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Practical Stabilization of Driftless Systems on Lie
Groups: The Transverse Function Approach

Pascal Morin and Claude Samson

Abstract—A general control design approach for the sta-
bilization of controllable driftless nonlinear systems on finite
dimensional Lie groups is presented. The approach is based on
the concept of bounded transverse functions, the existence of
which is equivalent to the system’s controllability. Its outcome is
the practical stabilization of any trajectory, i.e., not necessarily a
solution of the control system, in the state–space. The possibility
of applying the approach to an arbitrary controllable smooth
driftless system follows in turn from the fact that any controllable
homogeneous approximation of this system can be lifted (via
a dynamic extension) to a system on a Lie group. Illustrative
examples are given.

Index Terms—Feedback law, Lie groups, nonlinear systems,
stabilization.

I. INTRODUCTION

L ET

(1)

denote a control system on a finite-dimensional connected Lie
group , with left-invariant smooth vector fields
(v.f.) which satisfy the Lie algebra rank condition (LARC) so
that the system is controllable when . The drift term

is viewed here as a known or measured perturbation be-
longing to —the tangent space of at . We assume only
the continuity of the function . Obviously, the main case of
interest is when —when

, for instance. The problem addressed in this paper is
thepractical stabilizationof the identity element via the
asymptotic stabilization of a compact set contained in an arbi-
trary small neighborhood of.

Prior to commenting upon this particular control objective, it
may be useful to explain why the Lie group framework is chosen
here. A common motivation is that various physical systems
are naturally modeled as systems invariant on Lie groups. Rigid
bodies in space and cart-like vehicles are well-known examples.
Invariance on a Lie group is a strong geometrical and structural
property which is understandably useful for control design pur-
poses. A second motivation is related to the possibility of lo-
cally approximatingany smooth controllable driftless system

Manuscript received July 15, 2002; revised February 18, 2003. Recom-
mended by Associate Editor W. Kang.

The authors are with the Institut National de Recherche en Automatique
et Informatique (INRIA), 06902 Sophia-Antipolis Cedex, France (e-mail:
Pascal.Morin@inria.fr; Claude.Samson@inria.fr).

Digital Object Identifier 10.1109/TAC.2003.816963

by a controllable homogeneous driftless system which can be
lifted, via a suitable dynamic extension, to a system invariant
on a Lie group. This will be explained in more details further
in the paper. After having recalled the generality of systems on
Lie groups, our next and final argument is that the Lie group
framework is particularly well adapted to the development and
exposition of thetransverse function(t.f.) control approach pre-
sented here. The extensive use of the specific properties associ-
ated with systems on Lie groups in the proofs of the main results
reported in the present paper is, by itself, a good illustration of
this.

Let us now focus on control issues and put the practical stabi-
lization objective in perspective with the research effort devoted
to driftless controllable systems. While controllability proper-
ties of these systems have been known for a long time—as a
consequence of the classical Chow theorem [9]—algorithms to
compute open-loop controls in order to steer the system from
one point to another have been proposed more recently with
various approaches: use of highly oscillatory control inputs
[23], [35], [44], explicit calculation of steering trajectories in
the case of nilpotent systems [20] and differentially flat systems
[13], [27], particularization of these methods to systems on Lie
groups [21], possibly with a drift v.f. [6]. This paperdoes not
focus on issues related to open-loop control techniques, such as
path planning, or the characterization/construction of optimal
paths between two points, or the determination of algorithms
which compute “feasible” approximations of a finite-length
arbitrary curve. Although the proposed control approach may
be useful to address some of these problems in a novel way
(the path approximation problem, to cite one of them), its
primary application is feedback stabilization. The problem of
asymptotic stabilization—via state feedback control— of an
equilibrium point of (1), when , has also attracted much
attention during the last decade. Many of the studies on the
subject have found a challenge and a motivation in Brockett’s
theorem [5] according to which, if and the control
v.f. evaluated at are linearly independent, no smooth or even
continuous pure state feedback can make this equilibrium
point asymptotically stable. Different types of feedback laws
have been considered to circumvent the difficulty—although
not all of them guarantee Lyapounov stability. Discontinuous
feedbacks [1], [3], [8], [22] and hybrid feedbacks [2], [30],
[41] are two possibilities. Another one, more related to the
present approach, consists of using continuous time-varying
feedbacks [39], [10], [36], [45], [40], [28], [37], [31], [29]. An
early survey on the control of nonholonomic systems, whose
kinematic models are nonlinear driftless systems, can also be
found in [4].
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The abundance of literature on the subject may convey the
feeling that the problems are, by now, well understood and have
received satisfactory solutions. We believe on the contrary that
some important issues have been left in the shade. One of these
issues concerns the compromise between speed of convergence
and robustness of the stability property against modeling errors.
For a few driftless systems, this type of robustness can be en-
sured by using a Lipschitz continuous time-varying feedback
law [26], but this implies slow—not exponential—convergence
to the origin for most of the system’s trajectories. On the other
hand, to our knowledge and understanding, no robust exponen-
tial stabilizer has been proposed until now. It is in fact possible
that such a feedback does not exist for systems which do not
satisfy Brockett’s condition. A result in this direction has been
proved in [25]. Efforts to circumvent the difficulty, by consid-
ering hybrid continuous/discrete time feedback laws [2], [30],
have only brought partial results. For instance, such feedbacks
can be made robust to unmodeled dynamics, but stability of the
desired equilibrium is not robust against discretization uncer-
tainties. Another issue is related to the trajectory stabilization
problem. This problem is usually easier than point stabiliza-
tion—in particular, the linearized approximation of the associ-
ated error system may be controllable—and various feedback
solutions have been proposed for specific classes of nonlinear
driftless systems, especially in the robotics literature [17], [40],
[7]. Asymptotic stabilization is usually obtained under some
conditions upon the reference trajectory. Typically, it should
not converge to a fixed point. One could have hoped for the
existence of a feedback law which would have uniformly guar-
anteed asymptotic stability independently of the considered tra-
jectory—just as for linear controllable systems—but negative
results concerning this existence issue have been proven [24].
This has clear consequences in mobile robotics, when the con-
trol objective is the tracking of a reference vehicle whose trajec-
tory is not known in advance.

