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Practical stabilisation of switched affine systems with

dwell-time guarantees

C. Albea Sanchez, G. Garcia, S. Hadjeras, W.P.M.H. Heemels, L. Zaccarian

Abstract—Using a hybrid systems approach, we ad-
dress the practical stabilization of operating points for
switched affine systems, ensuring a minimum dwell
time and an admissible chattering around the operating
point. Two different solutions are shown to induce uni-
form dwell time, based on time- or space-regularization.
The proposed solutions provide useful tuning knobs
to separately adjust the switching frequency during
transients and at the steady state. The strengths of the
method are illustrated by simulating a boost converter.

I. Introduction

Switched systems are key to modeling several physical
control systems. Among them, switched affine systems
(SAS) are given by

ẋ = Aσx+ aσ, x(0) = x0

z = Cx,
(1)

where the control input σ : R≥0 → N := {1, 2, ..., N} is the
switching signal, assigning a specific desired mode among
N possible ones at each time. Moreover, in dynamics (1),
x ∈ R

n is the state, z ∈ R
p is a performance output, and

Ai and ai have suitable dimensions for all i ∈ N .
Many works have been published in the past twenty

years about stabilization of Switched Linear Systems
(SLS), being SAS with ai = 0, i ∈ N (see, e.g., [5], [6],
[12], [23] and references therein). For SLS, the objective
is to stabilize the origin, which is a common equilibrium
to all the dynamics. Indeed, homogeneity of the SLS
dynamics is exploited in those works, thereby simplifying
the control design providing, among other things, direct
tools to show uniform upper bounds on the switching rate
(dwell time) of the input along the ensuing solutions. The
goal of stabilizing an operating point xe ∈ R

n, which
is the more general objective in the SAS case, is much
more challenging. Indeed, in the general case considered
in this paper xe is not a common equilibrium with the
consequence that asymptotic stabilization of xe is not
possible with finite switching rates (uniform dwell time).
Indeed, the fact that xe is not a common equilibrium
implies that arbitrarily fast switching is needed by any
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asymptotic stabilizer as the solutions approach xe. This
substantial difference calls upon alternative solutions and
proof techniques not relying on the homogeneity properties
enjoyed by the SLS case.
Important results towards stabilization of operating

points in SAS have appeared in [3], [9], [17], [20], and
also for switched systems with a general nonlinear form
[14], [15]. However, these results can induce sliding modes
and generate arbitrarily fast switching already during the
transients (in addition to the above-mentioned steady-
state issues). Alternative approaches, inducing a positive
dwell time, can be found in the context of specific SAS
applications, such as power converters [2], [18], [22]. In
these works the authors aim at ensuring a dwell time
associated with an admissible chattering around the op-
erating point. Nevertheless, [2] does not prove a minimum
time associated to space regularization, [22] is focused on
a specific power converter application (boost converter)
and [18] does not provide a full stability proof. Interesting
results are also reported in [21], which ensures dwell time
properties of a class of systems of the type (1), where aσ is
a bounded function of time, possibly converging to zero.
However, only a mild boudedness property is proven in
[21] for the case of non-vanishing converging aσ, which
is the setting that we consider here. The results in [8]
and [10], address the general class (1) and are based on
the use of sampled-data controllers guaranteeing practical
stability for a periodic switching controller. Nonlinear
switched systems are addressed in [24], which focuses on
discrete-time systems by using a dwell-time H∞ control.
Finally, both space and time- regularization are proposed
without using Lyapunov functions in [4], which has limited
applicability because the discontinuities may occur only
in a set given by a smooth manifold of dimension 1 for
the time-regularization case and in a discontinuity surface
having co-dimension 2 for the space-regularization case.
Summarizing the above, control of SAS can exhibit tran-

sient chattering (or lack of dwell time guarantees) possibly
due to the presence of sliding modes in the proposed
controller and then are bound to unavoidable steady-state
chattering when approaching the operating point. While
the first problem can be avoided by a suitable control ac-
tion, the second one requires resorting to practical (rather
than asymptotic) stability guarantees. Motivated by this
fact, in this paper, we address practical stabilization of
an operating point xe for SAS (1), ensuring the following
features:

1) stabilization of an (arbitrarily small) set around the
operating point xe whose size can be adjusted by
design parameters;



2) a positive minimal dwell time between consecutive
switches during the transient and steady-state re-
sponse, which can be adjusted by the design param-
eters, to warrant practical implementability,

3) trade-off knobs (design parameters) that can be suit-
ably adjusted to favor dwell-time properties versus
performance guarantees (an LQ cost for the transient
phase and the size of the stabilized set for the steady-
state phase).

