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In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detec-
tors (e.g., LIGO-IIl and EURQ, one strategy is to monitor the relative momentum or speed of the test-mass
mirrors, rather than monitoring their relative position. A previous paper analyzed a straightforward but imprac-
tical design for aspeed-meter interferometéhat accomplishes this. This paper describes some practical
variants of speed-meter interferometers. Like the original interferometric speed meter, these idegigns
ciple can beat the gravitational-wave standard quantum I{®@L) by an arbitrarily large amount, over an
arbitrarily wide range of frequencies. These variants essentially consist of a Michelson interferometer plus an
extra “sloshing” cavity that sends the signal back into the interferometer with opposite phase shift, thereby
cancelling the position information and leaving a net phase shift proportional to the relative velocity.
practice the sensitivity of these variants will be limited by the maximum light poM&y,. circulating in the
arm cavities that the mirrors can support and by the leakage of vacuum into the optical train at dissipation
points. In the absence of dissipation and with squeezed va¢power squeeze facter 2R=0.1) inserted into
the output port so as to keep the circulating power down, the SQL can be beal/Hys
~ W5 R/W,,. at all frequencies below some chosenf,,=100 Hz. Here W52
=800 kW(f ,,/100 Hz) is the power required to reach the SQL in the absence of sque¢Fiogever, as the
power increases in this expression, the speed meter becomes more narrow band; additional power and reopti-
mization of some parameters are required to maintain the wide band. See SecEBtiBates are given of the
amount by which vacuum leakage at dissipation points will debilitate this sensithag/Fig. 12, these losses
are 10% or less over most of the frequency range of inteffestlQ) Hz). The sensitivity can be improved,
particularly at high fregencies, by using frequency-dependent homodyne detection, which unfortunately re-
quires two 4-km-long filter cavitietsee Fig. 4
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[. INTRODUCTION sition transducefperhaps microwave-technology basead-
stead of via the interferometer’s light; however, the designs

This paper is part of the effort to explore theoretically are not yet fully developed.
various ideas for a third-generation interferometric At present, the most complete analysis of candidate de-
gravitational-wave detector. The goal of such detectors is tsigns for third-generation external-readout detectors has been
beat, by a factor of 5 or more, ttandard quantum limit carried out by Kimble, Levin, Matsko, Thorne, and Vyatcha-
(SQL—a limit that constrains interferometef4] such as nin[7] (KLMTV ). They examined three potential designs for
the first generation of the Laser Interferometric Gravitationalinterferometers that could beat the SQL: a squeezed-input
Wave ObservatoryLIGO-I) which have conventional opti- interferometer, which makes use of squeezed vacuum being
cal topology[2,3], but does not constrain more sophisticatedinjected into the dark port; a variational-output scheme in
“quantum nondemolition"(QND) interferometer$4,5]. which frequency-dependent homodyne detection was used;

The concepts currently being explored for third- and a squeezed-variational interferometer that combines the
generation detectors fall into two categoriesternal read- features of both(Because the KLMTV designs measure the
out and intracavity readout In interferometer designs with relative positions of the test masses, we shall refer to them as
external readout topologies, light exiting the interferometemosition meters particularly when we want to distinguish
is monitored for phase shifts, which indicate the motion ofthem from the speed meters that, for example, use
the test masses. Examples include conventional interferonvariational-output techniquesAlthough at least some of the
eters and their variantsuch as LIGO-1[2,3], LIGO-II [6], KLMTV position-meter designs have remarkable perfor-
and those discussed in R¢T]), as well as the speed-meter mance in the lossless limit, all of them are highly susceptible
interferometers discussed here and in a previous j8pen  to losses.
intracavity readout topologies, the gravitational-wave force In addition, we note that the KLMTV position meters
is fed via light pressure onto a tiny internal mass, whoseeach require four kilometer-scale cavitiggo arm cavities
displacement is monitored with a local position transducer+two filter cavitie3. The speed meters described in this pa-
Examples include the optical bar, symphotonic state, and ogper require at least three kilometer-scale cavifieeo arm
tical lever schemes discussed by Braginsky, Khalili, andcavitiestone “sloshing” cavity (described beloy. If we
Gorodetsky[9—11]. These intracavity readout interferom- use a variational-output technique, as KLMTV did, the re-
eters may be able to function at much lower light powerssulting interferometer will have five kilometer-scale cavities
than external readout interferometers of comparable sensitijtwo arm cavities-one sloshing cavitytwo filter cavities
ity because the QND readout is performed via the local pofagain, see belo)y. The speed meter described in
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FIG. 1. Comparison of noise curvesith losse$ of several - -1 L-(_C) 1
interferometer configurations. Each of these curves has been opti- — — —> |
oo - : N 3 Kn)
mized in a way that is meant to illustrate their relative advantages H Ts
and disadvantages. The conventional position mEeM) [7] has Q| [ PC)

W,;,c=820 kW and bandwidth y=cT/AL=27X100 Hz. The . . . .
squeezed-input speed met@SM)—optimized to agree with the FIG. 2. Simple version of three-cavity design for speed-meter
d put sp P g interferometer. The main laser input port is denoted (@), where

conventional position meter at high frequencies—has power, . ) . .
squeeze factoe 2R=0.1, optimal frequencyog,—27x 105 Hz, {=t—2z/c. The signal is extracted at the bottom mirfalenoted

. . =t+ . i -
extraction rated= 2w, and sloshing frequenc) = \/§wopt. The ?V\/((Z)’()r\;vcg::ignstis ftlw(;] m-irrrrlsr gfjvr\;n;e tr);etween the one- and
squeezed-variational position met@&VPM) [7] has the same pa- P gray.

rameters as the conventional position meter, with power squeeze The original idea for a speed meter, as a device for mea-
factor e 2R=0.1. There are two squeezed-variational speed-meteguring the momentum of a single test mass, was conceived
curves(SVSM). One (black dashesuses the same parameters as by Braginsky and Khalil{12] and was further developed by
the squeezed-input speed meter. The ofselid curve has been  Braginsky, Gorodetsky, Khalili, and ThorBGKT) [13]. In
optimized to compare more directly with the squeezed-variationatheir appendix, BGKT sketched a design for an interferomet-
position meter; it hag)=2mx95 Hz ands=27x100 Hz (note  ric gravity wave speed meter and speculated that it would be
that our 6 is equivalent to the bandwidtly used to describe the aple to beat the SQL. This was verified in R] (Paper J,
interferometers in Ref.7]). where it was demonstrated that such a device coulatin-

ciple beat the SQL by an arbitrary amount over a wide range
this paper can achieve a performance significantly better thagf frequencies. However, the design presented in that paper,
a conventional position meter, as shown in Fig(By “con-  which we shall call theéwo-cavity speed-metetesign, had
ventional,” we mean “without any QND techniques.” An three significant problems: it requiréd) a high circulating
example is LIGO-I. The squeezed-input speed m&®@ISM) power (~8 MW to beat the SQL by a factor of 10 in noise
noise curve shown in Fig. 1 beats the SQL by a factofy®  power at 100 Hz and below(ii) a large amount of power
in amplitude and hafixed-anglesqueezed vacuum injected coming out of the interferometer with the sigrial0.5 MW),
into the dark porfthis allows the interferometer to operate atand (i) an exorbitantly high input laser power
a lower circulating power than would otherwise be necessar¢=300 MW). The latter two problems are effectively elimi-
to achieve that level of sensitivity, as described by E).  hated by the alternate class of speed meters presented here—
below]. The squeezed-variational position met&vPM), — designs that are based on the same QND mechanism de-
which requires squeezed vacuum dmnequency-dependent Scribed in Refs.[8,12,13 but implemented by different
homodyne detection, is more sensitive than the squeeze@Ptical configurations. In addition, techniques for reducing
input speed meter over much of the frequency range of inthe needed cw_culgtmg power are also dlscussgd. These im-
terest, but the speed meter has the advantage at low frequ pvenlgntlstbrmg interferometric speed meters into the realm
cies. It should also be noted that the squeezgd—variation:% ,%rgi(;]:g?el\)//érsion of thehree-cavity speed-metdesign to
position meter requires four kilometer-scale cavitias de-

bed in th . h h d be discussed in this paper is shown in Fig. 2(en idealized
scribed in the previous paragraplwhereas the squeezed- yheorist's version ofthis speed meter, the input laser light
input speed meter requires three.

. [with electric field denoted({) in Fig. 2] passes through a
If frequency-dependent homodyne detection is added tQower-recycling mirror into a standard Michelson interfer-

the squeezed-input speed meter, the resulting squeezegmeter, The relative phase shifts of the two arms are adjusted
variational speed metéBVSM) can be optimized to beat the sq that all of the input light returns to the input port, leaving

squeezed-variational position meter over the entire frequencie other port darki.e., the interferometer is operating in the
range. Figure 1 contains two squeezed-variational speesymmetric mode s®(7)=0 in Fig. 2]. In effect, we have a
meter curves; one is optimized to match the squeezed-inpuésonant cavity shaped like. When the end mirrors move,
speed meter curve at low frequencies, and the other is optthey will put a phase shift on the light, causing some light to
mized for comparison with the squeezed-variational postionenter the antisymmetric modshaped like-) and come out
meter curveresulting in less sensitivity at high frequendies the dark port. So far, this is the same as conventional inter-
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FIG. 3. Schematic diagram showing the practical version of the FIG. 4. Schematic diagram showing the practical three-cavity
three-cavity speed-meter design, which reduces the power flowingpeed-meter design with squeezed vacuum injected at the dark port
through the beam splitter. Three additional mirrors, with transmis-and two filter cavities on the output. Note that the circulator is a
sivity T;, are placed around the beam splitter. The™and “ —" four-port optical device that separates the injedsglieezedinput
signs near the mirrors indicate the sign of the reflectivities in theand the interferometer’s output.
junction conditions for each location. The mirror shown in gray
closes the second port of the interferometer. We have used the extraction mirror to put the sloshing cavity

) ) _ o parallel to one of the arms of the Michelson part of the in-
ferometer designgbut without the optical cavities in the two  terferometer, allowing this interferometer to fit into the ex-
interferometer arms _ isting LIGO facilities. The presence of the extraction mirror

Next, we feed the light coming out of the dark port essentially opens two ports to our system. We can use both
[D(7)] into a sloshing cavitylabeledK(7) and L({) in  outputs, or we can add an additional mirror to close one port
Fig. 2]. The light carrying the position information sloshes (the gray mirror in Fig. 2 We will focus on the latter case in
back into the “antisymmetric cavity” with a phase shift of thjs paper.
180°, cancelling the position information in that cavity and  The sensitivityh of this interferometer, compared to the
leaving only a phase shift proportional to the relative veloc-SQL, can be expressed?as
ity of the test massesThe sloshing frequency is

o\T. h \/ WER" \/soo KW .
Q= 2L (1) hSQL eZR\Ncirc eZRWcirc,

whereTgis the power transmissivity of the sloshing mirrbr,  where W, is the power circulating in the armch?iS:L

is the common length of a]l th(ee cavities, ani the speed ~go0 KW(f 5,/ 100 Hz) is the power required to reach the
of light. We read the velocity sign@Q(#)] out at an extrac-  SQL in the absence of squeeziffgr the arms of length.

tion mirror (with transmissivityT,), which gives a signal- =4 km and test masses with mass- 40 kg), ande?R is the
light extraction rate of power squeeze factdr.With no squeezed vacuum, the
cT,
5=—". ()
L 2t should be noted that, as the power increases in(By.the

speed-meter performance becomes more narrow band. Additional
power and a re-optimization of some of the speed meter’'s param-
The net signal is proportional to the relative velocities of the testeters are required to maintain the same bandwidth at higher sensi-

masses, assuming that the frequenciesf the test masses’ motion tivities. See Sec. Ill B for details.
are w<Q) = (sloshing frequency). However, the optimal regime of SFor an explanation of squeezed vacuum and squeeze factors, see,
operation for the speed meter is~(). As a result, the output for example, KLMTV and references cited therein. In particular,
signal contains a sum over odd time derivatives of positsme the  their work was based on that of Cavigst] and Unruh[4]. Also,
discussion in Sec. Il A Therefore, the speed meter monitors not KLMTV state that a likely achievable value for the squeeze factor
just the relative speed of the test masses, but a mixture of all od@n the LIGO-III time frame is e?R=10, so we use that value in our
time derivatives of the relative positions of the test masses. discussion.
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squeeze factor ie?R=1, so the circulating powaN,;,. must ~ mirrors will be able to tolerate in the LIGO-III time frame.
be 8 MW in order to beat the SQL dt,,~100 Hz by a Assuming that several megawatts is not acceptable, we shall

factor of \10 in sensitivity. With a squeeze factor efR show that the circulating power can be reduced by injecting
~10, we can achieve the same performance Vg fixed-angle squeezed vacuum into the dark port, as indicated
] rc

~800 KW, which is the same as LIGO-Il is expected to be.?Y Ea-(3). L .