The aforementionned difficulties suggest to us that, for non-
linear driftless systems, the classical objective of asymptotic sta-
bilization, which underlies a large part of feedback stabilization
theory, is at the same timetoo restrictive and too constraining.
The guideline followed in this paper is thatpractical stabiliza-
tion can be a more realistic control objective to pursue, and also
a touchstone principle for the definition of new approaches for
the stabilization of driftless systems. Being less constraining
than the one of asymptotic stabilization, it encompasses many
control solutions previously proposed in the literature and leaves
the door open to other solutions.

The approach here considered for practical stabilization is
based on the existence of bounded functions which aretrans-
verseto a set of v.f. [34]. Intuitively, one can make a comparison
between this approach and the general open-loop control design
algorithm developed in [23], [44]. In those papers, the idea was
to add virtual control inputs involving sinusoids with fixed and
high enough frequencies in order to ensure uniform bounded-
ness of tracking errors by a prespecified threshold. Here, the
threshold is directly related to the size of periodic transverse
functions whose associated frequencies are the new inputs. In
comparison with the approach developed in [23] and [44], we
would like to stress that: 1) our approach yields feedback laws;

2) ultimate boundedness of the tracking errors by a prespecified
threshold,uniformly w.r.t. the reference trajectory, is guaran-
teed; and 3) the control frequencies may tend to zero, even when
the reference trajectory is not a solution of the control system, so
that oscillations are not systematic—this will be illustrated by
simulations results at the end of this paper. Let us also mention
that the idea of frequency adaptation which underlies the feed-
back control solutions proposed here can be traced back, in the
context of mobile robots, to [12], a work itself adapted from con-
trol techniques used for induction motors [11]. Concerning the
concept of transversality used throughout this paper, the basic
result of equivalence between the existence of a bounded func-
tion whose partial derivatives are transversal to a set of smooth
v.f. and the satisfaction by these v.f. of the LARC was first
proved, to our knowledge, in [34]. However, the way of using
this result for control purposes is little developed in that refer-
ence, and the importance of the Lie group framework in order
to properly develop the t.f. control approach was not identified
at that time. For the sake of clarity and precision, a discussion
about the contribution of the present paper with respect to [34]
is postponed to Remark 5 in Section VI, after the exposition of
the main results.

The paper is organized as follows. The t.f. control approach is
first illustrated on a simple example in Section II. In the next sec-
tion, notations used thereafter are specified and a few definitions
about invariant systems on Lie groups are recalled. The main
technical result about the existence and construction of trans-
verse functions is stated in Theorem 1 in Section IV. Then, in
Section V, the concept of transverse function is used to solve the
practical stabilization problem evoked at the beginning of this
introduction. In Section VI, we show how the approach applies
to systems with homogeneous v.f., after precising in a propo-
sition how any homogeneous system can be lifted to a system
invariant on a Lie group. Theorem 1 combined with this propo-
sition contains the main result in [34] according to which con-
trollability is equivalent to the existence of transverse functions.
Finally, the approach is illustrated by examples in Section VII.

