
Practical Techniques for

Organizing and Measuring Knowledge

by

Timothy Christian Lethbridge, BSc(CS), MSc(CS)

Thesis

Presented to the School of Graduate Studies and Research

in partial fulfilment of the requirements

for the degree

Doctor of Philosophy (Computer Science)

University of Ottawa*

Ottawa, Ontario, K1N 6N5

Canada

* The PhD program in Computer Science is a joint program with Carleton University, administered by the

Ottawa-Carleton Institute for Computer Science

Copyright © Timothy C. Lethbridge
November 1994

ii

Dedicated

to the memory of

Grandpa Fred Fitzgerald Lydon

iii

Abstract

This research is concerned with the problem of making knowledge acquisition and repre-
sentation practical for a wide variety of people. The key question investigated is the follow-
ing: What features are needed in what this research defines as a knowledge management
system, so that people who are not computer specialists can use it for tasks that involve
manipulating complex ideas?

In this research the needs of such users were evaluated, and several prototype systems
were created, culminating in the creation of a system called CODE4. A key conclusion is as
follows: Users need a tool that involves the synthesis of several techniques for organizing
the knowledge.

The research has led to ideas for two types of features: abstract knowledge representation
features and user interface features. Some of the proposed abstract knowledge
representation features that are novel or improved include: 1) a uniform treatment of units
of knowledge which are called concepts; 2) the separation of the names of concepts from
their unique identities so that concepts can have multiple names and a given name can be
used for several concepts; 3) the classification of conceptual relations using property and
statement hierarchies, and 4) facilities for smoothly integrating informal knowledge with
knowledge that is more precisely represented. The above ideas are implemented in CODE4-
KR, the abstract knowledge representation used in the CODE4 knowledge management
system.

Some of the user interface features that are found in CODE4, and are proposed for general
use, are: 1) unlimited chained browsers; 2) knowledge maps, representing patterns of
knowledge to be explored or processed; 3) fully interchangeable mediating representations
operating on knowledge maps; 4) a uniform set of knowledge editing operations in the
mediating representations, and 5) masks for highlighting and controlling the visibility of
concepts.

CODE4 has had a significant amount of serious use by users in such diverse fields as ter-
minology, organizational modelling and software engineering. This has served as the basis
for validating the above ideas about knowledge organization. To this end, several tech-
niques have been used including: 1) a detailed questionnaire about CODE4 administered to
many users, and 2) a static analysis of the knowledge bases using several newly-developed
metrics. The metrics include seven largely independent measures of knowledge base com-
plexity, as well as compound measures that allow the user to ascertain the completeness,
well-formedness and information-richness of a knowledge base.

iv

Acknowledgements

The mental energy of numerous people has influenced the development of this thesis. Doug
Skuce, my supervisor, first aroused my interest in artificial intelligence and shaped much of
my early thinking. Many of the ideas herein build upon Doug’s previous research. Doug
takes great care to provide his students with excellent facilities and as much of his personal
time as they need.

Yves Beauvillé provided many early insights and was an invaluable resource as the main
programmer of CODE2. Ken Iisaka and Danny Epstein were sources of great inspiration as
both friends and colleagues. CODE4 would have been a far inferior product were it not for
Danny, Ken and the other members of the programming team: Dave Corbett, Judy Ka-
vanagh and Eric Arseneau.

Peter Clark and Denys Duchier provided in-depth comments about the thesis, and have
been a continual source of stimulating conversations. Discussions with Rob Holte showed
his vision and great depth of understanding. Numerous people at conferences and
workshops helped me broaden my thinking. Bruce Porter, Brian Gaines and Mildred Shaw
inspired me greatly.

The users of the CODE systems provided much valuable feedback: Ingrid Meyer’s frequent
requests taught me what is really important. Other members of her Cogniterm team
including Lynne Bowker, Karen Eck and Bruce McHaffie provided valuable comments and
usage data, and above all have been wonderful friends. Many people at Bell-Northern
Research helped in the development of ideas, particularly Milan Javor and Roy McLean.
The enthusiasm shown by Roy and by Jeff Bradshaw at Boeing boosted my confidence
tremendously. Also, I cannot give enough thanks to others who spent many hours creating
knowledge bases and answering questionnaires about CODE4: These include Walid Saba,
Nagi Ghali, Boyan Broderick, Chris Drummond and Chuck Wang.

Financial support for my research was provided by NSERC through a postgraduate schol-
arship, by BNR and by Doug Skuce. Doug’s budget was funded by NSERC, BNR, Cog-
nos, URIF, SSHRC and by sales of the CODE systems.

The support of my family and friends have allowed me to reach this stage. My father and
my grandfather (who died just as I was completing the thesis) interested me in science and
computers at a young age and have always been sources of inspiration and encouragement.
My dear departed stepmother taught me the value of self-discipline and hard work. Nu-
merous compatriots on skiing, hiking and canoeing expeditions helped me relax and keep a
perspective on other things in life. Alice Lang, Melanie Lukach and other friends at the
Graduate Students Association showed me that there is a light at the end of the tunnel.

v

Finally, my wife Teresa came into my life at the right moment and has been a source of
continual encouragement. She participated in this work in numerous ways: By being pre-
sent to console me, by putting up with a crazy work schedule, by acting as a sounding
board for ideas, by helping me structure my reasoning so that somebody from another field
can understand it, and by proofreading.

vi

Contents

List of figures x i

Chapter 1: Introduction 1
1.1 Overview of the research .. 1
1.2 Definitions of important terms ... 2

1.2.1 Knowledge acquisition and knowledge management .. 2
1.2.2 Concepts.. 3
1.2.3 Knowledge bases and ontologies.. 4
1.2.4 Knowledge organizing techniques .. 5
1.2.5 Formality and informality .. 5
1.2.6 Mediating representations .. 7

1.3 The Task: Practical knowledge management.. 8
1.3.1 Uses of a knowledge management systems... 8
1.3.2 Non-computer-specialists as users .. 9

1.4 The Problems: Factors that make knowledge management difficult. 10
1.4.1 Intrinsic problems ... 11
1.4.2 Accidental problems... 12

1.5 A preview of techniques.. 13
1.5.1 Knowledge representation techniques .. 13
1.5.2 User interface techniques.. 13
1.5.3 Knowledge measuring techniques.. 14

1.6 Research history and methodology... 14
1.6.1 Research chronology... 14
1.6.2 Summary of the research methodology... 16

Chapter 2: Other Technologies for Knowledge Management 1 7
2.1 Technology from the field of artificial intelligence .. 17

2.1.1 Descriptions of the tools.. 17
2.1.2 Features of the AI-based tools found most useful in this research 22
2.1.3 Limitations of the tools for practical knowledge management 23

2.2 Personal productivity software .. 25
2.2.1 Description of the tools .. 25
2.2.2 Features of the tools that were found most useful in this research 25
2.2.3 Limitations of the tools for practical knowledge management 27

2.3 Hypertext systems... 27
2.3.1 Features of the tools that were found most useful in this research 28
2.3.2 Limitations of the tools for practical knowledge management 28

2.4 An object-oriented software engineering tool .. 28
2.4.1 Features of OMTool found most useful in this research.. 28

vii

2.4.2 Limitations of OMTool for practical knowledge management 30
2.5 Summary ... 31

Chapter 3: Knowledge Representation for Practical Knowledge
Management 3 3
3.1 Introduction .. 33
3.2 An overview of concepts .. 33

3.2.1 Classes of concept.. 34
3.2.2 Knowledge management problems addressed by the way

CODE4-KR organizes concepts .. 39
3.3 Practicality vs. semantics and expressiveness vs. inference .. 40
3.4 Types vs. instances .. 41

3.4.1 Practical effects .. 41
3.4.2 Intended semantics of types and instances .. 44
3.4.3 Observations on the use of types and instances.. 47
3.4.4 Knowledge management problems addressed by types and

instances.. 50
3.5 Properties.. 50

3.5.1 Practical effects .. 50
3.5.2 Intended semantics .. 53
3.5.3 Observations on use.. 55
3.5.4 Knowledge management problems addressed by properties.. 55

3.6 Statements and facets .. 56
3.6.1 Practical effects .. 56
3.6.2 Intended semantics .. 60
3.6.3 Observations on use.. 62
3.6.4 Knowledge management problems addressed by statements and

facets.. 63
3.7 Terms ... 63

3.7.1 Practical effects .. 63
3.7.2 Intended semantics .. 65
3.7.3 Observations on use.. 65
3.7.4 Knowledge management problems addressed by terms 65

3.8 Metaconcepts.. 66
3.8.1 Practical effects .. 66
3.8.2 Intended semantics .. 70
3.8.3 Observations on use.. 71
3.8.4 Knowledge management problems addressed by metaconcepts.. 71

3.9 Primitive concepts.. 71
3.9.1 Practical effects .. 71
Computed primitive properties.. 73
3.9.2 Intended semantics .. 74
3.9.3 Observations on use.. 74

viii

3.9.4 Knowledge management problems addressed by primitive
concepts .. 74

3.10 Further details of inference mechanisms... 75
3.10.1 Delegation .. 75
3.10.2 Inheritance.. 76

3.11 Knowledge organizing techniques at the representation level.. 76
3.12 Comparison of CODE4-KR with other knowledge management

technologies.. 79
3.13 CODE4-KR as an abstract schema ... 81

3.13.1 Alternate schemata.. 81
3.13.2 The CODE4 API and its manifestation as the CKB syntax.. 83

Chapter 4: User Interface Techniques for Practical Knowledge
Management 8 6
4.1 Knowledge maps.. 87

4.1.1 Details of how relations are specified .. 87
4.1.2 Classes of knowledge map... 89
4.1.3 Commands available on the knowledge map interface.. 90
4.1.4 Knowledge management problems addressed by knowledge

maps .. 91
4.2 Mediating representations and browsing ... 91

4.2.1 Common features of CODE4’s mediating representations 92
4.2.2 The outline mediating representation.. 96
4.2.3 The graphical mediating representation .. 97
4.2.4 The matrix mediating representation .. 98
4.2.5 Knowledge management problems addressed by mediating

representations.. 100
4.3 Masks.. 102

4.3.1 Using masks .. 102
4.3.2 Knowledge management problems addressed by masks 104

4.4 Other interface features .. 104
4.4.1 The control panel .. 104
4.4.2 The feedback panel.. 105

Chapter 5: Knowledge Base Measurement 107
5.1 Introduction .. 107
5.2 Some important definitions and background... 108

5.2.1 Measurements vs. measures vs. metrics.. 108
5.2.2 Open-ended vs. closed-ended metrics .. 108
5.2.3 Important metrics in software engineering .. 109
5.2.4 Measuring knowledge bases vs. measuring knowledge... 111
5.2.5 The kind of knowledge bases to be measured .. 111

5.3 General tasks for which knowledge base measurement may be useful 112

ix

5.3.1 Tasks A to D: Assessing the present state of a single knowledge
base .. 112

5.3.2 Task E. Predicting knowledge base development time and effort 115
5.3.3 Tasks F to I: Comparison ... 116

5.4 Proposals for metrics .. 117
5.4.1 Metrics for raw size .. 117
5.4.2 Independent and closed-ended metrics for complexity.. 118
5.4.3 Compound metrics for complexity .. 125

5.5 Desirable qualities of the metrics .. 129
5.5.1 How subjectively useful are the metrics?.. 129
5.5.2 How intuitive or understandable are the metrics?.. 130
5.5.3 How good is the mapping between the metric’s function and the

subjective phenomenon?... 130
5.5.4 Summary of desirable qualities of the metrics .. 131

5.6 Summary ... 132

Chapter 6: Evaluation 134
6.1 The basic evaluation procedure .. 134

6.1.1 Details of the evaluation procedure.. 134
6.1.2 The CODE4 user questionnaire.. 136
6.1.3 Statistical tests .. 137
6.1.4 The indirect nature of the evaluation .. 138
6.1.5 Why not run a ‘controlled’ experiment? .. 139

6.2 Evaluation of the metrics .. 140
6.2.1 How independent is each complexity metric from the others? 141

6.3 Evaluation of CODE4... 141
6.3.1 Evaluation by observing the general use of CODE4 142
6.3.2 Features users found useful.. 142
6.3.3 Tasks performed during knowledge management.. 147
6.3.4 General benefits of CODE4 ... 150
6.3.5 Analysing the knowledge bases created by participants 152

6.4 Summary ... 153

Chapter 7: Contributions and Future Work 155
7.1 General summary of the research.. 155
7.2 Contributions of this research.. 155

7.2.1 Contributions to knowledge representation .. 156
7.2.2 Contributions to user interfaces for knowledge management 157
7.2.3 Other general contributions.. 158
7.2.4 Problems addressed by the research .. 158

7.3 Future Research .. 161
7.3.1 Future work on user interfaces for knowledge management

systems. .. 162

x

7.3.2 Future work in knowledge representation.. 162
7.3.3 Future work on CODE4 in general. 164
7.3.4 Future work involving metrics.. 164

7.4 Conclusions.. 165

Bibliography 168

Appendices:

A. Data About the Users 174
A.1 General questions about experiences with CODE4... 174
A.2 Questions about CODE4 knowledge representation features.. 175
A.3 Questions about CODE4 user interface features .. 177

B. Summary of Data Gathered about Knowledge Bases 180
B.1 General data about the knowledge bases studied .. 180
B.2 Measurements of the knowledge bases .. 182

C. CODE4 Design Principles 183
C.1 Assumptions about the user and environment .. 183
C.2 General principles .. 183
C.3 User interface principles.. 184
C.4 Knowledge representation principles .. 184
C.5 Inferencing principles.. 185

D. CKB Format for a Sample Knowledge Base 186

Glossary 189

Index 199

xi

List of figures
Chapter 2

2.1 How various technologies address knowledge management problems... 32

Chapter 3
3.1 Major classes of concept and what they represent.. 34
3.2 A simple inheritance hierarchy... 36
3.3 Important properties of concepts .. 37
3.4 An inheritance hierarchy of the most important classes of concept.. 38
3.5 More of the classes of concept in CODE4-KR... 39
3.6 The effect of declaring concepts to be instances or disjoint . 43
3.7 The extensions of concepts.. 45
3.8 Representational discontinuity – the case against instances of instances.. 49
3.9 Basic ideas about CODE4-KR properties .. 51
3.10 The principle of the property hierarchy ... 52
3.11 Facet properties.. 58
3.12 Metaconcept properties .. 69
3.13 An example showing dimensions .. 70
3.14 Summary of knowledge organizing techniques.. 79
3.15 Comparison of organizing principles in various representations 81
3.16 Seven manifestations of CODE4-KR ... 82
3.17 The top-level architecture of CODE4... 82

Chapter 4
4.1 An example screen showing the CODE4 user interface.. 86
4.2 A graph showing a knowledge map with several relations.. 88
4.3 A simple compound browser .. 93
4.4 Format options for the graphical mediating representation .. 97
4.5 Format options for the matrix mediating representation .. 99
4.6 A property comparison matrix .. 100
4.7 A property history matrix.. 101
4.8 An example mask window ... 103

Chapter 5
5.1 Values of MRPROP when there are 100 main subjects .. 119
5.2 Calculation of MDIV ... 121
5.3 The relationship between MCONCEN and MDIV .. 122
5.4 Complexities of various inheritance hierarchies .. 124
5.5 Interpreting metrics – meanings of various values .. 131
5.6 Measuring tasks and how well they can be performed... 132
5.7 Ratings of the metrics based on three criteria .. 133

xii

Chapter 6
6.1 Statistics about knowledge bases created by the participants.. 140
6.2 Coefficients of linear correlation among the seven complexity metrics 141
6.3 Aspects of a knowledge bases that convey its content .. 144
6.4 Significant differences among groups of knowledge-conveying aspects.. 144
6.5 Amounts of knowledge entered using different mediating representations.. 147
6.6 Users’ perceptions of the difficulty of tasks .. 149
6.7 Significant differences among groups of knowledge management tasks 150
6.8 Perceived ease of use of representational technologies .. 151
6.9 Histogram of perceived ease of use .. 152
6.10 Counts of classes of concepts created by participants.. 152

Chapter 7
7.1 How contributions of this thesis solve knowledge management problems... . . . 159

1

Chapter 1

Introduction

1 .1 Overview of the research

This research examines how to make knowledge acquisition and representation technology
available and useful to a wide variety of people. The ultimate goal is to make such people
more productive with the technology; the proximate goal is to identify key principles that
should be applied in the design of knowledge representation and acquisition systems. The
primary problems to be overcome are several intrinsic decision-making difficulties people
encounter while trying to organize knowledge, as well as various ease-of-use problems
encountered with today’s technology.

