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Abstract— Many plants are regulated by digital controllers
that run at a constant sampling frequency, thereby requiring
a high processor load for the computations. To guarantee a
good control performance, such a high sampling frequency
might be required at some periods of time, but not necessarily
continuously. By using an event-driven control scheme that
triggers the update of the control value only when the (tracking
or stabilization) error is large, the average processor load
can be reduced considerably. Although event-driven control
can be effective from a CPU-load perspective, the analysis
of such control schemes is much more involved than that of
conventional schemes and is a widely open research area. This
paper investigates the control performance of an event-driven
controlled continuous-time linear system with additive distur-
bances in terms of practical stability (ultimate boundedness).
By using the derived results, the event-driven controller can
be tuned to get satisfactorily transient behavior and desirable
ultimate bounds, while reducing the required average processor
load for its implementation. Several examples illustrate the
theory.

Index Terms— Practical stability, sampled-data control, pro-
cessor load, ultimate boundedness, robust invariance, piecewise
linear systems.

I. INTRODUCTION

Many plants are regulated by digital controllers that run
at a constant (relatively high) sampling frequency, thereby
requiring a high processor load for the computations. To
achieve accurate control, controllers require a high sampling
frequency at certain periods of time, but do not require this at
each interval of time. This opens up the possibility to lower
the average processor load needed for the implementation
of the controller. In the literature [1], [2], [7], [14] event-
driven control strategies have been proposed to create a
negotiable environment to make such a compromise between
processor load and control performance. However, theoretical
analysis of the proposed event-driven controllers is lacking in
literature. Although the event-driven controllers considered
here are less complicated in comparison with the cited work,
this work provides the first step in a proper analysis of these
types of control loops.

This work has been carried out as part of the Boderc project under the
responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the Senter
TS program. The first author was also sponsored by the European 6th
Framework Network of Excellence HYCON (contract number FP6-IST-
511368) and the European IST project SICONOS (IST-2001-37172).

To show the potential of reducing the involved control
computations without deteriorating the control performance
significantly, consider the following simple continuous-time
plant

ẋ(t) = 0.5x(t) + 10u(t) + 3w(t) (1)

with x(t) ∈ R, u(t) ∈ R and w(t) ∈ R the state, control
input and disturbance at time t ∈ R+, respectively. The
additive disturbance satisfies −10 ≤ w(t) ≤ 10. This system
will be controlled by a discrete-time controller

uk =

{
−0.45xk, if |xk| ≥ eT

uk−1, if |xk| < eT ,
(2)

that runs at a fixed sample time of Ts = 0.1 time units.
Here, eT denotes a parameter that determines the region
B := {x ∈ R | |x| < eT } close to the origin in which
the control values are not updated. Note that outside B the
control values are updated in an “normal fashion.” This
particular situation is referred to as uniform sampling. We
will also consider the non-uniform case where reaching the
boundary of B will be the event trigger - in addition to
a fixed update rate outside B - for updating the control
values. Figure 1 displays the ratio of the number of control
updates in comparison to the case where the updates are
performed each sample time (i.e. uk = −0.45xk for all
xk) and the maximal value of the state variable (after
transients) xmax := lim supt→∞ |x(t)|, respectively, versus
the parameter eT . The results are based on simulations. One
sees that by relaxing the control accuracy (in terms of the
ultimate bound xmax on the state) one can reduce almost 80%
of the control computations. Depending on the ratio between
the computational complexity of the control algorithm, the
overhead of the event triggering mechanisms and i/o access
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Fig. 1. eT versus the control effort and xmax for system (1)-(2).
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of the processor, the reduction of control computation indeed
lowers the processor load considerably. Initial experimental
measurements [15] show promising results.

It is of interest to investigate how to choose the controller
gain and eT (or more general B) in order to get desirable
closed-loop behavior on one hand and low processor usage
on the other. Note that in this paper we both select the
controller parameters and the way the events are generated
that determine when the control values are updated. This
is in contrast with the effect of uncertain and time-varying
delays (“jitter”) introduced in the loop due to the real-time
implementation of control algorithms in embedded systems.
In that case the variations in the “event triggering” can be
considered as a disturbance and one designs compensators
that are robust to it, see e.g. [3], [11].

This paper provides theory and insight to understand and
tune event-driven controlled linear systems for both the
uniform and the non-uniform case. The performance of these
novel control strategies is addressed in terms of ultimate
boundedness (practical stability), robustly positively invariant
sets, and guaranteed speed of convergence [4]. Depending on
the particular event triggers for updating the control values,
properties like robust positive invariance or convergence to
a set for the perturbed event-driven linear system can be
derived either from a perturbed discrete-time linear system or
from a perturbed discrete-time (non-deterministic) piecewise
linear (PWL) system. Since results for robust invariance
and ultimate boundedness are known for discrete-time linear
systems, see e.g. [4], [5], [8], [9], [12], and piecewise linear
systems, see e.g. [13], [10], these results can be carried
over to event-driven controlled systems. In this way we can
examine how the tuning parameters of the controller should
be chosen to obtain satisfactory control performance on one
hand and computational effort of its implementation on the
other.