Following the notation of the above cited works [2], [18],
[22], we guarantee a positive dwell time by modifying (reg-
ularizing) the chattering controllers using either space or
time regularization techniques, where the former enforces
dwell time using space-based hystheresis logics, and the
latter uses instead an explicit timer inhibiting switches up
to some guaranteed dwell time. By casting the practical
stabilization problem using the recent hybrid framework
of [7], we show that time and space regularizations are two
variations of a central result, consisting in our Lemma 2
in Section V, which provides an elegant and unified view
of the two approaches. To the best of our knowledge, such
a unified view, and the distinction between transient and
steady-state chattering avoidance has not been proposed
before, but only scattered results, perhaps for specific
subclasses of (1) such as SLS or specific applications, are
available in the literature. Rigorous proofs are given for our
global and practical stability statements, using the hybrid
Lyapunov theory in [7] and its extensions in [16], [19].
The paper is organized as follows. Section II provides

the problem formulation, while Section III describes the
proposed solution while Section IV discusses optimality-
based parameter tuning. Time- and space-regularizations
inducing dwell time and practical stability are introduced
and characterized in Section V. Finally, Section VI dis-
cusses an illustrative example and Section VII draws
concluding remarks.

II. Problem setup

We aim to provide feedback strategies determining σ
such that practical stabilisation of an operating point xe ∈
R

n for SAS (1) is achieved while satisfying requirements
1), 2) and 3) of the introduction. To this end, we make the
following standard assumption (see [3], [10], [13], [21]).

Assumption 1: Given Λ :=
{

λ ∈ [0, 1]N |
∑N

i=1 λi = 1
}

,

there exists λ ∈ Λ, such that

N
∑

i=1

λi(Aixe + ai) = 0, and

N
∑

i=1

λiAi is Hurwitz. (2)

Definition 1: The set of admissible operating points
Ωe ⊂ R

n is given by

Ωe := {xe ∈ R
n | ∃λ ∈ Λ satisfying (2)}. (3)

Hence, xe ∈ Ωe if it is an equilibrium point for the averaged
dynamics

ẋ ∈ F (x) :=

{

N
∑

i=1

λi(Aix+ ai) | λ ∈ Λ

}

, (4)

and a stability condition is satisfied on the corresponding
convex dynamics. See also [2], [3], [10], [13] and the dis-
cussion in [1, Remark 1]. While requirement xe ∈ Ωe may
appear to be non-restrictive for stabilizability of xe from
σ, it is already known that this condition is not necessary
even for the case of SLSs with N = 2, a1 = a2 = 0 and
xe = 0, as commented in [12, Section 3.4.2]. The average
dynamics can be perceived as the result of arbitrarily fast
switching and as the solution of the differential inclusion
(4). Such generalizations are well characterized in the
context of hybrid inclusions of [7], by way of solutions
corresponding to the so-called hybrid arcs. In this paper
we adopt that framework and discuss properties of those
hybrid arcs for hybrid formulations of SAS (1).
More specifically, we address the following problem:

Given the SAS (1), for each xe ∈ Ωe design a feedback
law for the switching signal σ that globally asymptotically
stabilizes an arbitrarily small neighborhood of xe by suitably
adjusting the design parameters (in other words, a paramet-
ric feedback that practically stabilizes xe), while satisfying
requirements 2) and 3) discussed in the introduction.

III. Control solution and hybrid model

Consider (1), xe ∈ Ωe and λe ∈ Λ satisfying (2). We
select two matrices P and Q as follows
Property 1: Matrices P = PT > 0 ∈ R

n×n and Q =
QT > 0 ∈ R

n×n satisfy,
(

N
∑

i=1

λe,iA
T
i

)

P + P

(

N
∑

i=1

λe,iAi

)

+ 2Q ≤ 0. (5)

Clearly due to
∑N

i=1 λe,iAi being Hurwitz matrices P , Q
satisfying Property 1 always exist. Note that Property 1,
which can be already found in [21] and in the recent
work [9], imposes less restrictive assumptions than in our
preliminary work [1], which corresponds to a special case.
Following the formalism in [7], we propose a hybrid

controller having state σ, giving the closed loop

H :















[

ẋ
σ̇

]

= f(x, σ), (x, σ) ∈ C
[

x+

σ+

]

∈ G(x, σ), (x, σ) ∈ D,
(6)

where f is the flow map and G is a (set-valued) jump map
capturing the switching logic, selected as

f(x, σ) :=

[

Aσx+ aσ
0

]

G(x, σ) :=

[

x
argmin

i∈N
(x− xe)

TP (Aix+ ai)

]

(7)

and where the so-called “flow” and “jump” sets C and
D encompass, respectively, the regions in the (extended)
space (x, σ) where the switching strategy continues with
the current mode σ (set C) or switches to a new mode (set
D). They are selected as

C := {(x, σ) : x̃TP (Aσx+ aσ) ≤ −ηx̃TQx̃} (8)

D := {(x, σ) : x̃TP (Aσx+ aσ) ≥ −ηx̃TQx̃}, (9)



where x̃ := x − xe and scalar η ∈ (0, 1) is a design
parameter that will be shown to be useful for achieving a
trade-off between the transient switching frequency and a
quadratic integral performance level, as characterized later
in Theorem 2. The next lemma is an instrumental step to
prove our main stability result.
Lemma 1: Consider xe ∈ Ωe, λe ∈ Λ satisfying (2) and

matrices P ∈ R
n×n and Q ∈ R

n×n, satisfying Property 1.
Then, for each x ∈ R

n, denoting x̃ := x− xe,

min
i∈N

x̃TP (Aix+ ai) ≤ −x̃TQx̃ = −|x̃|2Q. (10)

�

Proof. The proof is a slight variation of the derivations
in [3, eq. (12)] and is therefore omitted for the sake of
compactness. �

Following up on standard stability theory for hybrid sys-
tems [7], we establish uniform global asymptotic stability
of the compact attractor

A := {(x, σ) : x = xe, σ ∈ N}. (11)

Theorem 1: Consider xe ∈ Ωe, λe ∈ Λ satisfying (2) and
matrices P ∈ R

n×n and Q ∈ R
n×n, satisfying Property 1.