The ideas described in this thesis have been largely implemented in a software system
called CODE4 (Conceptually Oriented Design Environment, version 4). The main research
procedure has been to study the use of successive versions of CODE, and then to modify
or redesign the system to better solve the users’ problems.

The biggest insights gained while doing the research has been the following: 1) That
developing effective techniques for organizing sets of concepts improves the practicality of
knowledge acquisition, and 2) That to create a useful system it is necessary to
synergistically combine these techniques. Thus the thrust of the research has been to
exhaustively categorise concepts and their distinguishing criteria, and then to develop and
integrate ways of manipulating, presenting and measuring sets of concepts in these various
categories.

This focus on organizing sets of concepts has led to the development, in a parallel, in-
terdependent manner, of both knowledge representation (KR) and user interface (UI) tech-
niques that are at the same time expressive, powerful and easy to use. This research is
presented in chapters 3 and 4. A complementary line of investigation, presented in chapter
5, is the development of ways of measuring sets of concepts (knowledge base metrics).

CODE4 has been used seriously by a wide variety of people in commercial and educational
settings. Observations of this use have led to the belief that knowledge management
software embodying ideas such as those in CODE4 will one day become commonplace –
once people recognize its value. The development path foreseen is similar to that which led

2

to the widespread use of spreadsheet programs, although the latter are expected to always
have far more users1.

The next section introduces key terms used in the thesis. The subsequent three sections
briefly motivate aspects of the work by describing applications of knowledge management
and problems users encounter. Section 1.5 gives a preview of some of the ideas developed
during this work; and section 1.6 describes the research methodology.

1 .2 Definitions of important terms

This section briefly defines important terms that are used repeatedly in the thesis. By un-
derstanding the way these terms are used, the reader will gain a clearer understanding of the
nature of the research.

A much more exhaustive list defining over 100 terms can be found in the glossary. Detailed
descriptions of most of the ideas in the glossary can also be found in the main body of the
thesis; the index can be used to locate specific discussions. Also available is a CODE4
knowledge base that describes the terms found in the glossary.

1 . 2 . 1 Knowledge acquisition and knowledge management

For the purpose of this thesis, knowledge acquisition (KA) is considered the process of
gathering knowledge and entering it into a computer so that the computer, and humans
using it, can put that knowledge to use. Traditionally, the term knowledge acquisition has
referred to gathering expertise, primarily in the form of rules, from experts in order to
create an expert system (Gaines 1987; Neale 1989). Today, the term has evolved to mean
more than that. This thesis, for example, is concerned very little with rules and even less
with expert systems (although the acquired knowledge may be used to drive such systems).
The kind of knowledge acquired in this research is typically general knowledge about
things in the world, or detailed knowledge about the design of some device, program, or-
ganization etc.

An understanding of the term ‘knowledge acquisition’ requires a basic understanding of
what ‘knowledge’ is. Unfortunately there are many debates about the definition of the lat-
ter, and it is desired to avoid prolonged arguments. In general, knowledge is considered to
be any form of information that one might be able to manipulate in one’s brain, but this
thesis is primarily concerned with those aspects involving the categorization, definition and
characterization of things and their relationships. This thesis is deliberately unconcerned

1 It is possible that ideas from knowledge management might someday be merged with those of

spreadsheets.

3

with repetitive data, procedural knowledge (as might be embedded in a computer program)
or knowledge of spatial structures (as might be embedded in a CAD/CAM database)2.

The word ‘acquisition’ implies an inputting process, whereas the kinds of processes per-
formed in this research go far beyond that: Here, concerns include manipulation, storage,
presentation and many other processes performed on the knowledge. Therefore to clarify
the nature of this research, the broader term ‘knowledge management’ (Riedesel 1990) is
chosen – and the CODE4 software system developed in this research is called a knowledge
management system (KMS).

The term ‘knowledge management’ as used in this thesis can thus be defined as: The pro-
cess of acquiring, representing, storing and manipulating the categorizations, characteriza-
tions and definitions of both things and their relationships.

Other possible terms that could have been chosen for CODE4 instead of ‘knowledge man-
agement system’ include: ‘knowledge representation system’ (except this tends to connote
the static storage of knowledge) and ‘knowledge based system’ (except that this has come
to refer primarily to expert systems – performance software that uses knowledge once it is
acquired).

1 . 2 . 2 Concepts

In this thesis, all units of knowledge are uniformly called concepts. One place where con-
cepts exist is in the brain of an intelligent being; there they are the units that thought
processes manipulate. Sometimes when one discovers something, one creates a new mental
concept to represent it; sometimes a concept comes into being as a conclusion of a thought.
Other times one is explicitly taught a concept. Under any of these circumstances an intelli-
gent entity such as a human tries to relate the new concept to others – to characterize it,
differentiate it and link it into networks. The principle that all units of thought should be
called concepts is supported by an ISO definition (ISO 1990) which reads, “any unit of
thought generally expressed by a term, a letter symbol or by any other symbol”.

Concepts in a knowledge management system such as CODE4 are highly analogous to
concepts in a mind3, with the exception that a computer system has external agents (users)
to perform much of the commonsense reasoning required to do such things as integrating a
new concept. Hence a useful metaphor used in this research is to model a knowledge man-

2 Procedural and spatial knowledge and data are important; so important in fact that effective abstractions

and tools have been developed to represent and manipulate them. There is a lack, however, of practical
tools for the kinds of knowledge on which this thesis focuses.

3 This does intend to imply that CODE4 is organized like a brain (or vice-versa!). The analogy is merely
that both contain identifiable units of knowledge.

4

agement system as if it were indeed an intelligent entity – this is helpful in the process of
deciding what the system’s concepts really are and how they should be organized.

In general a concept represents one or more things, real or imaginary, concrete or abstract.
There can be more than one concept of the same thing; indeed each intelligent entity or
running knowledge management system has its own unique concept of any given thing.
There can also be consensus concepts of a thing: In such cases one imagines a group or a
society as the collective intelligent consciousness that has the concept.

One of the goals of knowledge acquisition or knowledge management is to manipulate the
state of a knowledge management system so that its concepts match those of a user, or of
the consensus of a set of users. This process is very similar to the process that an intelligent
entity undergoes when it learns something4.

It was stated above that all units of knowledge are concepts according to the terminology of
this thesis. The following clarifies further: Any component of the representation of knowl-
edge that can be related to other components is called a concept. Thus the following are
among the representational entities that are called (or at least represented using) concepts:
types, classes, instances, terms, rules, statements, propositions, properties, predicates, re-
lations etc. The glossary contains over twenty terms used for specific kinds of concepts
found to be useful in this thesis, plus several additional terms for roles played by concepts.
Chapter 3 clarifies exactly how knowledge is represented using concepts.

1 . 2 . 3 Knowledge bases and ontologies

A knowledge base is a collection of interrelated concepts. Intelligent entities in general may
be considered to have a knowledge base that evolves over time. A computer system has the
additional abilities to load, save and share knowledge bases. Such a system may have more
than one independent knowledge base active at once.

The word ‘ontology’ is often confused with ‘knowledge base’. In this work, an ontology
is considered a specialized kind of knowledge base that consists of descriptions or defini-
tions of types of things. This corresponds roughly with Gruber’s definition which is: “a
specification of a conceptualization: the objects and relations that exist for an agent”
(Gruber 1993). An ontology is generally considered not to include descriptions of specific
things, i.e. instances.

It might also be argued whether a knowledge base of types should be said to be an ontol-
ogy or to represent an ontology. The latter implies that ontologies are abstract or philosoph-

4 Of course, machine learning is one of the techniques that can be used to assist knowledge management.

This thesis focuses on situations where humans do most of the inferencing, rather than machines. The
goal is to facilitate human reasoning processes.

5

ical in nature and that knowledge bases are concrete. In this thesis, the former usage is
adopted: Both knowledge bases and ontologies can be imagined to be either abstract (i.e.
existing in the brain or society) or concrete.

Most of the knowledge bases created during this research are ontologies as described
above. However, this thesis discusses knowledge bases in general; this is partly because
instance knowledge is sometimes manipulated by CODE4 users, and partly because there is
disagreement about the definition of ‘ontology’: Some only consider a knowledge base to
be an ontology if it is very abstract or ‘high level’ in nature, containing truths applicable in
a wide variety of everyday experience.

1 . 2 . 4 Knowledge organizing techniques

In this thesis knowledge organizing techniques are distinct and somewhat independent
aspects of the process of representing sets of concepts. Two examples, with which most
computer scientists are familiar, are: 1) categorizing concepts when building inheritance
hierarchies and 2) associating attributes (properties, slots etc) with concepts. Each of these
involves the making of a distinct set of decisions and the performing of a distinct set of
actions. Knowledge organizations are individual instances of structures within a knowledge
base that are formed when a user is working within a particular organizing technique.

One of the objectives of this research is to analyse knowledge organizing techniques (some
of which are new ideas) in order to learn ways of making knowledge management more
practical. Details of organizing techniques at the abstract knowledge representation level are
covered in chapter 3; details of organizing techniques for the user interface are found in
chapter 4.

1 . 2 . 5 Formality and informality

The contrast between formality and informality, and the need to provide facilities to ma-
nipulate both, are themes found in several parts of this thesis. However usage of these
terms is controversial.

The word ‘formal’ has a wide variety of meanings in general English. The Concise Oxford
Dictionary (Seventh Edition) gives the following relevant ones:

1a: of the outward form…or external qualities [of a thing];
1b: of the essence of a thing, … not material;
1c: concerned with form, not the matter, of reasoning;
3. observant of forms or rules, precise, regular.

Logicians and theoretical computer scientists use ‘formal’ in sense 1c when they talk about
formal proofs or languages. A language would be considered formal if it has a well-defined

6

syntax with a semantics that gives that syntax mathematical meaning in terms of conclu-
sions that may be drawn and manipulations that may be performed.

Philosophers, on the other hand, tend to use sense 1b; but in general conversational use
senses 1a and 3 are more often meant (e.g. a formal-looking dress; a formal ceremony).

In this thesis the meaning is a synthesis involving all the above senses, but primarily sense
3. ‘Formal’ is used to describe the situation where concepts are linked together within well-
defined patterns (knowledge organizations). Such patterns have a syntax and rules of
manipulation, and contrast with arbitrary text strings or pictures which cannot form links
that the system can manipulate.The word ‘informal’ is used for the latter.

This usage can be justified in several ways: Firstly, structures that are formal (as described
in the last paragraph) are certainly observant of rules (sense 3) and arbitrary strings are
governed by no such rules. Secondly, just like in a formal logic or language, the manipula-
tions possible with formal knowledge organizations do not depend on what the concepts
represent (sense 1c). Finally, the only way to interpret a string or picture (which is infor-
mal) is to look beyond its outward form (opposite of sense 1a) and to understand what it
materially represents (opposite of sense 1b).

Objections to the use of ‘formal’ in this thesis might arise because a mathematical or logical
semantics is not imposed by knowledge organizations. It is not guaranteed that a CODE4
knowledge base can be converted to, say, first order logic. This is because the user is free
to ignore any suggested semantics (see section 3.2 for more details).

Due to the possible controversy around the word ‘formal’, one might seek alternate words.
A search of thesauri leads to several possible candidates including ‘stylized’, ‘orderly’ and
‘structured’. The last is the best; however, as with all alternatives it doesn’t capture the in-
tended meaning as precisely as ‘formal’. For example, ‘structured’ doesn’t carry the con-
notation that the thing (knowledge structure) referred to can be manipulated according to
rules that are independent of the thing’s referent.

In addition to the arguments provided above, other thinkers support the continued use of
the words ‘formal’ and ‘informal’ as in this thesis. For example, an interdisciplinary
workshop was held on the topic in 1991 (Lethbridge 1991), and Shipman’s research looks
at how excessive formality can be considered harmful because it imposes too many
constraints on the representation of ideas (Shipman 1993). Shipman also discusses how
development of a knowledge base should proceed smoothly from informal to formal
(Shipman 1992).

This thesis shares Shipman’s ideas: Chapter 3 shows how informal elements are integrated
into CODE4’s knowledge representation. Chapter 4 shows how the user interface allows
the uniform manipulation of both informal and formal elements; and chapter 5 shows that
there is a quantifiable, measurable continuum between informality and formality in a

7

knowledge base. However, allowing such a continuum does pose some problems: For ex-
ample it poses challenges when translating knowledge to other representations that are un-
controversially formal, such as KIF (Lethbridge and Skuce 1992a).

To conclude: As used in this thesis, the word ‘formal’ and its antonym ‘informal’ should
not be interpreted in the very strict senses used by some logicians, but in senses closer to
ordinary English: A more formal pattern of knowledge is more ‘connected’ and obeys and
is manipulable by identifiable rules; whereas a more informal structure has fewer con-
straints and can only be interpreted or manipulated by an external intelligence.

1 . 2 . 6 Mediating representations

A mediating representation (Johnson 1989) presents part of a knowledge base to an end
user. It can do this in many ways including using formatted text, tables, fill-in-the-blank
forms, or graphs with nodes and links. A mediating representation schema is the
description of the syntax and semantics of a particular class of mediating representations. In
general, a mediating representation is designed to highlight certain aspects of the
knowledge, or to allow the user to perform a certain task with the knowledge.

This thesis carefully distinguishes mediating representation schemas from both abstract and
physical knowledge representation schemas. Physical schemas describe how knowledge is
stored in computers; while abstract schemas describe common sets of representational
constructs that can be manifested in both physical and mediating representations.

These distinctions are made to preserve flexibility when designing physical and mediating
representations. The objective is to prevent the syntax or format described in one schema
from constraining the others. For example, if knowledge is physically stored as Lisp
expressions, there is no reason why Lisp expressions must be presented to the end-user
through a mediating representation (although this is often a problem today). The primary
concerns when designing a mediating or physical representation schema should be: 1)
ensuring that the principles of the abstract schema are adhered to by using semantics-
preserving changes of representation; and 2) Ensuring that the new schema serves its
intended task effectively.

Bradshaw and Boose have studied mediating representations in depth (Bradshaw and
Boose 1992). Of particular interest in this thesis are modelling mediating representations
(Bradshaw, Ford et al. 1993; Ford, Bradshaw et al. 1993). These allow the user to actively
construct elements of a knowledge base, as opposed to being guided in the process.

1 .3 The Task: Practical knowledge management

This section describes the kinds of users for whom CODE4 is designed, and the tasks that
CODE4 is intended to help them perform better. Discussions of existing tools for perform-
ing these tasks and how CODE4 can help, are deferred to later sections.

8

1 . 3 . 1 Uses of a knowledge management systems

This subsection explores the nature of the tasks in which a knowledge management system
of the type described in this thesis might be used. In general, such a system might be used
where there are:

• Ideas that are novel, not easily understood, difficult to categorize, difficult to relate to
each other, difficult to distinguish or difficult to define precisely.