II. SIMPLE EXAMPLE

Consider the perturbed three-dimensional chained system
with two inputs and state vector

(2)

It is known, and simple to verify, that the unperturbed chained
system (with ) is controllable. Consider the following
function which associates an elementof the torus
with a point in

(3)

The Euclidean norm of is clearly uniformly bounded
by a number commensurable with, and it uniformly tends
to zero when tends to zero. This function is of partic-
ular interest to us because with
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, so that, whenever
, the vectors , and form a basis

of , for every . In other words, the gradient of
is transversalto the directions given by et when these
v.f. are evaluated at . Note that what is remarkable
is not so much the property of transversality by itself—the
unbounded function also trivially
satisfies this property—but the combination of transversality
and boundedeness of the function. In order to explain the
usefulness of such a function for the control of (2), we introduce
the following vector:

(4)

One easily verifies that, along the solutions of (2)

(5)

with

and . Using the fact that both matrices
and are invertible for every and

, and viewing as an extra control input variable, the
preliminary feedback

(6)

with denoting a free vector in , transforms (5) into the
simple decoupled linear system

(7)

Asymptotic stabilization of the origin of the previous system
obviously poses no difficulty. One can take, for example,

with to ensure exponential stabilization of .
In view of (4), this control yields exponential convergence of

to zero and, furthermore, asymptotic stabilization of
for (2) if, for insatnce, . It is

in this sense that the practical stabilization of is achieved
for this system.

Since is “almost” equal to when is small, a possible
interpretation of the above control solution is that it “nearly”
globally linearizes the initial nonlinear system with two control
inputs into the trivial linear system (quoted words are
important here). Following this interpretation, the time deriva-
tive of provides the extra control input which allows instanta-
neous steering in any direction of the state–space. Sinceis an
element of the torus, its time derivative may also be viewed as
a frequency variable.

At this point, the specific expression (4) of, the dynamics
of which can be globally linearized and decoupled—contrary to
the apparently simpler choice —, may seem a little
mysterious. In this respect, the generalization of the approach
will reveal the central role played by the Lie group invariance
property of the chained system. For instance, we will see that (4)

may equally be written as , with denoting the
group operation on with respect to which the chained system
is invariant, and the inverse of with respect to this
operation.

III. RECALLS AND NOTATION

Let us introduce some notation used hereafter.

• is the Euclidean norm in .
• Let denote a function of the variablesand , we write

(resp., ) if
as (resp. if in

some neighborhood of ) uniformly with respect to
belonging to compact sets.

• The tangent space of a manifold at a point is denoted
as .

• The Lie algebra generated by v.f. is denoted
as .

• The differential of a smooth mapping at a point is
denoted as .

• is the torus of dimension, with .

We shall also use standard notation relative to Lie groups; see,
e.g., [15] for more details on this topic. Recall that a Lie group
is a differentiable manifold endowed with a smooth group
operation.

• denotes a finite-dimensional connected Lie group, with
Lie algebra—of left-invariant v.f.—. As usual, for the
sake of lightening the notation, and unless specifically in-
dicated otherwise, the group product of two elements
and of will be denoted by .

• The identity element of is denoted by , i.e.,
.

• The inverse of is denoted by , i.e.,
.

• Left and right translations are denoted byand respec-
tively, i.e., .

• If is the solution at time of
with initial condition .

• The adjoint representation of is Ad, i.e., for
with de-

fined by . By extension, we define

.
• The differential of Ad is ad, and , the

Lie bracket of and .

Recall that

• a v.f. on a Lie group is left-invariant iff
;

• a control system on is said to be
left-invariant if the control v.f.’s are
left-invariant;

• if and are two solutions of a left-invariant
system obtained by applying the same control ,
then with .

For a proper general exposition of the t.f. control approach, the
following definition of agraded basisof is also needed.

Definition 1: Let denote independent
v.f. such that . Define inductively
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with , and let
. A graded basisof associated with

is an ordered basis of associated
with two mappings such
that the following hold.

1) For any
.

2) For and
with , and

.
With any graded basis of, one can associate aweight vector

defined by

It follows from Definition 1 that
and, .

IV. TRANSVERSEFUNCTIONS

The main result about the existence and construction of trans-
verse functions is the following.

