es
tially the same as theirs.

The loss in the optical filters can come from scattering
absorption in the cavity mirrors, which can be modeled
attributing a finite transmissivityTe to the end mirrors, as we
did for the arm cavities. The effect of lossy filters is aga
analogous to@Eq. ~50!#. This time the loss coefficientEF(v)
does have some frequency dependence:

EF52«mm1 (
J5I, II

ĒJ52«mm1
1

2 (
J5I, II

~EJ11EJ2!,

~B20!

where«mm;0.001 is the mode-mismatching into each filt
cavity and where

EJ65
4Te

TJ@11~6v/dJ2jJ!
2#

~B21!

are the loss coefficents of the two different filter cavitiesJ
5I, II) @cf. Eqs. ~103! and ~106! of KLMTV #. The noise
contribution is

NF5AEFS ñF1

ñF2
D . ~B22!

The weak frequency dependence ofEF will be neglected~as
KLMTV did !, giving

«F.EF;0.005 ~B23!

@cf. Eqs.~107! and~104! of KLMTV #. The value of«F may
vary slightly for the different optimizations we have use
but it remains less than 0.006.

APPENDIX C: EFFECTS DUE TO MODE MISMATCHING:
A SIMPLE ANALYSIS

In the practical implementation of GW interferomete
the mismatching of spatial modes between different opt
cavities will degrade the sensitivity because signal pow
will be lost into higher-order modes and, corresponding
vacuum noises from those modes will be introduced to
12200
no

1,

t
ion
ec.

s

en-

r
y

,

,
l
r
,
e

signal. In a way, this is similar to other sources of optical lo
discussed in the previous appendix. However, the high
order modes do not simply get dissipated—they too w
propagate inside the interferometer~although with a different
propagation law!. As a consequence, the exchange of ene
between fundamental and higher modes due to mo
mismatching iscoherent, and the formalism we have bee
using for the loss does not apply. In this section, we sh
extend our formalism to include one higher-order mode a
give an extremely simplified model of the mod
mismatching effects.11

In a conventional interferometer~LIGO-I!, the mode-
mismatching comes predominantly from the mismatch of
mirror shapes between the two arms, which makes the wa
fronts from the two arms different at the beam splitter.
particular, the cancellation of the carrier light at the dark p
is no longer perfect, and additional~bright-port! noises are
introduced into the dark-port output. For our speed mete
third cavity—the sloshing cavity—has to be matched to
two arm cavities, further complicating the problem.

In order to simplify the situation, we approximate all th
waves propagating in the corner station~the region near the
beam splitter, where the distances are short! as following the
same phase-propagation law as a plane wave. The only
sible source of mismatch is assumed to come from the
ference of wavefront shapes~to first order in the fractional
difference of the radii of curvature! and waist sizes for the
light beams emerging from the two arm cavities and
sloshing cavity. Suppose, in the region of the corner stat
we have a fiducial fundamental Gaussian modeC (0) ~which
is being pumped by the carrier! with waist sizew0 and wave-
front curvaturea0[1/R0 that is roughly the same as those
the three cavities:12

C (0)~x,y!}
1

w0
expS 2

r2

w0
2

1 ik
a0r2

2 D , ~C1!

r5Ax21y2.

At leading order in the mismatches, the fundamental mo
of the three cavities~in the region of the corner station!,
which have waist sizeswJ and curvaturesaJ[1/RJ @J5n, e,
or slosh~for the north arm, east arm, and sloshing cavi
respectively!#, can be written in the form

C fnd
J ~x,y!}

1

w0
expS ikw0

2 aJ2a0

4 D
3expS 2

r2

w0
2

1 ik
a0r2

2 D H 11S wJ2w0

4w0

1 ikw0
2 aJ2a0

16 D FH2SA2x

w0
D 1H2SA2y

w0
D G J ,

~C2!

11This way of modeling the mode-mismatching effects was s
gested to us by Stan Whitcomb.