• Complex interrelationships among ideas or large interconnected networks of ideas.

• Multiple ways of looking at ideas and multiple opinions about ideas.

• Problems expressing ideas completely, clearly and unambiguously in a linear, tabular or
diagrammatic format.

The common themes in the above four points are that they describe situations where 1) nat-
ural language and special purpose or abstract representations prove inadequate, and 2) there
are many details to control. In today’s world natural language is used if other representa-
tions are inadequate; but this is merely because it is possible to represent virtually anything
in natural language, not because natural language is the best representational format.

The following are some of the specific tasks that might be more productively performed
with the assistance of a knowledge management system. Actual examples of usage of
CODE4 are described in chapter 6. Applying knowledge management technology to all
these tasks is an idea that is only just starting to be recognized. Unfortunately, most
knowledge representation technology so far developed has not been practical enough for
widespread use.

1. Developing educational, reference or documentary material: A student
might use a resulting knowledge base to learn either in a programmed manner
(navigating the knowledge in a suggested order) or in an exploratory manner. A pro-
fessional in a field might refer to a knowledge base to look up detailed information
about some subject. An engineer or technician might consult the knowledge base to
learn the subtleties of some device or process with which he or she is having problems.

Specialists who perform knowledge management with this task in mind might be teach-
ers, technical authors or system documenters. They also might be terminologists or
lexicographers attempting to create a reference source for authors or translators.

2. Reverse engineering a document, system or other artifact: In this task the
knowledge engineer tries to understand something that is complex, confusing, ambigu-
ously expressed and/or contains errors and inconsistencies. He or she analyses the arti-
fact component-by-component and gradually builds a knowledge base that explains the
‘big picture’. During the process, he or she might simultaneously come to understand
how the artifact was constructed, uncover fundamental weaknesses in the original arti-
fact and develop ideas for a replacement.

9

This task might be performed by maintenance engineers or anybody who has a docu-
ment where knowledge is ‘hidden’. A historian or philosopher might be attempting to
shed light on the contents of ancient texts; a forensic accountant or an organizational
modeller might be trying to learn the control flow, information flow and money flow in
an organization.

3. Specifying or designing some artifact: Here, the resultant knowledge is used as
the basis for building or implementing the artifact, and later as a reference source about
the artifact.

This task might be performed by software or hardware engineers, or by end-users who
are attempting to provide preliminary requirements.

4. Developing the knowledge base for an expert system or other software:
In this task, the resultant knowledge is used by a reasoning system to plan, diagnose,
predict etc.

5. Synthesizing, generalizing or stimulating new ideas: Here the task is to help
the user clarify his or her thoughts, perhaps as an aid to personal decision making or to
help in the writing of a document.

6. Creating reusable ontologies: This is a higher-order task – the user develops gen-
eral purpose knowledge bases that can be used by others as foundation material for any
of the above tasks.

1 . 3 . 2 Non-computer-specialists as users

A major objective of this research is to make knowledge management technology accessible
to a wide range of people. In particular, it is important that people not need a computer sci-
ence education. At the very basic level, a user should be able to perform productive work if
he or she has an average amount of ‘organizational ability’. However, if a user does have
specialized training in logic, mathematics, linguistics or related fields, he or she should be
able to take advantage of additional optional layers of knowledge management features,
including those that involve more formality. These optional features should be invisible to
(i.e. they should not hinder) the less specialized user.

Currently most people who need to organize ideas do it in unconstrained natural language
operated on using a word processor, perhaps with the assistance of a database, spreadsheet
or diagram drawing program. These examples of personal productivity software allow
specialists in a variety of disciplines to perform tasks they could not previously have done;
however they have important limitations: Natural language documents tend to contain
ambiguity and inconsistency which can be hard to detect; spreadsheets and databases are
best for naturally tabular information, and knowledge expressed in diagrams tends to be
hard to interrelate with other knowledge.

10

The dawn of hypertext (Conklin 1987) has dealt with some of these problems, however
there is a need for well-thought-out principles to guide the knowledge representer. The
latter is the strength of knowledge representation languages and systems developed in the
artificial intelligence community.

Observations have shown that it is possible to develop software that embodies well-under-
stood knowledge representation principles, and at the same time has the level of usability of
spreadsheets and word processors. This research seeks to understand better how to meld
the technologies – providing practical knowledge representation for people without
computer backgrounds. A long range objective is to encourage people to better perform the
tasks mentioned in the last section by using knowledge management software.

1 .4 The Problems: Factors that make knowledge management
difficult

This section outlines some problems users encounter when managing knowledge. The ma-
terial in this section has been developed by observing and interviewing users and analysing
the tasks they perform.

Some problems appear to be intrinsic to knowledge management, whether it is being per-
formed using a word processor, a formal-language based tool or pencil-and-paper. If a tool
proposes to provide practical knowledge management capabilities, it must help the user deal
with these problems. The problems that are apparently intrinsic are listed in subsection
1.4.1.

At the same time as solving intrinsic problems, a tool should not introduce its own prob-
lems. Subsection 1.4.2 lists problems that are more ‘accidental’ in nature, arising from
flaws or limitations in the tool being used. The categorization of problems into accidental
and intrinsic deliberately parallels Brooks’ famous ‘No silver bullet’ paper (Brooks 1987)
where he uses the same division to categorize problems in software engineering.

Arising out of each problem is a corresponding high level requirement. In the following
subsections, each problem implicitly specifies the requirement to provide a solution. The
problems and requirements form the basis of the analysis of existing knowledge manage-
ment technology (chapter 2) and the features of CODE4 (chapters 3 and 4). A summary of
how the problems are addressed is found in section 7.2.4.

The list of problems and requirements is not intended to be exhaustive, but is intended to
focus on the primary concerns of the kinds of users discussed in the last section.

1 . 4 . 1 Intrinsic problems

The following problems, expressed as activities which are difficult in some circumstances,
appear inherent to knowledge management. They are encountered when performing most

11

of the tasks discussed in the last section. Tools can help in the solution of the problems
(making the activities easier to do), but if they are not well designed, tools can also make
the problems worse.

Problem I-1: Categorizing
a) Deciding on the criteria for categorization, classification or grouping.
b) Ordering categories, criteria and elements. (Deciding which categories are more

important and which should be listed first.)
c) Deciding on membership in categories. (Applying classification criteria.)
d) Categorizing characteristics of things.
e) Deciding on the level in a classification hierarchy at which to make a distinction.

(Deciding where to place a fact.)
f) Understanding the nature of an existing classification.

Problem I-2: Naming things (choosing terms, labels or symbols)
a) Finding or inventing meaningful names for things.
b) Choosing from among synonyms or near synonyms.
c) Distinguishing among concepts that have similar terms. (Understanding their differ-

ences.)
d) Understanding and adhering to explicit or implicit naming conventions.

Problem I-3: Making distinctions
a) Differentiating two conceptsb)Expressing second order ideas (knowledge about

knowledge).
c) Expressing knowledge about words or terms for things (linguistic knowledge).
d) Expressing knowledge involving mathematics, logic or higher-order relations.

Problem I-4: Understanding the effects of actions or declarations
a) Understanding what conclusions can be made due the presence of a particular fact.
b) Understanding the consequences of performing a certain action.
c) Understanding the effects of declaring a particular new fact.

Problem I-5: Extracting knowledge
a) Finding specific facts.
b) Examining large amounts of knowledge at once.
c) Understanding or visualizing the overall structure of the knowledge.
d) Choosing the perspective from which to view knowledge.

Problem I-6: Handling conceptual errors such as inconsistency, ambiguity,
incorrectness and incompleteness
a) Recognizing the possibility of such errors.
b) Detecting the presence of such errors.
c) Finding such errors when they exist.
d) Living with such errors if the resolution is unknown.
e) Correcting such errors.

12

1 . 4 . 2 Accidental problems

The following problems arise primarily by the nature of certain tools; following Brooks’
terminology the term ‘accidental’ is used. The problems are not intrinsic to knowledge
management, however their origin may be due to a number of causes:

• They may not be considered important to the designer or the particular class of user.
• They may result from tradeoffs made during design.
• They may result from the fact that many knowledge management tools are research

prototypes.

Regardless of the origin , however, all the problems tend to reduce the general practicality
of a tool.

Problem A-1: The tool may be only usable for a special purpose.
a) The domain or task may be limited (e.g. to configuration tasks).
b) The type of knowledge representable may be limited (e.g. to rules).
Special-purpose tools are often justifiable on simplicity grounds; also the designer may
not care about any other application. However there is a general requirement for tech-
nology that is highly adaptable so that when an idea arises, a knowledge base can be
immediately built.

Problem A-2: A high degree of expertise may be needed to use the tool.
a) A computer science, logic or mathematics background may be needed.
b) There may be no way to express certain facts that lie outside the specific syntax.
c) A large amount of training may be needed.
d) No simple but useful subset may be available.
e) Support staff may be needed.
A high need for expertise is typically due to poor design. In general the problem can be
solved by paying attention to user interface design principles, and making a distinction
between basic and advanced capabilities. Another cause of the problem is the insistence
on rigid syntax so that the representation or inference mechanisms have certain useful
properties such as logical completeness.

Problem A-3: The tool may only be able to handle small knowledge bases.
a) The tool may have performance problems or reach a physical capacity limit.
b) There may be no way to avoid working on the whole knowledge base at once.
This is often the case of research tools. There is some justification for building a tool
that is specialized for small knowledge bases: plenty of successful tools exist to ma-
nipulate spreadsheets, small databases and other relatively small collections of knowl-
edge. The general requirement, however, is that knowledge management technology be
reasonably ‘scalable’ so users do not hit artificial size barriers.

Problem A-4: The tool may only be usable by an individual; not a group
a) There may be no way of partitioning knowledge bases.
b) There may be no mechanism for concurrent access.

13

1 .5 A preview of techniques

This section briefly outlines the rationale for the main techniques presented in this research,
providing a preview of the material found in chapters 3, 4 and 5 respectively. The
evaluation of all features can be found in chapter 6.

1 . 5 . 1 Knowledge representation techniques

Some knowledge management systems have a variety of types of knowledge unit (e.g.
rules, constraints, facts etc). As a result there must be different mechanisms to annotate the
units, different ways to categorize them, different ways to inspect them etc. As a first step
in creating a simple, practical representation a way must be found to treat all classes of units
as uniformly as possible, while still maintaining important distinctions. Chapter 3 presents
CODE4-KR, one of whose main tenets is that all units of knowledge (including such things
as terms and statements) should be treated uniformly as concepts.

Central to knowledge management is the idea of categorizing; i.e. arranging concepts in a
generalization or inheritance hierarchy. Equally important is the idea of characterizing
concepts, i.e. specifying properties that define or describe the concepts. However little
attention has been paid to the categorization of those properties themselves. Chapter 3
discusses the idea of a global property hierarchy in a knowledge base, as well as a number
of closely related organizing techniques.

Many knowledge management technologies (e.g. artificial intelligence based systems)
require the use of a very formal syntax when representing knowledge. There is usually the
possibility of adding comments to the formal constructs, but the comments are typically
second-class entities. Other technologies (e.g. hypertext) are the opposite: They have no
formal syntax and thus are limited in the kind of inferencing they can do. There is a need
for a hybrid technology that allows informal elements to be treated, where possible, just
like formal elements. CODE4-KR is an attempt to move in this direction.

1 . 5 . 2 User interface techniques

Typical user interfaces of artificial intelligence-based tools are designed as necessary add-
ons so that the underlying representation can be manipulated. Hypertext on the other hand
is generally designed with usability and information conveyance as its priority. Again, a
hybrid is needed: a system designed to convey information that comes from a well-
organized representation. In chapter 4, the idea of ‘high-bandwidth’ browsing is presented,
wherein users can rapidly browse through large amounts of knowledge using effective user
interface tools called mediating representations, knowledge maps and masks.

14

1 . 5 . 3 Knowledge measuring techniques

The importance of measuring a product is recognized throughout science and engineering.
The more physical the product, however, the easier it is to quantify. Software engineering
deals with products that are particularly intangible, and therefore research into measuring
techniques has been slow and even slower to be accepted by practitioners. Research into
measuring the products of knowledge engineering has been even slower, or nonexistent.

Chapter 5 presents some metrics that can be used to assess knowledge bases. The primary
reason for developing these is so that knowledge base developers can monitor and improve
their work. Being able to measure various aspects of complexity can help users in such
tasks as measuring their productivity, estimating the information content in a knowledge
base, and finding out whether and where there are ‘holes’ (areas of apparent incomplete-
ness) in a knowledge base.

1 .6 Research history and methodology

This section outlines the history and methodology of the research. Only the procedures
used are discussed here; insights and conclusions derived from the research are discussed
in later chapters.

1 . 6 . 1 Research chronology

The research can be divided into three main phases:

• Development and experimentation with early versions of CODE.
• Development of CODE4.
• Evaluation of CODE4.

The next three subsections outline the procedures used in each phase.

Phase 1: CODE2 development (1989-1990)

CODE2 is a knowledge acquisition and representation tool, developed by the AI Laboratory
at the University of Ottawa under the direction of Doug Skuce. CODE2 was written in the
Smalltalk object-oriented programming language which allowed it to be given significant
graphical capabilities. Some of the ideas in CODE2, including its manipulation of frag-
ments of constrained natural language date back to Skuce’s early research (Skuce 1977).

The first version of CODE2 was created prior to the commencement of this research. Early
descriptions can be found in (Skuce, Wang et al. 1989) and (Skuce 1991). A more com-
prehensive description is in (Skuce 1993a).

During the current research, CODE2 was used for a year in a real industrial project (Skuce
1992a). It was used to build a large knowledge base about a real-time software engineering

15

tool now called ObjecTime™ (Selic and McGee 1991) being developed at Bell-Northern
Research (BNR). In addition to helping the BNR team design their product and clarify its
conceptual foundations, the BNR project stimulated the addition of many new features to
CODE2.

CODE2 was found to be particularly useful to a documentation group at BNR. This appli-
cation is discussed in (Lethbridge and Skuce 1992b).

CODE2 was used for several other projects, in particular early phases of the Cogniterm
project (Meyer, Skuce et al. 1992) where it was used in support of the work of termi-
nologists. Several graduate students involved with Cogniterm used CODE2 in their re-
search: Bowker (Bowker 1992) investigated how the ‘dimensions’ feature (section 3.8) can
help the classification process. Miller (Miller 1992) compared how translations prepared
using a CODE2 knowledge base as a translator’s assistant compared with translations pre-
pared using conventional term banks. Within the limited scale of his experiments, CODE2
use did indeed help.

Another project, in which CODE2 was concluded to be useful, involved representing the
ideas of well-known philosophers (Longeart, Boss et al. 1993).

CODE3 was developed as a replacement for CODE2, after numerous software modifica-
tions rendered the latter unmaintainable. CODE3 was written in Prolog in order to take ad-
vantage of that language’s declarative syntax and backward-chaining deduction. Prolog’s
lack of user interface flexibility caused CODE3 implementation to be abandoned after only
six months. Nevertheless, this short period saw the refinement of many new ideas that
were carried forward into CODE4.

The lessons learned from experiences with CODE2 and CODE3 are discussed in section
2.1.

Phase 2: CODE4 development (1991-1992)

Until the commencement of CODE4 development, the research consisted of developing hy-
potheses about what features would be most useful in pursuing the goal of practical knowl-
edge management. When CODE4 development started, these hypotheses were crystallized
in the design of its knowledge representation (Chapter 3) and user interface (Chapter 4).

CODE4 development began in January, 1991; and Smalltalk was once again chosen as the
implementation language. Several experienced software engineers worked on the system
under the direction of the author; and it was given a layered architecture with a high degree
of flexibility and reusability. Chapters 3 and 4 expand on the design of CODE4 in detail
(although the principles in these chapters are intended to be more generally applicable).