Attractor (11) is uniformly globally asymptotically stable
(UGAS) for hybrid system (6)–(9).
Proof. Let us take the candidate Lyapunov function

V (x̃) :=
1

2
|x̃|2P :=

1

2
x̃TPx̃. (12)

If (x, σ) ∈ C, using (8) we get along flows

〈∇V (x̃), f(x̃, σ)〉 = x̃TP (Aσ(x̃+ xe) + aσ) ≤ −ηx̃TQx̃.
(13)

Across jumps, for (x, σ) ∈ D, we get, from x+ = x,

V (x̃+)− V (x̃) =
1

2

{

x̃TPx̃− x̃TPx̃
}

= 0. (14)

Uniform global asymptotic stability is then shown by
[16, Th 1]. In particular, since the distance of x to the
attractor (11) is defined by |x|A = |x̃|, we have that [16,
eq. (6)] holds from the structure of V and from (13) and
(14). Following [16, Th 1], we build the hybrid restriction
Hδ,∆ by intersecting C and D with

Sδ,∆ := {(x̃, σ) : |x̃| ≥ δ and |x̃| ≤ ∆} (15)

and then proving (semi-global) practical persistence flow
for Hδ,∆, for each fixed values of (δ,∆). In particular,
practical persistent flow amounts to showing that there
exists γ ∈ K∞ and M ≥ 0, such that, all solutions to Hδ,∆

satisfy
t ≥ γ(j)−M, ∀(t, j) ∈ dom ξ (16)

where dom ξ =
⋃

j∈domj ξ[tj , tj+1]×{j} is the hybrid time
domain (see [7, Ch. 2] for details). To establish (16), notice
that after each jump, from the definition of G in (7) and
from (10), we have

x̃T (Aσ+x+Bσ+) ≤ −x̃TQx̃ < −ηx̃TQx̃, (17)

where we used η < 1 and (0, σ) /∈ Sδ,∆. Therefore, if
any solution to Hδ,∆ performs a jump from Sδ,∆, it will

remain in Sδ,∆ (because x̃ remains unchanged) and then,
from (9), it must jump to the interior of the flow set
C ∩ Sδ,∆. Moreover, from the strict inequality in (17), all
such solutions must flow for some time after the jump
and since C ∩ Sδ,∆ is bounded, continuity of solutions
with respect to initial conditions [7, Prop. 6.14] implies
that there is a uniform dwell time ρ(δ,∆) between each
pair of consecutive jumps (the well defined minimum over
such flowing times over the compact set). This dwell time
ρ(δ,∆) clearly implies [16, eq. (4)] with the class K∞
function γ(j) = ρ(δ,∆)j and M = 1. Then, all the
assumptions of [16, Theorem 1] hold and UGAS of A is
concluded. �

IV. Parameter tuning for guaranteed

performance

While Theorem 1 addresses stability, we provide here
performance guarantees for the closed loop (6)–(9), which
follows the same paradigm as the one discussed, in a
continuous-time setting, in [3]. This performance guaran-
tee, may, for example, refer to desirable levels of dissipated
energy, current peak, response time, among others.
Within the considered hybrid context, as discussed in

the proof of Theorem 1, solutions are parametrized in a hy-
brid time domain. Then, we use a quadratic performance
metric focusing on the flowing aspect of hybrid solutions:

J(ξ) :=
∑

k∈domj ξ

∫ tk+1

tk

|z̃(τ, k)|2dτ, (18)

where ξ = (x, σ) : dom ξ → R
n×N is a solution to hybrid

system (6)–(9), whose domain is characterized by jump
times tk, k ∈ N ≥ 1 (namely times tk ≥ 0 such that
both (tk, k−1) and (tk, k) belong to dom ξ), and z̃(t, j) :=
Cx̃(t, j) for all (t, j) ∈ dom ξ is a suitable performance
output. For these hybrid solutions, we may then give the
following guarantee on the performance cost (18).