12We have chosen to use the curvature instead of the radiu
curvature because in this region the wavefronts are very flat.
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whereH2(u) is the second-order Hermite polynomial ofu.
This C fnd

J (p,y) can be expressed asC (0) plus a small ad-
mixture of a higher-order modeC (1), which consists of
equal amounts of TEM02 and TEM20 modes ~and thus is
orthogonal toC (0)). This admixture changes the waist si
from v0 to vJ and the curvature froma0 to aJ. We can
choose our fiducial fundamental modeC (0) in such a way
that the two arm cavities have an opposite mismatch with
i.e., an1ae52a0 , wn1we52w0, and at leading order,

S C fnd
n, e

Cexc
n, eD 5S 1 6marm

7marm* 1 D S C (0)

C (1)D , ~C3!

where ‘‘exc’’ denotes the excited mode and the admix
amplitudemarm is, in general, complex. We also denote t
fundamental and excited modes of the sloshing cavity as

S C fnd
slosh

Cexc
sloshD 5S 1 mslosh

2mslosh* 1 D S C (0)

C (1)D ; ~C4!

again,mslosh can be complex. We shall also assume that
higher-order modes involved here are far from resonance
side the cavities and will be rejected by them, gaining
phase ofp upon reflection from each cavity’s input mirro
In the output, we assume the modeC (0) is selected for de-
tection. ~The local oscillator associated with the homody
detection is chosen to have the same spatial mode asC (0),
thereby ‘‘selecting’’ C (0). Note that the potential mode
mismatch effect here is already taken into account in
fractional loss« lo of the local oscillator, as described in Ap
pendix B 4.!

Quite naturally, we have to introduce two sets of quad
ture operators to describe the two modes. For example
the field P(z) entering through the extraction mirror, w
have

p̃(0)[S p̃1
(0)

p̃2
(0)D , p̃(1)[S p̃1

(1)

p̃2
(1)D . ~C5!

For each of the three cavities, we have to decompose
optical field into its own fundamental and excited mod
propagate them separately and then combine them.
input–output (a2b) relation of one of the cavities with mir
rors held fixed can be written as

S b̃(0)

b̃(1)D 5@eiF fndPfnd1eiFexcPexc#S ã(0)

ã(1)D , ~C6!

where

Pfnd5S 1

m D ~1 m* !, ~C7a!

Pexc5S 2m*

1 D ~2m 1!, ~C7b!
12200
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are the projection operators, andF fnd and Fexc5p are the
phases gained by the fundamental mode and excited m
after being reflected back by the cavity.

The mode-mismatching can cause both shot and radia
pressure noises at the output, giving

q̃(0)→q̃(0)1NMM
shot1NMM

rad pres. ~C8!

Assuming the mirrors are held fixed and applying the n
input-output relations~C6! of the non-perfect cavities, we ge
the following shot noise in the output~to leading order in
marm andmslosh):

NMM
shot52eicmarm* A 4

To

ATp

11A12Tp

12A12Ti

ATi

vd

uL~v!u
ĩ (1)

'e2 icmarm* ATiTp

4To

vd

uL~v!u
ĩ (1); ~C9!

see Eq.~B1!. The quantityĩ (1) refers to the excited mode o
the noise coming in the bright port@ I (z) in Fig. 3#.

The main results embedded in Eq.~C9! are
~i! the mode-mismatching with the sloshing cavity do

not give any contribution at leading order inm, and
~ii ! the mode-mismatching shot noise comes from

higher-order mode entering from thebright port, strongly
suppressed by the presence of the internal and pow
recycling mirrors.