This performancéin the lossless limjtis the same as that  ©0INg a step farther, we shall show that if, in addition to
of the two-cavity(Paper } speed meter for the same circu- N€cted squeezed vacuum, we also use frequency-dependent
lating power, but the three-cavity design has an overwhelm_(FD) hom‘?dy”e .detectlon, the §en3|t|V|ty of t-he speed meter
ing advantage in terms of required input power. However'S dramat'Fa”y improved at high frequenci¢above fo,
there is one significant problem with this design that we musf= 100 H2); this is shown in Fig. 1. The disadvantage of this
address: the uncomfortably large amount of laser powelS that FD homodyne detection requires two filter cavities of
equal toW,;, flowing through the beam splitter. Even with tr;]e same length as the arm cavitigs km for LIGO), as
the use of squeezed vacuum, this power will be too high. shown in F|g._4. . o

This type of problem was addressed by Weiss and Drever Our analysis of the losses in these scenarios indicates that

who showed, respectively, that inserting optical delay Iinesdur speed meters with squeezed vacuum and/or variational-

[15] or Fabry-Peot (FP) cavities [16] into the arms can output are much less sensitive to losses than a position meter

hi hiah circulati th relatively low inout using those techniquédas analyzed by KLMTY. Losses for
achieve a nigh circuiating power with relatively 1ow INpUt e y/arigys speed meters we discuss here are generally quite
power at the beam splitter. In particular, using FP cavities Now and are due primarily to the losses in the optical ele-

the arms is now the standard design for most conventionghants (as opposed to mode-mismatching effecifithout
interferometers, such as LIGO-I. However, applying thesegyeezed vacuum, the losses in sensitivity are less than 10%
techniques alone will alter the propagation of thejy the range 50-105 Hz, lower at higher frequencies, but
gravitational-wave sidebands inside the interferometer anﬁigher at low frequencies. Injecting fixed-angle squeezed
jeopardize the performance of our speed meter. Fortunatelygcuum into the dark port allows this speed meter to operate
there is a technique, based on the work of MIZlﬁﬂ]@] that at a lower power[see Eq(3):|, thereby reducing the domi-
allows us to use FP cavities in the arms without affecting theyant lossegwhich are dependent on the circulating power
propagation of the sidebands. This method requires an addiecause they come from vacuum fluctations contributing to
tional mirror between the beam splitter and the extractionhe pack action In this case, the losses are less than 4% in
mirror, placed such that light with the carrier frequency resothe range 25—150 Hz. As before, they are lower at high fre-
nates in the subcavity formed by this mirror and the armsgyencies, but they increase at low frequencies. Using FD
internal mirrors. We shall call this design tpeactical three-  homodyne detection does not change the losses significantly.
cavity speed metethe three new mirrors are labeldd in This paper is organized as follows: In Sec. Il we give a
Fig. 3. brief description of the mathematical method that we use to
As claimed by Mizund17] and tested experimentally by analyze the interferometer. In Sec. Il A, we present the re-
Freise et al[18] and Masor{19], when the transmissivity of gyits in the lossless case, followed in Sec. 11l B by a discus-
the third mirror decreases from 1, the storage time of sidesjon of optimization methods. In Sec. Ill C, we discuss some
band fields in the arm cavity due to the presence of the inpf the advantages and disadvantages of this design, including
ternal mirrors will decrease. This phenomenon is called resohe reasons it requires a large circulating power. Then in Sec.
nant sideband extractioiRSB); consequently, the third |v we show how the circulating power can be reduced by
mirror is called the RSE mirror. One SpeCiaI case, which is Oinjecting Squeezed vacuum through the dark port of the in-
great interest to us, OoCcurs when the RSE mirror has the Samerferometer and how the use of frequency-dependent homo-
transmiSSiVity as the internal mirrors. In this case, the EﬁeCHyne detection can improve the performance at h|gh frequen_
of the internal mirrors on the gravitational-wave sidebandsjes. In Sec. V, we discuss the effect of losses on our speed
should be exactly cancelled out by the RSE mirror. The thregneter with the various modifications made in Sec. 1V, and we
new mirrors then have just one effect: they reduce the carriefompare our interferometer configurations with those of

power passing through the beam splitter—and they can do SR MTV. Finally, we summarize our results in Sec. VI.
by a large factor.

Indeed, we have confirmed that this is true for our speed
meter, as long as the distances between the three additional
mirrors (the length of the “RSE cavity) are small(a few
meterg, so that the phase shifts added to the slightly off-
resonance sidebands by the RSE cavity are negligible. We The interferometers in this paper are analyzed using the
can then adjust the transmissivities of the power-recyclingechniques described in Pape{Sec. ). These methods are
mirror and of the three internal mirrors to reduce the amounbased on the formalism developed by Caves and Schumaker
of carrier power passing through the beam splitter to a morg20,21] and used by KLMTV to examine more conventional
reasonable level. interferometer designs. For completeness, we will summa-

With this design, the high circulating power is confined torize the main points here.
the Fabry-Peot arm cavities, as in conventional LIGO de-  The electric field propagating in each direction down each
signs. There is some question as to the level of power thaaegment of the interferometer is expressed in the form

Il. MATHEMATICAL DESCRIPTION
OF THE INTERFEROMETER
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[t w, The motivations for these assumptions are tfiathey lead

Efie( ) = S A(L). (4)  to speed-meter behaviofij) as with any interferometer, the
best performance is achieved by making the end-mirror

transmissivitiesT, as small as possible; aridi) good per-
formance requires a light extraction rate comparable to the
sloshing rate, s~ [cf. the first paragraph of Sec. llIB in
Paper 1, which with Egs.(1) and (2) implies T,~ T so
T,>Ts. Throughout the paper, we will be using these as-
sumptions, together witlwL/c<1, to simplify our expres-
sions.

Here A({) is the amplitude[which is denoted by other
letters—B(¢), P({), etc.—in other parts of the interferom-
eter; see Fig. R {=t—2z/c, wy is the carrier frequency; is
the reduced Planck’s constant, afds the effective cross-
sectional area of the light beam; see &).of KLMTV. For
light propagating in the negative direction, {=t—2z/c is
replaced bynp=t+z/c. We decompose the amplitude into
cosine and sine quadratures,

A({)= Ai({)coswol + Ay({)sinwod, ©) o . . .

For simplicity, in this section we will sef.=0 (end mir-
where the subscript 1 always refers to the cosine quadraturegrs perfectly reflecting We will also neglect thévacuum-
and 2 to sine. Both arms and the sloshing cavity have lengtfluctuation noise coming in the main laser poiit(,) since
L=4 km, whereas all of the other lengtlisare short com-  that noise largely exits back toward the laser and produces
pared toL. We choose the cavity lengths to be exact halfnegligible noise on the signal light exiting the output port. As
multiples of the carrier wavelength se'?0t°=1 and  a result of these assumptions, the ofigcuum-fluctuation
e'2e0z/=1 . There will be phase shifts put onto the sidebandnoise that remains is that which comes in through the output

light in all of these cavities, but only the phase shifts due toport (p1). An interferometer in which this is the case and in

the long cavities are significant. _which light absorption and scattering are unimportaRt (
The aforementioned sidebands are put onto the carrier by 1—1 tor all mirrors. as we have assumdd said to be

the mirror motions and by vacuum fluctuations. We express|ycgjess.” In Sec. V. we shall relax these assumptions; i.e.
the quadrature amplitudes for the carrier plus the sidebandge shall consider Ioissy interferometers B
in the form '

Ill. SPEED METER IN THE LOSSLESS LIMIT

It should be noted that the results and discussion in this

. de section and in Sec. IV apply to both the simple and practical
Aj(g):Aj(g)Jrf [Ej(w)e“”5+af(w)e‘w5]—. (6)  Versions of the three-cavity speed me(feigs. 2 and B The
0 2m two versions are completely equivaldirt the lossless limjt

HereA,(¢) is the carrier amplitudeﬁ,—(w) is the field ampli-
tude (a quantum mechanical operatdor the sideband at . .
sideband frequency (absolute frequencyy=* w) in thej The lossless interferometer output for the speed meters in
quadrature, anajf(w) is the Hermitian adjoint oﬁj(w); of. Fig. 2 and 3, as derived by the analysis sketched in the pre-

Egs. (6)—(8) of KLMTV, where commutation relations and vious section, is then

A. Mathematical analysis

the connection to creation and annihilation operators are dis- ~ L£* ()~
cussed. In other portions of the interferomefeg. 2), A;({) g;=— mpl, (8a)
is replaced by, €.9.Cj(¢); Aj(£), by Ci(0); aj(w), by
Ej(w), etc. ] .

Since each mirror has a power transmissivity and comple- ~ _ 2w V“’O&Ncirc;(_ L (0)~ (8b)
mentary reflectivity satisfying the equatidn- R=1, we can 92 VhicLL(w) L(w) P2-

write out the junction conditions for each mirror in the sys-

tem, for both the carrier quadratures and the sidebaseks ~ . . )

particularly Eqs(5) and(lg)—(14) in Paper 1. We shall de- €€ Pj(@) is the side-band field operatdanalogue of
note the power transmissivities for the sloshing mirrofas ~ @j(@) in Eq. (6)] associated with the dark-port inpB({),
for the extractionoutpu) mirror asT,, the power-recycling andaj(w) associated with the outp@( ) ; see Fig. 2. Also,
mirror asT, for the beam-splitter a$,=0.5, for the inter-  in Egs.(8), L(w) is ac number given by

nal mirrors asT;, and for the end mirrors aB,; see Figs. 2

and 3. _ . _ L(w)=0°—w’—iwd 9
The resulting equations can be solved simultaneously to

get expressions for the carrier and sidebands in each segment B _ .
of the interferometer. Since those expressions may be quielféeca"'ng thatQ_C.\/-ITSIZL s the SI.OSh.mg frequencyp
=cT,/L the extraction raff the asterisk inC* (w) denotes

complicated, we use the following assumptions to simplify — -
our results. First, we assume that only the cosine quadratuiée complex conjugate(w) is the Fourier transform of the
is being driven(so that the carrier sine quadrature terms argelative displacement of the four test masses—i.e., the Fou-
all zerg. Second, we assume that the transmissivities obeyrier transform of the difference in lengths of the interferom-
eter’s two arm cavities—and/;. is circulating power in the
1I>T>TS>Te and B>{T,,T}>T.. (7)  each of the interferometer’s two arms. Note that the circulat-
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ing power(derived as in Sec. |l B of Paperik related to the is the standard quantum limit for a conventional interferom-

carrier amplitudeB; in the arms b§ eter such as LIGO-I or VIRGQ1].
In Fig. 5, we plot the coupling constartas a function of
1 2 4hw0|§ frequency for several values éf As the graph shows can
WcifcziﬁwoBl: TT, ' (10 be roughly constant for a rather broad frequency band

=, when is chosen to be-Q (as it will be when the

wherel, is the input laser amplitudén the cosine quadra- interferometer is optimized Combining this with the fact
ture). Readers who wish to derive the input-output relationsthathgg, = 1/w, we infer from Eqs(12) that the outpusig-
(8) for themselves may find useful guidance in Appendix Bna| at frequencieso=<( is proportional towh, or equiva-
OT KLMT\./ [7] an_d in Secs. |l and .”I of Paper(B], Wh?Ch lently wx, which is the relative speed of the test masges
give detailed derivations for other interferometer designs. mentioned above

Notice that the first term in E48b) containsx only in the The termsAp, and AB, in Egs. (8) represeniuantum
form wx; this is the velocity signalactually, the sum of the ngjse(shot noise, radiation-pressure noise, and their correla-
velocity and higher odd time derivatives of position becausgjons). We shall demonstrate below that, in the frequency
of the £(w) in the denominatdr The test masses’ relative pandw={) where the interferometer samples only the speed,

displacemenk(w) is given by there is no back-actioradiation-pressupenoise. This might
not be obvious from Eqg12), especially because they have
~ ~ o~ ~  BivhwygoWere ~ an identical form(except for the frequency dependencecdf
X=Xe=Xp=Lh— ———=—"py, (1) as the input-output relations of a conventional interferometer,
M \/Eﬁ(a))

where the term proportional t& (their version ofx) is the
radiation-pressure noise. Indeed, if one measures the “sine”

quadrature of the output],, as is done in a conventional
interferometer, this speed meter turns out to be SQL limited,
as are conventional interferometers.

