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Abstract
Graphics processors are continuing their trend of vastly
outperforming CPUs while becoming more general pur-
pose. The latest generation of graphics processors have
introduced the ability handle integers natively. This has
increased the GPU’s applicability to many fields, espe-
cially cryptography. This paper presents an application
oriented approach to block cipher processing on GPUs.
A new block based conventional implementation of AES
on an Nvidia G80 is shown with 4-10x speed improve-
ments over CPU implementations and 2-4x speed in-
crease over the previous fastest AES GPU implementa-
tion. We outline a general purpose data structure for rep-
resenting cryptographic client requests which is suitable
for execution on a GPU. We explore the issues related
to the mapping of this general structure to the GPU. Fi-
nally we present the first analysis of the main encryption
modes of operation on a GPU, showing the performance
and behavioural implications of executing these modes
under the outlined general purpose data model. Our AES
implementation is used as the underlying block cipher to
show the overhead of moving from an optimised hard-
coded approach to a generalised one.

1 Introduction

With the introduction of the latest generation of graph-
ics processors, which include integer and float capa-
ble processing units, there has been intensifying inter-
est both in industry and academia to use these devices
for non graphical purposes. This interest comes from
the high potential processing power and memory band-
width that these processors offer. The gap in processing
power between conventional CPUs and GPUs (Graph-
ics Processing Units) is due to the CPU being optimised
for the execution of serial processes with the inclusion
of large caches and complex instruction sets and de-
code stages. The GPU uses more of its transistor bud-

get on execution units rather than caching and control.
For applications that suit the GPU structure, those with
high arithmetic intensity and parallelisability, the per-
formance gains over conventional CPUs can be large.
Another factor in the growth of interest in general pur-
pose processing on GPUs is the provision of more uni-
form programming APIs by both major graphics proces-
sor vendors, Nvidia with CUDA (Compute Unified De-
vice Architecture) [1] and AMD with CTM (Close To
Metal) [2].

The main obstacle with achieving good performance
on a GPU processor is to ensure that all processing units
are busy executing instructions. This becomes a chal-
lenge in consideration of Nvidia’s latest processor, which
contains 128 execution units, given the restrictions of
its SPMD (Single Program Multiple Data) programming
model and the requirement to hide memory latency with
a large number of threads. With respect to private key
cryptography and its practical use, a challenge exists in
achieving high efficiency particularly when processing
modes of operation that are serial in nature. Another
practical consideration is the current development over-
head associated with using a GPU for cryptographic ac-
celeration. Client applications would benefit from the
ability to map their general cryptographic requirements
onto GPUs in an easy manner.

In this paper we present a data model for encapsulating
cryptographic functions which is suitable for use with the
GPU. The application of this data model and the details
of its interaction with the underlying GPU implementa-
tions are outlined. In particular we investigate how the
input data can be mapped to the threading model of the
GPU for modes of operation that are serial and parallel
in nature. We show the performance of these modes and
use our optimised AES implementation to determine the
overhead associated with using a flexible data model and
its mapping to the GPU. Also included in the paper is
a study of the issues related to the mixing of modes of
operation within a single GPU call.
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Motivation: The motivation for this research is based
on the GPU acting as a general guide for the long-term
direction of general purpose processing. X86 architec-
tures are bottlenecking with limited increase in clock fre-
quency reported in recent years. This is being tackled by
the addition of cores to a single die to provide growth in
the total available clock cycles. The GPU is the logical
extreme of this approach where the emphasis has always
been on more but simpler processing elements. The up-
coming AMD’s Accelerated Processing Unit (Swift) [3]
architecture is a reasonable compromise where a CPU
and GPU are combined onto a single chip. Also Intel
are developing computing solutions under the TeraScale
banner which include a prototype of an 80 core proces-
sor. Using GPUs as a research platform exposes the is-
sues that general purpose processing will encounter in
future highly parallel architectures. Another motivation
is the use of GPUs as a cryptographic co-processor. The
types of applications that would most likely benefit are
those within a server environment requiring bulk cryp-
tographic processing, such as secure backup/restore or
high bandwidth media streaming. We also wish to show
the implications of the inclusion of the GPU as a generic
private key cryptographic service for general application
use.
Organisation: In Section 2 a brief description of the

essentials in GPU hardware used is outlined, along with
the CUDA programming model. Section 3 shows the
related work in cryptography on non general purpose
processors with a focus on GPUs. We present an im-
plementation of AES on the Nvidia’s G80 architecture
and show its performance improvements over compa-
rable CPU and GPU implementations in Section 4. In
Section 5 we introduce the generic data model suited to
GPUs, which is used to encapsulate application crypto-
graphic requirements. Section 6 describes in detail the
steps of mapping from the generic data structure to un-
derlying GPU implementations. All three previous sec-
tions are combined by the implementation of modes of
operation using the outlined data model and the opti-
mised AES implementation in Section 7. This shows the
overheads associated going from a hardcoded to a more
general purpose implementation.