Theorem 1: Let denote a Lie group of dimensionwith
Lie algebra . Let denote independent v.f.
Then, the following properties are equivalent.

1) .
2) For any neighborhood of in , there exists a function

such that, for any

(8)

Furthermore, with denoting a graded basis of,
a possible choice for is given by

(9)

with defined by

(10)

for some positive real numbers .
As in [34], functions which satisfy (8) are called “transverse”

to the v.f. , or just transverse functionswhen no
ambiguity is possible.

Theorem 1 is coordinate-free. When providing with a
system of coordinates in , relation (8) means that the square
matrix

(11)

is invertible for every .
There are many ways to derive transverse functions; see, for

instance, [33] for an alternative expression of such a function.
Also, in (10), one can introduce two parameters and ,
instead of the single parameter. This yields

(12)

The authors know from their experience in robotics that this
extra degree of freedom is useful in practice. Another possi-
bility, also important in practice because it can significantly re-
duce the calculation complexity, consists in using, in either (10)
or (12), v.f. and associated with a suitable homo-
geneous approximation of the control system. This is illustrated
by the example of a unicycle in Section VII.

The choice of the parameters is further speci-
fied in Lemma 3 used in the proof of the theorem.

Proof of Theorem 1:For the proof of (Property
2 Property 1), we refer the reader to [34]. This is a
direct consequence of the Frobenius Theorem. To prove that
Property 1 implies Property 2, we only have to show that (8)
is satisfied with the function defined by (9)–(10), for some
values of the parameters . We indicate later the
main steps of the proof in the form of three lemmas.

By standard calculations, we first prove the following.
Lemma 1: There exist analytic functions

such that

(13)

with

(14)

From this lemma, we then prove the following.
Lemma 2: There exist analytic functions

such that

(15)

with

(16)
where if , and .

Note that, if all O and o terms in the previous expressions
were equal to zero, then Theorem 1 would follow directly from
(15)–(16) and from the fact that is a basis of .
Although this is not the case, it is not very difficult to show
that these terms can be neglected provided that the’s are ad-
equately chosen, as stated in the following lemma.

Lemma 3: There exist numbers , and ,
such that choosing with

, yields

(17)

In view of (15), (17) is equivalent to (8), so that the proof of
the theorem follows. The proofs of the previous lemmas are re-
ported in Appendix A.
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Note that Lemma 3 does not state that “any” set
of small enough numbers is suitable, nor

does it imply that these numbers have to be small. For instance,
if the v.f. are homogeneous w.r.t. some dilation,
the lemma holds for any .

V. APPLICATION TOPRACTICAL STABILIZATION

A. Point Stabilization

Consider (1) and assume—without loss of generality—
that are independent. We show in the following
proposition how the concept of transverse functions can be
used to design control laws for System (1) that make
practically stable. Let us remark that no assumption is made
on . For instance, when the projection of onto

does not tend to zero astends
to infinity, no control law can make an equilibrium
of the system, and asymptotic stabilization of this element is
pointless.

Proposition 1: Let denote a transverse
function. Then along any solution of (1), and along
any trajectory in

(18)

with . Moreover, if is a v.f. on , then the dy-
namic feedback law defined by

(19)

yields the satisfaction of the following equation:

(20)

along any solution of the controlled system.
Proof: The proof of (18) is easily obtained by differenti-

ating the equality and using the identities
. By applying the feedback

law (19) to (1), one deduces (20) from (18).
An immediate corollary of the aforementioned proposition is

that it suffices to choose for any v.f. which asymptotically
stabilizes to ensure asymptotic stability of this point for the
system (20) and, therefore, convergence ofto for
(1). Furthermore, asymptotic stability of for (1) con-
trolled by the feedback defined by (19) is also granted, provided
that with some left-invariant
metric on .

Remark 1: Equations (18) and (19) are thecoordinate-free
generalizations of (5) and (6) derived for the three-dimensional
chained system. They hold whatever the system of coordinates
chosen to represent the elements ofas vectors in .