Fortunately, the fact that is constantand equal toxg)
over a broad frequency band will allow the aforementioned
cancellation of the back action, resulting in a QND measure-
ment of speed. To see this, suppose that, instead of measur-

Q=Ap,=p.e2?, (129 ing the output phase qua_ldratng we use homodyne detec-
tion to measure a generic, frequency-independent quadrature
-~ of the output:

~ ~ h ~ _ .~ ~ 20
02=Apy+ 2k h e, Ap,=(py—«py)e??
sQL

wherex, is the Fourier transform of the relative displace-

ment of the mirrors of the “east” arm arx}, is the same for
the “north” arm. The last term is the back action produced
by fluctuating radiation pressufeerived as in Sec. I B of
Paper ).

It is possible to express Eg&) in a more concise form,
similar to Eqs.(16) in KLMTV:

(12b) qo=Apicos®+| Ap,+ 2k F e’|sind, (16
sQL
Here
02— 2 where® is a fixed homodyne angle. Then from E¢®), we
tany=— (13)  infer that the noise in the signal, expressed in gravitational-
o wave strain unitd, is

is a phase shift put onto the light by the interferometer,

h,=——=¢'"[py(cotd — k)+p,]. 17)
3 16")05\Ncirc (14) n \/Z [pl( ) p2] (

o=
mcl|L(w)|?

) ) ) ) _By making cot®=xy=(constant value ok at w<(}), the
is a dimensionless coupling constant that couples the gravity, yiation pressure noise m, will be cancelled in the broad

wave signah into the outpui,, and band wherex= k,, thereby making this a QND interferom-
eter.
[ 8h We assume for now that ordinary vacuum enters the out-
hsoL= M2l 2 (15 put port of the interferometer; i.ep; andp, are quadrature

amplitudes for ordinary vacuunfwe will inject squeezed
vacuum in Sec. IV A This meandEq. (26) of KLMTV ]
4Equation(10) refers specifically to the practical version of the that thelr(SIng_Ie-SIdeOi spectral qenSItleS are unl_ty and_thelr
three-arm interferometéFig. 3). The simple(Fig. 2) version would cross-correlations are zero, which, when combined with Eqg.
be (17), implies a spectral density of
1 fwol s

Weire= Eﬁ wOB% -7

Sh,= (hsqU?é%. (18)

P
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is the interferometer’s “optimal frequency,” i.e., the fre-
quency at which|£(w)| reaches its minimum. Combining
with Eq. (14), we obtain
(VR 22
s (2= wi) >+ Xyt 3214)
-1
where
16w0Wcirc
0="——"7 2
: mLc @3
5 10 is a frequency scale related to the circulating poweiw4y;,
«/Q k reaches its maximurfsee Fig. 6
FIG. 5. The coupling constant(w) in arbitrary (logrithmic) 3
units with @ measured in units of2. The three curves correspond _ Q0 (24)
to the same light powefsuch thatx,,,,=5 for the middle curvg Kmax= 5(w2 + 52/4) )
but §=0.10, §=0.5Q, and 5= 2Q. opt
By setting
Here
Cot® = K ax (25

_ (cotd—k)*+1

2
¢ 2k

(19 we get the maximum amount by which a speed meter can
beat the SQL

is the fractional amount by which the SQL is beagnunits

of squared amplitude This expression fog? is the same as 1 8w+ 5%14)
that for the speed meters in PapefHq. (35)] and BGKT gﬁqin=2 == (26)
[Eqg. (40)], indicating the theoretical equivalency of these Kmax 24,

designs. In those papers, an optimization is given for the . . o
interferometer. Instead of just using the results of that opti- AS @ differs from w in either direction,«x decreases

mization, we shall carry out a more comprehensive study offOM Kmax- Thig'causes the noise to increase sifigethe
it. term (cot®— k)~ in the numerator of- [Eq. (19)] increases

and (ii) the denominator of? decreases. In order to have
broadband performance, we should make the peak(ef)
as flat as possible. As we can see from both(E8). and Fig.
The possible choices of speed meter parameters can Rg the shape of the peak can be adjusted by changirfgr
irivestigated intuitively by examining t_he behavior ©f To  the same optical power, a largémeans a wider peak but a
aid us in our exploration, we choogas in BGKT and Paper smaller maximum. Therefore, changiidgis one method of
1) to expres§L(w)|® [Eq. (9)] as balancing sensitivity against bandwidth, Some examples are
0 2 2.9 @2, 2 2 shown in Figs. 6, 7, and 8, wherd w), £ (w), andS,(w),
|[L(@)]*=(w= Wop) 8 (wopct 5°/4), (20 respectively, are plotted for configurations with the sasgg
and optical powelV,;., but with several values of.
To be more quantitative, a simple analytic form 3 )
®opi= JQZ= 8272, (21)  can be obtained by inserting Eq22), (24), and (26) into
Eq. (19) to get

B. Optimization

where

2

E(o)= LAt — 2 & (27)
Agn, (LHA) 7

51t should be noted that the expressions given in Sec. Ill A are
accurate to 6% or better over the frequency range of interest. To
achieve 1% accuracy, we expand to the next-highest order. The
result can be expressed as a re-definition of the sloshing frequengygre

02—0/"2=02- 6542,
(w?— a)gpt) 2

8wl 5%14)

where §=cT¢J2L. Thenk retains the same functional form: A (28)

’

K = 160‘)05\/\/0"0
mcL((Q'2— w?)+ w26?)

is a dimensionless offset from the optimal frequengy;.
From Eq.(29), it is evident thatA, and thust?, are the same

As a result, the optimization described in Sec. Ill B applies equallyfor =0 andw= \/Ewopt [see also Eq(47) of BGKT or Eq.
well to k’ and ()’ as to the originak and(}. (49) of Paper 1. For definiteness, let us impose that
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Prad

1
0.5 | 5= 4o
0.1 0.2 0.5 10 0 0.5 1 1.5 2
@/ Wope O/ Wopt
FIG. 6. The coupling constam( ») with @ measured in units of FIG. 7. The squared amount by which the speed meter beats the

wopt- The solid curve is determined by settidg= 2wop @nd kmax  SQL with a given circulating power, which is determined by setting
=5 (this value ofk s, cOMes from specifying that we want to beat (for the solid curvé £2,,=0.1 and the conditiofi29). Note that the

the SQL by a factor of 10; see Fig).7f, in addition, we ety  requirement onéZ,, sets the power relative to the SQL power
=2mwX 100 Hz, then all the parameters have been spedified to  \ySOL the value of which is dependent 0@gy. (FOr wep

the various relationships between theand are equal to the values :(:1'80' Hz, we havaV,.=8 MW.) If we hold the power fixed and
given in Table I. If we maintain the same power but chaAgéhen  changes to 1500y and 2.5, We get the other two curves.
Q can be adjusted to maintain the samg, [see Eq.(21)]. Ex-
amples of such a change are shown 86¢0.5wey and 6=4wen. i some “hidden” power dependence in EQ9). To deter-
Note that these two choices éfare more extreme than would be mine the behavior of the speed meter with significantly
desirable in practice, but they are shown here to illustrate Mg her ower or Iowefz- while maintaining the same wide-
clearly the effect onc of changing the ratio betweef and . bagnd pzrformanane rrrqlast re-apply the regquireme(tﬂg) to

3 determine the appropriate ratio betwe2and . For ex-

£(0)=&( \/Ewopt): ey (299 ample, sqlving Eqs(26) and (29) simultaneously forgZ,

2 and 6, with chosen valuedVN;.=20 MW and wqy= 2

% 100 Hz, givesd=2.334w andg,;ﬁ;-ﬂ?. Keeping this in

. 2 _ . .
as is done by BGKT. Fory,=0.1, this gives & iy a general expression for the circulating power is

=1.97Twop=2wepy (s assumed in BGKT and Papey |

Plugging these numbers into Eq6) and combining with
Eq.g(g?;)ggives ) ’ , :mLC(“’gpt+ 5°14) 6
circ 32@0 gﬁ]m
3
MLCwgy 5 )
Wil 5=2w0pt)= W _ 209 kW (wopﬁ— 6°14)6 m L
05min T2 | (2mx 100 H2?) | 40 kgl | 4000 k
~8.4 MW — i 1.78< 10 H
e 27X 100 HZ |40 kg x( : Z), 31)
®o
L 1.78x10% Hz|\[ 0.1
X 4000 K @0 gT - where the relationship betweed and w,y determines
min

whether the noise curve is deep but narrow or wide but shal-
(30 low [with the requiremen(29) giving the lattef.
So far, we have only changedl to modify the perfor-

Therefore, whenw, is chosen at <100 Hz, this speed mance of the speed meter. Another method is to change
meter (with 6=2w,,) requiresW;,.=8.4 MW to beat the In this case, the shape of the noise curve changes very little,
SQL by a factor of 10 in power&,,=0.1). [Note that, but the minima occur at different frequencies, causing the
keeping 6=2w,p, the speed meter reaches the SQL withinterferometer to have either broader bandwidth or higher
WS2=840 kW, comparable to the value given by KLMTV sensitivity (relative to the SQL This is shown in Fig. 9.
Eq. (132 for conventional interferometers with 40-kilogram Maintaining condition (29) with w,, chosen at 2zr
test massebThe £2 and S, curves for this configuration are X150 Hz, we get a broader but shallower cur{ghort
plotted as solid lines in Figs. 7 and 8, respectively. dashey this configuration beats the SQL by a factor of

Please note that E¢30) should be applied with caution £,2~4.7, up tof ~240 Hz. Withwgp=2mX75 Hz, we get
because significantly changinﬁ1in in the above equation a narrower but deeper cur¢®ng dashes which beats the
(without changing the ratio betweehand w,,) will change  SQL by a factor Offr;ﬁ{\*]], up tof~100 Hz. The power
the wide-band performance of the interferometer, since thereas kept fixed aW,;,.=8.2 MW. One more potential opti-
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<10 TABLE I|. Three-arm speed-meter interferometer parameters and
= their fiducial values, as used throughout except where other param-
g 51 eters are specified.
\é 2 Parameter Symbol  Fiducial value
% 1| carrier frequency wg 1.78x10% st
a mirror mass m 40 kg
0.5} arm length L 4 km
sloshing mirror transmissivity Ts 0.0008
0.2 output mirror transmissivity T, 0.017
end mirror transmissivity Te 2x10°°
internal and RSE mirror trans. T 0.005
0.1 0.2 0.5 1 2 5 10 .
O/ Wopy optimal frequency ®opt 27X 100 Hz
sloshing frequency QO 27X 170 Hz
FIG. 8. Noise curves corresponding to téecurves in Fig. 7,  extraction ratehalf-bandwidth S 27X 200 Hz

the caption of which describes the parameters used here as wegQL circulating power ngL 820 kW
The dotted line is an example of a noise curve for whicfs not

quite flat and co® was chosen to be slightly smaller thap,, (see
the end of Sec. Il B for details