16

Although the major principles embedded in CODE4’s design have not changed, develop-
ment continues to this day. Recently added features have met the specific needs of various
users (e.g. the addition of various printout formats, inference mechanisms etc.)

Phase 3: CODE4 evaluation (1993-1994)

The final stage of this research is the evaluation of CODE4 (discussed in chapter 6) which
was performed in order to provide scientific validity to the research. In most related
research, the evaluation, if done at all, focuses on assessing certain mathematical properties
of a knowledge representation. The practical-knowledge-management goals of this work
dictated a different approach however, one for which there are few precedents: The top
level evaluation process involved determining how effectively substantial numbers of
serious users worked with CODE4. Evaluation tools included a user questionnaire and the
metrics5 discussed in chapter 5.

1 . 6 . 2 Summary of the research methodology

The methodology for this research can be summarized as the following four-step process:

• Study systems to understand prevalent problems (discussed in the next chapter).

• Form hypotheses about features to aid practical knowledge management (the knowledge
organization features discussed in chapters 3 and 4, and the metrics discussed in chapter
5).

• Develop software (CODE4) to test these hypotheses.

• Evaluate the results (chapter 6)

Chapter 7 discusses the main contributions of this thesis and proposes directions for future
research.

5 The metrics are intended to represent a distinct contribution of this research. They are both evaluated in

their own right and assist in the evaluation of other features.

17

Chapter 2

Other Technologies for Knowledge
Management

This chapter discusses several technologies that can be used to manage knowledge of the
type discussed in the last chapter.

Three questions are asked about each technology: 1) What is it and how can it be used for
knowledge management? 2) What features are related to those in this research? 3) What
problems does it have that reduce its practicality?

Section 2.1 discusses systems from the field of artificial intelligence. These include a) the
various versions of the Conceptually Oriented Description/Design Environment (CODE)
that preceded CODE4; b) knowledge representation systems such as Cyc, KM and LOOM,
and c) so-called knowledge acquisition tools. The chapter continues with a discussion of
personal productivity software such as spreadsheets and outline processors. Section 2.3
discusses managing knowledge using hypertext and section 2.4 discusses the use of object-
oriented CASE tools.

2 .1 Technology from the field of artificial intelligence

This section discusses how various tools from the field of artificial intelligence (AI) can be
applied to knowledge management.

2 . 1 . 1 Descriptions of the tools

This subsection provides overviews of CODE2, CODE3, Cyc, KM, several KL-ONE
derivatives and several so-called knowledge acquisition tools. Discussion of advantages
and disadvantages of the tools is deferred to sections 2.1.2 and 2.1.3.

CODE2 and CODE3

These systems were developed in the early stages of this research and have since been
superseded. For a chronology of their development and a discussion of applications, see
section 1.6.1. A major objective of the CODE project from the very beginning was to make
knowledge management practical.

18

CODE2 was a frame based knowledge management system with a simple knowledge repre-
sentation and a multi-featured graphical user interface. Its most important distinguishing
features were as follows:

1. The information (properties6) describing concepts was organized in a fixed three-level
hierarchy. The first level distinguished among: 1) properties of the ‘view’ (i.e. the user
interface displaying the concept); 2) ‘system’ properties (e.g. those describing
inheritance relationships), and 3) ‘main’ properties. The second level allowed the user
to group properties using various standard or user-defined categories. The third level
contained the properties themselves.

2. A number of ‘flags’ could be used to control the intended meaning of properties and the
effect of inheritance. E.g. a property could be declared ‘private’, meaning that it did not
inherit.

3. All data (values) associated with properties were character strings. The user was en-
couraged to use a special restricted-English language called ClearTalk for values, but
could in fact enter whatever he or she desired. The process of drawing networks of
interrelated concepts (other than the basic inheritance hierarchy) involved pattern
matching to find which character strings contained references to other concepts. There
was also a mechanism that allowed users to find and replace occurrences of particular
character strings.

4. The user interface involved four mediating representations: 1) Graphs of various
relationships which could be freely manipulated by the user; 2) Lists of concepts,
indented to show superconcept-subconcept relationships; 3) ‘CD-Views’ containing all
the information about a concept, and 4) Tables showing various properties (shown on
one axis) of various concepts (shown on the other axis).

5. There was a ‘mask’ facility that allowed the user to restrict the display of concepts
based on a fixed set of criteria (such as concept name, properties possessed etc).

The main ideas in points 4 and 5 have been carried forward to this research. The ideas in
the other points have been largely superseded by improvements.

CODE3’s main contribution was to arrange all knowledge as sets of facets. Several facets
composed what was called a property occurrence7 (or ‘pocc’), and several such poccs
together formed a concept. All of the facets of a knowledge base were stored physically as
Prolog clauses which were then operated on by a Prolog-based knowledge engine.

6 The word property in CODE2 was used differently than in CODE4. In the prior system the idea of

property and statement was conflated. The word concept also had a more restricted meaning – similar to
CODE4’s main subjects.

7 Property occurrences correspond to the statements in CODE4.

19

Cyc

The name Cyc (Lenat and Guha 1990) refers to: a) the large knowledge representation
system being developed in a multi-year project at MCC; b) the knowledge base being built
using the system, and c) the overall project. Cyc, the project, is the largest knowledge
representation effort to date and has a variety of corporate investors who hope that Cyc will
become a resource for such activities as natural language understanding and the
management of large-scale corporate knowledge bases.

The Cyc system has a variety of important features:

• CycL is Cyc’s frame-based knowledge representation language. In common with many
other such languages, CycL uses two separate syntaxes: one to represent the structure of
a knowledge base in terms of units (Cyc’s term for concept) and slots, and the other to
represent rules and constraints.

• CycL is heavily dependent on the top-level ontology that comes with Cyc: This top-level
ontology describes such abstract things as represented thing, stuff, collection,
individual object and internal machine thing.

• CycL contains a wide variety of features designed to deal with difficult problems that ap-
pear when representing knowledge about everyday things. For example CycL has mech-
anisms to handle what it calls subabstractions, which are context-dependent aspects of a
thing (particularly different ‘snap-shots’ of a thing at points in time).

• Cyc contains a large number of inference mechanisms. To answer queries, Cyc uses a
chain of increasingly complex mechanisms that are called successively until one suc-
ceeds. Also present are a truth maintenance system, and mechanisms for analogical rea-
soning (to suggest new rules or facts) and conflict resolution.

Cyc has a variety of user interface capabilities. The primary focus of these is editing the
details of concepts (i.e. the values of slots and associated rules). Multiple users can operate
on a Cyc knowledge base using these mechanisms from remote displays. Conflicts that re-
sult are detected asynchronously and result in the initiation of dialogues between users,
mediated by the system.

• The standard Unit Editor (UE) has a large window tiled with several subwindows each
displaying a unit’s slots. The user modifies the slots by entering declarative statements in
CycL’s restricted syntax. Despite the greater sophistication of the other interface
modalities described below, the emacs-based UE appears still to be the major way that
knowledge is entered into Cyc (Porter 1994).

• The Museum Unit Editor allows the user to traverse the network of units. The relation-
ship of one unit to another is shown using nested boxes: The inner box represents the re-
lated unit.

20

• Another interface mechanism called HITS, developed by MCC’s human interface lab
(Terveen 1990; Terveen and Wroblewski 1992), provides a collaborative interface
between the user and Cyc. HITS actively assists the user in making knowledge editing
decisions and is based on an edit-by-analogy paradigm – using prior editing tasks as
models.

The Cyc project has the ambitious goal to capture a sufficiently large percentage of
‘common-sense’ knowledge such that the system will begin to be able to ‘read’ external
sources of knowledge and thus augment its knowledge base automatically.

KM

KM is a knowledge representation system developed by Bruce Porter and his team at the
University of Texas in Austin. The KM project is usually called the ‘Botany’ project
because KM has been primarily used to develop a single large knowledge base, focussing
on plant physiology. An early overview of the project can be found in (Porter, Lester et al.
1988). Acker’s PhD thesis (Acker 1992) discusses KM’s knowledge representation while
Eilerts’ MSc thesis (Eilerts 1994) describes its user interface.

KM has its foundations in Cyc. The project in fact started by using Cyc but abandoned it
for a number of reasons including Cyc’s great complexity.

Like Cyc, KM has a frame-based knowledge representation composed of units which in-
herit slots. Of particular importance are the unit-slot-value triples; these represent the ‘facts’
in the knowledge base and are the attachment points for such things as ‘annotations’ and
‘embedded units’. The latter represent things that are existentially dependent on the particu-
lar unit and slot. Like in CycL, details of the values in triples are specified in a Lisp-based
declarative notation.

KM’s user interface has two main mediating representations: 1) a unit editor much like
Cyc’s although somewhat simpler, and 2) a limited graph drawing capability8. Unlike Cyc,
knowledge is largely intended to be entered by a single individual over a long period of
time.

An important inference feature of KM is its ‘view retriever’. This mechanism generates co-
herent subnetworks of concepts using pattern matching: The system searches for a
predefined pattern of relationships between concepts.

8 The developers of Cyc abandoned graph drawing after networks became too complex, however they

apparently did not invest much time in finding ways of limiting the graphs so as to reduce their
complexity.

21

Classic and LOOM: KL-One derivatives

One of the most important classes of knowledge representation tools are the descendants of
Brachman’s KL-ONE system (Brachman and Schmolze 1985). These tools, collectively
called description logic languages, range from the AT&T’s elegant but restrictive Classic
(Brachman, McGuiness et al. 1991) to ISI’s more expressive but complex LOOM (ISX
1991; MacGregor 1991b). MacGregor (MacGregor 1991a) describes the evolution of this
whole family of languages.

Description logic languages share a number of features:

• The primary units of knowledge representation are called concepts9, of which there are
two fundamental classes: primitive10 and defined11. Primitive concepts are those which
are asserted to exist in order to represent some set of individual things, any conditions at-
tached to them may be necessary but are not sufficient. Defined concepts, on the other
hand, have explicit definitions expressed in terms of necessary and sufficient conditions
that refer ultimately to the primitive concepts.

• They have a terminological language, describing concepts (the T-Box) and an assertion
language (A-Box) describing constraints or facts in the world.

• In addition to inheritance, which is a capability of all frame-based systems, description
logic languages include classification as a major inference mechanism. By examining
definitions (i.e. the properties possessed by a concept), the classification mechanism is
able to place concepts at the correct point in the inheritance hierarchy.

Classic remains true to the spirit of the original KL-ONE. It differs primarily in the details
of expressions it uses to represent knowledge – the expressions have been carefully
restricted to enable its nine major inference mechanisms to operate efficiently.

Whereas Classic remains a knowledge representation system (with a modelling language),
LOOM has evolved into a programming system by adding a ‘behaviour language’ with
such features as actions, methods and production rules. LOOM can be used to directly
build expert systems. While the addition of these facilities has made LOOM less restrictive
than Classic in terms of what can be represented, it still remains a largely formal system.

9 This meaning of ‘concept’ has a narrower meaning than in this thesis, where concepts also include the

‘individuals’ of description logic languages. Concepts in the latter correspond to types in this thesis.

10 The primitive concepts of this thesis refer to something quite different: concepts on which knowledge
engine computations depend and must therefore have ‘handles’ to. The primitive concepts of KL-ONE
derivatives correspond roughly to concepts in this thesis that are not dependent concepts.

11 The defined concepts of KL-ONE derivatives correspond roughly to dependent concepts in this thesis,
although the latter term has a somewhat wider meaning. See the glossary for more details.

22

Knowledge acquisition tools

Various knowledge acquisition tools have attributes that make them candidates for the kind
of knowledge management envisaged in this research. The following are some examples:

Tools in the KSSn family (Shaw and Gaines 1991) can be used to draw graphs composed
of nodes and links. Mappings can be defined so that these graphs can manipulate
knowledge in an underlying knowledge representation such as LOOM.

KARL (Fensel 1993) has a sophisticated graphical environment for editing knowledge. It is
one of many tools used in the KADS project (Weilinga, Schreiber et al. 1992) and its
underlying representation is a formal logic-based language.

KEATS (Motta, Eisenstadt et al. 1988; Motta, Rajan et al. 1991) is a classic knowledge
acquisition system intended for building expert system applications. KEATS was an
influence on Shelley (Anjewierden and Weilemaker 1992), designed specifically for the
KADS methodology. Both systems support acquiring conceptual structures and executable
knowledge from transcripts; both feature extensive graphic support, and neither are
intended to be delivery platforms. Both use a straight-forward frame representation.

Other relevant artificial intelligence technology

The technologies discussed above are systems, whereas conceptual graphs (Sowa 1984) is
an abstract knowledge representation formalism not tied to any particular implementation.
However its relatively simple but powerful notations for expressing knowledge are worthy
of note in the search for knowledge management technology. Research into conceptual
graphs has recognized the need for graphical representations that people can easily use.

KIF (Genesereth 1992) was developed in an attempt to create a lingua franca for
knowledge exchange. Gruber has extended KIF to create a language and system called
Ontolingua (Gruber 1993) that is more suited for the representation of ontologies. While
both involve textual languages, they are worth noting because there is a movement to use
them as a common denominator for knowledge exchange; any knowledge management tool
might eventually need to be able to translate to and from them12.

2 . 1 . 2 Features of the AI-based tools found most useful in this research

The frame-based representation

The most important AI principle used in this research is the frame-based knowledge
representation paradigm. Particular frame-based features used in this research include:

12 Preliminary steps have been taken to do this as a side-branch of this research: Technology to support

this is discussed in section 3.13.

23

• The reasonably wide definition of the concept or unit in Cyc and KM (e.g. the fact that
slots and instances are concepts). However, in this research the definition has been made
even wider.

• The hierarchies of slots in Cyc and KM. Again, these ideas have been expanded in this
research.

• The triples and embedded units in KM.

Certain graphical representations

Conceptual graphs and user-interface oriented tools like KSSn and KARL have graphical
capabilities of use in this research. These languages or tools recognize the need to abstract
away from highly mathematics-based representations of knowledge, although such
representations may be present ‘underneath’.

2 . 1 . 3 Limitations of the tools for practical knowledge management

Complexity of the languages and ontologies

Many AI tools have limited applicability to the kind of knowledge management described in
chapter 1 primarily because they are only intended to be used by computer specialists.

With a few exceptions (CODE2 and some knowledge acquisition tools such as KSSn), the
AI-based tools described above are designed first and foremost with inferential or
representational objectives in mind. Examples of such objectives include the ability to
perform classification or other inferences, the ability to represent particular complexities
that arise in some domain or the ability for the representation to conform to certain formal
rules of mathematical logic. User interfaces for these systems are generally developed as a
necessity and with expert users in mind.

KL-ONE derivatives, for example, emphasize automatic classification by analysing how
definitions and descriptions subsume each other. This has two effects contrary to the goal
of practical knowledge management: 1) It means that the tools are severely limited in their
expressivity in order for subsumption to be computable, and 2) It constrains them to using
a somewhat sophisticated language with many functions and operators to learn. While
classification may be useful for certain automated applications, it is probably of no benefit
to the user performing knowledge management because such a user must know the
properties with which to specify the definitions and descriptions.

Users of Cyc, as another example, must master its ontology and representational language.
Both are large, complex, somewhat confusing and require the user to accept many
questionable representational decisions (Skuce 1993b).

24

User interface weaknesses

Where graphical interfaces of AI-based tools are well-developed, they tend to have one or
more weaknesses of the following kinds that restrict their general purpose use:

• Loose coupling to the underlying representation (e.g.knowledge acquisition tools that can
be used to input only certain types of knowledge but not to convey all of it)

• Much usage of prompts (i.e. modal dialogs)

• A graphical notation that is so heavily tied to the representation that user cannot sketch
knowledge, but must understand the representation in detail.