2 GPU Background

In this section we present a brief account of the GPU ar-
chitecture used in the implementations presented within
this paper, the Nvidia G80. We also give an outline
of the new CUDA [1] programming model which has
been introduced by Nvidia to provide a non graphics
API method of programming the G80 generation of pro-
cessors. Previous to this programming interface either
OpenGL [4] or DirectX [5] had to be used at a consid-

erable learning expense to the programmer. AMD have
also introduced their own software stack to tackle the is-
sue of providing a more user friendly programming in-
terface to their processors - CTM [2], however we do
not cover this here. The G80 processors are DX10 [6]
standard compliant which implies it belongs to the first
generation of GPUs which support integer data units and
bitwise operations. A key advancement relating to the
field of cryptography.
Physical View: The G80 can consist of up to 16 multi-

processors within a single chip. Each of these multipro-
cessors consist of 8 ALU (Arithmetic and Logic Unit)
units which are controlled by a single instruction unit
in a SIMD (Single Instruction Multiple Data) fashion.
The instruction unit only issues a single instruction to
the ALUs every four clock cycles. This creates an ef-
fective 32 SIMD width for each multiprocessor, ie. a
single instruction for 32 units of data. Each multipro-
cessor has limited fast on-chip memory consisting of 32
bit register memory, shared memory, constant cache and
texture cache. All other forms of memory, linear, texture
arrays are stored in global memory, ie. off-chip. GPUs
can be used in arrangements of multiple chips on a sin-
gle graphics card and also multiple boards on a single
mother board. For all implementations and comparisons
with CPUs we have restricted the arrangements used to
single GPU and single CPU core.
Execution Model: The CUDA programming model

provides a way to programme the above chip in a rel-
atively straight forward manner. The programmer can
define threads which run on the G80 in parallel using
standard instructions we are familiar with within the field
of general purpose programming. The programmer de-
clares the number of threads which must be run on a
single multiprocessor by specifying a block size. The
programmer also defines multiple blocks of threads by
declaring a grid size. A grid of threads makes up a single
kernel of work which can be sent to the GPU and when
finished, in its entirety, is sent back to the host and made
available to the CUDA application.

Two more points of note which are relevant to this pa-
per. First, all threads within a single block will run only
on a single multiprocessor. This allows threads within a
single block to have the ability to share data with other
threads within the block via shared memory. Inter block
communication is not possible as there is no synchro-
nisation method provided for this. Second, due to the
32 SIMD wide execution arrangement described above,
Nvidia have introduced the notion of a warp. A warp
represents a grouping of threads into a unit of 32. These
threads run on the same multiprocessor for the entire 4
cycles required to execute a single instruction. Threads
are assigned to a warp in a simple serially increasing or-
der starting a 0 for the first thread within a block. Per-
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formance issues can arise when a group of 32 threads
diverge in their code path, this causes the entire 4 cycles
to be run for every unique instruction required by the 32
threads.

3 Related Work

A variety of non general purpose processors has been
used in the implementation of private key ciphers over
the years. Specifically within the field of graphics pro-
cessors, the first implementation of any cipher was by
Cook et al. [7]. They implemented AES on an Nvidia
Geforce3 Ti200, which had little programmable func-
tionality. Their implementation was restricted to using
the OpengGl library and only a fixed function graphics
pipeline. They describe the use of configurable color
maps to support byte transforms and the use of the fi-
nal output stage of the pipeline (Raster Operations Unit
(ROP)) to perform XORs. Unfortunately due to the re-
strictive nature of the hardware used and having to per-
form all XORs in the final output stage of the pipeline,
multiple passes of the pipeline were required for each
block. The authors presented a successful full implemen-
tation running within the range of 184 Kbps - 1.53 Mbps.

Harrison et al. [8] presented the first CPU competitive
implementation of a block cipher on a GPU. They used
the latest DX9 compliant generation of graphics proces-
sor to implement AES, namely an Nvidia 7900GT. These
processors support a more flexible programming model
compared to previous models, whereby certain stages of
the graphics pipeline can execute C like programmer de-
fined threads. However, the 7900GT only supports float-
ing point operations. 3 different approaches were investi-
gated to overcome the lack of integer bitwise operations
on the programmable portion of the pipeline. The XOR
operation was simulated using lookup tables for 4 bit and
8 bit XORs, and also the hardware supported XOR func-
tion within the final stage (ROP) of the pipeline. Their
results showed that a multipass implementation using the
built in XOR function combined with a technique called
ping-ponging of texture memory to avoid excess data
transfers across the PCIe bus could be used to achieve
a rate of 870 Mbps.

More recently the latest generation of hardware, which
supports integer data types and bitwise operations, has
been used by Yang et al. [9] to produce much improved
performance results. This paper focuses on a bitslicing
implementation of DES and AES which takes advantage
of the AMD HD 2900 XT GPU’s large register size. The
GPU is used as a 4 way 32 bit processor which operates
on four columns of 32 bitsliced AES state arrays in paral-
lel. They show rates of 18.5 Gbps processing throughput
for this bitsliced AES implementation. A bitsliced im-
plementation isn’t suitable for general purpose use as it

requires heavy preprocessing of the input blocks. The
authors [9] argue that their bitslicing approach can be
put to use as a component in template-based key search-
ing utility or for finding missing key bytes in side chan-
nel attacks whereby the input state is static relative to
the key. A conventional block based implementation of
AES is also presented in this paper, running at rates of
3.5 Gbps. Whether this includes transfers of input/output
blocks across the PCIe bus is not indicated.

Other non general purpose processors used for private
key cryptography include various ASIC designs such as
[11] [12] [13] and custom FPGA efforts [14] [15]. GPUs
have also been applied in the field of public key cryptog-
raphy. A paper by A. Moss et al. [10] tackles the problem
of executing modular exponentiation on an Nvidia 7800
GTX. They present promising results showing a speed
up of 3 times when compared to a similar exponentia-
tion implementation on a standard X86 processor. Also
related to graphics processors, Costigan and Scott [16]
presented an implementation of RSA using the Playsta-
tion’s 3 IBM Cell processor. They were able to increase
the performance of RSA using the Cell’s 8 SPUs over its
single PowerPC core.