With the three-cavity speed meter, we are able to replicate

mization method is to choosexawith a peak that is not quite th_e performance .Of the Mo—pawty design in Paper I, but
flat and then choose a cbt that is slightly smaller than without the e>§orb|tantly high input power. The reason why
Koy This will give a wider bandwidth on either side of OUr three-cavity speed meter does not need a high input
wmax at the price of decreased sensitivity at the region nea?®Wer i the same as for conventional interferometers: in
opt,(see dotrze d line in Fig.)8 y 9 oth cases, the excited cavities are fed directly by the laser.
wo,ljitor smolici il g.h icalb h According to Bose statistics, carrier photons will be
. plicity, we will choose a typical ut somewnhat ssucked” into the cavities, producing a strong amplification.
aTb'”ar” set of paramgters for the Iossl_ess interferometer OtI'his was not the case in the two-cavity speed meter of Paper
E;g.efv.vg;er?gt\e/;:‘g?ss’u%\slggljgr;l;ap?llgtsll ;\gg bc?alléiﬁg[i%enpst i(s)m-l' There, an _essentlz_illy empty cavity S'FOOd between_ th_e input
paring this speed-meter design to other configurations and the e_xcned ca_vlty, _thereby thwarting Bose statistics and
' resulting in a required input laser power much greater than
the power that was circulating in the excited cavisge Pa-
per | for more details In this paper, we have returned to a
In this section, we discuss how the three-cavity speedcase where the laser is driving an excited cavity directly,
meter design compares to the two-cavity design presented ihereby allowing the input laser power to be small relative to
Paper I, focusing on the three major problems of that desigrihe circulating power.

C. Discussion of three-cavity speed-meter design

it required(i) a high circulating power(jii) a large amount of Because the cavity from which we are reading out the
power coming out of the interferometer with the signal, andsignal does not contain large amounts of carrier lighyt
(ii) an exorbitantly high input laser power. contrast with the two-cavity designthis three-cavity speed

meter does not have large amounts of power exiting the in-
terferometer with the velocity signal, unlike the two-cavity
design. By making use of the different modes of the Mich-
elson interferometer, we have solved the problem of the ex-
orbitantly high input power and the problem of the amount
of light that comes out of the interferometer.

The problem of the high circulating pow#&V,;.., unfor-
tunately, is not solved by the three-cavity design. This is
actually a common characteristic of “external-readout” inter-
ferometer designs capable of beating the SQL. The reason
for this high power is the energetic quantum linGEQL),

1/2
[
o

(6]

o [Skh(HfSsor (100 Hz)]
=N

(6]

0.2 which was first derived for gravitational-wave interferom-
eters by Braginsky, Gorodetsky, Khalili and Thofi22]. The
10 20 50 100 200 500 1000 2000 EQL arises from the phase-energy uncertainty principle
f(Hz)
Wo
FIG. 9. Noise curves for varying optimal frequencies. The solid AEA¢= R (32

curve hasf =100 Hz and is identical to the solid curve of Fig. 8.

Maintaining the same power and the condition imposed by(Z3,

we show two examples of noise curves with other optimal frequenwhereE is the stored energy in the interferometer apds
cies, specificallyf ;=75 Hz andf o,= 150 Hz. the phase of the light. The uncertainffe of the stored light
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energy during the measurement process must be largdso shown in Fig. 4, is the introduction of two filter cavities

enough to allow a small uncertainty¢ in the stored light's

on the output, which allow us to perfornfrequency-

optical phase, in which the GW signal is contained. For ardependenhomodyne detectiofdescribed in KLMTV that

interferometer with coherent lighso AE=%wqVE/f wg),

will dramatically improve the performance of the speed

the EQL dictates that the energy stored in the arms must beaeter at frequencies=f .

larger thafi

E mL2w2A w 33
O 4wpe?

in order to beat the SQL by a factor §fnear frequencyo
with a bandwidthA w [Eq. (1) of Ref.[11] and Eq.(29) of
Ref. [22]]. In a broadband configuration withw~ w, we
have

A. Injection of squeezed vacuum into dark port

Because the amount of circulating power required by our
speed meter remains uncomfortably large, it is desirable to
reduce it by injecting squeezed vacuum into the dark port.
The idea of using squeezed light in gravitational-wave inter-
ferometers was first conceived by CaJdsl] and further
developed by Unru4] and KLMTV. We shall start in this

section with a straightforward scheme that will decrease the
effective circulating power without otherwise changing the
(34) speed meter performance.
As discussed in Sec. IV B and Appendix A of KLMTV, a
squeezed input state is related to the vacuum input &ate
For comparison, in the broadband regime of the speed metesumed in Sec. Il A by a unitary squeeze operat8(R,\)
we have, from Eq(26), [see Eqgs(41) and(A5) of KLMTV ]

mL2w3

Awot?

E¢

2 _ lin)=S(R,\)|0). (36)

ML2S(whpt 8%14)  mL2wgy,
4Ew, " 4Ew,

(35
HereR is the squeeze amplitude aids the squeeze angle,

where the stored energy B=2W,L/c. Comparison be- Poth of which in principle can depend on sideband fre-
tween Eqgs.(34) and (35) confirms that our speed meter is quency. However, the squeezed light generated using nonlin-
EQL limited. ear crystald23,24] has frequency-independeRtand \ in

As a consequence of the EQL, designs with coherent ligh@ur frequency band of interest, i.és<10 kHz[25]; and in
will all require a similarly high circulating power in order to this section, we shall assume frequency independence.
achieve a similar sensitivity. Moreover, given the sharp de- The effect of input squeezing is most easily understood in
pendenceExw?, this circulating power problem will be- terms of the following unitary transformation:
come much more severe when one wants to improve sensi-

tivities at high frequencies. |in)—S'(R,\)[in)=[0) (379
Nevertheless, the EQL in the for(83) above only applies ~ _

to coherent light. Using nonclassical light will enable the pi—S'(RN)P;S(RMN), (370

interferometer to circumvent it substantially. One possible

method was invented by Braginsky, Gorodetsky, and Khalili ajHST(R,)\)ajS(R,M, (370

[10] using a special optical topology and intracavity signal

extraction. A more conventional solution for our external-wherej=1,2. This brings the input state back to vacuum and
readout interferometer is to inject squeezed light into theransforms the input quadratures into linear combinations of
dark port, as we shall discuss in Sec. IM#nd as was also themselves, in a rotate-squeeze-rotate \f&yg. (A8) of
discussed in the original papg22] on the EQL. KLMTYV, in matrix form]:

IV. SQUEEZED VACUUM AND FD HOMODYNE P1 513>
DETECTION ~ |7 ~
P2 Pas
In this section, we discuss two modifications to the three- _
cavity speed-meter design analyzed in Sec. Ill A. This dis- + P1
cussion applies to both the simple and practical versions, =SI(RM)| ~ [S(RA)
shown in Figs. 2 and 3; the modifications are shown in Fig. P2
4. The first modification is to inject squeezed vacugmith cosh —sinA\/e R 0 COSN  Sin\
fixed squeeze anglénto the output port of the speed meter, :< . )( )( . )
as shown in Fig. 4. This will reduce the amount of power SinA cosh/| 0 e/ —sin\  cos
circulating in the interferometer. The second modification, s
><<~1 . (39)
P2

SFor interferometers at low powers, where radiation-pressure ef-
fects are not important, this coherent-light EQL agrees with Mi-In particular, the GW noise can be calculated by using the
zuno’s sensitivity theorenSec. Ill A of Ref.[17]). squeezed noise operafdtq. (29) of KLMTV ]
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hns=S"(R,AM)h,S(RN), (39 we have both squeezed-input and FD homodyne detection,
we will use the term “squeezed-variational speed meter.”
and the vacuum state. The following discussion is analogous to Secs. IV and V of

A special case—the case that we want—occurs viRén  KLMTV.
constant anc. = 7r/2. Then there is no rotation between the  For a generic frequency-dependestueeze angla (o)
quadratures but only a frequency-independent squeezing and homodyne detection phase(w), we have, for the

stretching, squeezed noise operafdqgs. (39) and(38)],
~ =~ _ _R%
P1—P1s=€"P1, (409 e hngewm
~ ~ K
Pa—P2s=€ Ps. (40b)

_ X (p1{coshR cos¥ —sinhRcog ¥ — 2(¥ +\) ]}
Consequently, Eqs(12) for the output quadratures; g o o 5
=S'(R,7/2)q, (R, 7/2) are transformed into —p2{coshRsinW —sinhRsif W —2(¥ +\)]}),
~ - (44)
015=e"pe?” (419
where

) h
Rpy)e??+ ke®R —€e'?|.  (41b
hSQL

=~ _~R (A _ 2 ~ o~
O2s=€ 7| (P2~ ke cotV=k=x—cotd. (45)

The corresponding noise can be put into the same form &Bhe corresponding noise spectral denpitymputed by using
Eq. (17), the ordinary vacuum spectral densitief; =S;,=1 and

85152=0, in Eq.(44)] is

hs . ~ -~
hns:i_el ¢[ pl(COtCDeff_ Keff) + pZ]' (42) 2
Keff (hsquU ~ 2\ fa- 2R qi P
Sh:T(1+K){e +sinh2R[1—cos AWV +\)]}.
with (46)
cotdgg=e*Rcot®, Kg=e" k. (43)

Note that these expressions are analogous to KLMTV Egs.
(69—(71) for a squeezed-variational interferometbut the
frequency dependence of théir is different from that for
our ). From Eq.(46), S, can be no smaller than the case

Since « is proportional to the circulating powégsee Egs.
(14)], gaining a factoe®® in « is equivalent to gaining this
factor in W
In other words, by injecting squeezed vacuum withWhen

squeeze factoe’R and squeeze angle= 7/2 into the inter- - -
ferometer’s dark port, we can achieve precisely the same k=0, cosZV¥V+\)=1. 47
interferometer performance as in Sec. Ill A, but with a lower o - o
circulating light power that is given byWey sism The optimization condition$47) are satisfied when
=e RW,,. osm. (Here “SISM” means “squeezed-input
speed meter” and “OSM” means “ordinary speed metgr.” cotb=x, A=m/2, (48)
Since squeeze factoes 2R~0.1 are likely to be available in _
the time frame of LIGO-III[7], this squeezed-input speed Which corresponds to frequency-dependent homodyne detec-
meter can function Wit Wy sisy=0-Waire osm- tion on_the (frequ_ency-|ndepende)wtsqueezed-mput speed

' ' meter discussed in the previous section.

As it turns out, the condition cdb=« can readily be
achieved by the family of two-cavity optical filters invented

One can take further advantage of squeezed light by usingy KLMTV and discussed in their Sec. V and Appendix C.
frequency-dependeriED) homodyne detection at the inter- We summarize and generalize their main results in our Ap-
ferometer outpuf26—30. As KLMTV have shown, FD ho- pendix A. The two filter cavities are both FabrytBecavi-
modyne detection can be achieved by sending the outpuies with (ideally) only one transmitting mirror. They are
light through one or more optical filter@s in Fig. 4 and  characterized by their bandwidthg;, (whereJ=I, Il de-
then performing ordinary homodyne detection. If its imple-note the two cavitigsand by their resonant frequencies,
mention is feasible, FD homodyne detection will dramati-+ £,5; (the ones nearesby). The output light from the
cally improve the speed meter’s sensitivity at high frequen-
cies (above f =100 Hz). Note that the KLMTV design
that used FD homodyne detection was called a “variational- “For generality of the equations, we allow the squeeze angle and
output” interferometer; consequently, we shall use the termhe homodyne phase both to be frequency dependent, but the
“variational-output speed meter” to refer to our speed metersqueeze angle will be fixe@frequency independentater in the
with FD homodyne detection. Continuing the analogy, whenargumen{specifically, in Eq.(48)].