II. PRELIMINARIES

A set Ω ∈ R
n is a C-set, if it is compact, convex and

contains 0 in its interior. For a set Ω we denote its interior, its
closure and its boundary by intΩ, clΩ and ∂Ω, respectively.
We define the Minkowski functional ΦΩ for a C-set Ω as
ΦΩ(x) := inf{λ > 0 | x ∈ λΩ}. Note that x ∈ Ω if and
only if ΦΩ(x) ≤ 1. The symbol ⊕ denotes the Minkowski
sum of two sets: U ⊕V := {u + v | u ∈ U , v ∈ V}. For two
sets Ω1 and Ω2 of R

n, we denote the set difference Ω1\Ω2 is
defined as {x ∈ Ω1 | x �∈ Ω2}. The complement of Ω ⊂ R

n

is defined as R
n \ Ω and is denoted by Ωc.

Consider a continuous-time system

ẋ(t) = f(t, x(t), w(t)) (3)

with x(t) ∈ R
n the state variable and w(t) ∈ Wc the

disturbance at time t ∈ R+ or a discrete-time difference
equation

xk+1 = f(k, xk, wk) (4)

with xk ∈ R
n the state and wk ∈ Wd the disturbance at

discrete-time k ∈ N. Wc and Wd denote the disturbance sets,

which are assumed to be convex, compact and contain 0. We
define the set L1([0, Ts] �→ R

p) as the Lebesgue space of
integrable functions on [0, Ts] to R

p and Lloc
1 ([0,∞) �→ R

p)
as the Lebesgue space of locally integrable functions from
[0,∞) to R

p.
Definition 2.1: Given 0 ≤ λ ≤ 1. The set Ω is a (robustly)

λ-contractive set for the discrete-time difference equation
(4), if for any x ∈ Ω, k ∈ N and any w ∈ Wd it holds
that f(k, x, w) ∈ λΩ. For λ = 1 we say that Ω is robustly
positively invariant (RPI).

Definition 2.2: [4] We call the discrete-time difference
equation (4) ultimately bounded (UB) to the set Ω, if for
each x0 ∈ R

n there exists a K(x0) > 0 such that any state
trajectory of (4) with initial condition x0 (and any arbitrary
realization of the disturbance w : N �→ Wd) satisfies xk ∈ Ω
for all k ≥ K(x0). Similarly, we call (3) ultimately bounded
(UB) to the set Ω, if for every initial condition x(0) ∈ R

n

there exists a T (x(0)) > 0 such that any state trajectory of
(3) with initial condition x(0) (and any arbitrary realization
of the disturbance w :∈ Lloc

1 ([0,∞) �→ R
p) with w(t) ∈ Wc

a.e.) satisfies x(t) ∈ Ω for all t ≥ T (x(0)).
Definition 2.3: We say that the system (4) has a conver-

gence index 0 ≤ λ ≤ 1 to the C-set Ω, if (4) is UB to Ω and
there exists a C-set S ⊆ Ω such that ΦS(xk+1) ≤ λΦS(xk)
for all k ∈ N, xk �∈ intΩ and all wk ∈ Wd where
xk+1 = f(k, xk, wk).

Note that this is a minor adaptation of the definition in [4]
for which the latter condition should hold for any xk �∈ intS,
which is a more stringent condition.

III. PROBLEM FORMULATION

We consider the system described by

ẋ(t) = Acx(t) + Bcu(t) + Ecw(t), (5)

where x(t) ∈ R
n is the state, u(t) ∈ R

m the control input
and w(t) ∈ Wc the unknown disturbance, respectively, at
time t ∈ R+. Wc ⊂ R

p is a convex and compact set, which
contains the origin. Ac ∈ R

n×n, Bc ∈ R
n×m and Ec ∈

R
n×p are constant matrices.
The system will be controlled by a discrete-time state-

feedback controller with gain F ∈ R
m×n, i.e.

uk = Fxk, (6)

where xk = x(τk), uk = u(τk) using the zero-order hold
u(t) = uk for all t ∈ [τk, τk+1).