Remark 2: (Explicit Control Expression):The explicit cal-
culation of the feedback control defined by (19) will often re-
quire the preliminary choice of a system of coordinates. Once
this choice is made, if one keeps the same letters to denote the
v.f. involved in (19) and their (local) representations in, then
(19) is equivalent to

(21)

with the invertible matrix defined by (11),
, and ,

with denoting the local representation in of the point
. Equation (21) is the coordinate-dependent generalization

of (6).
Remark 3: (Output Linearization and Associated Zero Dy-

namics): Since the choice of in the control expression is free,
one can interpret this v.f. as a free control vector and (21) as
a feedback control which, in view of (20), “almost linearizes”
the equations of the original system. A clear advantage of this
type of linearization over “exact” feedback linearization is that
it is free of singularities. Another one is the decoupled form of
the resulting linear system and, as a matter of fact, its extreme
simplicity. This interpretation is conceptually attractive, but it is
important to realize that it does not “tell” everything about the
approach. For instance, it leaves in the shade the dynamics as-
sociated with the extra set of variables, while these “hidden”
dynamics may have their importance in the overall evaluation
of the control performance. For example, if the convergence of

to zero results in large sustained values ofthen highly oscil-
latory motion of will take place. This may not be desirable for
a certain number of applications. On the other hand, oscillatory
motion may also correspond to a requirement of the application.
Just consider the case of a car having to perform a small lateral
motion within a given time period. This can only be done via one
or several maneuvers whose number and amplitude are clearly
related to the frequency of the steering-wheel angular velocity.
Typically, the smaller the amplitude the larger the frequency will
need to be.

Remark 4: (About the Convergence ofto Zero): Proposition
1 indicates how any v.f. which asymptotically stabilizes the
identity element of induces a feedback law for System (1)
which asymptotically stabilizes the set . For instance,
given a system of coordinates on, exponential stability
is obtained by choosing , with any Hurwitz
stable matrix. Note that uniform asymptotic boundedness
of all control variables is automatically ensured. As already
mentioned, a complementary analysis of the zero dynamics
associated with is usually necessary to deduce other
properties of the closed-loop system. The equations of this
zero dynamics are just obtained by setting in the control
expression (21). In the specific case when the perturbation

is identically equal to zero, or when it does not depend
upon while tends to zero, these equations simplify to

and one deduces that all control variables
converge to zero. This implies in particular, that tends
to zero. Note that this does not necessarily mean that the state
itself converges to some point. However, it is not difficult to
prove that such is the case whenis identically equal to zero,



MORIN AND SAMSON: PRACTICAL STABILIZATION OF DRIFTLESS SYSTEMS ON LIE GROUPS 1501

or when tends exponentially to zero, and converges
exponentially to zero. Now, let us point out thatmay also
tend to zero when the perturbationdoes not vanish. In view
of (19), this requires the existence of elements such
that . The
possibility of having the extended state converge when
does not vanish will be illustrated along the unicycle example
treated further in this paper.

B. Trajectory Stabilization

We show how Proposition 1 directly applies to the problem
of practical stabilization of a trajectory on a Lie group.
Let denote an arbitrary smooth trajectory in. For
any basis of , there exist smooth functions

such that

Furthermore, if are left-invariant v.f. in
and are solutions to the differential equations

then the following identity holds:

One deduces the followingerror systemassociated with the tra-
jectory stabilization problem:

(22)

with representing the tracking error and

(23)

Since this system has the same form as (1), Proposition 1
applies to it and provides control laws which ensure asymptotic
stabilization of the set for the error system (22).
It is in this sense that practical stabilization of the trajectory

is achieved. In particular, if denotes a left invariant
Riemannian distance on, then the practical stabilization of

implies that, for any solution of the controlled system,
asymptotically tends to zero.

VI. CASE OFHOMOGENEOUSSYSTEMS

In this section, we show how the results of the previous sec-
tions apply to driftless controllable systems with homogeneous
v.f. The study of such systems is motivated by several reasons.
One of them is that any controllable smooth driftless control

system on can be approximated by a controllable system
with homogeneous v.f. [42], [16]. While this approximation is
local in general, there are also physical systems which admit an
homogeneous representation in a large domain. The modeling
by chained systems of the kinematic equations of several non-
holonomic wheeled mobile robots is a well-known example.

The main tool used to apply the results of the previous sec-
tions to homogeneous systems is the so-called lifting theorem
[38] which specifies how homogeneous systems can be viewed
as systems on Lie groups. This explains in part the importance
given to Lie groups in the formal Lie-algebraic literature [19],
[43]. In this literature, free Lie algebras and free systems [18]
are usually considered. They correspond to the framework for
the original lifting theorem where nilpotent v.f. are lifted to a
free Lie group. While this is well justified from a theoretical
standpoint and the sake of generality, it can be interesting, for
practical purposes and computational efficiency, to lift the v.f.
associated with a specific control system under consideration to
the smallest possible Lie group, i.e., the embedding Lie group
with the smallest dimension. This possibility, investigated in
[14], will be used here.