B. Frequency-dependent homodyne detection
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1/2
=
o

A. Internal losses

In this subsection, we will consider only noise resulting
from losses associated with optical elements inside the inter-
ferometer. These occur

6]

(i) in the optical elements: arm cavities, sloshing cavity,
extraction mirror, port-closing mirror, beam splitter,
RSE mirror;

(i)  due to mode-mismatchirfy;

(i) and due to the imperfect matching of the transmissivi-
ties of the RSE and internal mirrots.

o [Sp(PH/SsoL (100 Hz)]
=N

6]

Since the optical losses will dominate, we focus only on that
type of loss here. The loss at each optical element will de-
_ _ _ crease the amplitude of the sideband lighhich carries the
FIG. 10. Comparison of typical noise curves for frequency- o ayitational-wave informationand will simultaneously in-

dependent gnd fixed-angle homodyne deteption. The FD homodyng, ,ce additional vacuum fluctuations into the optical train.
angle® (w) is that of Eqs(48) and(49); the fixed homodyne angle

@ is that of Eq.(43); the circulating power i®2R=0.1 times that Schematically, for some sidebaa¢lw), the loss is described
of Table I; and all other parameters are identical for the two inter-by
ferometers and are given in Table I.

(D/(Dwt

a(w)—V1-&(w)a(w)+ VE(w)N(o), (50)
squeezed-input speed meter is sent through the two filters,

and then a homodyne detection with frequency-independefynere € is the (powey loss coefficient, anch(w) is the

phased is performed on it. vacuum field entering the optical train at th_e loss point.

For the squeezed-variational speed méstiown in Fig. It ;hould be noted that ther.e are various methods of
4) with the parameters in Table I, plugﬁqm=0.l, s  grouping these losses together in order to simplify ca!culg—
2w A=dp®  ande-2R=0.1 we have tions. For examp!e, we c_qmb!ne all of the Iosses_ occurring in

opt: optr ' the arm(or sloshing cavities into one loss coefficient &
~20x 10 ® [according to KLMTV Eq.(93)]. Then we as-
4 w?,pt 49) sume that the end mirrors have transmissivity=2
=

X 10~°, thereby absorbing all of the arm losses into one term
[see KLMTV Eg.(B5) and preceding discussibn

) ) ) _ o Assuming that the noise entering at the end mirrors of the
and the required filter and detection configuration &js arm cavities is denoteﬁel,z andﬁnl,z for the east and north

=1.7355, §=2mx9L.57 Hz, & =-11133, 6,=2m ;s respectively, at the end mirror of the sloshing cavit
% 114.3 Hz, andd= /2. [These values are reached by solv-~ ' P Y. 9 y

ing Eqs.(C4) of KLMTV, or by using the simpler method S1.2, at thS port-closing mirrow, ,, and at the RSE mirror
described in Appendix A of this papéfhe resulting perfor- Mn1,2 @andmg, > [representing the losses described in the pre-
mance is plotted in Fig. 10. Note the substantial improve-vious paragraph; see Appendix for dethithe output of the
ment atw=wyy. In the case of position-meter interferom- 10SSy three-cavity speed-meter systéfig. 3; the simplified
eters with optical filters(the interferometers analyzed by and practical versions are no longer equivalent, since there
KLMTV ), the optical losses due to the filter cavities contrib-Will be additional losses due to the presence of the internal
ute significantly to the noise spectral density and drasticall@nd RSE mirrorsis

reduce the ability to beat the SQL. It turns out that the

) 2 \2 4
(w —wopt) +8 Wopt

squeezed-variational speed meter is less sensitive to such ~ _ E*(“’):;) n lo 559,(?1 )+ QVZM%
losses, as we shall see in Sec. V. ! Llw) " Llw) ¢t M L(w)

VT2~ 02 +iwd)- 10285~

V. OPTICAL LOSSES L(w) Wi — L(w) Mgy
In order to understand the issue of optical losses in this 250, _
speed meter, we shall start by addressingnitsrnal losses. i 2L55e(“’_'5i)r~n (51a
These include scattering and absorption at each optical ele- VCOL(w) nt:

ment, finite transmissivities of the end mirrors, and imperfec-

tions of the mode-matching between cavities. The effect of———

externallosses(i.e., losses in the detection system and any 8according to our simple analysis in Appendix C, this effect will
filter cavities will be discussed separately. Note that thepe insignificant in comparison with the losses in the optical ele-
analysis in this section includes the internal and RSE mirments, so we shall ignore it.

rors, so it applies primarily to the speed meter designs in °This effect is negligibly small so we shall ignore it; see Appendix
Figs. 3 and 4. D for details.
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TABLE II. Loss factors€y due to shot noise anél due to radia

PHYSICAL REVIEW 66, 122004 (2002

tion pressure for each type of loss source in the interferometer.

Source N £% (shot noisg ER (radiation pressure noise
arm cavities,
extract. mirror, AES Epps 0O €’ [eaes
sloshing cavity T, [L(w)] -2 VT,
port-closing
mirror close 0%— w? iel?
VEclose T N — 75 VEclose
. [L(w)] 2
RSE cavity
“in” to arms RSEm SRSETi w2 Y ei y—iB; SRSETO w(5,+ 5) +|QZ
+ —_ .
a7, \ M%) T2t ' ©o
RSE cavity
[rp— N2
out” to slosh RSE eraeT) B 02\ w8 VB /sR_T_ETOw(ﬁi 5; iQ
vy i w
4T, 82 [L(w)] :
local oscillator,
photodiode, OPC Veopc 0
and circulator
filter cavities F Jer 0

0255,

L(w) 2

. 2w

qx=

\ wOTOW:irc)z_ L* (0)~

+
LA L(w) L(w) 2
iw\00e ~  ~
T Nep—Np2) —

)
(0285,

E(w) m32+

VTo(Q2— 02 +iwdy)~
E(w) V\'2

w\2L66(w—16)~
m

VesL(w)

{ NN
Vo0 —iw(6+8)].  Q\co,.

Mp1— S
\/Ei nl \/E 1

~ lw\Cde ~
+iw\ 55eW1_ Te(nel_

V2L

(51b

4 2h 0o Wi

mcw?L(w)

iw\2CHo-~

i w\COen
Mg

x=Lh—

ﬁm)] (52)

with

Se=cTJ2L, &=cTJ2L,

S=cT/4L, &.=c&l2L. (53)

Note that the expression for the circulating power now ha:
the form

AT Tyl f

2: —
(TiTp+4T)?

(59

[cf. Eq.(10)].

Equations(51a, (51b) are approximate expressiofec-
curate to about 6%, as were E@8); see footnote | where
the assumptioné7) regarding the relative sizes of the trans-
missivities were used to simplify from the exact expressions.
Alternatively, they can be derived analytically by keeping the
leading order of the small quantitiesL/c~\T¢~T,~T;,
plus the various loss factors; see Sec. VI of KLMTV and
Sec. IV of Paper | for details of the derivations for other
inteferometer designs. In addition to confirming the approxi-
mate formulas, such a derivation can also clarify the origins
of various noise terms and their connections to one another.

B. Internal and external losses in compact form

In order to simplify the above Eq¢51) and (52), we
definex™* in the same way as we defined Eq. (14) or (22)]
but with Wi,c— W Let £3-and& R represent the shot and
radiation-pressure noises for the various parts of the interfer-
ometer, specified byV. In Table Il, expressions fafi’, and
8/3[ are given for\'=AES (arm cavities, extraction mirror,
and sloshing cavity combingdclose (port-closing mirroy,
RSE, (RSE cavity in the north direction, or going “in” to
the armg, and RSE,; (RSE cavity in the south direction, or
going “out” of the arm9. The various ,  represent the char-
acteristic (and frequency-independerfractional losses for
each of these terms; values are given in Table lll. Note that,
by definition, £}, are required to be real, whig}- may have
Imaginary parts. For more information, including physical
explanations of each of these terms, see Appendix B.

It is simple at this point to include the losses associated
with optical elements external to the interferometer. These
include losses associated with

U)

the local oscillator used for homodyne detection,
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TABLE Ill. Fiducial values for the fractional losses occurring in various parts of the interferometer. These
losses and their values are discussed in more detail in Appendix B.

Loss source Symbol Value
arm cavity €am 2x10°°
sloshing cavity E4losh 2x10°°
extraction mirror Eoxt 2x10°°
RSE cavity ERrsE 2X10°°
port-closing mirror & close 2x107°
local oscillator €l 0.001
photodiode £pd 0.001
circulator €ire 0.001
mode-mismatch into filters €mm 0.001
Combined loss source terms

arms, extraction mirror, and sloshing caity EAES 6x10°°
local oscillator, photodiode, and circulator €opC 0.003
filter cavities(with mode mismatch e 0.005

&This loss does have some weak frequency dependence, shown [BgEgwhich will cause it to increase

slightly at very low frequencies.

(i)  the inefficiency of the photodiode;

(i) the circulator by which the squeezed vacuum is in-

jected,;

(iv) and the external filter cavities used for the variational-

output scheme.

where thea ,, are uninteresting phases that do not affect the
noise.

The relative magnitudes of the loss terms are shown in
Fig. 11. From the plot, we can see that there are several loss
terms—specifically, the shot noise from the AES, OPC, and
filter cavities(if any)—that are of comparable magnitude at

These can be addressed in the same manner as the losp@sh frequencies and dominate there. The AES radiation-
inside the speed meter. We need only include two more termsressure term dominates at low frequencies, and the RSE

in the summation)=OPC for the local oscillator, photodi-
ode, and circulator andv=F for the filters. Again, these

radiation-pressure terms are also significant. Since the largest
noise sources at low frequencies are radiation-pressure terms,

terms are shown in Tables Il and Il and described in morghey will be dependent on the circulating power. Conse-

detail in Appendix B.
Using these 3 and£R;, we can rewrite the input-output
relations(51) in the same form as Eqsl2) as follows:

quently, those terms will become smaller when the circulat-
ing power is reduced, as when squeezed vacuum is injected
into the dark port. This will be demonstrated in Fig. 12 be-
low.

a; {1 0o\/ps _ Ey 0 To compute the noise spectral density, we suppose the
- = D - output at homodyne anglé is measured, giving
az -« 1\p,) W —KTEN EX )
(hsqu
My L S (@)= [(cotd—k*)?+1]
X +\2k* el |, (55) K
Npp hSQL 1
&P + ) [|E3cotd — ERw* 2+ ()21, (56)
N4 4&s N
0.1 “~ﬁs& .
,9&2542 where we have assumed all of the vacuum fluctuation spec-
0.01 0y e F tral densities are unity and the cross-correlations are zero;,
g this is the same technique that we used to derive Edf.
10-3 FAES Sl OPC and (46) and that was used in Paper | and KLMTV. Given
. e the complicated behaviors @y and £, including these
10701 ose , Sesrsszzzszozc3 loss terms in the optimization of the homodyne phége)
1075 is unlikely to be helpful. Therefore, we will use cbt
 SiSaa™ o s e sr gt cie st anane =K as in the lossless case. This gives us a total noise
1076 with losses:
5 10 50 100 500 1000 )
f(Hz) (h
Sh ()= SQ*L) (ke k) 2+1]
FIG. 11. Moduli-squared of the loss factors shown in Table Il. In 2k
general, the black curves are the radiation-pressure noise and the
gray curves are the shot noise. The parameters used for this plot are + ESy* _gR x12 eSy2ql (g
given in Tables | and IIl. % [| NEmax © N7 | (€% ®7
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g . CPM
S10 .
< 5 R
3 N
< % P
s o, N >
= S A ”f
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FIG. 12. Noise curves showing the effects of losses. Noise FIG. 13. Comparison of noise curves of a conventional position

curves for lossy versions of the ordina(@SM), squeezed-input

meter(CPM) and squeezed-input speed met&@sSM) with circu-

(SISM), and squeezed-variation@VSM) speed meters are shown, lating powersWe,.=820 kW andW;,.=2 MW. The speed meters
along with a curve of the lossless ordinary speed meter for comhave f,,=107 Hz, with() and & determined by Eq(29). Other
parison. All speed meter curves here have the same paramétersparameters used are those in Tables | and Il Wi 0.005 and