Theorem 2: Consider hybrid system (6)–(9) satisfying
Assumption 1 and Property 1. If

CTC ≤ Q, (19)

then the following bound holds along any solution ξ =
(x, σ) of (6)–(9):

J(ξ) ≤
1

2η
x̃(0, 0)TPx̃(0, 0) =

1

2η
|x̃(0, 0)|2P , (20)

where x̃(t, j) = x(t, j)− xe, for all (t, j) ∈ dom(ξ).
Proof. Consider any solution ξ = (x, σ) to H. For each
(t, j) ∈ dom ξ, denoting t = tj+1 to simplify notation, we
have from (13)

V (x̃(t, j))− V (x̃(0, 0)) =

j
∑

k=0

V (x̃(tk+1, k))− V (x̃(tk, k))

=

j
∑

k=0

∫ tk+1

tk

〈∇V (x̃(τ, k)), f(x(τ, k), σ(τ, k))〉dτ (21)

≤

j
∑

k=0

∫ tk+1

tk

−η|x̃(τ, k)|2Qdτ ≤ −η

j
∑

k=0

∫ tk+1

tk

|x̃(τ, k)|2CTCdτ,



where the last inequality comes from (19). Considering
z̃(τ, k) = Cx̃(t, k), taking the limit as t + j → +∞
and using the fact that UGAS established in Theorem 1
implies limt+j→+∞ V (x̃(t, j)) = 0, we get from (21),
ηJ(ξ) ≤ V (x̃(0, 0)) = 1

2 |x̃(0, 0)|
2
P , as to be proven. �

From (20), if matrices P and Q satisfy (19), the guar-
anteed performance level for our scheme (in terms of size
of the upper bound for index J in (18) along solutions)
is proportional to the inverse of η ∈ (0, 1). Then large
values of η < 1 lead to improved upper bounds of the
LQ performance along solutions. On the other hand, from
(8) and (9), smaller values of η correspond to strictly
smaller jump sets (and larger flow sets), which reveals that
solutions are expected to flow longer before a switch of
control input σ. Therefore one may use parameter η to find
a trade off between suitable transient switching frequency
and transient performance along solutions.
In light of Theorem 2, we may tune the parameters P , Q

following an optimization capturing the goal of reducing
as much as possible the right hand side of (20). To this
end, we make the following natural selection:

Q = CTC + νI, (22)

where ν > 0 is a (typically small) positive constant, which
may be zero if CTC > 0.
Since Q in (22) satisfies (19), under the assumption

that the convex combination
∑N

i=1 λe,iAi is Hurwitz, the
following convex optimization expressed by linear matrix
inequalities always leads to a feasible solution:

min
P=PT>0

Trace(P ), subject to: (23)

N
∑

i=1

λe,iA
T
i P + P

N
∑

i=1

λe,iA
T
i ≤ −2Q,

and this optimized selection clearly satisfies Property 1,
while minimizing the upper bound in (20).

V. Practical global results using space- or

time-regularization

The hybrid control law proposed above can provide
arbitrarily fast switching as the solution approaches xe.
In particular, given an initial condition in A, one sees
that the hybrid dynamics (6)–(9) has at least one solution
that keeps jumping onto A without flowing. Infinitely fast
switching is not desirable in terms of energy efficiency and
reliability in many applications, such as power converters,
because every switch dissipates energy and reduces the
switch lifespan. For this reason, we propose a redesign
of the hybrid law, aiming at reducing the number of
switches when x̃ = x − xe is close to zero, and avoiding
infinitely fast switching. This goal is reasonable for the
proposed law, because it is possible to show that away
from A, during transients, our control law already enjoys a
desirable property of positive dwell time between switches,
as long as Assumption 1 and Property 1 hold. To do
so, we change system (6)–(9) with shorthand notation

H := (f,G, C,D), for a non-negative scalar ε, to the
redesigned system:

Hε := (f,G, Cε,Dε) (24a)

Cε := C ∪ {(x, σ) : V (x− xe) ≤ ε} (24b)

Dε := D ∩ {(x, σ) : V (x− xe) ≥ ε}, (24c)

with V as in (12). A useful practical dwell-time property
for H is then established next. Lemma 2 below is a
nontrivial consequence of the fact that Zeno solutions can
only occur at the equilibrium xe for the hybrid closed
loop. The ensuing dwell-time results are key to proving
the properties of the regularized dynamics of this section.
Lemma 2: There exists a positive scalar T ∗ such that

for each 0 < T ≤ T ∗, there exists a scalar ε > 0 such that
all solutions to H jumping from set Dε flow for at least T
ordinary time units after the jump, before reaching again
set Dε. Moreover, as T tends to zero, we have that ε tends
to zero as well.
Proof. To prove the lemma, it is enough to fix any scalar
ε = ε∗ in (24) and show that there exists T ∗ such that all
solutions starting from Dε∗ flow for at least T ∗ ordinary
time units after the jump before reaching set D. The rest
of the lemma follows trivially from the fact that smaller
values of ε < ε∗ are associated with the solutions starting
in Dε∗ (already characterized by T ∗) plus additional so-
lutions starting in the compact set Dε \ Dε∗ , that enjoy a
dwell-time property because any jump from this set maps
to the interior of the flow set (and then one can consider
the minimum flowing time over this compact set of initial
conditions). Without loss of generality we can impose that
the dwell time T converge to zero as ε converges to zero,
thereby defining the function ε discussed in the lemma.
Let us then fix a scalar ε = ε∗ in (24) and first notice

that any solution jumping from Dε∗ at time (tj , j − 1)
satisfies, before and after the jump:

|x̃(tj , j)|
2
Q := x̃TQx̃ ≥ qm|x̃|2 ≥

qm
pM

V (x̃) ≥
qmε∗

pM
=: 2εQ,

(25)

where the dependence on (t, j) has been omitted at the
right-hand side, and where we denoted by qm and qM the
minimum and maximum eigenvalues of Q, respectively,
and by pM the maximum eigenvalue of P . Define now the
function χ(τ) := 2εQ − |x̃(tj + τ, j)|2Q and notice that (25)
implies χ(0) ≤ 0. Consider now the flow dynamics in (7)
and introduce scalars bσ = Aσxe + aσ to get