Normally, the event times τk are related through τk+1 =
τk + Ts, where Ts is a fixed sample time meaning that the
control value is updated every Ts time units according to
(6). To reduce the number of required control calculations,
in this paper we propose not to update the control value if
the state x(τk) is contained in a set B close to the origin. The
consequences for the control performance in terms of control
accuracy (ultimate bounds) and speed of convergence will be
investigated. As such, we consider a set B that is open1 and

1This is merely a technical condition to make the following exposition
more compact and clear. This is not a restrictive condition.
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contains the origin. If the state of the system is in B at the
event times τk, the controller output will not be calculated
and updated. If the state is outside B, an update is performed
according to (6). Hence, the closed-loop system (5)-(6) is
modified to

ẋ(t) = Acx(t) + Bcu(t) + Ecw(t)

u(t) =

{
Fx(τk) if x(τk) /∈ B
u(τk−1) if x(τk) ∈ B

for t ∈ [τk, τk+1),

(7)
where we still have to specify how the event times τk are
generated. We consider two ways of updating the event times
τk: a non-uniform (triggered by the event of leaving B) and
a uniform (sampling at a fixed sample time Ts) manner.
Note that the system (7) together with a particular way of
generating the event times can be considered as a discrete-
time system, if one restricts oneself to the event times. Hence,
this means that the definitions for (4) in section II can easily
be generlazed to apply for (7) “on the event times.”

A. Problem 1: non-uniform sampling

The event times τk are chosen such that

τk+1 = τk + Ts if x(τk) /∈ B
τk+1 = τexit if x(τk) ∈ B,

(8)

where τexit = inf{t > τk | x(t) �∈ B} is the time instant
at which x(t) exits B (after being inside B at the previous
event time). For the situation in which x(0) ∈ B (τ0 = 0)
we assume that uτ0

= 0.
From (7) it can be seen that the control updates are

not synchronous. The duration that the state of the system
remains inside B causes asynchronicity, although Ts is a
fixed sample time outside B.

B. Problem 2: uniform sampling

In the previous section the control strategy is such that the
control value is updated as soon as the boundary of B is hit
and the state was inside B at the previous event time. In many
applications such implementation would not be optimal with
respect to the scheduling of tasks on a processor. Whether
the state of the system is inside or outside B will often be
detected on a constant rate. If this rate is chosen equal to the
sampling rate of the controller, i.e. having a period time Ts,
the system description (7) can be used with the uniformly
distributed event times τk, k = 0, 1, 2, . . . with τ0 = 0 and

τk+1 = τk + Ts (9)

C. Control objectives

The control objective is a “stabilization problem” in the
sense of controlling the state towards a region Ω close to the
origin and keeping it there, as we cannot expect asymptotic
stability due to the type of control strategy employed and
the presence of disturbances. Hence, this means that we
consider practical stability which has been used widely to
prove system performance in the context of non-linear and
perturbed systems. A term that is also often used in this
context is uniform ultimate boundedness [4].

Problem 3.1: Let a desired ultimate bound Ω ⊂ R
n

containing 0 in the interior be given and let 0 ≤ λ ≤ 1
be a desirable convergence index. Construct F and B such
that the system (7) with the event times given by either (8)
or (9) is UB to Ω (as a continuous-time system) and (7) has
a convergence index λ towards Ω (as a discrete-time system
on the event times τk).

IV. GENERAL THEORY

Problem 3.1 will be solved in two stages. First properties
on UB to Ω and convergence indices to Ω are obtained for
the event-driven system (7) on the event times. Next bounds
on the intersample behavior (see Section IV-C below) will
be derived that enlarge Ω to Ω̃ such that the ultimate bound
Ω̃ is guaranteed for all (continuous) times t.

To do so, the discrete-time system

xk+1 = (A + BF )xk + wk = Aclxk + wk with (10)

A := eAcTs

B :=
∫ Ts

0
eAcθdθBc

wk :=
∫ τk+1

τk

eAc(τk+1−θ)Ecw(θ)dθ

Acl := A + BF

(11)

will play an important role in the analysis. Indeed, for both
the uniform and non-uniform sampling case, the system
behaves far away from the set B (at the event times) as
(10). We use the shorthand notation x(τk) = xk here.
Note that this system is only representing the system (7)
at the event times, when x(τk) �∈ B. The bounds on w(t)
given by Wc are transformed into bounds on wk given
by Wd := {∫ Ts

0
eAc(Ts−θ)Ecw(θ)dθ | w ∈ L1([0, Ts] �→

R
p), w(t) ∈ Wc a.e. }. Since Wc is convex, compact and

contains 0, Wd is convex, compact and contains 0.

A. Non-uniform sampling

As we will see in the theorem below, ultimate bounds
for the linear discrete-time system (10) can be used to find
ultimate bounds for the event-driven system (7) with non-
uniform sampling (8).

Theorem 4.1: Consider the system (7)-(8) with Wc a
closed, convex set containing 0, F given and B an open
set containing the origin.

1) If Ω is a RPI set for the linear discrete-time system
(10) with disturbances in Wd and clB ⊆ Ω, then Ω
is a RPI set for the event-driven system (7)-(8) on the
event times, meaning that if x0 ∈ Ω, then xx0,w(τk) ∈
Ω where xx0,w(·) denotes the solution to (7)-(8) with
x(0) = x0 and the realization of the disturbance given
by w :∈ Lloc

1 ([0,∞) �→ Wc).
2) If the linear discrete-time system (10) with distur-

bances in Wd is UB to the RPI set Ω and clB ⊆ Ω,
then the event-driven system (7)-(8) on the event times
is UB to Ω.