4 Block Based AES Implementation
In this section we present an optimised implementation
of the AES cipher in CTR mode on an Nvida 8800 GTX
(G80) using the CUDA programming model. The aim
of this section is to provide the performance figures and
implementation approach which will be used in conjunc-
tion with the data model described in Section 5. As such
the chosen implementation in this section is an ideal, non
general purpose, implementation which can be used as a
source of comparison with generalised approaches.

As previously mentioned the G80 architecture sup-
ports integer bitwise operations and 32 bit integer data
types. These new features, which are shared by all DX10
[6] compatible GPUs, simplify the implementation of
AES and other block ciphers. This allows for a more
conventional AES approach compared to implementa-
tions on previous generations of graphics processors. We
based our implementations around both the single 1 KB
and 4 x 1 KB precalculated lookup tables which were
presented in the AES specification paper [17], see Equa-
tions 1 and 2 respectively.

ej = kj ⊕ T0[a(0,j)] ⊕ Rot(T0[a(1,j−c1)] ⊕

Rot(T0[a(2,j−c2)] ⊕ Rot(T0[a(3,j−c3)]))) . (1)

ej = T0[a(0,j)] ⊕ T1[a(1,j−c1)] ⊕ T2[a(2,j−c2)]

⊕T3[a(3,j−c3)] ⊕ kj . (2)
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As XORs are supported in the programmable section
of the graphics pipeline, there is no need to use the
ROP XOR support, which required multiple passes of
the pipeline - one for each XOR operation. Each thread
that is created, calculates its own input and output ad-
dress for a single data block and runs largely in isolation
of other threads in a single pass to generate its results.
The simple thread to I/O data mapping scheme used for
all implementations reported in this section is as follows.
Each thread’s index relative to the global thread environ-
ment for a kernel execution is used as the thread’s offset
into the input and output data buffers:

int index = threadIdx.x + (blockIdx.x * blockDim.x);
uint4 state = pt[index];
ct[index] = state;

where blockDim is the number of CUDA blocks within
the CUDA grid, blockId is the current CUDA block the
thread exists within and threadId is the current thread in-
dex within the CUDA block. As CTR is a parallel mode
of operation, each thread works on a single AES block
independently of other threads. To achieve high perfor-
mance on a GPU or any highly multi-threaded processor,
an important programming goal is to increase occupancy.
The level of occupancy on a parallel processor indicates
the number of threads available to the thread scheduler
at any one time. High occupancy ensures good resource
utilisation and also helps hide memory access latency. It
is for occupancy reasons that we create a single thread
for each input block of data.

A nonce is passed to all threads through constant
memory and the counter is calculated in the same man-
ner as the data offsets above. Rekeying was simplified by
using a single key for all data to be encrypted, with the
key schedule generated on the CPU. The reason for im-
plementing the rekeying process on the CPU rather than
the GPU is that it is serial in nature, thus the generation
of a key schedule must be done within a single thread.
It would be an unacceptable overhead per thread (ie. per
data block) when processing a parallel mode of opera-
tion, for each thread to generate its own schedule.
Host and Device Memory: We investigated using

both textures and linear global memory to store the input
and output data on the device. Through experimentation
we found global memory to be slightly faster than tex-
ture memory for input data reads and writes, thus all our
implementation results are based on using linear global
memory reads and writes for plaintext and ciphertext
data. Regarding host memory (CPU side), an important
factor in performance of transferring data to and from
the GPU is whether one uses page locked memory or not.
Page locked memory is substantially faster than non page
locked memory as it can be used directly by the GPU via
DMA (Direct Memory Access). The disadvantage is that

Coherent Reads Random Reads
Shared Memory 0.204319s 0.433328s
Constant Memory 0.176087s 0.960423s
Texture Memory 0.702573s 1.237914s

Table 1: On-chip Memory Reads: Average execution
times of 5 billion 32-bit reads.

systems have limited amount of page locked memory as
it cannot be swapped, though this is seen normally as an
essential feature for secure applications to avoid paging
sensitive information to disk.
On-chip Memory: As the main performance bottle-

neck for a table lookup based AES approach is the speed
of access to the lookup tables, we implemented both
lookup table versions using all available types of on-chip
memory for the G80. The types used are texture cache,
constant cache and shared memory. Shared memory is
shared between threads in a CUDA block and is lim-
ited to 16 KB of memory per multiprocessor. It should
be noted that shared memory is divided into 16 banks,
where memory locations are striped across the banks in
units of 32 bits. 16 parallel reads are supported if no bank
conflicts occur and for those that do occur, they must be
resolved serially. The constant memory cache working
set is 8 KB per multiprocessor and single ported, thus it
only supports a single memory request at one time. Tex-
ture memory cache is used for all texture reads and is
8 KB in size per multiprocessor. To investigate the the
read performance characteristics of these types of mem-
ory we devised read tests to access the three types of
memory in two different ways. We split the tests into
random and coherent read memory access patterns, each
test accessing 5 billion integers per kernel execution. Co-
herent access patterns were included as there are oppor-
tunities to exploit coherent reads within shared memory,
ie. reads with no bank conflicts for a half warp of 16
threads.