• Restricted abilities to navigate or browse large knowledge bases and extract subsets of
knowledge. This latter weakness is the most serious.

Difficulties dealing with names

AI-based tools usually ignore the issue of naming. Naming a concept is left up to the user
who must choose a unique name that is distinct from other names in the knowledge base
and must generally stick with it once chosen (because references are made to the concept
using that name). Names are usually tightly connected to the implementation of the system;
they are unique and sufficient identifiers for concepts. This has several consequences:

• Choosing concept names becomes a critical activity for the user. In order to prevent con-
fusion, the user: 1) must be consistent with existing naming conventions; 2) must avoid
names already used, and 3) must anticipate the addition of other concepts with similar
names.

• The user often cannot choose names that mirror those in natural language. Where a
natural language name has several meanings, the user of most AI-based tools is forced to
invent a new name. Where several natural language names are synonyms for the same
thing, the user must choose among them.

The designers of Cyc acknowledge the problem and state that natural language names for
all units can be specified in the values of a particular slot. They state that eventually, all
manipulation of the knowledge via a natural language front-end would use such slots and
the ‘internal’ names could be dropped. However, at the current time knowledge editing
procedures continue to use the internal names.

CODE2’s facilities to change all occurrences of a particular string reduced the problem of
poor name choices becoming entrenched; however, CODE2 had no way to deal with syn-
onyms and homonyms, which occur frequently.

25

2 .2 Personal productivity software

In sharp contrast with most AI-based tools, software such as spreadsheets and outline pro-
cessors is expressly designed to be used by non-computer-experts. In this thesis, tools of
this kind are called personal productivity software. Such software can be used for
conceptual knowledge management, even though it was originally designed for applications
of a somewhat different nature (i.e. managing numeric data or document structure). For
example, one of the early industrial users of CODE2 was the Aluminum Company of
America (ALCOA). They had previously used spreadsheets to represent conceptual
information in the field of metallurgy, but switched to CODE2 when they saw its benefits.

2 . 2 . 1 Description of the tools

Since readers are undoubtedly familiar with tools in this class, only their key features will
be noted.

Spreadsheets

Spreadsheets are graphical environments with two-dimensional arrays of cells that contain
either data or formulas. When a cell is updated anywhere in the spreadsheet, all cells that
depend (directly or indirectly) on that cell are updated.

Outline processors

Outline processors permit users to rapidly arrange the hierarchy of topics in a document.
They include facilities to promote and demote topics, to move topics from place to place
and to hide and expand sets of topics based on level of depth in the hierarchy. One of the
most widely known outline processors is that which comes with Microsoft Word™; others,
such as More™, are sold as stand-alone programs.

2 . 2 . 2 Features of the tools that were found most useful in this research

The following are useful knowledge-management features found in personal productivity
software but typically absent from AI-based tools. The features have been largely adopted
in this research.

Large amounts of information displayed in a convenient manner

Personal productivity tools have techniques to maximize the amount of information that can
be displayed or made accessible to the user. Displaying much information at once leverages
the user’s ability to process information13, since the human visual system is very good at

13 As opposed to relying on the computer to do the processing as is the case in most AI-based tools.

26

scanning for interesting facts or noticing patterns. To prevent confusion however, very
simple structures are used: tables for spreadsheets and indented lists for outline processors.
These structures can convey much knowledge, but are simple enough to prevent users from
getting lost when navigating large volumes of data.

The non-modal graphical user interface

To allow users to rapidly manipulate data and headings, most personal productivity soft-
ware has been developed using graphical user interface techniques. Users can directly
select and edit what they see on the screen. Where possible, such software avoids entering
‘modes’ where the user’s actions are limited.

Easy extensibility

The structure of information in both spreadsheets and outline processors can be readily
extended by the user. Simple commands are available to add rows or columns, and the user
merely types new text to add to existing rows or to extend the document beyond its current
bounds.

The ability to work on multiple files at a time

Most personal productivity applications permit users to load several ‘documents’ at once.
This capability facilitates cutting and pasting between documents. It also can help the user
with several concurrent tasks by reducing the time lost in repeatedly quitting and reloading.

Automatic updating of multiple windows

Information can be displayed in many windows. Updates to the information that are made
in one window are automatically reflected in all others. The form of the representation can
also vary widely from window to window: Updating a spreadsheet might result in the
automatic update of a graph. Updating an outline might automatically update the full text of
the document displayed in another window.

The ability to analyse ‘what-if scenarios’

In spreadsheets, the user can make a selection or type a value into one cell and observe how
changes ripple through the interface.

Absolute and relative references

In spreadsheets, cell formulas can refer to particular cells or to the cells that happen to be at
a certain relative offset from the cell containing the relative formula. This facility greatly
facilitates specifying complex patterns of interconnection among cells.

27

Easy facilities for extracting information

Most spreadsheets include the ability to specify a set of criteria in order to extract a subset
of the data. They also have facilities so that all cells fulfilling certain criteria can be
‘selected’. Outline processors have facilities to control which subhierarchies are displayed
and to what depth. All personal productivity software additionally has simple text search
mechanisms.

2 . 2 . 3 Limitations of the tools for practical knowledge management

For the purposes of this research, the advantageous features listed in the last subsection are
considered to be generally necessary for practical knowledge management, but they are not
sufficient. The following are very severe limitations:

Limitations on the ability to represent concepts

While all the facts about a concept can be listed in a row or column of a spreadsheet, or in a
subhierarchy in an outline, there is no way to treat concepts represented thus as discrete
units that can be independently manipulated. In other words, personal productivity
software lacks the key advantage of the frame representation of many AI-based tools.

Lack of inference capabilities

Arbitrary formulae can be used to perform computations in spreadsheets, but every
required inference must be explicitly programmed by the user. In particular, inheritance is
lacking. Outline processors typically have no inference capabilities.

2 .3 Hypertext systems

Hypertext (or hypermedia) is another technology with potential application to knowledge
management. It encompasses a wide variety of tools and techniques, but its defining feature
is a network of nodes, where each node contains a useful chunk of information formatted
for use by end-users. Another important feature is facilities to navigate around the nodes
(Nielsen 1990). Hypertext systems have been found useful for knowledge management
(Barman 1992). Also, hypertext-like facilities can be found in a wide variety of general
software. A major example of the increasing importance of hypertext is the World Wide
Web (Berners-Lee et al. 1994) – a standard that can be used to turn virtually any on-line
source of information into part of an Internet-wide hypertext ‘document’. A structure for
formally describing hypertext systems can be found in (Halasz and Schwartz 1994).

28

2 . 3 . 1 Features of the tools that were found most useful in this research

The ability to navigate through complex networks

Hypertext systems are designed so users can explore by clicking on a wide variety of
‘anchors’ that take them to nodes where they can find more information. An important
belief is that in knowledge management users should always be able to find out more or say
more about whatever is displayed.

Simple end-user oriented displays of informal information

A key to the design of good hypertext is that each node should be a discrete unit of
information that is specifically designed and formatted for end-user. A practical knowledge
management tool needs a similar capability.

2 . 3 . 2 Limitations of the tools for practical knowledge management

The biggest limitations of hypertext per se, are the same as the limitations of personal
productivity software: The lack of a frame-based conceptual structure and the lack of
inference facilities, particularly inheritance. However, hypertext should be considered more
a set of ideas that can be applied to software in general rather than a specific set of tools.

2 .4 An object-oriented software engineering tool

Object-oriented analysis has strong similarities to the acquisition or modelling part of
knowledge management. Both involve identifying and modelling things in a domain and
the relationships among those things. One of the most popular object-oriented analysis
methodologies is Rumbaugh’s OMT (Rumbaugh, Blaha et al. 1991). OMT emphasizes
carefully distinguishing a) the analysis of the domain and problem, from b) the design of
the system. OMTool (GE 1993) is a CASE tool that supports the OMT methodology and
could be applied to the knowledge management task discussed in this thesis.

2 . 4 . 1 Features of OMTool found most useful in this research

Graphical layout and editing of knowledge

In common with certain AI-based tools discussed above, OMTool allows a user to design a
network of concepts by placing boxes in a window and linking them together. As is the
norm in object-oriented software engineering, concepts are called classes14. The most

14 At implementation time there is a justification for saying that concepts are qualitatively different from

classes; classes can then be considered as actual software components containing code and other
information. At analysis time, however, what the software engineer specifies as a class is really a
conceptual entity that might be implemented as a class.

29

fundamental relationship in which OMTool users may place classes is the generalization
relationship – in other words to specify inheritance.

OMTool’s interface is reasonably non-modal. The user can freely rearrange the elements of
the class diagram, constrained only by the need to prevent classes from overlapping each
other. Users can type over any text in order to change it and are not forced to name classes.

Associations, attributes and operations

OMTool carefully distinguishes between associations and attributes. The former represent
relations between classes while the latter represent so-called intrinsic properties of a class,
properties whose associated data are not instances of another class. In this research, the
terms formal and informal are used when describing this distinction. In addition to
associations and attributes, OMTool allows users to specify operations that represent
actions which can be performed on instances. Associations, attributes and operations are all
intended to inherit from superclasses to subclasses with no exceptions.

Annotations.

Annotations in OMTool are descriptive information about a class, association etc. They do
not inherit.

Classes and instances

OMTool makes a distinction between classes15 and instances by diagraming each
differently. However, the process of attaching attributes, associations and annotations is
the same for both. The attributes of instances must be ‘grounded’ in the sense that they
must contain actual character strings or numbers, not data types. The instantiations of
associations are called links and must also be grounded by being made to point to other
instances.

Disjointness

OMTool by default considers all the subclasses of a given superclass to be disjoint, i.e. that
they share no common instance. In order to permit multiple inheritance, however, the least
common superclass of two classes that share a subclass must be declared ‘disjoint’.

Discriminators

According to Rumbaugh, a discriminator “is an attribute whose value differentiates between
subclasses”. In other words it is possessed by several subclasses, but has a distinct value
in each.

15 Classes correspond to types in this research.

30

2 . 4 . 2 Limitations of OMTool for practical knowledge management

Limitations of the representation

OMTool’s underlying representation has many features envisaged in a practical knowledge
management system, i.e. it has powerful structuring facilities, but a simple easy-to-use
syntax. However there are some significant gaps:

• Like most tools discussed in section 2.1, OMTool requires the names of classes to be
kept distinct. Also, there is no way to specify information about names.

• There is a lack of flexibility and extensibility. Users must manipulate a fixed set of
diagrammatic entities that each have their own syntax and semantics; i.e. users must live
within the bounds of the system’s ontological commitment. For example, because the
entities are not treated uniformly: 1) attributes can not have ‘second order’ attributes
attached to them, and 2) it is not possible to categorize associations.

• Although inheritance is part of the conceptualization in the OMT methodology, its results
are not actually displayed by OMTool. The user is expected to know that in the eventual
implementation, an attribute or association possessed by a superclass will be present in
subclasses. To ascertain the set of features possessed by a class, the user must manually
search up the generalization hierarchy.

Limitations of the user interface

Despite having many useful representation facilities, OMTool’s user interface severely
constrains its use for general-purpose knowledge management. The root cause of this
appears to be the OMT methodology which does not require the ability to deal with highly
complex patterns of knowledge or to perform any inference to discover latent information.
OMT stresses several things: 1) Users should only include those things (classes,
associations, attributes etc.) which bear upon the problem at hand; 2) users should not
initially record redundant information (i.e. information that can be derived from other
information), and 3) all fundamental relationships (e.g. part-of) should be explicitly
diagramed (i.e. not derived through an inference mechanism). In other words, one should
record information if and only if it is strictly necessary.

The above limitation severely restricts OMT’s ability to be used for knowledge management
tasks where it is important to record a wide variety of facts about concepts (whatever comes
to mind), and to build very deep inheritance hierarchies. OMTool could not be used for
such tasks: It becomes difficult to use when inheritance hierarchies exceed a depth of about
4 and when there are more than about 10 attributes or 5 associations per class. It is
especially difficult to use when a large number of rather disparate classes have complicated
sets of associations with each other.

31

Other major problems with OMTool’s user interface are

• Browsing facilities are weak.
• There is no way to automatically draw diagrams or extract portions of diagrams.
• Only one set of class diagrams can be loaded at once.

2 .5 Summary

The four technologies described above all have much to offer, but each also has limitations.
Clearly, what is needed is an integrated approach where key features are borrowed from
each technology in order to minimize the number of remaining problems.

Figure 2.1 presents an evaluation of the technologies based on how they deal with the
knowledge management problems discussed in section 1.4. For each problem, the
technologies are ranked on a scale of 1 to 5 where 1 means the problem is prevalent, 5
means the problem is largely solved and 3 is neutral (the problem is neither prevalent or
solved). The following are a few observations about figure 2.1:

• Some problems have different partial solutions in different technologies. For example
both AI-based tools and object-oriented CASE tools can be used to easily make different
kinds of useful distinctions (as discussed earlier). Similarly, personal productivity
software and hypertext have different but useful methods of enabling users to extract
knowledge.

• Different tools within the technologies vary widely. The evaluations given are intended to
be averages.

• For some problems none of the technologies pose solutions. For example naming is
poorly addressed in general. This research attempts to find a new solution to this
problem.

• AI-based tools in general have fewer prevalent problems, but personal productivity
software generally poses more useful solutions.

• Hypertext is only rated where it contributes solutions because it is seen as a technology
for enhancing software user interfaces in general.

32

AI-based tools Personal
productivity

software

Hypertext Object
oriented
CASE

I-1: Categorizing 4 3 3

I-2: Naming 2 2 3

I-3: Making distinctions 3 1 3

I-4: Understanding effects 3 4 1

I-5: Extracting knowledge 3 4 4 2

I-6: Handling errors 4 2 1

A-1: Application restriction 3 4 4 1

A-2: Expertise restriction 2 5 4 3

A-3: Size restriction 3 2 1

A-4: Individual-use restriction 3 1 1

Figure 2.1: How various technologies address knowledge management problems. The
scale used is: 1=the problem is significant with most such tools; 3=some tools provide
some facilities to solve the problem; 5=the technology contributes significantly to
problem solution. The problems are discussed in section 1.4.1. Hypertext has blank fields
because it is largely an enabling technology that adds capabilities to tools. Note that
problems I-2, I-3, A-3 and A-4 are not really solved by any of the four technologies.

33

Chapter 3

Knowledge Representation for Practical
Knowledge Management

This chapter describes CODE4-KR, a frame-based knowledge representation designed to
improve the practicality of knowledge management. The first section summarizes the main
features of CODE4-KR. Subsequent sections discuss these features in more depth. It is
important to note that most of the details discussed in this chapter do not have to be
understood by the average user.

3 .1 Introduction

As with several other knowledge representations, the basic unit of knowledge in CODE4-
KR is called the concept. Section 3.2 describes the various classes of concept contained in
a CODE4 knowledge base; later sections in the chapter describe in detail the kinds of op-
erations that can be performed with concepts, as well as their intended semantics.

Section 3.3 describes how, in the design of CODE4-KR, paramount importance is placed
on practicality and expressiveness, sacrificing rigid semantics and built-in inference capa-
bilities. In the subsequent sections, particular features of CODE4-KR are described first
from a practical point of view and then from the point of view of intended semantics.

Section 3.11 shows how the facilities provided by CODE4-KR give rise to a set of richly
interrelated organizing techniques for knowledge. Then, section 3.12, compares CODE4-
KR with several other knowledge representations. Finally, section 3.13, discusses how
most of the ideas in this chapter form an abstract schema, and how this schema is made
concrete in various ways.