3) If the linear discrete-time system (10) with distur-
bances in Wd has convergence factor λ ≤ 1 to the
RPI C-set Ω and clB ⊆ Ω, then the event-driven system

4381



(7)-(8) on the event times has convergence index λ to
Ω.

Proof: 1) Let x(τk) ∈ Ω. Then we can distinguish
two cases: If x(τk) ∈ B, we will either remain in B forever
(thereby not destroying robust positive invariance) or an exit
time τk+1 will occur for which x(τk+1) ∈ ∂B ⊂ clB ⊆ Ω.
The other case is that x(τk) �∈ B, then τk+1 = τk + Ts

according to (8) and the update of the state over the interval
[τk, τk+1] is governed by (10) for some wk ∈ Wd. As Ω is a
RPI set for (10), this means that x(τk+1) ∈ Ω (irrespective
of the realization of the noise). Hence, we proved that if
x(τk) ∈ Ω then x(τk+1) ∈ Ω meaning that Ω is RPI for the
event-driven system at the event times.

2) If x(0) ∈ Ω, then due to RPI of Ω the system (7)-(8)
stays within Ω on the event times as outlined in the first part
of the proof. If x(0) �∈ Ω and thus x(0) �∈ B, the system is
governed by (10) on the event times as long as x(τk) �∈ Ω.
Since (10) is UB to Ω there exists a time K(x(0)) such
that x(τK(x(0))) ∈ Ω. Since Ω is RPI for (7)-(8) on the
event times, we have x(τk) ∈ Ω for all k ≥ K(x(0)). This
completes the proof of statement 2.

3) Similar reasoning applies to the system (7)-(8) to have
a convergence index λ to the set Ω.

B. Uniform sampling

As mentioned before, the non-uniform update scheme
is hard to implement in practice. Uniform sampling might
be more relevant from a practical point of view. However,
in contrast to non-uniform sampling the properties of the
discrete-time linear system do not transfer to the event-
driven system in this case. As we will see, we will need
a piecewise linear (PWL) model to analyse the event-driven
systems using uniform sampling. For ease of exposition and
brevity, we present only the unperturbed case here.

To be able to compute an ultimate bound that solves
problem 3.1, we consider (7) with the uniform event times
as in (9), i.e. τk+1 = τk + Ts with τ0 = 0 and we take
xk := x(τk), k = 0, 1, 2, . . . . At the event times the system
is described by the discrete-time system

xk+1 = Axk + Buk

uk =

{
Fxk if xk /∈ B
uk−1 if xk ∈ B.

(12)

Since we only sample the system at uniformly distributed
times τk, we do not know how far we are outside B before
we detect that the state left B. The reason is that in B the
control value is held and depends on the state on the event
time just before B was entered (possibly several event times
ago), which prevents that the analysis can be based on (10)
as in the non-uniform case. Instead we explicitly are going
to compute the maps that relate the state just after entering
B to the state after just leaving B again. Depending on how
long the control value is held, a different map defines the
update that relates both states. It will turn out that in this
way a piecewise linear (PWL) model is obtained in which we
abstract away from the time that the system is inside B. Using
this PWL system properties related to UB and convergence

factors can be translated to the original system (7)-(9) on
the event times. We will start with presenting how this PWL
description can be created using the following assumption.

Assumption 4.1: A + BF is non-singular.
To define the map gp for the different periods of time

(denoted by p) that the state stays in B, we consider first the
case p = 0, i.e. xk �∈ B the system update matrix is given
by

xk+1 := g0(xk) = (A + BF )xk. (13)

For p = 1 we assume that xk−1 /∈ B, xk ∈ B and then
xk+1 �∈ B. The function g1 defines the mapping from xk to
xk+1 in this case. This update of the state is given by xk+1 =
Axk + Buk with uk = uk−1 = Fxk−1 (since the control
value is held). From (12) we have that xk = (A+BF )xk−1

and thus xk−1 = (A + BF )−1xk. This gives

uk = uk−1 = F (A + BF )−1xk. (14)

Hence,

xk+1 = g1(xk)
:= Axk + BF (A + BF )−1xk

(15)

Similarly, suppose we stay p steps in B before leaving B
again (i.e. xk−1 �∈ B, then xk ∈ B, xk+1 ∈ B, ..., xk+p−1 ∈
B and then xk+p /∈ B). We obtain the function gp that maps
xk to xk+p as follows by using repetitively

xk+i = Axk+i−1 + Buk+i−1, (16)

for i = 1, ..., p. Since the control value is held, it holds
that uk+p−1 = uk+p−2 = ... = uk = uk−1. As uk−1 =
F (A+BF )−1xk by (14), we can express xk+p as a function
of xk:

xk+p = gp(xk) := Apxk+
+ [Ap−1 + Ap−2 + . . . + I]BF (A + BF )−1xk.