In Table 1 we can see the average execution times mea-
sured in seconds to perform the 5 billion reads. Constant
memory performs best with regard to coherent reads,
though as constant memory is single ported and the
lookup tables will be accessed randomly within a warp
it is of little use. Shared memory out performs in the sce-
nario of random access reads by a large margin due to its
high number of ports. It should be noted that both texture
and constant memory can be loaded with data before the
kernel is called, however a disadvantage to shared mem-
ory is that it must be setup once per CUDA block. Shared
memory is designed for use as an inter thread commu-
nication memory within the one multiprocessor and not
designed for preloading of data. This is most likely an
API limitation and would help reduce the setup overhead
if a mechanism existed to setup shared memory once per
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Shared Memory Constant Memory Texture Memory
Single Table 5,945Mbps 4,123Mbps 4,200Mbps
Quad Table 6,914Mbps 4,085Mbps 4,197Mbps

Table 2: AES CTR maximum throughput rate for different types of on-chip memory.
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Figure 1: Optimised AES CTR implementation with and without data transfers.

multiprocessor before kernel execution. In an attempt
to gain from the performance benefits of coherent mem-
ory reads when using shared memory we copied a single
lookup table 16 times across all 16 banks to avoid mem-
ory conflicts with careful memory addressing. However
it turns out that CUDA does not allow access to all 16K,
even though it advertises it as such. In fact the developer
only has access to slightly less than 16 KB, as the first
28 bytes are reserved for system use and if over written
by force causes system instability. Various optimisations
were attempted to avoid bank conflicts, the fastest ap-
proach used 16 x 1 KB tables save the last entry. A sim-
ple check if the last lookup entry is being sought and its
direct value is used instead.
AES: In Table 2 we can see the maximum perfor-

mance of the different AES implementations using the
different types of on-chip memory. It can be seen that
the 4 x 1 KB table approach, Quad Table, using shared
memory performs the fastest. This approach requires the
four 1 KB tables to be setup within shared memory for
each CUDA block of threads running. This setup can
be alleviated by allocating the task of a single load from
global memory into shared memory to each thread within
the block. For this reason our implementation uses 256
threads per block, giving the least amount of overhead to

perform the setup operation. The coherent shared mem-
ory 1 KB table lookup under performs due to the extra ro-
tates which must be executed, the extra conditional check
for sourcing the last table entry as described above and
the additional per CUDA block memory setup costs. Pre-
vious generations of GPUs could hide the cost of state
rotates via the use of swizzling (the ability to arbitrarily
access vector register components) however the G80 no
longer supports this feature.

Figure 1 shows the performance of AES CTR based
on the above 4 x 1 KB table lookup approach. The figure
exposes the requirement of many threads to hide memory
read latency within the GPU. We display the throughput
rate of the cipher with and without plaintext and cipher-
text transfers across the PCIe bus per kernel execution.
A maximum rate of 15,423Mbps was recorded without
transfers and a maximum of 6,914 Mbps was recorded
with transfers included. We have included the rates with-
out data transfer as we believe these to be relevant going
forward where the possibility exists for either: sharing
the main memory address space with the CPU, either
in the form of a combined processor or a direct moth-
erboard processor slot; or overlapping kernel execution
and data transfer support on the GPU.

In the same figure we have compared our results with
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the latest reported AES implementations on CPUs and
GPUs. Matsui [20], reports speeds of 1,583 Mbps for
conventional block based implementation of AES on
a 2.2 GHz AMD 64 processor. [18] reports an ECB
AES implementation of 1,151Mbps on an AMD 64
2.4 GHz 64 processor. The authors of [9], cite a speed
of 3,584Mbps on an AMD HD 2900 XT GPU (AMD’s
DX10 compliant GPU) for their block based AES imple-
mentation, though we do not have access to the through-
put rates as data sizes increase. We have included the
rates achieved in [8] for AES on a GeForce 7900GT,
which does provide this rate progression. With transfers
included, we see a 4x speed up over the fastest CPU re-
ported implementation and a 10x speed up without trans-
fers. Scaling up the reported CPU AES rates to the latest
available AMD core clock speed, our GPU implementa-
tion still substantially outperforms. When compared to
the block based AES implementation on a GPU by [9]
we can see 2x and 4x speeds ups with and without data
transfers respectively.

5 Payload Data Model
In this section we introduce the generic data model which
we use to allow the exploration of the problems involved
in mapping a generic private key cryptographic service to
specific GPU implementations. The aim of this section
is to outline the data model used, its design criteria and
the usage implications in the context of GPUs.

5.1 The Data Model
We use the term payload to indicate a single grouping
of data which contains both data for processing and its
instructions. The client application which requires cryp-
tographic work is responsible for the creation of a pay-
load and hand off to a runtime library which can direct
the payload to the appropriate implementation. The data
model described is similar to the fundamental principals
of the OpenBSD Cryptographic Framework [19] and as
such the implementations presented could potentially be
integrated into such a runtime environment.

One of the main criterion for a data model in this con-
text is to allow the buffering of as many messages as
possible that require processing into a single stream, per-
mitting the GPU to reach its full performance potential.
Exposing a payload structure to the user rather than a
per message API allows the grouping of multiple mes-
sages. Also, the pressure for increase in data size can be
met by providing the ability for different cryptographic
functions to be combined into a single payload. Another
design criteria is the use of offsets into the data for pro-
cessing rather than pointers as the data will be transferred
outside of the client applications memory address space

rendering pointers invalid. The data model must also al-
low the client to describe the underlying data and keys,
with key reuse, in a straight forward manner.