=2wopt, Q= Bwepr, Wep=2mX 100 Hz, andT;=0.005. The rest

of the parameters are given in Tables | and Il

e 2R=0.1.

to the radiation-pressure noises shown in Fig. 11. For the

When we inject squeezed vacuum into the dark port, we getqueezed-input speed metéuower squeeze-factoe 2R

output operators

(als) _e2i¢/( 1 O)( eRrE)l )
[ —«* 1/ e Rp,

of the input. Once again assuming that the vacuum fluctu
tion spectral densities are unity and the cross-correlations aj]
zero, the squeezed-input noise spectral density with hom

dyne detection at phask is

(hsou)?
2k*

S, (@)=

[(cotd — k*)2e®R+ e 2R]

+% [|Excotd — ERx* |2+ (£3)%]. (59

C. Performance of lossy speed meters and comparisons

with other configurations

=0.1), the losses increasgS, by 3—-4% in the band

25-150 Hz. Again, the losses have little effect above this
range. At low frequencies, however, the losses get quite
large: 11% at 10 Hz, 32% at 5 Hz, and 73% at 3 Hz. Losses
in the squeezed-variational speed meter are much the same
as in the squeezed-input speed meter. The slight difference at
low frequencies is due to the fact that the lossless squeezed-
variational speed meter is slightly better in that regime than
the ordinary or squeezed-input speed meter.

The noise curves of squeezed-input speed médteith
ordinary homodyne detectiprcompared with the SQL are
shown in Fig. 13, along with the noise of a conventional
Bﬁsition meter with the same optical power. These speed

9meters beat the SQL in a broad frequency band, despite the

Bsses. In particular, the noise curve for the speed meter with
chircz 800 kW (andf,,=107 Hz) matches the curve of the
conventional position meter at high frequencies, while it
beats the SQL by a factor of~8 (in powep below
~150 Hz. In terms of the signal-to-noise ratio for neutron
star binaries, for example, this configuration improves upon
the conventional design by a factor of 3.6 in signal-to-noise
ratio, which corresponds to a factor of 43 increase in event
rate. If it is possible to have a higher circulating power, say
W =2 MW, the squeezed-input speed meter would be
able to beat the SQL by a factor 6f14, corresponding to a
factor of 4.6 in signal-to-noise and 97 in event rdatuch a
noise curve is shown in Fig. 13.

Examples of lossy speed meter noise curves with and The proadband behaviors of the speed meters with losses

without squeezed vacuufigs.(57) and(59)] are shown in

are particularly interesting. We start by looking at the expres-

F_ig. 12 Note that, as mentioned be_zfore, the losses are Iegf)on for the noise spectral density, H§9). An ideal (loss-
significant when squeezed vacuum is used to reduce the Cifssg speed meter in the broadband configuration beats the

culating power, since the radiation-pressure noise coming;
from the losses is reduced. In the ordinary speed meier
squeezed vacuunthe losses increas\ﬁn by 5-9 % in the

QL from 0 Hz up tow~ wqy, by roughly a constant factor,
becausec is roughly constant in this bandhis is the essen-
tial feature of the speed metesee Sec. Ill. Focusing on this

band 50-105 Hz. The losses have little effect above thisegion, we have, approximatelffor lossy squeezed-input
range, but below it, noise increases significantly, mostly dueand squeezed-variational speed meters
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gt Elo
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S
ar &4 1t joss limits _ *6\‘\ 1
0.5 7 9 ]
2_ ‘t>‘ 77777 ,‘/
S
S Q
a
ot 5 10 50 100 500 1000
20 50 100 200 500 f(Hz)

f(Hz)
FIG. 15. Comparison of noise curves for a squeezed-variational
FIG. 14. Comparison of the squeezed-variational speed metersosition meteSVPM; analyzed in KLMTV and for a squeezed-
k* with the equivalent coupling constari€, (as defined by variational speed metéBVSM; analyzed in this papeParameters
KLMTV ) for the squeezed-variational position meter. Parametersised are those in Tables | and Ill witj=0.005 ande 2R=0.1.

are W= 820 kW, y=6=27Xx100 Hz, and=27X 173 Hz. Also shown are the loss limits described in Sec. V C.
h2 This is a fundamental property of displacement metéssa
SQL| ,-2R S12, %2 S 2 result, a position meter optimized at some frequehgymay
w)~———|e "+ Eetk &~ Ry2|. ! . S .
S @) 2K o % 5 max%: €5~ &M be able to reach its “loss limit{the equivalent oS}) at that

(60)  frequencyf,, but doing so will result in a sharp growth of
noise at frequencies belowy,. In contrast, a speed meter
Qualitatively, we can see that if the losses are not severe or gimilarly optimized is able to stay at the noise level of its
Krax IS relatively small(such that the later two terms in the loss limitS;; over a wide band of frequencies beldyy; see
above equation are small compared to the power squee#gg. 15. While it is unfortunate that losses limit the perfor-
factore 2R), the losses do not contribute significantly to the mance of interferometers, the speed meter is at least able to
total noise. If, in addition, the dominant loss factors &k retain a wide-band sensitivity even in the presence of a loss
mosb frequency independent, then the noise due to losse§mit.
gives a rather constant contribution, as shown by curves in To give a specific example of this loss-limit phenomenon,
Fig. 12. In particular, the large bandwidth is preservedWe compare the noise curves of the squeezed-variational po-
(There is a slight exception to this statement in the absenc@ltion and speed meteSVPM and SVSM, respectively
of squeezed input. Without squeezed input, the circulatingVe first notice that, with the same circulating power, the
power is higher, causing?,., to be 10 times larger than the ﬁ]oestglro:-;ngerteeégcﬁ ;T?/ (‘\)I:/Jf:érsg;eiiztehtvgﬁ‘é@ﬁﬁ%?iﬂ'e
\?\,ti“eé;;;aersinctzgssﬁfpi;_ﬂy' the frequency depender&i@§ f arm cavit_ies, as defined in .KLMT)\/and if we consider high
AS k. increases, the noise from the losses may becomfrequenmes ©={7, 2}). Figure 14 shows an example of

. ner A rom the 1osses is [with W,,.=820 KW, y=o5=2mx100 Hz, Q=21
ominant. In fact, when one minimizes the noise spectral 73 1] The noise curves of the two interferometers are
density with respect tay,,,, one obtains the following loss- ¢

> hown in Fig. 15.
dominated result: As expected, the two noise curves in Fig. 15 agree at very

high frequencies. At intermediate frequencies, the speed
Lo N oh2 S _ eRi2|[ o—2R S|2 meter'sx* is larger than the position meterfs, , and thus
Snlw) hSQL\/(% €5 & )(e +% £ ) the speed metdiSVSM) has better sensitivity than the posi-
(61)  tion meter(SVPM). As the frequency decreases, the speed
meter reaches its loss limit first and stays at that limit for a
wide range of frequencies. The position meter, however, only
touches its loss limit and then increases rapidly.

which is achieved if and only if

—-2R S |2
e "+ E &
N £ VI. CONCLUSIONS

(62)
S _ oRj2 We have described and analyzed a speed-meter interfer-
PIRFEEN -
N ometer that has the same performance as the two-cavity de-
sign analyzed in Paper I, but it does so without the substan-
This " is rather constant and is comparable in magnitude taial amount of power flowing through the system or the
the values of«* (w) of our speed meters, suggesting that the

speed meters can become loss-limited over a broad band of ——
frequencies. Contrast this with the KLMTV position meters, 19n fact, K, can be obtained from the speed met&rby putting
wherek, (w) grows asw 2 at low frequencies; see Fig. 14. Q0 ands— y.
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exorbitantly high input laser power required by the two- B b
cavity speed meter. It was also shown that the injection of (f) =el R, ( 1), (A3)
squeezed vacuum wite 2R=0.1 into the dark port of the b, Pl b,

interferometer will reduce the needed circulating power by

an order of magnitude, bringing it into a range that is com-where
parable to the expected circulating power of LIGO-II, if one
wishes to beat the SQL by a factor qfL0 in amplitude.
Additional improvements to the sensitivity, particularly at

high frequencies, can be achieved through the use of

an=5(a.—a ), ap5%<a++a7>, (A4)

frequency-dependent homodyne detection. and

In addition, it was shown that this type of speed-meter ,
interferometer is not nearly as susceptible to losses as those R.= cos¢ —sing (A5)
presented in KLMTV. Its robust performance is due, in part, ?"\sing cosg)"

to the functional form of the coupling factot, which is
roughly constant at low frequencies. This helps to maintairf a frequency-independent homodyne detection at phase
the speed meters’ wideband performance, even in the preshift  follows the optical filter, the measured quantity will
ence of losses. Losses for the various speed meters we dise [KLMTV Egs. (81) and(82)]
cuss here are generally quite low. The dominant sources of
loss-induced noise at low frequencie$<(f,,) are the 50=e‘“mb§, (AB6)
radiation-pressure noise from losses in the arm, extraction,
and sloshing cavities. Because this type of noise is dependewhere
on the circulating power, it can be reduced by reducing the L
power by means of squeezed input. {(0)=0—ary=0— E(a++ @), (A7)
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[Note that this{(w) (KLMTV'’s notation) is the same homo-

APPENDIX A: FP CAVITIES AS OPTICAL FILTERS dyne angleb(w) that we want to produckBy adjusting the

As proposed by KLMTV[Sec. V B and Appendix € parameters; and &;, one might be able to achieve the_ FD
Fabry-Peot cavities can be used as optical filters to achieve'0modyne phases needed. KLMTV worked out a particular
frequency-dependent homodyne detection. Here we shaf@se for their desigftheir Secs. VB, V C, and Appendix]C
briefly summarize and generalize their results. Here we shall sgek amore qomplete solution that works in

Suppose we have one FP cavity of lengtf and reso- large class qf S|tqat|0ns. W|th the help of E41), Eq.
nant frequencyo,— écpdrp. Also suppose this cavity has an (A8) can be written in an equivalent form
input mirror with finite transmissivityl ;p and a perfect end

mirror. When sideband fields at frequeney* » emerge 1+i tand i, 1‘? tal’(aJJZ)’
from the cavity, they have a phase shift 1-itan{ J=iu, 0 s== L+itan(a,42)
a.-=2 arctafiéep* o/ 5gp), (A1) _ 20 w—S(— &8, | 85) |
where J=11,. . s== 0—S(—§&;0;+16;)
(A9)
CTep
FPZTFP (A2) Suppose the required t§tw) is a rational function inw?,

is the half bandwidth of the cavityNote that Eq.(Al) is " oK

KLMTV Egs. (88) and(C2), but a factor of 2 was missing go Byw

from their equations. Fortunately, this appears to be a typo- tan{(w)= +——, (A10)
graphical error only in that particular equation; the factor of E A w2k

2 is included in their subsequent calculatidss a result of =0 k@

this phase shift, the inputB(Lz)—output 0y, relation for

sideband quadratures at frequeneywill be [KLMTV Egs.  where A, and B, are real constants witA2+B2>0. Then
(78)] Eqg. (A9) requires that, for alb,
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n eam ., ®8 (1 0 ; 0 0
. 2k N = — anm 14 + 2y
kgo(Ak'HBk)w am= " N T 1 Zwlo 1 K*12 0
. . ?1
=0e’ [l [w-s(—&8-i8y)], x| ™, (82)
J=LIl,...,s=% narm2

All
(AL1) where the vacuum operators from the two arms are combined

whereD can be any real constant. Equatiohll) can be @S
solved as follows. First, match the roots of the polynomials

of w on the two sides of the equation; denote these roots by T = Nej— Nnj (B3)

+w;with J=1,2, ... n. Then we can deduce thatfilters arm 2

are needed, and their complex resonant frequencies must be

offset fromwq by The first term(independent ok*) is the shot-noise contri-
bution, while the second terr(proportional tox*) is the

wy=—03&;—168y, J=I, Il, ..., (A12) radiation-pressure noise. It turns out that several of the other

loss sources\” have a similar mathematical form.

wherex w . [with J(w;)>0] are the 2 roots of We consider, specifically, the loss from the extraction mir-

ror, which effectively allowsyeq ey iNto the optical train.