(17)
Now that the maps gp are defined, the region Dp has to be

determined for which the map gp is active. For p = 0 this is
straightforward as D0 := Bc, which denotes the complement
of B. For p > 0 Dp is given by those xk for which there
exists an xk−1 �∈ B such that xk = (A + BF )xk−1 ∈ B,
xk+1 ∈ B, ..., xk+p−1 ∈ B and then xk+p �∈ B is satisfied.
Hence, for p = 1, 2, . . . we have

Dp := {x ∈ B | (A + BF )−1x �∈ B and

gj(x) ∈ B for j = 1, . . . , p − 1

and gp(x) �∈ B}. (18)

We also define the set of states that remain inside B forever
after entering it from outside B .

D∞ := {x ∈ B | (A + BF )−1x �∈ B
gj(x) ∈ B for all j = 1, 2, . . .}. (19)

Note that Di ∩ Dj = ∅ if i �= j.
Finally, we introduce the set RB which contains all

possible values of xk within B, that can be reached within
one discrete time-step starting from a state xk−1 outside B:

RB := {x ∈ B | (A + BF )−1x �∈ B}.
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Fig. 2. State transformations for k.

Fig. 3. State transformations for l.

Note that it holds that

RB = D∞ ∪
∞⋃

i=1

Di.

To obtain a finite representation of the piecewise linear
system, we need the existence of a pmax such that

RB = D∞ ∪
pmax⋃
i=1

Di. (20)

Remark 4.1: Deriving conditions for which the existence
of such a finite pmax is guaranteed is an open issue. One
of the complications is for instance that Di = ∅ does not
necessarily imply that Di+1 = ∅. Also the computation
of D∞ is not straightforward. However, a condition that
guarantees the emptiness of D∞ and the existence of a pmax

such that (20) holds, is, for instance, that all the eigenvalues
of the matrix A lie outside the closed unit circle of the
complex half plane and A+BF does not have an eigenvalue
1 (which is typically the case as A + BF is chosen such
that all eigenvalues are inside the open unit circle). One can
even compute an explicit upperbound for pmax. A kind of
“reverse” Lyapunov argument proves this statement. Future
research will be focussed on this matter.

In figures 2 and 3 it is illustrated how we abstract away
from the motion inside B. The iteration parameter k is
substituted for l after abstracting away from the motion of the
system’s state inside B. This notation will be maintained for
the rest of this paper. Therefore, we replace xk+p = gp(xk)
by xl+1 = gp(xl) and obtain the piecewise linear system
xl+1 = fPWL(xl) with

xl+1 =

{
gp(xl), when xl ∈ Dp

0, when xl ∈ D∞ ∪ [B \ RB]
(21)

where l can be seen as the new time variable, where we
abstracted away from the time steps related to the motion

inside B. Some observations on the PWL system (21) are in
order.

• We “completed” the piecewise linear model by adding
dynamics to the system for the case when xl ∈ D∞ and
xl ∈ B \RB , so that it is defined completely on R

n. In
principle the dynamics on these sets are not important
as will be proven below.

• A set Dp is in general not convex. It might even not be
connected. See, the second example in section VIII.

Theorem 4.2: Consider system (7)-(9) without distur-
bances, F satisfies Assumption 4.1 and B is an open set
containing the origin. Assume that there exists a pmax < ∞
such that (20) holds.

1) If the PWL system (21) is UB to the positively
invariant Ω and B ⊆ Ω, then the event-driven system
(7)-(9) is UB to Ω on the event times.

2) If the PWL system (21) has a convergence index
0 leqλ ≤ 1 to the positively invariant C-set Ω and
B ⊆ Ω, then the event-driven system (7)-(9) has a
convergence index λ to Ω on the event times.

Proof: Note that the system (7)-(9) on the event times
is described by (12). We will use the latter system and the
corresponding notation.

If x0 ∈ Ω then we either have that the state trajectory
of (12) satisfies xk ∈⊆ Ω for all k = 0, 1, 2, . . . (which
is in accordance with the properties of the theorem) or the
state trajectory leaves Ω for some event time. Hence, we
only have to consider the case where there exists a k0 (take
the smallest) for which xk0

�∈ Ω and thus xk0
∈ Bc = D0

because B ⊆ Ω. Note that the state xk of system (12) never
reaches B \ RB for k ≥ k0 (by definition of RB).