˙̃x = Aσx+ aσ = Aσx̃+ bσ, (26)

so that we may characterize the variation of χ as:

χ̇ = −2x̃TQ(Aσx̃+ bσ) ≤ κ1|x̃|
2
Q + κ2|x̃|Q, (27)

where κ1 := 2 qM
qm

max
σ∈N̄

|Aσ| and κ2 := 2 qM√
qm

max
σ∈N̄

|bσ|. Using

now |x̃|2Q ≤ |χ| + 2εQ, which also gives |x̃|Q ≤
√

|χ| +
√

2εQ, because |χ| and εQ are both non-negative, we get
the bound:

χ̇(τ) ≤ κ1(|χ(τ)|+ 2εQ) + κ2(
√

|χ(τ)|+
√

2εQ) (28)

= κ1|χ(τ)|+ κ2

√

|χ(τ)|+ κ3, ∀τ ≤ tj+1 − tj ,



where κ3 = 2κ1εQ+κ2

√

2εQ > 0. Denote by φ the solution
to the differential equation induced by (28) starting at
zero. This solution is continuous by definition, and strictly
increasing because κi > 0 for all i = 1, 2, 3. Then
there exists T1 such that φ(T1) = εQ and from standard
comparison theory, and recalling that χ(0) ≤ 0 (by (25)),
we have χ(τ) ≤ εQ for all τ ≤ T1, which implies

|x̃(tj + τ, j)|2Q = 2εQ − χ(τ) ≥ εQ, ∀τ ≤ T1. (29)

Consider now equation (17) and define the function 1

ς(x̃) :=
x̃T (Aσx̃+ bσ)

|x̃|2Q
+ 1,

which, from (17) clearly satisfies ς(x̃(tj , j)) ≤ 0 after the
jump from Dε∗ . We prove below the existence of T ∗ such
that

ς(x̃(tj + τ, j)) ≤ 1− η, for all τ ≤ T ∗, (30)

which trivially proves x̃(tj + τ, j)T (Aσx̃(tj + τ, j) + bσ) ≤
−η|x̃(tj +τ, j)|2Q for all τ ≤ T ∗, which in turn implies that
the solution does not belong to D, thus completing the
proof of the lemma.
To prove (30), we proceed again with bounding the

derivative of ς. Straightforward derivations provide, along
flowing solutions according to (7):

ς̇ = −
2x̃TP (Aσx̃+ bσ)x̃

TQ(Aσx̃+ bσ)

|x̃|4Q

+
x̃T (PAσ +AT

σP )Aσx̃+ x̃T (2AT
σP + PAσ)bσ + bTσPbσ

|x̃|2Q

≤ ς1 + ς2
1

|x̃|Q
+ ς3

1

|x̃|2Q
,

where ς1, ς2, ς3 are sufficiently large positive scalars (and
where we used |x̃| ≤ 1√

qm
|x̃|Q in several places). Con-

sider now any time τ ≤ T1, and use bound (29) to

obtain ς̇ ≤ ς1 + ς2ε
−1/2
Q + ς3ε

−1
Q , which, together with

ς(x̃(tj , j)) ≤ 0, and integrating ς̇, immediately gives (30)
for T ∗ := min{T1, T2}, where T2 := 1−η

ς1+ς2ε
−1/2
Q +ς3ε

−1

Q

. �

Lemma 2 ensures that a positive dwell time holds if
solutions remain sufficiently far from A. Then we have two
possibilities to modify our control law to ensure that dwell
time is enjoyed by solutions. One of them corresponds to
replacing the jump set D by the restricted version in Dε

(we call it space regularization) and forcing solutions to
flow in D \ Dε (this is called space regularization and is
addressed in Section V-A), and the other one corresponds
to forcing solutions not to jump unless some dwell time has
expired (this is called time regularization and is addressed
in Section V-B). Then, it makes sense to introduce the
following ε-inflated version of attractor A:

Aε := {(x̃, σ) : V (x̃) ≤ ε, σ ∈ N̄}, (31)

1To avoid overloading notation, the hybrid time is only specified
on the x̃ component, but the state variable σ should be evaluated at
the same hybrid time in the derivations at the end of the proof of
Lemma 2.

which evidently reduces to A as ε tends to zero. Practical
stabilization of A comprises finding a parametric control
law (whose parameter is ε) such that for each sufficiently
small value of ε a subset of Aε is UGAS for the closed
loop. This is done in the next sections.