" _ o By propagating this field through the interferometer to the
kZO (At iBy o™ (A13)  output port, we obtain the following contribution to the
- noise:
After this, the polynomials on the two sides of E411) can o ws (1 0 0 0
i ici . — )22 v 2y
only differ by a complex coefficient whose argument deter Ney= T ‘{e 7 ( ) +e ( « ”
mines 6. In fact, by comparing the coefficients of*" on ol |L(w)]l0 1 «*/2 0
both sides, we have ~
Next
| e
0:arqA2n+|an). (A14) nextz
The loss from the sloshing cavity is a bit different: the
APPENDIX B: SEMI-ANALYTICAL TREATMENT imperfect end mirror of the sloshing cavity produces a
OF THE LOSS TERMS vacuum noise field/egosisi0sh Which exits the cavity with
the form
In this appendix, we present a semi-analytic treatment of
each source of noise included in Sec. V A. We will use a AeaonlT 0
notation similar to Eqs(12), but in matrix form: Lemsﬁsmshlﬁ €sl0sh—Nslosh1 2
1+ w?/(642)2 ' w '
G| (G (B5)
~ |7~ + Nioss source (B1) h _ WIS~/ f f the f
a, U2/ esioss where ,B_S—arctan( )~ T 2 for mqst 0 the frequency
band of interest. The associated noise is
where Njgss sourcelS @ Vectorial representation of whichever S0 ws (1 0
source of loss we are considering at the moment. Each of Ngjger= — \/ =" eiw_( )
these terms is associated with a vacuum field of the form To o [L(w)[10 1
E(w)n(w) [cf. Eq. (50)], which enters the interferometer o[
R B i ; Nslosh1
and increases the level of noise present. For generality, we let + g2V ) N ) (B6)
&(w) be frequency dependent. Tlieonstank characteristic k*12° 0/ |\ Ngoen

fractional losses for each type of loss will be denotedsby
with an appropriate subscript. Each loss term appearing iSince the vacuum fields,y,, Neyx, andngqs, are indepen-

Table Il is presented in a subsection below. dent and uncorrelated, we can effectively combine these four
noises into a single expression
1. Arms, extraction mirror, and sloshing cavity (AES) -
. . eaeg ;, @o (10 2i 0 0
The losses in the arms allow an unsqueezed vacuum field Nags= e +e?Y
. . o To|  [L(o)]l0 1 k*12 0
VearmNam t0 enter the optical train. By idealizing this field as )
arising entirely at the arm’s end mirror, propagating the field Nags1
through the interferometer to the output port, we obtain the - , (B7)
following contribution to the output noise: NAES2
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with Nout
D ! C
2 2 mn -—]- «+-" w--je—
eaes™ Eaes(©) = e qmt eyt Esios{) T/ 0. (B8) OULA--; —— prap—_— ‘%‘nm
1]
We expect that 4~ egosi €exi~ 2X 107>, as discussed in RSE Mirror Rlin ™

the paragraph following Eq50) and as shown in Table Il
FIG. 16. Schematic diagram of a simplified version of the RSE

_closi i cavity. The quantities;, and n,, enter inside the RSE cavity,
2. Port-closing mirror
whereadt;, and91,,; are external to the cavity and exist in different
The imperfection of the closing mirror has two effedi$:  |ocations. ot Y
it directly introduces a fluctuation- /e ¢ osdRoNclose iNtO the
output, giving a shot noise . 1+R, \/ﬁ
; F]closel B 2Ti oReE TSRSE A
Nglr:)%ted"ecg ~ Veclosdo = ; (B9) D - \/ﬁl 1+R, C
close TSRSE 1- 2T ERSE
I |
and (i) it introduces a fluctuationye cjpsel oNeiose INtO the 1 R T
light that passes from the arms into the sloshing cavity, giv- n [€Rs ~VRi) [ Min (B12)
ing (after propagation through the sloshing cavity and inter- T\ - Jﬁ, 1 Nout '

ferometer and into the output

s (1 0 0 where A,B,C,D are the field amplitudes shown in Fig. 3.
Ninldirectz _ \/T@{ el @ ( +e2v ” Note that, for simplicity, we are looking at only one arm; we
close ST [L(w)[\0 1 k*12 0 could equally well use the othésubstitutingB— F and C

Nclose (B10) erse= 0, then we findBB=A andD = C, which illustrates the
= fact that the internal and RSE mirrors have no effect on the
sidebandgdescribed in Sec. | where we introduced the RSE

Combining these two expressions gives, to leading ofider Mirron).

(~ —G) or the proper combination of both. Also, notice that if
j

Nelose

the various transmissivities and the small parameigréc From Eq.(B12), we find that the loss inside the RSE
and e gosd, cavity has two effects. First, it makes the cancellation of the
effect of the internal and the RSE mirrors imperfé&ecall
C02-2(1 0 . 0 0 that an RSE mirror with the same transmissivity as the inter-
Ngjose= \/sc,oss{ie"”’m( 0 1) - 2"”( o O” nal mirrors effectively cancels the effect of the internal mir-

rors on the sidebands; this was discussed in SecThis

~ imperfect cancellation will not be important in our situation.

Nelose1 : ; . :
<~ Z) (B11) Indeed, there is no corresponding term appearing in the

input-output relation given in Eq$51).
Secondly, the loss inside the RSE cavity adds two vacuum

Since egose IS Simply the loss from the port-closing mirror fields to light that travels through the RSE cavity in opposite
itself, we can assume that,se<2x10 °. Then, this and directions[i.e., from A to B(IN) and from C to D(OUT)].
the above expressiai811) show that the output noise from We denote them by
the closing mirror isT, times smaller than the AES lofEq.

(B8)]
Tin=\(hn— VR, (B139

3. The RSE cavity

The losses in the region between the internal mirrors and B e RSE 5
the RSE mirror, i.e., the RSE cavity, are more complicated Noyr= \/T(—\/ﬁiﬁiﬁ Noup) - (B13b)
than the previous cases. As before, we suppose that, during '

each propagation from one end to the other of the RSE cav-

ity, a fraction egge Of the light power is dissipated and re- Note thatn,, andn,, ariseinsidethe RSE cavity as a result
placed by a corresponding vacuum fieldersdi, or  of the loss that occurred there and thag and91gy 7 are the
Jerstou: (depending on whether the light is propagating invacuum fluctuationemergingfrom the RSE cavity. As a
towards the arms or out towards the extraction mirror andesult, 51,y and9io r exist in different locationsdt, denotes
sloshing cavity. These two field1,, andn,, are indepen- the vacuum field inside the arm cavity wi, and 9ot
dent vacuum fields. At the leading orderdpsg, we have a  denotes the vacuum field at the RSE mirror, heading towards
modified version of the “input-output” relation for the RSE the extraction mirror and sloshing cavity with. This is
cavity: depicted in Fig. 16.

Nclose
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The fields9,y and9oyT both have a power spectral den- P D e2iBs
sity a factor~ 1/T; larger than the one-time loss coefficient. B—B+e'“™° mIN_mOUT(l_To)m
This can be explained by the fact that the sideband light o€
bounces back and forth inside the RSE cavity roughly/T; ered w(5+ 8)+i02.
times before exiting. As a result, ttipowep loss coefficient ~B+2T, T [ 5 Nin
is amplified by the same factor. However, since these fields i @
are quite correlate¢both contain similar amounts of,, and w(8—8)—iQ%
Nouw), We need to analyze them carefully. wd Mout| (B16)

For the shot noise, we need to find the amplitude of the

vacuum fluctuations that the loss introduces into the output. _ . . .
To understand the effect of this type of loss, we ask hovx)Nhere Be=arctan(2/4y is the phase associated with the

~ sloshing cavity. Propagating the nevto the output pro-
much vacuum fluctuation is added to the fi@dy 91,y and g Y pagating put b

N - duces a radiation-pressure contribution
Nout- The answer is obtained by propagatifig, one round
trip inside the interferometer’s afs) and then combining it

. [e T i02/n
with 9gyt. This gives Nrad pres_ SRSETOeZiz// 0 0} @(5i+6) +10% [ Niny
RSE T —-k* 0 wo Nino
D—D+[Nour+ et ] N w(5—8)—i0? E‘outl) l (B17)
Nout2

T 2 (1)6
& i w L~ L~
~D+ 1/ RZE '(1+ ?)(e'ﬁiniﬁe'ﬂinout),

i

(B14) As before, this noise does not have a magnittidé rsel/ Tis
B14

it is much smaller. The reason is that whg, travels to

the sloshing cavity and back to the arms, it gains two phase
shifts. First is a constant phase shift®f due to the distance

it traveled(twice) between the RSE and sloshing mirror. The
other is from the sloshing cavity, where for frequencies much
larger than the bandwidtby of the sloshing cavity, this phase

(~ ) shift is roughly . Adding these two phase shif will
et B

where §;=T;c/4L and B;=arctan{/é8). Propagating this to
the output, we get the shot noise contribution to be

2
SRSETi w . wd
Nshot_ 1+ en//
RSET N 4T, 2] ()]

Ning ~
~ appear roughly unchanged when it combines Wit in the
arm cavity. Since these two vacuum fields are anticorrelated,

~ there is again an effective cancellation between the two
Lo if Mouty . (B15) noises at frequencies abovg. This cancellation becomes
Nout less complete at low frequencies; see Fig. 11.

We assume the fractional lossge~2x10"°, since it
arises primarily from losses in the RSE cavity’s optical ele-
This noise is not of the magnitude that EqB13) would  ments(mirrors and beam splitter (See Appendix C for a
appear to indicate. Instead of having a coefficient ofdiscussion of the noise due to mode mismatching, which we
~Jerse/T;, it has a much smaller value when<¢,. The  do not consider herg.
reason is that the two vacuum fluctuations traveling in oppo-
site directions are anticorrelated and largely cancel each
other, since they are summed in the outgoing fieldThis
cancellation becomes less perfect@growg and becomes First, we consider the losses involved in the detection of
much larger thars;. This effect is shown in Fig. 11. the signal(without filter cgvities. Two impor_tant sources of
For the RSE contribution to the radiation-pressure noisePhoton loss are mode mismatching associated with the local
we are interested in how much the two noise figftlg and oscillator used for frequency-independent homodyne detec-

~ . . . ) tion (e),) and the inefficiency of the photodiode ). In a
Nour contribute to the carrier amplitude fluctuatia the squeezed-input speed meter, there will also be a circulator
pos~|tlon of Ehe test masseBherefore, we ask what the sum (with fractional loss sy, through which the squeezed

of 9Ny andNoyr is when they combine at the end mirrors of yacuum is fed into the system and through which the output
the arm cavities. Sinc#o 7 is superposed oB, Ny, must  light will have to pass. These losses have no frequency de-
be propagated through the sloshing cavity and back to thpendence, so they are modeled by an equation of the form of
arm cavity, where it is combined witft,, . There is a phase Ed. (50) with
factor ofe'“~/ due to the propagation from the internal mir-

4. Detection and filter cavities

ror to the end mirroKin addition to the phases acquired on Eord @) =Eopc= 810 EpdaT Ecirc (B18)
the way to and inside the sloshing cavity; these are explained
below), producing [cf. KLMTV Eg. (104)]. The contribution to the noise is then
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(B19) discussed in the previous appendix. However, the higher-
order modes do not simply get dissipated—they too will
5 propagate inside the interferometafthough with a different
where thengpqg are linear combinations of the individual propagation law As a consequence, the exchange of energy
(independentvacuum fields entering at each locati@o the = between fundamental and higher modes due to mode-
spectral densities of these fields are unity and there are n®ismatching iscoherent and the formalism we have been
cross-correlations and propagated to the output port. USing for the loss does not apply. In this section, we shall

KLMTV assumed that each of these losses is about Oloofxtend our formalism to include one higher-order mode and
giving & gpe~0.003. give an extremely simplified model of the mode-

We next turn our attention to optical filters on the outputMiSmatching effects.