3 .2 An overview of concepts

It is critically important to distinguish a concept from the thing the concept represents
(Regoczei and Hirst 1989). A concept is a piece of knowledge inside a CODE4 knowledge
base16, whereas most things are not inside CODE4. While this may seem an obvious dis-

16 Or inside a brain or collective consciousness or perhaps some other KR system.

34

tinction to many, it has been frequently found that this distinction is not clearly made: the
two ideas are conflated. Although for simple knowledge representation tasks this conflation
causes few problems; unless one is conscious of the distinction, it may be difficult to un-
derstand the significance of some of CODE4-KR’s features. When this thesis uses phrases
like: ‘the concept of car’ or ‘the car concept’, it is always referring to things inside minds
or knowledge bases, and bold face is used for their labels. On the other hand, whenever
bold face is not used (e.g. when talking about cars or a car), the reader can be sure that the
thesis is not referring to a concept but rather the represented thing. Figure 3.1 shows the
relationship between concepts and the things they represent; it includes some special classes
of concept that are discussed in the next few paragraphs.

car
type concept

my car
instance concept

concept of car
metaconcept

term 'car'
term

having parts

the fact that
a car has parts

'automobile'

'car'

statement

statement of parts about car

property

partsperson
type concept

term 'automobile'
term

Figure 3.1: Major classes of concept and what they represent. At the top are concepts; in
the grey area are things which are not concepts. Arrows link things in general to other
things that represent them; bold arrows link things to their concepts. Of the things in the
grey area (none of which are concepts), those with dotted outlines are abstract in nature
and others are concrete.

3 . 2 . 1 Classes of concept

There are several different classes17 of concept in CODE4-KR. This subsection introduces
types, instances, properties, statements, facets, terms, metaconcepts, primitive concepts,

17 To prevent confusion, the word ‘class’ is used here as a near-synonym for ‘type’. This is done because

the discussion is at the meta-level, i.e. it is conceptualizing concepts. Confusing sentences like ‘types
are a type of concept’ are replaced by sentences like ‘types are a class of concept’ – the word class is thus
used only at the meta-level.

35

user concepts and main subjects. Subsequent sections as well as the glossary provide more
information.

A concept represents a thing: either the collective idea of a set of similar things (represented
by a type concept, for example the concept of car in general) or a particular thing
(represented by an instance concept, for example the concept of my car). See section 3.4
for more about these two classes of concept. The thing represented may be abstract or con-
crete, real or imagined; it may be an action, a state or in fact anything one can think
about18. Of course, it follows that concepts are things too since one can think about them
(but not all things are concepts as figure 3.1 shows).

Each knowledge base has a most general type concept (the top of the inheritance hierarchy),
of which all other concepts are subconcepts. By convention this concept is labelled ‘thing’
although the label can be changed by the user. Figure 3.2 shows a simple inheritance hier-
archy, containing the concept of thing and several other type and instance concepts. In
order to keep knowledge management simple for the end user, the only ontological
commitment that users are required to understand is that there is a single top concept in each
knowledge base. Users can give this any name they wish.

The above ideas are similar to those in most other frame-based knowledge representations
(the terms ‘unit’ or ‘frame’ are sometimes used for ‘concept’). CODE4-KR departs from
the norm, however, in the generality and uniformity with which it treats concepts: Most
knowledge representations define slots as distinct entities that are inherited by concepts. In
CODE4-KR, properties perform this role, but properties are just another kind of concept
(as in Cyc and KM). In this thesis, the labels of properties are shown in both bold face
(because properties are concepts) and in italics. Example properties are size , parts and
parents. Properties are discussed in section 3.5.

In a similar manner, most knowledge representations have some notion of the association
between a property and a particular slot in a frame. For example in KM the concept-slot-
value triple fulfils this role. In CODE4-KR such things are called statements, because the
notion has been deliberately made close to the linguistic notion of a statement. A CODE4-
KR statement must have a subject (some concept) and a predicate (some property); it
usually has more. Most statements have a value that designates what the subject is related to
by way of the predicate (corresponding to the direct object in linguistic terms). Statements
are discussed in detail in section 3.6, but for now the important idea is that statements, too,
are concepts. Statements may recursively have statements about themselves, called facets.

18 To many people, the word ‘thing’ connotes an object, however English speakers use the word something

to refer to anything: e.g. actions: ‘We must do something’ or properties ‘Something bothered me about
that man’.

36

By virtue of being full-fledged concepts, it follows that all properties and statements: a)
participate in the inheritance hierarchy, b) inherit properties, c) can be the subjects of
statements and d) can be referred-to in the values of statements. They behave as concepts
do in general and are special only in the sense that they have additional semantics associated
with them. Figure 3.3 lists some of the key features that all concepts have in common.

CODE4-KR currently implements two other special classes of concepts: terms (section 3.7)
and metaconcepts (section 3.8). Terms represent linguistic entities (words or symbols) that
people use to refer to concepts. CODE4-KR is unique in treating terms as full-fledged con-
cepts and allowing a concept to have zero, one, or more than one term. Metaconcepts repre-
sent concepts themselves; statements with a metaconcept as subject encode metaknowledge.
For example the concept car might inherit properties maximum speed and weight ,
whereas the metaconcept concept of car might inherit the properties English descrip-
tion, subconcepts, terms, date entered into this knowledge base etc. CODE4-
KR is unusual in providing explicit metaconcepts to which are attached those properties that
in other knowledge based systems have to be tagged as ‘non-inheriting’.

When a knowledge base is created, some concepts are automatically created. For example
the top concept commonly named ‘thing’ is always present and cannot be deleted. This is
an example of a primitive concept. There are a number of other primitive concepts in a
CODE4 knowledge base and these are discussed in section 3.9.

Figure 3.2: A simple inheritance hierarchy. Each box represents a concept. The arrows
represent the ‘is-a’ relation between concepts. Bold boxes (around Jack’s car, Jack and
Jill) represent instance concepts while non-bold boxes represent type concepts. An ‘i’
designates instance links; an ‘s’ designates subtype links. As discussed in section 3.7, the
labels in the boxes come from term concepts associated by the user with each concept.
For example Jack’s car (not intended to be an intensional reference) has a term ‘Jack’s
car’; it may also have other (undisplayed) terms such as ‘Car with serial number 12875’.
This figure, in which dotted lines indicate that details have been suppressed, was drawn by
CODE4.

37

Type
concept

Instance
concept

Property Statement Term Meta-
concept

Specialized kind of Concept Concept Instance
concept

Instance
concept

Instance
concept

Instance
concept

Represents Collective;
set

Particular
thing

Relation Fact about
something

Word;
symbol

Concept

Example person Jack parts Jack has
a mother

term
'jack'

concept
of Jill

Participates in the
inheritance hierarchy

• • • • • •

Inherits properties • • • • • •
Can be the subject of

statements
• • • • • •

Can be referred to in the
values of statements

• • • • • •

Can have associated
terms

• • • • • •

Almost always has an
associated term

• •

Can have an associated
metaconcept

• • • • • •

Can be the predicate of
statements

•

Inherited by concepts •

Has a subject •
Has a predicate •

Can have a value •

Has at least one concept
that it means

•

Has a concept that it
represents

•

Figure 3.3: Important properties of concepts. Note that these are properties of the various
types of concepts themselves, not properties of the things represented by the concepts.
Many more details can be found later in this chapter. This kind of information can be
extracted from CODE4 (see section 4.2.4), although it has been reformatted for
presentation here.

If the primitive concepts, statements, metaconcepts and terms were to be ignored, what
would be left would be those types and instances that have been explicitly added by the

38

knowledge base developers. These are called user concepts19. Those user concepts that are
the subjects of statements are called main subjects (the set of main subjects does not include
those user concepts about which nothing has been said).

Figure 3.4: An inheritance hierarchy of the most important classes of concept. Note that
the diagram is categorizing the kinds of things that one might find in a knowledge base
(i.e. concepts themselves) and not things in the world in general. All the instance
concepts shown (with bold borders and ‘i’ links to their superconcepts) are in fact
metaconcepts because they are ‘concepts representing particular concepts’. They are meta-
concepts for the concepts shown in figure 3.2. This subtlety may require deep thinking
for many people to appreciate, however it does not need to be understood to make
effective use of CODE4. This figure was drawn by CODE4.

All discussion of concepts in this thesis refers to concepts in general; however CODE4
users are often referring only to user types. In fact, in CODE2 the use of the term ‘concept’
was restricted to refer to what are now called user types and user instances. However, the
terminology was changed when the importance of treating all knowledge units uniformly
was recognized.

Figure 3.4 summarizes this section by showing an inheritance hierarchy of classes of
concept. Figure 3.5 gives a fuller categorization of the classes of concept; details are found
in the glossary and will be explained later in the chapter.

19 Although statements, terms and metaconcepts are created during knowledge base development, these are

implicitly added rather than explicitly. For example, a term is added when a concept is named. A
metaconcept is implicitly added when any other concept is added etc. These subtleties will become clearer
later in the chapter.

39

3 . 2 . 2 Knowledge management problems addressed by the way CODE4-
KR organizes concepts

The last subsection introduced a wide variety of things that are called concepts in CODE4-
KR. The following are some of the partial solutions to knowledge management problems
provided by this way of organizing knowledge (the problems are those listed in section
1.4). Note that particular classes of concepts handle additional problems, but discussion of
these is left until later in the chapter.

• Problem I-3: Making distinctions. While most users will not need to work at the meta-
level, the various classes of concepts allow sophisticated users to make key distinctions
when necessary. Of particular importance are the distinctions between, terms,
metaconcepts, statements and other concepts.

• Problem I-6: Handling errors: Distinguishing metaconcepts and terms from other
concepts helps prevent serious representational errors that can occur in other knowledge
representations.

Figure 3.5: More of the classes of concept in CODE4-KR. This figure was drawn by
CODE4 from the same knowledge base as figure 3.4.

• Problem A-2: Expertise restriction: Calling all units of knowledge concepts sets the
foundation for a greatly simplified user interface. As users gain expertise they come to
know that anything (i.e. any concept) they find in the representation has certain attributes
such as a superconcept, a metaconcept, and statements about which it is the subject. They
also know that they can always perform certain operations, such as examining the
properties of any concept.

The last point appears to be the most important benefit.

40

3 .3 Practicality vs. semantics and expressiveness vs. inference

In the design of CODE4-KR, several tradeoffs have been made. The focus has been on
providing practical ways of organizing knowledge and ensuring a high degree of expres-
sivity. To some extent, these emphases mean sacrifices in the ability to provide automatic
inference capabilities.

In the discussions of aspects of CODE4-KR that follow, ‘practical effects’ are
distinguished from ‘intended semantics’: Each is discussed in a separate subsection of each
section.

Practical effects sections

Since CODE4 is designed to be a practical tool for managing knowledge, the primary
concern is maximizing expressiveness. In order to solve the problems discussed in section
1.4, users must be able to represent what they want – they must be able to organize
knowledge in useful ways and to do this rapidly and intuitively.

When describing CODE4-KR then, what are of paramount importance are the practical
effects of an action with regard to: a) the structure of the knowledge base, and b) what
constraints are imposed on subsequent actions.

Intended semantics sections

Of secondary importance are the intended semantics of operations or structures. These
guide the user in interpreting knowledge, but the user may disregard them if he or she so
chooses. The user is free to maintain his or her own model of what the various structures in
CODE4 mean.

To help specify intended semantics, users may make their own annotations (such as special
facets attached to statements20, or statements attached to metaconcepts21). Users may also
add their own syntactic layers22 to CODE4.

If the user strictly follows the intended semantics (which suggest a mapping from CODE4-
KR to predicate calculus and set theory) then the benefits include: 1) the ability to have
knowledge accurately translated to other representations, and 2) a confidence in the
consistency and soundness of knowledge.

20 Discussed in section 3.6.

21 Discussed in section 3.8.

22 Using informal values, as discussed in section 3.6.

41

On the other hand almost all the users who participated in this research23 cared little about
logic or set theory; they just wanted to be able to arrange ideas with the help of useful
abstraction mechanisms. The fact that operations in CODE4-KR are designed to have
predictable effects on the structure of the knowledge base is sufficient to give users
confidence in their own interpretations of what they see.

Practical effects and intended semantics of inference mechanisms

As with structures and operations, inference mechanisms in CODE4 (such as inheritance
and delegation) that are built into CODE4 are described primarily in terms of their practical
effect. The amount of inferencing available in CODE4 is limited due to the fact that many
inference mechanisms would have to rely on users adhering to an intended semantics if the
results were to have any meaning (i.e. “garbage in, garbage out”). Users can add their own
inference layers on top of CODE4-KR if they wish; this involves programming.

Summary

To summarize the above: The consequences of actions performed in CODE4-KR are ex-
plicitly defined in terms of how structures change. An intended interpretation of those
structures is provided, but the user is not forced to stick to this interpretation.

Each of the following sections discusses an aspect of CODE4-KR. Each discussion is di-
vided into: a) “practical effects”, which describes the structures that exist and what happens
when certain actions are taken; b) “intended semantics”, which indicates what the structures
are normally intended to represent; c) “observations on use”, which discusses certain
pragmatic issues that have arisen out of experiences with CODE4, and d) “problems
addressed”, which discusses how the problems listed in section 1.4 are addressed by the
features presented.

3 .4 Types vs. instances

3 . 4 . 1 Practical effects

One of the most fundamental partitionings of concepts is into type concepts and instance
concepts. A concept is a type concept or an instance concept, but never both at the same
time24. Type concepts are often just called types, and instance concepts are sometimes just

23 It might be argued that the only users willing to use CODE4 were those that could do their work

without mathematical rigour. However, many users would not have been able to use CODE4 if it
required mathematical rigour, but they very much appreciated the organizing mechanisms provided by
CODE4. CODE4 thus fills a significant niche that is largely empty.

24 In this, CODE4 differs from many other knowledge representation systems, e.g. Cyc.

42

called instances. When the word ‘instance’ is used alone, it is always referring to instance
concepts, although CODE4 users sometimes confuse this latter abbreviation with the things
the instance concepts represent.

Flexibility about whether concepts are instances or types

CODE4 is unusual among knowledge based systems in that the user’s choice about
whether a concept is a type or an instance has little effect on the system’s behaviour. Fur-
thermore, the user is provided with simple commands to switch concepts between being
types and instances, and vice-versa.

From a purely practical point of view, the main effect of declaring a concept to be an in-
stance is that it cannot have subconcepts – i.e. nothing can then inherit from it. All types
can have subconcepts, whereas instances are only found at the bottom of the inheritance hi-
erarchy.

By default, a new user-created concept is created as a type concept unless all its siblings are
instance concepts (in which case it is assumed that the user is most likely to be wanting to
add another instance concept). A user can turn any non-primitive instance into a type
(primitive instances are discussed in section 3.9). On the other hand, a user can only turn a
type into an instance if it has no subconcepts.

Disjointness

A useful operation available in CODE4, but typically used only by experts, is to declare
two or more concepts disjoint from each other. The practical effect of this is to declare that
no two of them can have a common subconcept (i.e. no concept can be a direct or indirect
subconcept of any two or more). CODE4 prevents any attempt at making a common
subconcept of two disjoint concepts. The disjointness property is symmetric: if one concept
is disjoint from another, then that other is disjoint from the first. Also, if the concept of A
is disjoint from the concept of B , then the concept of A’s subconcepts are automatically
disjoint from the concept of B’s subconcepts. Note that the disjointness property is
attached to a concept’s metaconcept – i.e. it relates concepts, not the things represented by
those concepts.

All instance concepts are considered to be inherently disjoint from each other. Any two
concepts in a superconcept-subconcept relation to each other or that share a common sub-
concept (directly or indirectly) are inherently nondisjoint. By default, any two type con-
cepts are potentially nondisjoint unless declared disjoint (directly or indirectly25).