A. Lifting of an Homogeneous System to a System on a Lie
Group

Prior to stating, in the form of a proposition, a version of the
lifting theorem adapted to our present objectives, let us recall
a few basic definitions and properties about homogeneity (for
more details, we refer the reader to [16]).

Given and aweight vector
, a dilation on is a map from to defined

by . A function is
homogeneous of degreewith respect to the family of dilations

, or more concisely -homogeneous of degree, if
. A smooth v.f. on is -

homogeneous of degreeif, for any , the function
is -homogeneous of degree .

The possibility of lifting a set of homogeneous v.f. to a
Lie group, with dimension equal to the dimension of the Lie
algebra generated by the v.f., is summarized in the following
proposition.

Proposition 2: [38], [14]: Let denote smooth
v.f. on , independent1 over -homogeneous of de-
gree respectively, and which satisfy the
LARC at the origin. Let denote the dimension, over, of

. Then, there exist

i) a lifting of on of the following
form:

ii) a smooth mapping ;
such that

1) satisfy the LARC at the origin;
2) are -homogeneous of degree

, respectively, for some ;

1That is,( � X = 0 with � 2 ; i = 1; . . . ;m) =) (� =
0;8i).
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3) , endowed with the composition law
is a Lie group, and are left-invariant

v.f. for this composition law.
For a constructive proof of this proposition, the interested reader
is referred to [33].

Remark 5: The combination of Theorem 1 and Proposition 2
implies the results stated in Theorem 1 of [34] and, in particular,
the existence of transverse functions for any smooth control-
lable driftless system. It also yields complementary results. One
of them is the specification of a smaller number of variables on
which transverse functions depend. More precisely, this number
is equal to the difference between the dimension of the Lie al-
gebra generated by the v.f. of a controllable homogeneous ap-
proximation of the system and the number of independent con-
trol v.f. Another important complementary result is the expres-
sions (9)–(10) of such a transverse function. This expression is
much more concise and explicit than the construction proposed
in the proof of Theorem 1 in [34]. Finally, let us mention that
no general control expression was given in [34]. In this respect
the Lie group structure is essential.

The next section explains how to use Proposition 2 in con-
junction with Proposition 1 to achieve practical stabilization of
a controllable homogeneous driftless system.

B. Application to Practical Stabilization

Consider a -dimensional controllable homogeneous drift-
less system perturbed by an additive v.f.

(24)

The control v.f. are assumed to be independent
over so that all assumptions in Proposition 2 are satisfied. Let

be the v.f. evoked in this proposition. A dynamic
extension of system (24) is then the-dimensional system

(25)

with

According to Proposition 2, the corresponding unperturbed
system (obtained by setting ) is left invariant on the Lie
group endowed with the group operationdefined in the
proposition. Therefore, Proposition 1 applies directly to system
(25), yielding a feedback control which
ensures (global) practical stabilization of the origin, i.e., the
identity element, of for this system. The expression of the
control law depends on a transverse function
associated with the v.f. , and Theorem 1 provides
an example of such a transverse function. From there, it remains
to specify conditions under which the obtained controller is also
a (global) practical stabilizer for the initial system (24).

Recall that the origin of is practically stabilized in the
sense that the set is asymptotically stable for the
extended system (25), after closing the loop with the feedback
control and choosing adequately. This implies that the
set —with denoting the first components of
the vector-valued function —is (globally) attractive for the
closed-loop solutions of (24). Then, by using classical norm
inequalities one easily verifies that, in order to further ensure
stability of this set, it suffices to choose the initial condition

equal to —with denoting the remaining
components of the vector-valued function.

VII. EXAMPLES

A. Chained Systems

The (perturbed) chained system of dimensionwith two in-
puts is defined by

(26)

with ,
and some additive drift term. The unperturbed chained
system—corresponding to the case where —is a
particular homogeneous system, and it is well known that

is of dimension , and is spanned by the v.f.
with

(27)

and the th canonical vector on .
According to Proposition 2, and are left-invariant w.r.t.
a group operation on . One easily verifies that this group op-
eration is given by

(28)

with the matrix whose only nonzero entries are
, for . More explicitly, the components of

are defined by

(29)

Let us now proceed with the computation of transverse functions
for this system. and complemented with the v.f.
defined by (27) form a graded basis of in the sense
of Definition 1, and the associated weight-vector is given by

. Therefore, if we use (10) to calculate
each , we deduce from (27) that

From the definition of , , and (27), it is not difficult to
obtain
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The expression of can then be calculated from
(29). Then, for any transverse function, and any Hurwitz stable
matrix , the choice in the control expression (21)
yields the feedback

with defined, as before, by (11)

and , denoting the first component of and respec-
tively. This control is a practical stabilizer of (26). This was the
main result of [32]—up to a small difference due to inverting the
roles played by and , knowing that both choices
and can be made.