Observe that the dynamics of (12) and (21) coincide on⋃∞

i=0 Di (modulo the motion inside B, which lies in Ω by
the hypothesis anyway). Hence, since xk0

∈ D0, the system
(12) follows the dynamics of (21) (modulo motion inside B)
for k ≥ k0 until D∞ is reached - if ever (say at k1 ≥ k0

with k1 possibly equal to ∞). If D∞ is reached, the state
trajectory xk of (12) stays inside B ⊆ Ω for all k ≥ k1 by
definition. Hence, on the time interval [k0, k0+1, . . . , k1) the
state of system (12) follows the motion of (21) and hence,
the inheritance of the properties as described in the theorem
is immediate.

Note that the larger p is, the more event times we are not
updating the control value and thus we are not using the CPU
for performing control computations. So, the larger pmax the
more we can potentially save on computation time, but the
complexer (the more regions) the resulting PWL model will
be for the performance analysis. Fortunately, the computation
of the ultimate bounds is performed off-line.

C. Including intersample behavior

The above results only provide statements on the event
times. The behavior of the system in between the event times
is not characterized. However, since at the event times we
obtain properties like UB and convergence indices λ to a
bounded set Ω we know that we enter Ω in finite time. Using
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this observation, an ultimate bound including the intersample
behavior of (7) together with (8) or (9) can be computed from

xx0,w(t) − xk = [eAc(t−τk) − I]xk+

+

∫ t

τk

eAc(t−θ)Bcukdθ +

∫ t

τk

eAc(t−θ)Ecw(θ)dθ, (22)

where t ∈ [τk, τk+1].
In the non-uniform case we either have xx0,w(t) ∈ B

or the equation (22) holds with uk = Fxk and τk+1 =
τk + Ts. In the latter case using the boundedness of Wc

we can easily see that ‖xx0,w(t) − xk‖ ≤ CTs(‖xk‖ +
1 + ‖F‖‖xk‖) for all Ts ∈ [0, Tmax

s ]. The constant C =
C(Ac, Bc, Ec, T

max
s ,Wc) depends on the system parame-

ters, Wc and Tmax
s . Hence, if the system (10) is UB to a

set Ω, then the event-driven system (7)-(8) is UB to the set
Ω⊕B(0, ε) with ε := supx∈Ω CTs(‖x‖+1+ ‖F‖‖x‖) and
B(0, ε) := {x | ‖x‖ ≤ ε}. Note also that the convergence
speed is maintained modulo the intersample behavior that
can be bounded by a relative error around the trajectory on
the event times.

In the uniform case the situation is a bit more complex.
If xk �∈ B a similar bound as above can be derived.
However, if xk ∈ B, then uk = Fxr for some r < k,
where xr = xx0

(τr) �∈ B and τr is the largest event time
(smaller than τk) for which xx0,w(τr) �∈ B. Hence, the
quantity ‖xx0,w(t)−xk‖ is now bounded by CTs(‖xk‖+1+
‖F‖‖xr‖). Note that xr satisfies (A+BF )xr ∈ B. Since B
is bounded and we have Assumption 4.1, this gives a bound
on ‖xr‖. Consequently, we obtain a bound of ‖xx0,w(t)−xk‖
like C̃Ts(‖xk‖ + ‖F‖ + 1) for some C̃. Note that if there
are physical reasons that the control inputs are restricted to
a bounded set, then we obtain immediately a bound like
CTs(‖xk‖ + 1) independent of the designed controller gain
F .

V. COMPUTATIONAL ASPECTS FOR THE NON-UNIFORM

CASE

There are several ways to compute RPI sets for discrete-
time linear systems, see e.g. [4], [5], [8], [9], [12]. We will
present here one approach based on ellipsoidal sets as in [9]
to indicate how the derived results can be exploited.

To use the ellipsoidal approach of [9], we assume that Wd

can be bounded by an ellipsoid ER−1 := {w | wT R−1w ≤
1}, R > 0. Techniques to find such an over-approximation
are given in [6].

Along the lines of [9] it can be shown that feasibility of

P − γ−1AclPAT
cl − (1 − γ)−1R > 0 (23)

for some γ ∈ (0, 1) yields (using Schur complements) that

(Aclx+w)T P−1(Aclx+w) < γxT P−1x+(1−γ)wT R−1w.

From this it is easily seen that xT P−1x ≤ 1 and wT R−1w ≤
1 imply (Aclx + w)T P−1(Aclx + w) ≤ 1. This shows that
Ω = {x | xT P−1x ≤ 1} is a RPI set for (10). Moreover,
we can show that the system (10) has a convergence factor

λ :=
√

γ + 1−γ
μ

< 1 to
√

μΩ = Ω(μ) := {x | xT P−1x ≤

μ} with μ > 1. This can be shown by taking S := Ω and
observing that the Minkowski functional ΦS(x) is equal to√

xT P−1x. Hence, we have that

Φ2
S(xk+1) = (Aclxk + wk)T P−1(Aclxk + wk)

< γxT P−1x + (1 − γ)wT R−1w

≤ γΦ2
S(xk) + (1 − γ).