In the following pseudocode we can see the key data
structures used. The main ”payload” structure contains
separate pointers for data and keys as these are normally
maintained separately. A single payload descriptor struc-
ture is also referenced which is used to describe the map-
ping of messages to the data and key streams. The pay-
load descriptor uses an ID to uniquely identify payloads
in an asynchronous runtime environment. A high level
mode for which cryptographic service is required, can
be described within the payload descriptor or within the
individual messages. The need for a higher level mode
is due to the requirement of frameworks which abstract
from multiple hardware devices having to select suitable
hardware configuration to implement the entire payload.
A lower level property can also be used to describe the
cryptographic mode on a per message basis as can be
seen in the ”msgDscr” structure. The message descrip-
tor also provides pointers for arrays of messages, IVs
(Initialisation Vector), ADs (Associated Data), tags, etc.
Each of these elements use the generic element descrip-
tor which allows the description of any data unit within
the data and key stream using address independent off-
sets. The element descriptor separates the concept of el-
ement size and count as the size of elements can some-
times indicate a functional difference in the used cipher.
The return payload is the similar to the payload structure,
though without the keys.

struct payload {
unsigned char *data;
unsigned char *keys;
struct payloadDscr *dscr; };

struct payloadDscr {
unsigned int id;
struct keyValue *payloadMode;
unsigned int msgcount;
unsigned int size;
struct msgDscr *msgs;
struct elementDscr *keys; };

struct msgDscr {
struct element dscr *msg;
struct element dscr *iv;
struct element dscr *ad;
struct element dscr *tag;
struct key value **msgMode; };

struct element dscr {
unsigned int count;
unsigned int offset;
unsigned int size; };

5.2 General Use Implications
A consideration regarding the use of per message prop-
erties to indicate separate functions is that it adds extra
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Logical Thread Index
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Figure 2: Serialised Streams used by each thread for Data and Key indexing.

register pressures on SPMD architectures such as GPUs.
These processors can only execute a single kernel code
across all threads, any variation in function must be im-
plemented using conditional branches. This technique is
called using fat kernels, where a conditional branch indi-
cates a large variation in underlying code executed at run
time. On SPMD processors it is better for performance
if all messages within a payload use the same function,
which is determined before kernel execution time.

Another concern when employing a data model for use
with an attached processor, such as a GPU, is memory al-
location for I/O buffers. For the G80 it is important to use
pinned (page locked memory), this requires a request to
be made to the CUDA library. The CUDA library then
returns a pointer to the memory requested which can be
used within the calling process. Both the input and out-
put buffers should use pinned memory and also reuse the
same buffers when possible for maximum performance.
Thus there is a need for the client to be able to request
both input and output buffers, to allow the tracking of
its allocated buffers as the implementation cannot make
a buffer reuse decision independently. This requires the
encapsulating runtime, for example such as a framework
like the OpenBSD Cryptoraphic Framework, to support
mapping of memory allocation requests through to the
library representing the hardware which will service the
payload.

6 Applied Data Model

In this section we cover implementation concerns when
bridging between the previously described general pur-
pose data model and specific GPU cipher implementa-
tions. In particular we focus on our implementation of
a bridging layer, which maps the data model to our spe-
cific cipher modes of operation presented in Section 7.
The overhead of providing a general purpose interface
point to a GPU implementation is the addition of ab-
straction layers which need to be resolved within each
kernel thread. Throughput is lost when message func-
tions, sizes, element types, etc can vary within a payload.

Each thread must perform extra memory accesses, cal-
culations and conditional branches to dereference these
dynamic settings. These per thread calculations can be
offset by an implementation using the CPU as a prepro-
cessing stage which optimises a payload for thread pars-
ing before the payload is dispatched. Naturally there is a
balance to CPU preprocessing, as one of the reasons for
using a GPU is to act as a co-processor which in effect
speeds up the overall throughput of a system.

6.1 Descriptor Serialisation
Each element in the message descriptor requires serial-
ising on the CPU into a form which can be used inde-
pendently and quickly within each thread on the GPU.
An implementation determines the message descriptor
element size during serialisation, thus given a message
ID, a thread can directly lookup the corresponding mes-
sage instructions. Each serialised element contains the
message data stream offset, size, function, and whatever
other information is required specific to the implementa-
tion. The key descriptor, which contains the access in-
formation for the key schedules, requires the generation
of a separate key schedule stream before it can be se-
rialized. Both serialised descriptor streams and the key
schedule streams are transferred to the GPU and stored
within texture memory address space, which gives the
best size flexibility of the cacheable memory types.
Logical Thread Index: During message serialisation

a logical thread index stream is produced to facilitate
the efficient location of a message ID given a thread’s
ID. This stream contains a single thread for each serial
mode of operation (MOO) message and as many threads
as there are blocks for each parallel MOO message. The
entries within the logical thread index consist of only the
logical thread IDs which start a message. Figure 2 shows
an example of a logical thread index and how it relates
to the message descriptor stream. We call the stream
a logical thread index because the physical thread IDs
(those assigned by the GPU), which partially determine
the thread’s physical location within the processor, do
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Figure 3: Process of mapping physical threads to message IDs.

not necessarily map directly onto the entries within the
thread index. To support balancing of work across the
multiprocessors of the GPU we require the ability to as-
sign work to different threads depending on their physi-
cal ID. Balancing work across the GPU is important for
serial MOO messages, where the number of messages
may be low and the size of messages may be high.
Rekeying: As outlined previously, the GPU is a

highly parallel device and the key schedule generation is
inherently serial, thus in general it makes most sense to
implement keying on the CPU prior to payload dispatch.
Our implementation uses the CPU with a hashtable cache
for storing key schedules to ensure key reuse across mes-
sages. This is not just to aid efficiency at the key sched-
ule generation stage on the CPU but also to generate the
smallest key schedule stream possible. This is important
for on-chip GPU caching of the key schedules. When the
client application is generating the key stream for pay-
load inclusion, it is important for the same keys to use
the same position within the stream. This allows for fast
optimisation of key schedule caching based on key off-
sets rather than key comparison.

6.2 Thread to Message Mapping
The full process for mapping a thread to a message ID
and its underlying data is the following, this is also
shown in simplified form in Figure 3.
1. Generation of the logical thread index for all

messages as outlined previously. This work is carried on
on the CPU.