B. Systems on With Two Control Inputs

Recall that is the set of rotation matrices in .
Endowed with the classical product of matrices, it is a three-di-
mensional Lie group. Its Lie algebra consists of the set of
(3 3) skew-symmetric real matrices and is classically denoted
as . Moreover, the exponential of an element of
coincides with the classical matrix exponential of this element.
Consider the following underactuated control system on this
group:

(30)

where denotes, as in the above example, theth canonical
vector in , and is the operator associated with the vector
product, i.e., . Since , and

form a basis of , the Lie algebra generated by and
is isomorphic to . This basis is a graded basis in

the sense of Definition 1, with . We calculate a
transverse function by (9)–(10), i.e.,

(31)

Note that is the matrix of rotation with angle about the
axis with unitary vector . A direct calculation
yields

(32)

where and denote the and functions, respectively.
Lemma 4: The function given by (32) is a transverse func-

tion for any .
Proof: From (31)

(33)

Using the fact that , for any rotation ma-
trix and any vector , we deduce from (33) that

with and
the identity matrix. A direct calculation yields

. Since the transver-
sality condition is equivalent to the third component ofbeing
different from zero, the proof follows.

For the determination of a control expression one can use
(19). This yields

or, equivalently

This control is a practical stabilizer of the identity matrix pro-
vided that the v.f. asymptotic stabilizes the identity matrix. A
well known possible choice is , with
and the rotation vector associated with the rotation
matrix , i.e., the vector with smallest Euclidean norm (corre-
sponding to the angle of rotation) such that . The
domain in which this v.f. is differentiable and exponentially
stabilizes the identity matrix is minus the set of rotation
matrices with angles of rotation equal to. Using this expres-
sion of in the previous equality yields

with denoting the rotation vector associated with
the matrix , i.e., such that .
A practical stabilizer is thus given by

or, equivalently—after simple calculations—by

The domain of attraction in contains the set of rotation
matrices with angles of rotation smaller than .

C. Unicycle

Kinematic equations of the unicycle are

(34)

with , and
. For stabilization purposes, this system is often trans-

formed, via a diffeomorphic change of coordinates and new
control variables, to the three dimensional chained system with
two inputs. The solution described in Section VII-A then ap-
plies directly. However, the preliminary transformation into a
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chained system is not necessary, and the control design can be
performed easily by using natural system coordinates. This is
possible because, as this is well known, the above equations
define a left-invariant control system on the Lie group .
The group operation is given by

(35)

with the rotation matrix in of angle . The v.f.
, and , form a graded basis of ,

with . A transverse function can be obtained by
using (9)–(10), or the more general expression (9)–(12), i.e.,

After simple calculations, using (35) and the expressions of the
v.f. and

(36)

The transversality condition is equivalent to the fact that the
matrix

is invertible for any . Using the expressions of , , and
(36), one obtains

so that the transversality condition is satisfied for any
. Another transverse function is obtained by using

the control v.f. of the homogeneous approximation of system
(34) which, in the present case, is the chained system of dimen-
sion three (up to a reordering of the state variables). Application
of (9)–(12) then yields

(37)

One can verify that the transversality condition is satisfied with
this function for and . From (35)

A practical stabilizer of is then given by (21) after
choosing a v.f. which asymptotically stabilizes the origin of

. One can take, for example, , with any
Hurwitz stable matrix, in order to achieve exponential stability.

Fig. 1. Unicycle’s and reference vehicle’s(x; y) trajectories.