25 Concept A would be indirectly declared disjoint from concept B if, for example one of concept A’s

superconcepts were declared disjoint from concept B.

43

The inverse of the operation to make two concepts disjoint is the operation to make the con-
cepts potentially non-disjoint. This can only be applied to type concepts that are not in a su-
perconcept-subconcept relation and that have no common subconcept.

thing

living thing

male female

person

guard

Jill Jane

i i

man woman
s

s

s s

s

s
s

Figure 3.6: The effect of declaring concepts to be instances or disjoint: The jagged lines
separate groups of concepts that are disjoint from each other. See figure 3.7 for a semantic
interpretation of disjointness, and to see how this diagram partitions things into 18 pos-
sible types.

Figure 3.6 illustrates some of the effects of declaring concepts to be instances, or to be
disjoint. The concepts for male and female have been declared disjoint from each other,
and the concepts for Jill and Jane have been declared to be instances. This being the case,
the following are true statements:

• woman and female are nondisjoint, because they are in a superconcept-subconcept re-
lationship.

• person and female are nondisjoint, because they have a common subconcept.

• man and woman are disjoint because they have disjoint superconcepts. They cannot
have a subconcept in common.

• Jill and Jane are disjoint because they are both instances. Neither can have a subcon-
cept.

• person and guard are potentially nondisjoint, because they are types with no supercon-
cept-subconcept relation to each other, and they have not been declared disjoint.

44

An important point is that the subconcepts (types and/or instances) of a given concept are
explicitly ordered. However, it is up to the user to interpret the ordering (e.g. the user
could intend it to mean that subconcepts listed first are more important than subsequent
ones).

3 . 4 . 2 Intended semantics of types and instances

The extension of concepts

The intended semantics of an instance concept is that it corresponds to a particular thing,
whereas a type concept corresponds to a set of things called its extension (although see
section 3.6 for more clarification about representing sets). The above idea is standard in
frame-based knowledge representations except that in some systems, such as KL-ONE
derivatives, the word ‘concept’ refers to types only26. An instance concept is considered to
represent one of the elements of the extensions of its superconcepts.

As is common in many KR systems, the extension of the primitive top concept is intended
to be the universal set, i.e. the set of everything. As one moves down the type hierarchy to
successive subconcepts, the extensions of types are intended to represent successive sub-
sets. There is no common element of extension among disjoint types.

If a type T has n subtypes, it is assumed that there are some elements of the extension of T
that are in fact not elements of any of the n subtypes27. For example, in figure 3.6 it is as-
sumed that there may be living things that are not persons (perhaps dogs), and persons that
are neither men nor women (perhaps children). When concepts are declared disjoint it is not
intended that this indicate a complete partitioning, so there may be living things that are nei-
ther male nor female (and similarly persons that are neither male nor female).

Figure 3.7 illustrates schematically the extensions of the concepts shown in figure 3.6. As
usual, the thing concept has the universal set as its extension. The world is broken up into
18 bottom-level implicit types (this number grows exponentially with the size of the knowl-
edge base).

A: Female living things that are not persons (e.g. female animals)
B: The same as A, but they happen to be guards too (e.g. female guard dogs)
C: Female persons that are not women, and are guards (i.e. girl guards)
D: The same as C, but not guards (i.e. just ordinary girls)
E and F: Women guards, and ordinary women

26 This is at odds with the normal English meaning of ‘concept’: e.g. every intelligent Canadian has in

their brain a concept of Canada, which is not a type or set.

27 A useful extension would be to add an ability to declare that extensions of a set of subconcepts
completely cover the superconcepts, i.e. that a categorization is exhaustive.

45

G, H, I, J, K and L: Same as F, E, D, C, B and A, but male.
M, N, O and P: Same as I, J, K and L but neither male not female (neuter?)
Q: Non-living things
R: Non-living things that happen to be guards (e.g. electronic devices with such a function)

thing
living thing

guard
person
female

male
woman

man
Jill

Jane

A B C D E F G H I J K L M N

Q

R

female

person
living thing

guard

manwoman
male

thing

O P Q R

A

B C

D E

F G

H I

J K

L

M

N O

P

a)

b)

Figure 3.7: The extensions of concepts. In part a), each of the concepts shown in figure
3.6 is listed on the left. The horizontal bars represent the extensions of the concepts.
Where the bars overlap vertically, there is an intersection of the extensions. Pairs of con-
cepts where there is no mutual overlap are disjoint. Part b) is a Venn diagram showing
the same information.

Quantificational patterns

When the subject of a statement contains a type concept, and the value is also a type con-
cept, the intended semantics (in the absence of modifying facets) is28:

∀ s ∃ v : <subject> s, <value> v • <predicate>(s,v)

28 Using a typed logic similar to Z (Spivey 1989), where <type> x means that x is of type <type>.

46

If the subject is an instance and the value is a type, then the intended semantics is

∃ v : <value> v • <predicate>(<subject>,v)

An example of the type-type case is: “for all car there exists a person in relation owned
by; i.e. every car is owned by some person”. An example of the instance-type case is:
“car 28 is owned by some person”.

When the value of a statement contains an instance concept, it is often said to be grounded;
i.e. it is known which particular thing is related to the subject. If the subject is a type the
intended semantics is:

∀ s : <subject> s • <predicate>(s,<value>)

If both subject and predicate are instances, the intended semantics is:

<predicate>(<subject>,<value>)

The above four quantificational patterns are described in the context of KM by Acker
(Acker 1992). They are respectively encoded as AE, IE, AI and II; where the two letters
indicate whether the subject or predicate are universally (A for all), existentially (E), or not
(I for instance) quantified29. A further comparison of CODE4-KR and KM can be found in
section 3.12.

It might be argued that all of an instance’s statements ought to be grounded (i.e. all the val-
ues should be instances). Indeed, this might be a goal for a completely finished knowledge
base. When few or none of an instance’s statements are grounded the interpretation can ei-
ther be: 1) that the particular instances which should be in values are not known, or 2) that
they change from time to time. Types, on the other hand can have some grounded
statements, but should not generally have all grounded statements, otherwise the type
would have an extension of one (the one thing related to the set of things characterized by
the values of its statements) and be of little use.

The above intended semantics can be altered by: a) informal values, b) absent values, c)
values that have more than one concept, and d) particular facets (such as modality).
Discussion of such effects is deferred to section 3.6.

29 The quantificational patterns listed are sufficient for almost all knowledge representation. The only

exception is when the value should be universally quantified. Currently this must be expressed using an
annotation in a facet.

47

3 . 4 . 3 Observations on the use of types and instances

Ontologies of types vs. databases of instances

Users of CODE4 and its predecessors have made little use of user instance concepts30. In-
stead they have built extensive type hierarchies, occasionally illustrating or giving examples
using instance concepts. In the knowledge acquisition community, the word ‘ontology’ has
come to refer to a knowledge base that is primarily a type hierarchy. A common procedure,
especially when using a knowledge based system to design something or to model a par-
ticular real-world situation, is to first build an ontology, describing the relations and enti-
ties, and then to use a separate tool to gather or assert ‘data’ (i.e. instances of the types)
(Eriksson et al, 1994). CODE4 users have mostly been building ontologies, although there
is considerable disagreement about the usage of this term (Skuce and Monarch 1990; Skuce
1993d).

A knowledge base that is largely full of instances in fact could be called a database. There is
little to distinguish such an entity from an object-oriented database. A key feature of a
knowledge base that distinguishes it from a database is the focus on the relations between,
and the manipulation of types. In database parlance, when one manipulates the type
hierarchy, one is manipulating the schema for instances.

Types and instances as siblings in the inheritance hierarchy

A recommendation to users is that the subconcepts of a particular concept be either all types
or all instances. At one point this was a hard constraint, but it was relaxed to improve prac-
ticality. The rationale for the recommendation is best illustrated by example:

Assume a knowledge base has the type adult, and this has subtypes man and woman.
Now assume type adult also has the instance Leslie. There are several possible
interpretations:

a) Leslie is neither man nor woman (in which case the user should add a new subtype of
adult and make Leslie an instance of this).

b) Leslie is both man and woman (a nonsensical, but logically possible interpretation).

c) Leslie is a man (and the user just has not said this).

d) Leslie is a woman.

e) The user does not know what Leslie is.

f) The user does not care what Leslie is.

30 The discussion here refers to user concepts. Properties, statements etc. are also instances, but this is not

standard among KRs in general.

48

In CODE4, the above ambiguity disappears if Leslie is made a subconcept of either man
or woman (or both). Judging from the participants in this research, knowledge base
builders usually know enough and can correctly classify an instance at an appropriate leaf
and thus prevent the above ambiguity from arising. Classification is discussed in further
detail (e.g. explaining why it is not built in to CODE4) in sections 2.1.3.

Instances of instances

Many KR systems, e.g. Cyc, allow for there to be instances of instances. The rationale is
as follows:

Assume a knowledge base has the concept book, as in figure 3.8a. An instance of this
might be Gulliver’s Travels. And an instance of that might be My copy o f
Gulliver’s Travels. Therefore, according to faulty reasoning, instances can have
instances.

Many users participating in this research have failed to see the problem with this logic. The
problem is as follows: When one talks about books, is one talking about a) works of
literature in the abstract, or b) sheets of paper bound together? The concept Gulliver’s
Travels ought to be an instance of the type work of literature (as in figure 3.8b),
whereas the concept My copy of Gulliver’s Travels ought to be an instance of copy
of book. Of course, the type copy of book would have a property, e.g. copy of ,
indicating the work of literature of which it is a copy.

The above user error is an example of what in this research is called representational dis-
continuity31. In general, representational discontinuity refers to situations where a thing is
conflated with a representation or concept for that thing. In the above example, a book copy
is being conflated with the work in general. Some of the rules32 imposed in CODE4 are
designed to combat representational discontinuity by raising user awareness. Of course,
users might still commit representational discontinuity, (e.g. by leaving Gulliver’s
Travels as a type), but once they are told that they cannot have instances of instances,
most users will recognize that Gulliver’s Travels and My copy of Gulliver’s
Travels ought both to be instances of different things.

31 Another error very commonly made by users is confusing the subconcept relation with the parts

relation. Since the normal knowledge-base building methodology involves specifying the inheritance
hierarchy before adding any relations, users often specify things to be subconcepts that should be parts.
At present CODE4 provides no solution to this problem, but see section 7.3.1 for possible future work.

32 i.e. insisting that instances cannot have instances, or that there be only one inheritance rule.

49

thing

book

My copy of Gulliver's Travels

Gulliver's Travels

i

i

*

work of literature

Gulliver's Travels

copy of book

thing

My copy of Gulliver's Travels

ii

b)

a)

s

ss

copy

copy

Figure 3.8: Representational discontinuity – the case against instances of instances. Part
a) is a representation pattern frequently seen in other KRs (the asterisk indicates an error).
CODE4-KR prevents users from making instances of instances in order to encourage cor-
rect representation as in part b).

Summary

The idea of types and instances appears very simple for most users to grasp33, and they do
not complain about the basic constraints (e.g. that an instance concept cannot have subcon-
cepts). If, however, a user chooses to take advantage of automatic disjointness mainte-
nance, then a much heavier set of constraints is imposed. But since it is the user’s choice to
impose those constraints, this appears not to violate the practicality of CODE4-KR.

One more thing should be said about the instances vs. types: Metaconcepts, properties,
statements and terms are all instance concepts. This is because the things represented by
these special concepts are individual in nature, not sets in nature. For example a term con-
cept represents an individual word, compound word or symbol and a metaconcept repre-
sents an individual concept. Questions have been raised with regard to the instancehood of
properties; discussion of this is deferred to section 3.5.

33 The concepts are understandable, but this does not prevent important errors from being made.

50

3 . 4 . 4 Knowledge management problems addressed by types and instances

The following problems are partially addressed by CODE4’s scheme for types and
instances:

• Problem I-1: Categorizing. The ability to order subconcepts helps users arrange
their thoughts while categorizing.

• Problem I-3: Making distinctions. The capability of declaring concepts disjoint
helps here.

• Problem I-6: Handling errors: The rules that help catch representational
discontinuity help with this problem.

• Problem A-2: Expertise-restriction. This is facilitated by the ease with which types
and instances can be interchanged, and the simple intended semantics.

3 .5 Properties

3 . 5 . 1 Practical effects

Properties are instance concepts. They are all grouped as subconcepts of a special primitive
type concept by default called ‘property’ (although the user can change that name).
Normally the user does not care about the position of properties in the inheritance
hierarchy, instead he or she is only interested in how they are used to build descriptions of
concepts. The following discusses the latter issue.

Introduction, possession and most general subjects

Every concept has a set of properties associated with it. A property is introduced at a certain
concept, P; and it is inherited by all the subconcepts of P. The concept at which it is intro-
duced is called the property’s most general subject. The actual descriptive information as-
sociated with the occurrence of a property at a concept is found in a statement (see section
3.6). If P is a property whose most general subject is M, then P is only inherited by the
subconcepts (direct or indirect) of M, The only statements that can use P as their predicate
are M and its subconcepts.

In CODE4-KR when a concept, C, is said to have a property P , it means that C is either
the most general subject for P or inherits P . From a practical point of view, when a user
specifies that C has P, the user is merely saying the following: That it makes sense to use
P to speak about C, and to use C as the subject of a sentence whose predicate is P.

Figure 3.9 illustrates the above points. In part a), the property job is introduced at the con-
cept person. Person is then the most general subject of job, and job is inherited by all
subconcepts of person, such as woman. Person and all its subconcepts have the prop-

51

erty job; however other concepts, such as dog, do not. In the knowledge base as shown,
one can not talk about a dog’s job.

If this is decided to be an error, job has to be moved to a higher most general subject.
Since the common intersection of dog and person is inappropriate (not all living things
have jobs), a new concept called employable thing34 is introduced. This is shown in
figure 3.9 part b).

thing

living thing

person

man woman

job

jobjob

dog

thing

living thing

person

man woman

job

jobjob

employable thing

dog

job

job

a)

b)

Figure 3.9: Basic ideas about CODE4-KR properties: In part a), job is introduced at its
most general subject person, and inherits to man and woman . It makes sense to talk
(make statements) about jobs of persons in general, men and women. In part b), job has
been moved to employable thing, so that it can inherit to a wider subtree of the inher-
itance hierarchy. A thin line with a label represents the possession of a property by a con-
cept.

Subproperties and the property hierarchy

The set of all properties in a knowledge base is organized into a single global property
hierarchy based on the subproperty relation; i.e. each property can have one or more

34 An employable thing would be defined to be a thing that can have a job. The user would have to use

modality, discussed in section 3.6.2 to specify this.

52

subproperties. In every knowledge base, this property hierarchy has one single top
property which is typically labelled ‘properties’ (for lack of a better name). All other
properties are subproperties (directly or indirectly) of the top property. The property
hierarchy is a partial order and a property can have more than one superproperty. The major
emphasis on the property hierarchy is a distinguishing feature of CODE4-KR35.

job
p

associated living things

date of birth

relatives

p

p
p

friends

boss

friendly relatives
p

p

p

p

ownerp
properties

Global property hierarchy

a)

b) {
Property subhierarchy for employable thing

job
p

properties

Property subhierarchy for living thing

associated living things

date of birth

relatives

p

p
p

properties

Property subhierarchy for person

associated living things

date of birth

relatives

p

p
p

friends

boss

friendly relatives
p

p

p

p

properties

job
p

Property subhierarchy for dog

job
p

associated living things

date of birth

relatives

p

p
p

ownerp
properties

Figure 3.10: The principle of the property hierarchy. Part a) shows an example global
property hierarchy (listing all the properties in the knowledge base). Part b) shows how
four different concepts (from figure 3.9) have particular property subhierarchies. The p
labels indicate links to superproperties. The particular properties inherited by a subject
depends only on the most general subjects of the properties. The form of each
subhierarchy depends only on the form of global hierarchy.