2. Mapping of the physical (GPU assigned) thread ID
to a logical thread ID within each kernel thread. This was
implemented using two different algorithms, one with a
focus on performance and the other a focus on client ap-
plication control for load balancing. The first approach
maps physical to logical threads in a 1 to 1 manner in
multiples of 16 x 256 threads, until the last and poten-
tially partially full 16 x 256 group of threads. The last
group of threads is allocated evenly across the multipro-

cessors assigning physical IDs in natural order. The rea-
son for using 16 x 256 threads, is that the implementa-
tions used assign a fixed 256 threads per CUDA block
in multiples of 16 blocks (ie. the number of multipro-
cessors on the 8800GTX processor). This is done to en-
sure the simplest form of shared memory configuration
for lookup tables, see Section 4. This approach is fast
to execute as a single check can eliminate the case of
full thread groups where physical and logical IDs are the
same. The second approach maps each physical thread
into groups of 32 striped across each CUDA block. This
mapping is executed for every thread and thus is slightly
slower than the first approach. It however gives a more
consistent mechanism for mapping physical threads to
messages and thus is more controllable by the client ap-
plication. In the first approach its difficult or impossible
to insert serial MOO messages so that they are evenly
spread across the available multiprocessors. We use the
second approach in our reporting of results as it is only
0.25% slower than the first and thus the advantage out
weighs the performance hit. See Section 7.3 for the ef-
fects of loadbalancing work across the GPU.

3. Search of logical thread index with logical thread
ID to determine message ID for kernel. This step also
calculates logical thread ID offset from beginning of
message. Due to storing a digested form of the logi-
cal thread IDs, in which each entry in the logical thread
index is the thread ID start of a message, the search is
implemented as a binary search. A direct lookup table
could be used for better performance however this would
require a lookup table equal to the number of logical
threads. For parallel MOO messages this would be too
high an overhead in terms of data transfer and cacheabil-
ity of the index. The digest version only stores a thread
index entry per message within the payload and also pro-
vides an easy way to calculate the thread offset from the
start thread (ie. first block) for parallel MOOs messages.

4. Use of message ID to offset into the message de-
scriptor stream, which is used to retrieve the input data
offset and other message settings.



USENIX Association  17th USENIX Security Symposium 203

6.3 Padding
The client application can set padding or not for each
message within the message descriptor. As the abil-
ity to generate a link list of addresses for use during
DMA transfer is not supported in CUDA, it results in too
high an overhead for the CPU based serialization process
to support pre-padding message directly into the data
stream for sending to the attached device. The reason for
this is that the CPU would have to generate a new single
stream from contiguous memory based on the new inser-
tions and the original data stream. An alternative more
efficient approach is to embedded the padding instruc-
tions into the message descriptor stream which indicates
the types of padding required. This requires that each
thread checks if extra padding is required and to gener-
ate the necessary extra data itself. In relation to CUDA
this extra check causes thread divergence for the single
thread that must execute the padding. However the over-
head is generally very low as the divergence only lasts
for a single cipher block across 32 threads. If a full new
block is required, as potentially in PKCS#5 for example,
then an extra block is required in the output. This is an
issue for GPUs as typically a live thread cannot allocate
its own memory. The CPU must allocate for this extra
space during serialisation before the payload is sent to
the GPU.

6.4 Payload Combining
The bridging layer implementation can easily implement
payload combining in the scenario where payloads are
queued via the encapsulating framework. The multiple
data and key schedule streams within host memory space
can be copied into consolidated input buffers on the at-
tached device. During serialisation stage, the serialised
message and key descriptors are appended and offsets
are recalculated taking into account the combined input
streams on the attached device. Similarly processed pay-
loads can be read from a consolidated output buffer on
the attached device and read into separate host buffers.
Generally ciphers do not change the size of the plaintext
and ciphertext, padding aside, allowing efficient reuse
(directly or copies) of the input payload descriptors.

7 Modes Of Operation

In this section we present the implementation and results
of symmetric key modes of operation built using the pre-
viously described data model, bridging layer and AES
implementation. Modes of operation determine how the
underlying block cipher is used to implement a cryp-
tographic system which supports messages greater than
one block in length. We have analysed the most com-

mon encryption modes, specifically CTR, CBC, CFB
and OFB. Using these modes on a highly multithreaded
device, the major overriding characteristic which deter-
mines throughput is whether the mode can be imple-
mented in parallel or must be done serially. CFB’s la-
tency reduction is not relevant within the context of a
payload where the entire message is sent and read back
as a single unit. OFB and CTR allow the pregenera-
tion of a key stream with subsequent XORing with the
plaintext/ciphertext for its operation. This can provide
good latency reduction whereby the execution of a pay-
load can be split into two separate stages, one for key
stream generation and one for XORing. However, re-
garding an application that will gain from the use of
a bulk cryptographic co-processor, the most important
characteristic is throughput. We focus on the throughput
of the two main categories of MOOs: serial MOO (CBC
and CFB encryption and OFB), and parallel MOO (CBC
and CFB decryption and CTR). All implementations are
based on the optimised AES implementation presented
in Section 4 using CUDA. Discounting block cipher per-
formance variation, these results should provide a guide
to the general behaviour of the investigated MOOs using
other block ciphers on a GPU.

7.1 Parallel MOOs
It is easier to achieve full occupancy on a highly parallel
processor such as a GPU when processing parallel MOO
messages compared to serial MOO messages. Each mes-
sage can be split into blocks and assigned its own thread,
thus the number of threads equals the total number of
blocks within the payload. Figure 4 shows the through-
put rates of different message sizes used within payloads
containing parallel MOO messages. The results shown
are based on the CTR MOO. CBC and CFB decryption
were also implemented, though the throughput rates did
not vary. The number of messages indicates the number
used within a single payload. As we can see, the greater
the payload size the higher the performance. This is ex-
pected due to increased resource occupancy and memory
latency being more effectively hidden. We can also see
that at a certain throughput rate the per message over-
head of using a generic data model becomes the domi-
nant overhead. As a result, increasing the payload mes-
sage count past a certain point results in a drop in perfor-
mance.