Since for xk �∈ intΩ(μ)
Φ2

S
(xk)
μ

≥ 1, it follows that

Φ2
S(xk+1) ≤ (γ +

1 − γ

μ
)Φ2

S(xk),

which shows that we have a convergence index λ :=√
γ + 1−γ

μ
. Theorem 4.1 shows that we have a convergence

index λ for the event-driven system (7)-(8) on the event times
to Ω(μ) if we select μ > 1 and B such that clB ⊆ Ω(μ).

VI. COMPUTATIONAL ASPECTS FOR THE UNIFORM CASE

Also for PWL systems several ways to compute invariant
and contractive sets are available [10], [13]. We present here
an approach based on ellipsoidal sets although techniques
using reachability analysis can be exploited as well.

Theorem 6.1: Consider the event-driven system (7)-(9)
without perturbations with F satisfying Assumption 4.1.
Let P > 0 be a solution to AT

clPAcl − γP < 0
for some γ ∈ (0, 1). Take α∗ small such that α∗ >
max1,...,pmax

sup{xT Px | x ∈ gp(Dp)} and α∗ >
max{xT Px | x ∈ clB}, where gp(Dp) denotes the image
of the map gp with its arguments in Dp. Define the set
Ω(α∗) := {x | xT Px ≤ α∗}. Then the PWL system (21)
and consequently the event-driven system (7)-(9) on the event
times have a convergence index

√
γ to the set Ω(α∗).

For brevity we omit the proof.

VII. TUNING OF THE CONTROLLER

In this section we indicate how the ultimate bound Ω
depends on B for (7), thereby facilitating the selection of
desirable ultimate bounds by tuning B. We will only present
results for the non-uniform case due to space limitations.
Similar results are available for the unperturbed case and
uniform sampling. For the case of perturbed systems and
uniform sampling, finding such relationships is still open.

The following result can be inferred from [4].
Theorem 7.1: Consider the system (7)-(8) with Wc a

closed, convex set containing 0, F given and B an open
set containing the origin.

• If Ω is a RPI set for the discrete-time linear system (10)
containing clB, then for any μ ≥ 1 μΩ is a RPI set for
(10) containing μclB.

• If the discrete-time linear system (10) is UB to Ω
containing clB, then for any μ ≥ 1 (10) is UB to μΩ
containing μclB

• If the discrete-time linear system (10) has convergence
index λ ≤ 1 to Ω containing clB, then for any μ ≥ 1
(10) has convergence index λ ≤ 1 to μΩ containing
μclB
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This result shows that Ω scales “linearly” with B for
scaling factors larger than one. Computing the minimal RPI
set Ωmin containing {0}, see e.g. [9] gives the ultimate bound
as long as the chosen clB lies inside Ωmin the ultimate bound
will stay constant and equal to Ωmin (or strictly speaking an
ultimate bound is the set μΩmin for any small μ > 1). If clB
moves outside Ωmin, the linear scaling effect occurs. This
effect is nicely demonstrated in the first example below.

VIII. EXAMPLES

A. Non-uniform sampling

To illustrate the theory in case of non-uniform sampling
(8) we will use the example of the introduction. Note that
in the introduction we used uniform sampling. In figure 4
the ratio of the number of control updates in comparison to
the case where the updates are performed each sample time
(i.e. uk = −0.45xk for all xk) and the maximal value of the
state variable (after transients) xmax := lim supt→∞ |x(t)|
(the minimal ultimate bound), respectively, versus the pa-
rameter eT are displayed, where B = {x | |x| < eT }.

The figure of the ultimate bounds can nicely be derived
from the theory. First, we compute for the system (1), the
discretized version (10) with sample time Ts = 0.1:

xk+1 = 1.051xk + 1.025uk + wk; uk = −0.45xk (24)

or
xk+1 = 0.590xk + wk (25)

with 3.076 ≤ wk ≤ 3.076. The minimal RPI set Ωmin for
(25) containing {0} is equal to the ellipsoid [−7.50, 7.50].
Hence, note that as long as eT < 7.50 the ultimate bound
of the system (7)-(8) is equal to Ωmin (or strictly speaking to
the set μΩmin for a small μ > 1 as discussed in Section V).
This explains the constant line in the xmax versus eT plot in
Figure 4 up to eT = 7.50. At the moment eT gets greater
than 7.50, the condition of theorem 4.1 that clB ⊂ Ωmin does
no longer hold. However, we can now use the “scaling effect”
from Theorem 7.1. Theorem 7.1 implies that eT

7.50Ωmin is RPI
and the linear system is UB to μ eT

7.50Ωmin for any μ > 1 when
eT > 7.50. Since clB ⊆ eT

7.50Ωmin holds, Theorem 4.1 implies
that eT

7.50Ωmin is RPI and the event-driven system (7)-(8) is
UB to μ eT

7.50Ωmin for any μ > 1. This explains the linear
part in the xmax versus eT plot in Figure 4. Hence, we can
reduce the number of control updates with almost 80% in
this set-up without reducing the control accuracy (e.g. take
eT = 5)!
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Fig. 4. eT versus the control effort and xmax for system (1)-(2).
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B. Uniform sampling