(as in the case of frequency-dependent homodyne detection. !N @ conventional interferometefL.IGO-1), the mode-
for a squeezed-variational speed meter, discussed in Se@!smatchlng comes predominantly from the mismatch of the

IV B). Such cavities will have losses that may contributel 'O shapes between the two arms, which makes the wave-

significantly to the noises of QND interferometers, as ha fronts from the two arms different at the beam splitter. In
been seen in KLMTV. In their Sec. VI. KLMTV carried out spartlcular, the cancellation of the carrier light at the dark port

; _ . = is no longer perfect, and addition@right-por) noises are
a detailed analyses of such losses; our investigation is essefliroquced into the dark-port output. For our speed meter, a
tially the same as theirs. , third cavity—the sloshing cavity—has to be matched to the
The loss in the optical filters can come from scattering ok arm cavities, further complicating the problem.
absorption in the cavity mirrors, which can be modeled by |n order to simplify the situation, we approximate all the
attributing a finite transmissivity . to the end mirrors, as we waves propagating in the corner statighe region near the
did for the arm cavities. The effect of lossy filters is againbeam splitter, where the distances are shastfollowing the
analogous t¢Eqg. (50)]. This time the loss coefficierfi(w)  same phase-propagation law as a plane wave. The only pos-
does have some frequency dependence: sible source of mismatch is assumed to come from the dif-
L ference of wavefront shapdwo first order in the fractional
— difference of the radii of curvatuyeand waist sizes for the
5F:28mm+J:2H| 5J:28mm+§J:Z“| (&3 +E5-), light beams emerging from the two arm cavities and the
(B20) sloshing cavity. Suppose, in the region of the corner station,
we have a fiducial fundamental Gaussian mdd® (which
wheree;,,~0.001 is the mode-mismatching into each filter is being pumped by the carrjewith waist sizew, and wave-
cavity and where front curvatureny= 1/R, that is roughly the same as those of
the three cavitie$?

) signal. In a way, this is similar to other sources of optical loss

ﬁOPCl
Nopc= Ve OPC( ~

Nopc2

4T,
Eye= (B21) 1 2 2
T 1+ (= wl 8- £)?] TO(xy)x —expg — ik 2P| (cy
WO W(Z) 2

are the loss coefficents of the two different filter cavitids (
=1, 1) [cf. Egs. (103 and (106) of KLMTV ]. The noise p=x2+y2.

contribution is . . .
At leading order in the mismatches, the fundamental modes

ﬁFl of the three cavitiegin the region of the corner statign
Ne= \/S—F ~ | (B22) which have waist sizew; and curvaturesy;=1/R;[J=n, e,
Neo or slosh(for the north arm, east arm, and sloshing cavity,
respectively|, can be written in the form

The weak frequency dependenceéafwill be neglectedas

. - 1 a—a
KLMTV did), giving ‘I’fJnd(X,Y)‘X W_exp< ikwg J4 o)
0
ep=E~0.005 (B23) , ,
% P +.kaoP 14 Wj—Wq
[cf. Egs.(107) and(104) of KLMTV ]. The value ofe may BT 2T T2 4w,
vary slightly for the different optimizations we have used, 0
but it remains less than 0.006. a—a 2X 2
+ikwi = H2£+H2Q ,
16 Wo Wo
APPENDIX C: EFFECTS DUE TO MODE MISMATCHING:
A SIMPLE ANALYSIS (C2)

In the practical implementation of GW interferometers,
the mismatching of spatial modes between different optical 1Thjs way of modeling the mode-mismatching effects was sug-
cavities will degrade the sensitivity because signal powegested to us by Stan Whitcomb.
will be lost into higher-order modes and, correspondingly, *2we have chosen to use the curvature instead of the radius of
vacuum noises from those modes will be introduced to theurvature because in this region the wavefronts are very flat.
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whereH,(u) is the second-order Hermite polynomial @f  are the projection operators, add,q and ® ..~ 7 are the
This W;.4(7,y) can be expressed a&®) plus a small ad- phases gained by the fundamental mode and excited mode
mixture of a higher-order mod&(®), which consists of after being reflected back by the cavity.
equal amounts of TEM and TEM,, modes(and thus is The mode-mismatching can cause both shot and radiation
orthogonal toW(%). This admixture changes the waist size pressure noises at the output, giving
from wg t0 w; and the curvature fronxy to «;. We can

J 9" - ~
choose our fiducial f_u_ndamental modé _) in s_uch away q©@—g@+ Ninhﬁt+ Nmpres' (C8)
that the two arm cavities have an opposite mismatch with it,

€., ant ag=2ap, Wyt We=2Wo, and at leading order, Assuming the mirrors are held fixed and applying the new

input-output relation$C6) of the non-perfect cavities, we get

n, e 1 +u P (0) . S - ;
fnd | _ arm ) (C3) the following shot noise in the outpito leading order in
\pgkce + lu’;rm 1 v Marm and Lgjosn -
where “exc” denotes the excited mode and the admixing ot . 4 T, 1-V1-T, s .
amplitude uqm is, in general, complex. We also denote the NyG'=—e'’uX \/— i
fundamental and excited modes of the sloshing cavity as Tol+1-T, T [£(w)]
. ITT, wé -
\Pfsrl%s 1 Mslosh v %e_"l’,u;rm P i(l); (C9
slosh| = * ok (C4H 4To|£(w)|
WY exe ~ Mslosh 1 v

again, qee can be complex. We shall also assume that the€€ EA{(B1). The quantityi (_1) refers to the excited mode of
higher-order modes involved here are far from resonance i€ Noise coming in the bright pdrt(¢) in Fig. 3].

side the cavities and will be rejected by them, gaining a 1N€ main results embedded in HE9) are .

phase ofr upon reflection from each cavity’s input mirror. (1) the mode-mismatching with the sloshing cavity does
In the output, we assume the mod&® is selected for de- MOt give any contribution at leading order in and

tection. (The local oscillator associated with the homodyne (i) the mode-mismatching shot noise comes from the
detection is chosen to have the same spatial mode@s ~ higher-order mode entering from thgight port, strongly

thereby “selecting” W(©). Note that the potential mode- suppressed by the presence of the internal and power-

mismatch effect here is already taken into account in théecyﬁling mirrorf\?. o he con , _
fractional losss,, of the local oscillator, as described in Ap- 1 hese two effects are both due to the coherent interaction

pendix B 4) between the fundamental(®)) and excited ¥ *)) modes

Quite naturally, we have to introduce two sets of quadra{©f Our idealizeod cavity, in which energy is not simply dis-
ture operators to describe the two modes. For example, forPated fronﬂf(_) but exchanged coherently between the two
the field P(¢) entering through the extraction mirror, we modes as the light flows back and forth between the sloshing

have cavity and the arm cavities. Detecting an appropriate linear
combination of the two modes can then be expected to re-

~(0) ~(1) verse the effect of mode mismatching. In our case, the prop-

Pi B(l)E Pi (C5) erties of the cavities are carefully chosen such e itself

[ ' i ' is the desired detection modéor the sloshing mismatgh
Consequently, the mode mismatching with the sloshing cav-

For each of the three cavities, we have to decompose thi§/ does not contribute at leading ordétem (i) abovd. Re-
optical field into its own fundamental and excited modes garding item(ii), the mismatch of the two arm cavities does
propagate them separately and then combine them. TH#Ve rise to an additional noise, but it can only come from the
input—output &— b) relation of one of the cavities with mir- higher mode in the bright port, because at leading order in
rors held fixed can be written as mismatches(a) the propagation of’(®) from the bright port
to the dark port is suppressed afil there is no propagation
of dark-port¥ ) into dark-port¥(®) since we have chosen
), (C6) v in such a way that the two arm cavities have exactly
opposite mismatches with it.
The reason why this noise is suppressed by the factgy 1/
where is simple: becaus& ™) is not on resonance with the com-
posite cavity formed by the power-recycling mirror and the
arm cavities, its fluctuations inside the systéike its clas-
(1 p*), (C78  sical componentare naturally suppressed by a factogT}
compared to the level outside the cavity. The reason for the
N factor of 17; is similar: theWw®) mode does not resonate
= :( m )(_ 1) (C7b within the system formed by the arm cavities and the RSE
exe 1 meh mirror and will consequently be suppressed.

B(O)E (

FO

b© _ .
= [el¢fndpfnd+ el(bexcpexc] ~
)

B

1

Pna=

RS
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By computing at the fields at the end mirrors and fromwave sideband cancel. If, however, the transmissivity of the
them the fluctating radiation pressure, we obtain thenternal mirror, T;, is not perfectly matched by that of the
radiation-pressure noise due to mode-mismatching: RSE mirror, Trse, then this cancellation will no longer be

- perfect. As a result, the RSE cavifiye., the cavity between
Nrad pres_ e . /Ti_Tp 0 0 TW. (10 the internal and RSE mirrorsvill have the same effect as an
MM 2 HamN T |\ — v o) additional mirror (with a small reflectivity. Suppose the
transmissivity of this effective mirror isTrge=(1

This radiation-pressure noise is suppressed by a factor simit ¢ ) T;. Then a simple calculation yields itamplitude
lar to the shot noise. reflectivity:

By comparing Eqs(C9) and (C10 with, e.g., Eqs(B7),
we see that mode mismatching produces noise with essen-

tially the same form as optical-element losses from the arms, JI=T,— V1 Tree €RsE ERsE
extraction mirror and sloshing cavitAES), with (assuming n= ' ~ ~ (DY)
the input laser is shot-noise limited in the higher modes 1-V1-Tiy1-Tree 2V1-T,
_TiTP * |2
EMmMT 4 [ (C1D Adding this effective mirror with reflectivityw to our

interferometer yields a new set of input-output relations
The factorT;T/4 happens to be the ratio between the inputsimilar to Eq.(12), but with modifiedx and ¢. The func-
power (at the power-recycling mirrorand the circulating tional form of « can be maintained by appropriately redefin-
power, which will be~10"*. SupposeéR(am) ~ I(tarm) ing the quantitie€) and . To leading order inx, we obtain
~0.03. The effect of mode-mismatching will then be much
less significan{in our simple modglthan the losses from the

optical elements. O3 8mm
It should be evident that other imperfections in the cavit K— KM= , (D2)
. . ) p . y ( 2_ QZ )2+ 252

mirrors, which cause admixtures of other higher-ordex- w ™ @ OTMm

cited”) modes, will lead to similar “dissipation factors,”
Eum~ (TiT/4)| uh % For this reason, we expect mode mis-
matching to contribute negligibly to the noise, and we ignoreW't
it in the body of the paper.

APPENDIX D: TRANSMISSIVITY MISMATCH BETWEEN Q=Qmy=(1-w)Q, o6-6m=(1-2u)s. (D3
THE INTERNAL MIRROR AND THE RSE MIRROR

Recall from Sec. | that when the internal and RSE mirrorsConsequently, we can re-optimize the system to compensate
have the same transmissivity, their effects on the gravityfor this transmissivity-mismatch effect.
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