All results are based on multiple executions of a sin-
gle payload with the reuse of memory buffers both for
host and on device storage. This simulates the scenario
of an application managing its own host memory allo-
cations as described in Section 5. Our implementations
also reuse the same key, simulating all messages being
within a single cryptographic session. We also include
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Figure 4: Throughput rates for parallel MOO messages across varying block sizes.

in Figure 4 throughput rates for maximum rate rekey-
ing, whereby each message contains its own unique key.
We have highlighted the comparison of rates with and
without rekeying for payloads with a message size of 512
blocks. As expected, an increasing message count results
in an increasing overhead on total throughput.

The maximum throughput achieved for a parallel
MOO under the generic data model was 5,810Mbps. An
important observation from these figures is that we can
see there is an overhead associated with using the de-
scribed generic data model for abstracting the underly-
ing implementation details. When using large messages
(16384 blocks) this overhead is 16%, with medium sized
messages (512 blocks) the overhead is 22% and in the
worst case when using small messages (16 blocks) the
overhead is 45%. The reasons for the increase in over-
head as the message count increases relative to the work
done, is due mainly to the caching behaviour of the in-
dex stream descriptors used on the small 8 KB GPU tex-
ture caches. For example, regarding the logical thread
index stream when used for a parallel MOO payload,
even though it efficiently encodes one logical thread per
message (the starting block) and extrapolates the remain-
ing threads for the message, each additional message re-
quires an extra 32 bits. We see a consistent drop off
in performance for larger message counts as each bi-
nary search performed to map the physical thread ID
to message ID must increasingly access global memory.
There is also an increased overhead associated with CPU

preprocessing of messages and the number of steps in-
volved in the thread to message mapping process. Fu-
ture work involves attempts to optimise the streams used,
even though we are somewhat restricted given that the
GPU is an SPMD device and fat kernels add register
pressure and reduce occupancy. In particular executing
parallel messages in groups of data for large payloads in
small message configurations could reduce the overhead
of thread to message mapping.

7.2 Serial MOOs
The key to good performance with serial MOO messages
is to include a lot of messages within the payload. Given
a low number of messages, there will be a shortage of
threads to maintain a high occupancy level on the GPU
and thus performance will suffer. The serial implemen-
tations go through the same thread to message mapping
process as normal. The message descriptor contains the
message size for serial messages, which is used to set the
number of input blocks to be processed by each thread
starting with the initialisation vector (referenced via the
message descriptor). The input address start at the mes-
sage offset and increase in single blocks treating the mes-
sage as a contiguous section of the input data stream.
This creates a memory access pattern where neighbour-
ing threads access memory locations separated by the
size of the messages they are processing. This access
pattern has an important impact on throughput as will be
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Figure 5: Throughput rates for serial MOO messages across varying block sizes.

seen.
Figure 5 shows the performance rates for a serial MOO

using different sizes of messages. All results are based
on the CBC MOO in encrypt mode, other serial MOOs
using the same block cipher performed equivalently with
regards to bulk throughput rates. All messages within a
single payload were of the same size, see Section 7.3 for
detail on mixing sizes of messages within a payload. We
have included in the figure a CPU based implementation
of the OFB MOO from [18], as a point of comparison.
We have also included the results for a parallel MOO
for a payload with a message size of 2048 blocks from
Figure 4. The figure highlights its comparison with the
corresponding serial MOO message size. We can see the
penalty paid for a low number of serial messages within
the payload as it takes quite a number of messages be-
fore throughput substantially increases. This is easy to
see in the comparison of the parallel MOO which starts
at quite a reasonable throughput rate from a low mes-
sage count. We can also see that there is performance
to be gained by grouping blocks into threads which re-
duce the per message overheads discussed above, this ac-
counts for the higher performance of the large message
count serial payloads over parallel payloads. These se-
rial results cannot be compared with the AES optimised
implementation in Section 4 directly for framework over-
head calculations as the optimised AES implementation
is implicitly parallel.

A disturbing trend can be observed for larger serial
MOO message sizes - as the number of messages in-
crease a performance bottleneck is hit. This may be ex-

plained by the memory access pattern created by such
executions. Neighbouring threads within a CUDA warp
use increasingly disparate memory address locations for
their input and output data as the message size increases.
We have isolated this behaviour with a separate memory
test in which each thread performs a series of sequen-
tial reads from global memory starting at an offset from
the previous neighbouring thread equal to the number of
sequential reads performed. Figure 6 presents these re-
sults for different offsets and corresponding sequential
reads in increments of blocks (taken to be 16 bytes for
this test). For block counts of 128 and over the memory
read performance drops dramatically as the the number
of active threads increase. There is not enough publicly
available detail on the G80 to definitively explain this
behaviour, however it is possibly a combination of level
2 cache bottleneck and a limit on the number of sepa-
rate DRAM open pages supported by the DRAM con-
trollers. Either could cause performance drops as con-
current memory reads reduce their coherency.