A. Space regularization

Based on Lemma 2, for any value of a positive scalar
ε, let us consider the space-regularized version of H =
(f,G, C,D) given in (24). The regularized dynamics are
clearly motivated by the fact that jumps are forbidden
when solutions are ε-close to the attractor.
Mainly using Lemma 2 the following desirable results

are enjoyed by hybrid system Hε.
Theorem 3: Consider point xe and a vector λe satisfying

Assumption 1 and matrices P ∈ R
n×n and Q ∈ R

n×n

satisfying Property 1. The following hold:

1) for any positive scalar ε, set Aε in (31) is UGAS for
dynamics Hε in (24);

2) set A is globally practically asymptotically stable for
(24), with respect to parameter ε;

3) There exists T > 0 such that all solutions to Hε

enjoy a T -dwell-time property, namely given any
solution ϕ to Hε, all (t, j) ∈ domϕ satisfy t ≥ j

T −1.

Proof. First notice that sets Cε and Dε are both closed.
Indeed, Cε is the union of two closed sets and Dε is the
intersection of two closed sets. Then, due to the properties
of f and G, system Hε satisfies the hybrid basic conditions
of [7, As. 6.5] and we may apply several useful results
pertaining to well-posed hybrid systems.
Proof of item 3). This item follows in a straightforward

way from Lemma 2. Indeed, solutions to Hε can only jump
from Dε. Any such solution ϕ flows for at least T time after
each jump, before reaching again Dε, which clearly implies
t+1 ≥ j

T (where the“1”takes care of the initial condition),
as to be proven.
Proof of item 1). Consider the following Lyapunov func-

tion candidate:

Vε(x̃) = max{V (x̃)− ε, 0}, (32)

which is clearly positive definite with respect to Aε and
radially unbounded. Since outside set Aε the hybrid dy-
namics Hε coincides with the one of H, then equations
(13) and (14) hold for any (x̃, σ) not in Aε, which implies
that

〈∇Vε(x̃), f(x, σ)〉 < 0 ∀x̃ ∈ Cε \ Aε (33)

Vε(x̃
+)− Vε(x̃) = 0, ∀x̃ ∈ Dε \ Aε (34)

Moreover, from the property established in item 3), all
complete solutions to Hε must flow for some time, and
therefore from (33), we have that no solution can keep
Vε constant and non-zero. UGAS of Aε by applying the
nonsmooth invariance principle in [19], also using the well
posedness result established at the beginning of the proof.
Proof of item 2). The proof follows in a straightforward

way from the previous item, after noticing that given any
neighborhood I of A, there exists a small enough ε > 0
such that Aε ⊂ I. �



B. Time regularization

Based on Lemma 2, for any value of T < T ∗, we
may introduce the following additional state variable τ to
dynamics (6):

HεT :

{

[ ẋσ̇ ] = f(x, σ),
τ̇ = r

(

τ
T

)

,
(x, σ) ∈ CεT

{ [

x+

σ+

]

∈ G(x, σ),

τ+ = 0,
(x, σ) ∈ DεT ,

(35a)

where r(s) := min{1, 2 − s}, for all s ≥ 0 and the jump
and flow sets are the following time-regularized versions of
C and D in (6)–(9):

CεT := C × [0, 2T ] ∪ {(x, u, τ) : τ ∈ [0, T ]}
DεT := D × [T, 2T ].

(35b)

The above regularization is clearly motivated by the fact
that jumps are forbidden when the timer τ is too small,
namely not enough time has elapsed since the last jump.
Then all solutions are forced to flow for at least T ordinary
time after each jump. Note also that function r at the
right-hand side of equation (35a) allows a solution to flow
forever while ensuring that timer τ remains in a compact
set.

Before proceeding any further, we emphasize that forc-
ing a solution to flow regardless of whether it belongs to
D or not, may lead to an increase of function V . It is
useful to quantify how much increase V can experience
from the set where V (x̃) ≤ εT (let recall εT := ε, being
ε introduced in Lemma 2). To this end, we exploit the
affine nature of the dynamics and observe that along
solutions of (35) we have V̇ (x̃) ≤ |x̃||P || ˙̃x| = |x̃||P || ˙̃x| ≤
|x̃||P |(κ1|x̃| + κ2) ≤ 2αV (x̃) + 2β

√

V (x̃), where α and
β are large enough positive scalars and where we used
positive definiteness of P and the sector growth condition
| ˙̃x| = |ẋ| ≤ |Aσ(x−xe)|+ |Aσxe + aσ| ≤ κ1|x̃|+κ2 (which
clearly holds for some κ1 > 0 and κ2 > 0). Proceeding as
in [11, page 203], we obtain along any solution φ satisfying
(t, j) ∈ domφ and (t+ T, j) ∈ domφ,

√

V (φ(t+ τ, j)) ≤ eατ
√

V (φ(t, j)) + β

∫ τ

0

eαsds

= eατ
√

V (φ(t, j)) +
β

α
(eατ − 1), ∀τ ∈ [0, T ].