These two effects are both due to the coherent interac
between the fundamental (C (0)) and excited (C (1)) modes
~of our idealized cavity!, in which energy is not simply dis-
sipated fromC (0) but exchanged coherently between the tw
modes as the light flows back and forth between the slosh
cavity and the arm cavities. Detecting an appropriate lin
combination of the two modes can then be expected to
verse the effect of mode mismatching. In our case, the pr
erties of the cavities are carefully chosen such thatC (0) itself
is the desired detection mode~for the sloshing mismatch!.
Consequently, the mode mismatching with the sloshing c
ity does not contribute at leading order@item ~i! above#. Re-
garding item~ii !, the mismatch of the two arm cavities doe
give rise to an additional noise, but it can only come from t
higher mode in the bright port, because at leading orde
mismatches,~a! the propagation ofC (0) from the bright port
to the dark port is suppressed and~b! there is no propagation
of dark-portC (1) into dark-portC (0) since we have chose
C (0) in such a way that the two arm cavities have exac
opposite mismatches with it.

The reason why this noise is suppressed by the factor 1Tp
is simple: becauseC (1) is not on resonance with the com
posite cavity formed by the power-recycling mirror and t
arm cavities, its fluctuations inside the system~like its clas-
sical component! are naturally suppressed by a factor 1/ATp
compared to the level outside the cavity. The reason for
factor of 1/Ti is similar: theC (1) mode does not resonat
within the system formed by the arm cavities and the R
mirror and will consequently be suppressed.
4-22
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By computing at the fields at the end mirrors and fro
them the fluctating radiation pressure, we obtain
radiation-pressure noise due to mode-mismatching:

NMM
rad pres52

e2ic

2
marm* ATiTp

4To
S 0 0

2k* 0D ĩ (1). ~C10!

This radiation-pressure noise is suppressed by a factor s
lar to the shot noise.

By comparing Eqs.~C9! and ~C10! with, e.g., Eqs.~B7!,
we see that mode mismatching produces noise with es
tially the same form as optical-element losses from the ar
extraction mirror and sloshing cavity~AES!, with ~assuming
the input laser is shot-noise limited in the higher modes!

«MM5
TiTp

4
umarm* u2. ~C11!

The factorTiTP/4 happens to be the ratio between the inp
power ~at the power-recycling mirror! and the circulating
power, which will be;1024. SupposeR(marm); I(marm)
;0.03. The effect of mode-mismatching will then be mu
less significant~in our simple model! than the losses from th
optical elements.

It should be evident that other imperfections in the cav
mirrors, which cause admixtures of other higher-order~‘‘ex-
cited’’! modes, will lead to similar ‘‘dissipation factors,
EMM;(TiTp/4)umarm* u2. For this reason, we expect mode m
matching to contribute negligibly to the noise, and we igno
it in the body of the paper.

APPENDIX D: TRANSMISSIVITY MISMATCH BETWEEN
THE INTERNAL MIRROR AND THE RSE MIRROR

Recall from Sec. I that when the internal and RSE mirr
have the same transmissivity, their effects on the grav
,
.

S
G

P.

,

s.

12200
e

i-

n-
s,

t

e

s
-

wave sideband cancel. If, however, the transmissivity of
internal mirror,Ti , is not perfectly matched by that of th
RSE mirror,TRSE, then this cancellation will no longer b
perfect. As a result, the RSE cavity~i.e., the cavity between
the internal and RSE mirrors! will have the same effect as a
additional mirror ~with a small reflectivity!. Suppose the
transmissivity of this effective mirror is TRSE5(1
1«RSE)Ti . Then a simple calculation yields its~amplitude!
reflectivity:

m5
A12Ti2A12TRSE

12A12TiA12TRSE

'
«RSE

2A12Ti

'
«RSE

2
. ~D1!

Adding this effective mirror with reflectivitym to our
interferometer yields a new set of input-output relatio
similar to Eq.~12!, but with modifiedk and c. The func-
tional form ofk can be maintained by appropriately redefi
ing the quantitiesV andd. To leading order inm, we obtain

k→kTM5
V I

3dTM

~v22VTM
2 !21v2dTM

2
, ~D2!

with

V→VTM5~12m!V, d→dTM5~122m!d. ~D3!

Consequently, we can re-optimize the system to compen
for this transmissivity-mismatch effect.
.
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