7.3 Mixed MOOs
Here we investigate the issues involving mixing both the
MOOs and message sizes used within a single payload.
The same occupancy consideration applies for mixed
modes as for single modes, however in a mixed mode
context, if a small number of serial MOO messages are
present in the payload the presence of parallel MOO
messages can help increase occupancy. Performance is-
sues exist when there are imbalances in the number of se-
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rial MOO messages to the amount of parallel MOO mes-
sage work can be done. Another concern when mixing
message types is the positioning of serial MOO messages
across the available multiprocessors. The ideal scenario
for work load balancing is for all serial messages to be
divided evenly across the multiprocessors. Specifically
concerning the G80 processor, there is the extra consid-
eration of 32 threads being active at any one time on a
single multiprocessor. This restricts the ideal division of
serial MOO messages to be made in groups of 32. Also,
for optimal arrangement of work to be done within these
groups, they should be ordered by message size. This is
to reduce the amount of empty SIMD slots during the
execution of the serial MOO message groups. Paral-
lel MOO message positioning and message size group-
ing is not a concern as these types of messages are self
load balancing as they are broken up evenly into threads
which are load balanced by our thread to message map-
ping scheme.

To allow the client application sufficient control over
the positioning of serial MOO messages on the hardware,
we have used the physical thread to message mapping
described in Section 6. This allows the client to sim-
ply group all serial messages at the start of the payload
if possible. The striping mapping scheme used will au-
tomatically group the messages into groups of 32 and
distribute the groups evenly across CUDA blocks, which
will be assigned evenly to the available multiprocessors
by the CUDA library. Also, the order in which the serial
messages appear in the input stream is preserved, so if
the client orders messages according to their size these
are maintained in their optimal ordering for SIMD work
load balancing. We developed a series of tests which
allows us to demonstrate the effect of different mixing
configurations of serial MOO messages across a payload.
Figure 7 shows the throughput rates of different payload
configurations. Each payload configuration consisted of
the same messages, only the ordering of the messages
were changed. The absolute throughput rates are not rel-
evant as the messages used were manufactured to fit the
test requirements and not for performance. The relative
difference between the scenarios clearly shows the im-
portance of correct ordering of messages when mixing
serial and parallel MOO messages within a single pay-
load.

All payloads used 960 512-block parallel MOO mes-
sages, 992 32-block parallel MOO messages and 1024
serial MOO messages with 8 variations in message size
ranging from 16 to 2048 blocks. Here is a description of
each of the payload configurations used in Figure 7.
Payload 1: One serial MOO message per group of 32

threads, attempting to assign all serial MOO messages to
a single multiprocessor. This assignment is not entirely
possible as CUDA blocks are assigned to available mul-

tiprocessors and is beyond the control of the developer.
Payload 2: One serial MOO message per 32 threads

spread evenly across the multiprocessors.
Payload 3: All serial MOO messages assigned to the

minimum number of CUDA blocks. This scenario is
much faster than 1 and 2 as all SIMD slots within 32
threads are occupied, even though not all multiproces-
sors are occupied with work.
Payload 4: A random distribution of serial MOO mes-

sages across the payload.
Payload 5: A random distribution of serial MOO

messages across the payload, however grouped into 32
threads to ensure full SIMD slot usage.
Payload 6: All serial MOO messages grouped into 32

threads and spread evenly across all multiprocessors.
Payload 7: Same as Payload 6 however all serial

MOO messages appear within the payload in order of
their message size. All other payload configurations use
a random ordering of message sizes.

From the results one can see the main priorities for
client ordering of serial MOO messages within a pay-
load are: their grouping within the device’s SIMD width
to ensure the SIMD slots are occupied; the even spread of
serial MOO message groups across the available mulit-
processors; and the ordering of serial MOO messages ac-
cording to their size to keep similar message sizes within
the one SIMD grouping. A separate and notable concern
when mixing function types within a payload is that the
underlying implementation can suffer from increased re-
source pressure. The G80, like other SPMD devices only
support a single code path which execute on all threads,
thus the combination of function support within a single
kernel via conditional blocks can increase register pres-
sure and also increase overhead for the execution of such
conditions.

8 Conclusion
In this paper we have presented an AES implementa-
tion using CTR mode of operation on an Nvidia G80
GPU, which when including data transfer rates shows a
4x speed up over a comparable CPU implementation and
a 2x speed up over a comparable GPU implementation.
With transfer rates across the PCIe bus not included this
ratios increase to 10x and 4x respectively. We have also
investigated the use of the GPU for serving as a general
purpose private key cryptographic processor. The inves-
tigation covers the details of a suitable general purpose
data structure for representing client requests and how
this data structure can be mapped to underlying GPU im-
plementations. Also covered are the implementation and
analysis of both major types of encryption modes of op-
eration, serial and parallel. The paper shows the issues
and potentially client preventable caveats when mixing
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these modes of operation within a single kernel execu-
tion.

We show that the use of a generic data structure results
in an overhead ranging from 16% to 45%. The main rea-
son for the drop in performance is due to the descriptor
data streams becoming too large to fit in the small texture
working cache size of the G80. This per thread overhead
occurs most acutely within the implementation of paral-
lel MOO payloads with small messages and a high mes-
sage count. It could be argued that in such a case a client
would be better implementing a hardcoded approach if
the input data structures are known in advance.

Overall we can see that the GPU is suitable for bulk
data encryption and can also be employed in a general
manner while still maintaining its performance in many
circumstances for both parallel and serial modes of op-
eration messages. Even given the overheads of using a
generic data structure for the GPU, the performance is
still significantly higher than competing implementations
assuming chip occupancy can be maintained. However
when small payloads are used the GPUs performance
under performs both in the general and hardcoded im-
plementations due to the resource underutilisation and
the transfer overheads associated with movement of data
across the PCIe bus. Further work is required in opti-
mising the mapping of a generic input data structure to
threads to improve the noted overheads. Also investi-
gation of authenticated encryption modes of operation
should be included in a similar study.
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