Therefore, assuming that V (φ(t, j)) ≤ εT , we obtain for
all τ ∈ [0, T ],

V (φ(t+ τ, j)) ≤ εT (T ) := 2e2αT εT +
2β2

α2
(eαT −1)2. (36)

This bound motivates introducing the following set:

ET := {(x̃, σ, τ) : V (x̃) ≤ εT (T ), σ ∈ N̄ , τ ∈ [0, 2T ]},
(37)

which enjoys the nice property of shrinking to Aε × {0},
as T converges to zero.

Mainly using Lemma 2 the following desirable results
are enjoyed by hybrid system HεT in (35).

Theorem 4: Consider point xe and a vector λe satisfying
Assumption 1 and matrices P ∈ R

n×n and Q ∈ R
n×n

satisfying Property 1. The following holds:

1) all solutions to HεT enjoy a dwell-time property
corresponding to T ;

2) for any positive scalar T < T ∗, there exists a
compact set Aε × [0, 2T ] ⊂ ET , which is UGAS for
dynamics HεT in (35);

3) set A × {0} is globally practically asymptotically
stable for (35), with respect to parameter T (namely
as long as T is sufficiently small, the UGAS set
Aε × [0, 2T ] characterized in the previous item can
be made arbitrarily close to A× {0}).

Proof. Similar to the proof of Theorem 3 we start by
noticing that hybrid system (35) enjoys the hybrid basic
conditions of [7, As. 6.5], because sets CεT and DεT are
both closed and f and G enjoy desirable properties. Then
we may apply several useful results pertaining well-posed
hybrid systems (specifically, in the proof of item 2 below).
Proof of item 1. The dwell-time property of solutions

follows in a straightforward way from the fact that solu-
tions are forced to not jump until the timer variable τ has
reached the value T . Since τ̇ = 1 for all τ ≤ T , then all
solutions flow for at least T ordinary time after each jump
(because τ+ = 0 across jumps).
Proof of item 2. Consider the two hybrid systems Hε

and HεT in (24) and (35), respectively. For any positive
value of T < T ∗, we have shown in the proof of item 1 of
Theorem 3 that it suffices to pick εT = ε (coming ε from
Lemma 2) to obtain UGAS of the attractor Aε in (31)
and a dwell time of T for all solutions to Hε. Since the
(x, σ) dynamics of Hε and HεT coincide, except for the
dwell-time restriction on HεT , the above mentioned dwell-
time property of solutions to Hε ensures that (possibly
after an initial flow of at most T ordinary time) the (x, σ)
component of each solution to HεT remaining outside Aε×
[0, 2T ], coincides with a solution to Hε, therefore any such
solution to HεT must approach Aε × [0, 2T ], which is a
strict subset of ET in (37). Two things may happen then.
Either the solution approaches Aε × [0, 2T ] without ever
reaching it, so it eventually remains in ET , or it reaches
Aε × [0, 2T ] and may then be forced to flow by the dwell-
time logic of HεT . However, in this last case we get from
bound (36) that such a solution cannot flow outside ET .
As a consequence, ET is uniformly attractive and reached
in finite time by all solutions, in addition to being strongly
forward invariant for HεT .

We now use the well-posedness property established at
the beginning of the proof to exploit a number of regularity
results from [7, Ch. 6 & 7]. Denote by Ω(ET ) the ω-limit set
of ET (see [7, Def. 6.23]) and note that it cannot be empty,
and must satisfy Ω(ET ) ⊂ ET , because ET is bounded
and strongly forward invariant. Then using again strong
forward invariance of ET we get boundedness of all solu-
tions starting from ET and we may apply [7, Prop. 6.26]
to obtain that Ω(ET ) is compact, nonempty, uniformly
attractive from ET , and strongly forward invariant. Since
also ET is uniformly attractive, we may then apply a global



version 2 of [7, Prop. 7.5] applied to the compact attractor
Ω(ET ), to conclude global asymptotic stability of Ω(ET ),
which is equivalent to UGAS from [7, Th 3.40 & Th 7.12].
Proof of item 3. Item 3 follows in a straightforward way

by recalling from Lemma 2 that ε converges to zero as T
goes to zero, and then that also ε(T ) in (36) enjoys the
same property. As a consequence, set ET in (37) shrinks
to A × {0} as T goes to zero, and since we established
in item 2 that Aε × [0, 2T ] ⊂ ET for all T > 0, we can
make Aε × [0, 2T ] arbitrarily close to A×{0} by selecting
T sufficiently small. �

VI. Illustrative example

The two hybrid control schemes developed in Section
V-A (space regularization) and V-B (time regularization)
are tested on a boost converter model taken from [3]. The
state variable is x = [iL vC ]

T , where iL denotes the
inductor current and, vC denotes the capacitor voltage.
The switched system (1) is then defined by the matrices

A1 =

[

−R
L 0
0 − 1

R0C0

]

, A2 =

[

−R
L − 1

L
1
C0

− 1
R0C0

]

,

a1 = a2 =
[

Vin

L 0
]T

,

where the considered nominal values are: Vin = 100V ,
R = 2Ω, L = 500µH, Co = 470µF and Ro = 50Ω. The

desired equilibrium point is chosen as xe =
[

3 120
]T

.
Assumption 1 is therefore satisfied with λe = [0.22 0.78].
We select the quadratic cost function in (18) as

J =
∑

k∈domj(ξ)

∫ tk+1

tk

ρ

R0
(vc(τ, k)− ve)

2 +R(iL(τ, k)− ie)
2dτ,

where ρ = 1000 to suitably penalize the voltage error.
Multiplying the cost by (ρR)−1, one clearly sees that
this corresponds to selecting C = [0 (RR0)

− 1
2 ] and

ν = ρ−1 in (22), which gives Q =
[

R 0
0 ρ/R0

]

. With this
value of Q, in order to satisfy Property 1, we choose

P =

[

0.5245 0.1032
0.1032 1.0596

]

.