To demonstrate the results for uniform sampling, we have
taken the example of an unstable system with two states
(n = 2) given by (7) with

Ac =

[
1070 270
270 40

]
; Bc =

[
453
874

]
(26)

The controller matrix is taken to be F = [−2.4604 −0.2340].
The matrices in the discrete-time version (10) are equal to

A =

[
3.00 0.50
0.50 1.10

]
B =

[
1.00
1.00

]
(27)

for Ts = 0.001. Note that the the eigenvalues of Acl = A +
BF are 0.7±0.7. B = {x | |x1| < eT , |x1| < eT } with eT =
6. One can easily check that the conditions mentioned in
Remark 4.1 are satisfied. Hence, D∞ = ∅ and the finite pmax

that one finds is equal to 3. Figure 5 displays the calculated
sets RB and Dp, p = 1, 2, 3 as given by equation (18)

The dynamics that are valid inside Dp, calculated with
equation (17) are:

g0(xl) =

[
0.537 0.264
−1.96 0.863

]
xl

g1(xl) =

[
0.364 1.03
−2.13 1.63

]
xl

g2(xl) =

[ −2.60 4.43
−4.79 2.83

]
xl

g3(xl) =

[ −12.8 15.2
−9.17 5.84

]
xl

(28)

Since we have obtained the PWL-description of the system
we can apply the theory presented in section VI. Using the
ellipsoidal approach as presented in Theorem 6.1 we obtain
the ellipsoid Ω in figure 6. We also computed the reachable
set Ωreach for the PWL system from points in RB . For the
computation of this set a combination of tools from [10]
and [8] was used. Note that Ωreach is a positive invariant
set for the PWL system. Since B ⊂ Ωreach and outside B
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the dynamics on the event times is equal to xk+1 = Aclxk,
similar statements can be made for Ωreach as for Ω.

Figure 6 also shows a time simulation of the continuous
time system. A (red) dotted line shows the intersample
behavior in which the small (red) diamonds indicate the
values at the event times. It can be seen that the trajectory
is not restricted to the depicted Ωreach (in blue (dark grey)),
due to the intersample behavior. Bounds on the intersample
behavior can be obtained via Section IV-C.

IX. CONCLUSIONS

This paper advocates the use of event-driven controllers
to reduce the required (average) processor load for the
implementation of digital controllers. An initial example
already illustrated the reduction of control computations (up
to 80%) that is achievable. In [15] it is experimentally studied
how this reduction in control computations is related to
lowering the average processor load. However, the trade-
off one has to make is to balance this reduction with the
control accuracy. This paper provides necessary theory to
get insight in this trade-off and shows the ultimate bounds
that are obtainable and how they depend on the parameters
of the control strategy. The theory is based on inferring
properties (like robust positive invariance, ultimate bounded-
ness and convergence indices) for the event-driven controlled
system from discrete-time linear systems (in case of non-
uniform sampling) or piecewise linear systems (in case of
uniform sampling). Although this paper analyses a rather
simple event-driven control structure, it already indicates the

complexity and challenge for the analysis and synthesis of
these type of control loops. This work provides the first
step in a proper analysis of these types of loops and future
work will be focussed on the finite number of regions of
the piecewise linear model (finite pmax) and on extensions
(e.g. reference tracking).
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Parametric Toolbox (MPT). Hybrid Systems: Computation and Con-
trol, Lecture Notes in Computer Science, Volume 2993, Springer
Verlag, Philadelphia, USA, pp. 448-462, http://control.ee.ethz.ch/mpt.

[11] Lincoln, B. (2002). Jitter compensation in digital control systems.
Proc. American Control Conference, Anchorage, USA, pp. 2985-2990.

[12] Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., Mayne, D.Q. (2005),
Invariant approximations of the minimal robust positively Invariant
set. IEEE Transactions on Automatic Control, 50(3), pp. 406 - 410

[13] Rakovic, S.V., Grieder, P., Kvasnica, M., Mayne, D.Q., Morari, M.
(2004), Computation of invariant sets for piecewise affine discrete
time systems subject to bounded disturbances. Proc. 43rd IEEE
Conf. Decision and Control. Pp. 1418 - 1423.

[14] Sandee, J.H., Heemels, W.P.M.H., Bosch, P.P.J. v.d. (2005). Event-
driven control as an opportunity in the multidisciplinary development
of embedded controllers. In: Proc. American Control Conference,
Portland, Oregon, USA, pp. 1776-1781.

[15] Sandee, J.H., Visser, P.M., Heemels, W.P.M.H. (2006). Analysis and
experimental validation of processor load for event-driven controllers.
Submitted for publication.

4386