We next report simulation results about the tracking of a
reference vehicle by the unicycle. The posture of the reference
vehicle is given by and the control is
determined so as to stabilize to zero, with

representing the tracking error. Such a control is given by (21)
with, of course, replaced by . The chosen transverse func-
tion is given by (37) with and . The chosen
stabilizing v.f. is defined by . The
expression of can be obtained either by application of
(23), or by direct computation of. By setting

one obtains

All terms in the feedback expression (21) are now defined. For
the simulation, the control inputs , and for the reference
vehicle, on the time interval , are given by

Note that for and , the reference trajec-
tory is not feasible by the unicycle (since ). Fig. 1 shows
the trajectories of the unicycle and the reference vehicle in the
plane, with the dashed arrows indicating the orientation of the
reference vehicle. Fig. 2 shows the time evolution of the compo-
nents of the tracking vectorand the unicycle’s control inputs

and . We remark that the unicycle does not oscillate when
the reference vehicle follows portions of “feasible” trajectories,



MORIN AND SAMSON: PRACTICAL STABILIZATION OF DRIFTLESS SYSTEMS ON LIE GROUPS 1505

Fig. 2. Tracking errors and unicycle’s control inputs.

as in the case of a straight line, when , and an arc
of circle, when . The simulation further shows that,
as mentioned in Section I, oscillations are not systematic when
the reference trajectory is not feasible. This is illustrated by the
portion of trajectory corresponding to . Sustained
oscillations only occur during the first phase corresponding to

, when practical tracking of the reference vehicle with
the “precision” specified by requires them.

APPENDIX A
PROOFS OFLEMMAS 1–3

The following technical claims are used in the proofs of
Lemmas 1 and 2.

Claim 1: Let and denote two time-dependent left-in-
variant v.f. on , and solutions of and

respectively. Then is a solution of
.

The proof follows by classical calculus on Lie groups.
Claim 2: Let denote a graded basis of the Lie

algebra of a Lie group . Let and .

Then, there exist analytic functions such that, for any

Furthermore, if and
denote analytic func-

tions such that and , then
is an analytic function and

.
Proof: Let denote the structural constants associated

with , i.e.,

From Definition 1, one deduces that .
From this fact, one obtains by induction on

with

(38)

Therefore

with

(39)

It follows from (38) that each is an analytic function of
and . Furthermore, if and are
analytic functions of and , then is analytic and it
follows, by considering the term of lowest order in (39), that

Note that the equality is uniform w.r.t.because is
periodic w.r.t .
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Proof of Lemma 1:In order to lighten the notation, we
denote by the derivative of w.r.t . We will also use
for for , and for , and denote by and

the functions defined by

(40)

With this notation, . In order to calcu-
late we will use the following classical result ( [15, p. 105],
for example):

(41)

with the operator defined by

Since ,
one obtains, by application of (41)

In view of (40), and since (by Definition 1), the
aforementioned equality yields

(42)

By application of Claim 2

(43)

for some analytic functions such that

(44)

Lemma 1 follows by using (43)–(44) in (42).

Proof of Lemma 2:From Claim 1, and relations (9) and
(13), one deduces that

(45)

From the fact that and (10)

(46)

where and are defined according to (40). By appli-
cation of Claim 2, for any

for some analytic functions . Moreover, if
and are analytic functions then,

. By applying this prop-
erty recursively, one deduces from (46) that

(47)

for some analytic functions which depend on
, and are such that

(48)

(recall the notation ). From (47)

so that, by (45), (15) is satisfied with

(49)

where

(50)

Lemma 2 follows from this decomposition. Indeed, from
Lemma 1 and (48), , and in (50) are . This
proves the first relation of (16).

Concerning the case where and vanishes
at because of (48). This accounts for the sum in
the right-hand side of equality (16) (up to higher-order terms).
Now, because of (14), and

too.
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For the last case, accounts for the sum in the
right-hand side of equality (16) and , as in
the previous case. From Lemma 1, accounts for the term

.

Proof of Lemma 3:The notation
is used in this proof. The lemma is a direct consequence of the
following property which will be proved by induction:

(51)

with the function defined by

Let us first prove (51) for . From Lemma
2, . Since

and , (51) follows with
and .

Let us now prove that if (51) is satisfied for(with
), then it is also satisfied for . Let

(52)

In these equalities, denotes the vector involved in (51),
whereas is a scalar design parameter whose value will be
specified below. By (52), . Therefore, one
easily obtains from Lemma 2 the following equalities:

(53)

(54)

By definition

(55)

where denotes the cofactor of . From (53)

(56)

From the induction hypothesis (51), and the fact that, by a re-
cursive application of (52),

(57)

By assuming that are small enough so that
, one deduces from (54) and (57) that

(58)

From (54) and (56), for any

(59)

Therefore, from (55), (58), and (59)

Then, (51) for follows by choosing small enough
so as to ensure that

is different from zero. Thus, we have proved by induction the
existence of numbers (with )
such that choosing [see (52)]

yields , provided that is itself chosen small
enough. This is precisely the result of Lemma 3.
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