In Figure 1 we report on the results of extensive simu-
lation tests, and the arising statistics about the switch-
ing frequency. To suitably illustrate the different roles
of the “transient” parameter η introduced in Section III
and the “steady-state” parameters ε and T introduced in
Sections V-A and V-B, respectively, we select a grid of
possible values of (η, ε) (for the space regularization case,
shown in the two upper surfaces), and a grid of possible
values of (η, T ) (for the time regularization case, shown in
the two bottom surfaces). Two large sets of simulations
have been carried out using space regularization and time
regularization, respectively, leading to Figure 1.
Let us first consider the upper surfaces of Figure 1 (space

regularization). Each point on these surfaces correspond to
a pair (η, ε) and has been generated by first running eight
simulations from eight different initial conditions, with

2A global version of [7, Prop. 7.5] is trivially obtained by estab-
lishing its hypotheses for any arbitrary positive value of µ.
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Fig. 1. Top surfaces: evolution of the switching frequency with space
regularization in the transient (left) and at the steady state (right).
Bottom surfaces: evolution of the average switching frequency with
time regularization in the transient (left) and at the steady state
(right).

Fig. 2. Lyapunov function V (x̃) with space regularization (left) and
with time regularization (right).

good coverage of all the possible directions of the initial
error. These initial conditions all correspond to an initial
value of V (x̃(0, 0)) = 200 (they are all on the same level
set of V ). Each simulation runs for 50 ms and the statistics
reported in the left of Figure 1 show the average swtiching
frequency in the time domain preceding the first time
(t̄, j̄) ∈ dom x̃ when V (x̃(t̄, j̄)) ≤ ε (when the response
is still in the transient phase). The right surface shows
instead the response in the remaining portion of each
simulation (where the response has reached the steady
state). Each of these statistics represents the number of
switches normalized by the length of the interval, averaged
over the eight simulated solutions. We may appreciate the
fact that the steady-state parameter ε has no effect on the
transient switching frequency and has significant effect on
the steady-state switching frequency. The converse holds
for the transient parameter η, which is shown to have an
effect on the transient switching frequency.
Time regularization is instead used in the lower surfaces

of Figure 1, corresponding to a grid of selections of the
two parameters (η, T ), where for each point on the grid
eight simulations from the same initial conditions as in
the previous case, are performed. For this second case, a
rough indication of the expiration of the transient phase
has been performed by detecting the smallest time (t̄, j̄)
when V (x̃(t̄, j̄)) ≤ 1 namely it is 200 times smaller than



the initial condition), and transient statistics (providing
the lower left surface of Figure 1) is the averaged switching
frequency over hybrid times up to t = t̄/2, whereas the
steady-state statistics (providing the lower right surface of
Figure 1) are computed by focusing on hybrid times after
3
2 t̄ and until the end of the simulation run. The resulting
two lower plots of Figure 1 confirm the same trends as in
the space regularization case, even though here the steady-
state tuning knob is given by scalar T .
Figure 2 shows the evolution of the Lyapunov function

(12) with space regularization (left) and time regulariza-
tion (right) for the same initial condition and different
selections of the steady-state parameters ε and T . In the
left plot, we may see that as ε is decreased, the solution
comes closer to the operating point xe but, as noticed
in Section III, the price to pay for such proximity is a
high average switching frequency (indeed, xe is not an
equilibrium for the two dynamics of the switching scheme).
Conversely, for larger values of ε, the number of jumps
decreases and, as expected, the error between x and xe

increases. Similarly, for the right plot of Figure 2, smaller
values of T provide solutions that remain increasingly close
to xe exhibiting a large switching frequency, and vice-
versa.

VII. Conclusions and future work

We addressed practical stabilization of operating points
for switched affine systems by using a hybrid controller
that performs a trade off between minimum dwell time
and the size of the asymptotically stable set. Practical
asymptotic stability is obtained by two design strategies,
involving space- and time-regularization. Each one of these
strategies is associated to a convenient tuning knob that
may be used to perform a trade-off between the dwell time
and the magnitude of the steady-state oscillations around
the operating point. The switching frequency during the
transient phase of the response can also be adjusted
using another convenient knob, having the intuitive role
of trading off transient dwell time with LQ guarantees, as
seen from an integral quadratic performance index. The
proposed construction has been numerically illustrated
on a boost converter example. Future work comprises
experimental validation of the proposed strategy, as well
as possible generalizations requiring weaker conditions on
the system matrices Ai, i = 1, 2, ..., n..
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