35 Cyc and KM are among the systems that organize slots into hierarchies, however CODE4 adds additional

features such as: 1) the derivation of the statement hierarchy; 2) introduction involving strict sub-
hierarchies; 3) the single most-general-subject, and 4) the importance of the property hierarchy in the
user interface (chapter 4).

53

The set of properties possessed by a concept, C, consists of a subhierarchy, HC, of the
global property hierarchy, rooted at the top property, but omitting some lower level
branches. Concept D, a subconcept of C, has the the union of the property subhierarchies
of its superconcepts (in this case just C), with additional branches introduced at D. The
properties introduced at D must be subproperties of properties found in HC.

Figure 3.10 illustrates the basic idea of the property hierarchy. Part a) shows a global prop-
erty hierarchy for the concepts found in figure 3.9b). No concept has all of these proper-
ties. In figure 3.10b, the concepts employable thing and living thing, both have small
subhierarchies of the global property hierarchy. Their common subconcepts, person and
dog have the union of the small subhierarchies, plus some newly introduced properties.
Person is the most general subject for properties boss, friends and friendly relatives
(which has two superproperties). Dog is the most general subject for the property owner.

Note that the knowledge base illustrated in figure 3.10 currently excludes the possibility
that dogs could have friends. Should there be a desire to change this situation, one solution
would be to introduce a concept sociable living thing as the most general subject of
friends36.

The property hierarchy is intended to be a categorization of properties. When statements are
discussed, it will be seen that the property hierarchy also has some other interesting
characteristics.

3 . 5 . 2 Intended semantics

Properties can be viewed as logical predicates. This will be discussed further in section 3.6
during the discussion of statements. Another, equivalent, view of a property is as a relation
whose domain is the extension of its most general subject. Subproperties can be considered
subrelations.

Intensions

The potential set of properties possessed by a concept is called its intension37. The potential
set of properties whose most general subject is a concept is called its local intension. Each
concept has a local intension that is disjoint from that of all other concepts. The intension of
a concept is the union of its local intension and the intensions of all its superconcepts.

36 If this approach is taken often, the tendancy is to create knowledge bases with too many concepts whose

sole purpose is to be a most general subject. This can be combatted in the above example by adding
friends as a property of living thing , but giving it the modality of ‘typically not’. This modality
would be overridden in the case of those living things that really are sociable.

37 “Intension” is often used thus in AI; see (Lacey 1976, p98) for a philosophical discussion of the term.

54

The expression ‘potential set of properties’ was used above to emphasise the fact that
adding a property does not intrinsically alter the nature of the underlying thing being
represented which theoretically might have an unlimited set of properties38. When a
property is added to a concept, it is merely being stated that now one of the elements of the
intension is known.

The property hierarchy: a hierarchy of instances

In systems like Cyc and KM, the property (i.e. slot) hierarchy uses the same hierarchic re-
lation as the inheritance hierarchy. In such systems, subproperties are subconcepts of their
superproperties, and there is no distinction between the subconcept and subproperty
relations39.

Upon careful examination, the above has been rejected. Instead, in CODE4-KR properties
have a single element of extension (i.e. they are instance concepts) and the subproperty
relation is distinct from the subconcept relation. This has been done for the following
reasons:

• Many properties of a property do not inherit to subproperties (e.g. most general
subject, statements with this property as predicate etc. do not inherit).

• Although the names of subproperties often seem to be in the ‘isa’ relation to the names of
their superproperties, this is because their respective values are in such a relationship. A
relation must not be confused with the things it relates.

An intimately related issue considered when designing CODE4 was the following: Whether
a statement (discussed in the next section) should be an instance of a property. In such a
situation, a property, P, would be a type whose instances are the statements of which P is
the predicate. In this scenario, a property would be considered to represent a set of subject-
value tuples (i.e. statements) in the same manner that a type has a set of things in its
extension.

This was rejected for three reasons:

• It was decided that properties should be instances, as discussed above.

38 Properties are mental (or computational) and descriptive entities. In CODE4 they are not considered to be

intrinsic to the real-world entity being described. For example, each user is likely to characterise cars
using a different set of properties; furthermore, it is trivially easy to ‘invent’ new properties to describe
some latent aspect of a thing, or some obscure relation that one has just noticed. While some
definitional properties might be a necessary part of a concept (in a mind or knowledge base), this does
not limit a user’s ability to endlessly invent other properties for a thing.

39 Of course, the hierarchies contain different concepts, but they appear to be in the same relation to each
other.

55

• The relation between statement and property clearly is not ‘is-a’; a statement has a
property as predicate, but in no sense is a property.

• Statements can be formed using any property in the property hierarchy as predicate (from
the top property down to the lowest level subproperty). If statements were instances of
properties, then they would naturally only be attached to bottom-level properties.

3 . 5 . 3 Observations on use

One of the biggest problems noted in practice with properties is that users tend to introduce
two or more properties of the same name at unrelated concepts, with the mental model that
they are actually dealing with the same property (or without such a mental model, but when
the different properties do in fact have the same meaning and should logically be a single
property).40

Using figure 3.9a as an example, a user might add a job property to the concept person
and another job property to the concept dog. In reality the user ought to have introduced a
single property job higher in the hierarchy at some concept, say employable thing, that
subsumes both person and dog. This in fact is done in figure 3.9b.

A possible solution would be to allow a property to have more than one most general sub-
ject. This would mean its domain would be the extensions of several concepts, and those
concepts would have overlapping intensions. However, this would really be a shortcut for
declaring that there is a common superconcept that the user desires not to name. For now, it
has been decided that the least complex solution is to keep the status quo in the knowledge
representation and to rely on the user interface to highlight potential problems for the user.

In CODE2, where properties were identified by their name, if a user introduced two prop-
erties which happened to have the same name at different most general subjects, then the
system interpreted them as the same property. This is the way most knowledge representa-
tion systems function, however it has been found to lead to a problem that is the inverse of
the problem described above: A user accidentally gives two distinct meanings to the same
property.

The idea of a ‘property manager’ to help users better deal with the above problems is
presented in chapter 7.

3 . 5 . 4 Knowledge management problems addressed by properties

The following lists some of the way CODE4’s treatment of properties assist in the solution
of the problems listed in section 1.4:

40 This problem arises out of the fact that in CODE4 the name of a concept does not identify it uniquely.

56

• Problem I-1: Categorizing. Property hierarchies provide a ‘second dimension’ with
which to categorize knowledge.

• Problem I-5: Extracting. When studying a network of related things, the user can
narrow (or widen) the scope of information shown by specifying that the network should
be generated using successive subproperties (or superproperties).

3 .6 Statements and facets

3 . 6 . 1 Practical effects

Just like properties, statements are instance concepts; they are instances of the primitive
type statement. As with properties the user rarely thinks of them in this way: It is their
role of associating a particular concept (their subject) and a particular property (their
predicate) that is of interest.

The circumstances under which statements exist

When something is to be said involving a property of a particular concept it is said using a
statement. A statement is in fact uniquely defined by its subject and predicate pair – there
can only be one statement per pair. Also, every pair, composed of a concept and one of its
possessed properties, is the basis of a statement. The subject and predicate of a statement
are said to be its defining concepts.

A statement is a dependent concept. As such, it conceptually comes into existence when
both of its defining concepts come into existence, and conceptually ceases to exist when
either one of its defining concepts ceases to exist. Other types of dependent concept are
discussed in sections 3.8. Figure 3.5 relates statements to other classes of concept.

A statement is also a system-manipulated concept. A system-manipulated concept is one
that is physically created and destroyed as a byproduct of the user’s manipulation of other
concepts, but is not manipulated directly by the user.

A statement that conceptually exists, because a particular subject possesses a particular
predicate, need not physically be created in a knowledge base. If it does not physically
exist, it is considered virtual. A virtual statement is made real when knowledge is added
involving it; i.e. under the following circumstances:

• It is made the most general subject of a property. (A property is attached to it.)

• Its value is specified.

• The value of one of its facets (of which it is the subject; discussed below) is specified.

• It is specified as one of the value-items of a value (also discussed below).

57

A statement is physically discarded and made virtual again when all of these conditions
cease to be true.

When the user interface requests to display a statement (all such requests are made by
giving just the subject and predicate), a placeholder called a temporary empty statement is
created if the statement is virtual. This occurs for example when the user wants to specify
the value of a virtual statement. The user chooses a subject and predicate and asks to see the
(empty) value of the corresponding statement. As soon as the user specifies a value, a real
statement is created as a replacement for the temporary empty one.

The statement hierarchy

As discussed in section 3.5, a concept C inherits a portion of the global property hierarchy,
HC. The statements whose subject is C and whose predicates are in HC form C’s state-
ment hierarchy. Statement A is a substatement of statement B if they both have the same
subject, and if the predicate of A is a subproperty of the predicate of B . In other words,
there is a one-to-one mapping between that HC and the statement hierarchy of C.

Figure 3.11 shows a statement hierarchy. This happens to be the statement hierarchy for a
subject which is also a statement. Thus the statements shown are facets. These are
discussed next.

Facets

Statements whose subjects are statements are called facets. It is in these that a large portion
of the important information in a CODE4 knowledge base is stored. As with other
concepts, statements possess a set of properties that are called facet properties. The most
general subject for these is usually the primitive type, statement.

Users are free to add new facet properties in order to cause statements to have new facets.
Such new facet properties must be inherited by the statements in question from the
statement’s superconcepts. Possible superconcepts (most general subjects of facet
properties) can be:

• The primitive type, statement, itself. All statements in the knowledge base would then
possess the facet.

• A particular statement (no other statement would then have the facet).

• A special subconcept of the primitive type, statement. The special subconcept would be
made the superconcept of a specific set of statements which the user wants to have the
facet property in question.

Figure 3.11 shows several primitive facet properties found in every CODE4 knowledge
base. The following are the main types of facet:

• The value facet (discussed below). This is the most important.

58

• Facets that can be used to modify the semantics of the statement (e.g. modality ,
discussed later).

• Facets that are computed automatically and that cannot be changed; for example subject,
predicate and most general subject of predicate. Another example is sources o f
value; this specifies the subject(s) from which the value of this statement is inherited.

• Facets that are documentary in nature (e.g. statement comment).

Figure 3.11: Facet properties. Shown are statements whose subject also a statement, i.e.
the statement whose subject is person and whose predicate is arms. This figure is a
CODE4 browser, discussed in chapter 4.

The value facet and the facet hierarchy

The value facet is treated in a primitive way for the following reason: If one had to look in
the value facet to get the value of a statement, an infinite regress would occur. This is
because the value facet, as a statement, would also have its value stored in a value facet.
One would have to look in the value of the value of the value ad infinitum.

To prevent this problem, a primitive operation is provided to obtain the value when given a
subject and predicate. Obtaining the value of any other facet would be done in the same
manner as looking up the value of a non-facet statement; it requires knowing the facet
property (predicate) and statement (subject) in question.

59

Since facets are statements like any other, their values can be used in the same way as the
values of non-facet statements. Furthermore, one can attach subfacets41 to facets (even,
interestingly enough, to the value facet) forming an unlimited depth facet hierarchy. The
lower level facets are usually empty of any new knowledge and only exist implicitly. The
fundamental principal here is that ‘one can say something about anything in CODE4’. This
level of uniformity and flexibility of facets and values is believed to be unique among
knowledge representation systems. Some of the benefits of CODE4-KR’s treatment of
statements and facets will become clearer in the section on intended semantics, below.

Formal values, informal values and value items

Values can be formal or informal (see chapter 1 and the glossary for a discussion of these
terms). An informal value contains a character string; i.e. uninterpreted text. A formal value
contains an ordered list of value items. The value items refer to other concepts in the
knowledge base. Section 3.6.2 explains this further.

When a statement has multiple value items, several value-dependent substatements are also
considered to be present. For example, if the subject were person and the predicate were
parents, then the value might contain the two concepts man and woman. Such a state-
ment might be read “a person has parents which are a man and a woman”. This statement
can be broken down into substatements as follows: Two subproperties of parents are cre-
ated, and the statements of these each have exactly one of the value items man and
woman. Value-dependent substatements are ordinary statements, except that their presence
is determined purely by the presence of multiple value items. CODE4 implements value-
dependent substatements, but currently there is no way to attach facets to them42.

The basic inheritance rule

The inheritance rule for statements in CODE4-KR is as follows: If statement X, with predi-
cate PX and subject SX , has value V, then the subconcepts of SX have statements with
predicate PX and value V, unless the user explicitly replaces value V with something else
or unless multiple inheritance occurs.

In the case of multiple inheritance where inherited values differ, they are combined as
follows:

• Any value that is a superconcept of another is dropped (i.e. the most specific value is
used in the subconcept).

• Of the remaining concept values, the union of the value items is used (i.e. the subconcept
is assumed to be related to possibly multiple things).

41 i.e. facets whose subjects are facets.

42 They form the arcs in outline and graphical mediating representations discussed in chapter 4.

60

• Character string values are combined with the expression ‘one of (value 1, value 2, …)’.

The above uniform rule does not necessarily suit every application and can sometimes give
results that users don’t want. However, if the user does not like the result, a replacement
value of the user’s choice can be substituted. The benefit of a uniform rule is that the user is
not forced to make decisions at the time values are entered in superconcepts.

There are several additional details concerning inheritance; these are deferred to section
3.10 where the delegation mechanism is also introduced.

3 . 6 . 2 Intended semantics

In the relation interpretation of properties (section 3.5.2), the value of a statement specifies
part of the range of the relation formed by its predicate, where the subject specifies a corre-
sponding part of the domain. For the statement involving a predicate’s most general
subject, the value corresponds to the whole range.

• If the value is a single concept, then the range is the extension of that concept.

• If the value is several concepts, then the range is a set of tuples: All possible tuples,
where one element is taken from the range of each value item.

Multiple value items, including the effect of inheritance and the property hierarchy, are
discussed further later.

If the value of a statement is unspecified or if it is a character string, the only semantic in-
terpretation one can place on the statement is the same as if the value were thing, the top
concept.

An important way of visualizing (or possibly implementing) a knowledge base, is as a
structured set of statements. In this scheme, each concept is described by a subset of the
statements: those for which it is the subject.

The modality facet

One of the primitive facet properties is modality. Aside from values, modality facets are
the most common facet specified by users. Intended values for this are ‘necessary’,
‘typical’ and ‘optional’ (although a zero-to-one range might also be used).

If the subject of a modality facet is a non-facet statement (i.e. the top of a facet hierarchy; a
statement whose subject is not a statement), then it is specifying the likelihood that a
member of the subject’s extension actually participates in the relation. The intended
semantics (where subject and value items are types) would be as follows:

∀ s ∃ v : <subject> s, <value> v • prob(<predicate>(s,v)) = <modality>

61

e.g. if the modality were ‘typical’, and the statement were ‘birds fly’, then a ‘typical’
modality would be interpreted as ‘birds typically fly’. If the modality is missing, the default
is assumed to be ‘typical’ – explicit user action is required to make the strong ‘necessary’
assertion.

Modality can also be added lower in the facet hierarchy. If a modality facet is attached to a
value facet, then the intended semantics would be as follows (where the top of the facet
hierarchy and the value items are types):

∀ s prob(∃ v : <subject> s, <value> v • <predicate>(s,v)) = <modality>

i.e. “for all <subject>, there <modality>ly exists <value> in relation <predicate>“. In other
words the modality facet is declaring how common it is that the value is indeed as stated.

If the modality is ‘necessary’, the value is always as stated; e.g. if it is stated to be
necessary that the parents of a person are a man and a woman, then one can infer there is
no other alternative value. A declaration that the modality is ‘typical’ says that the stated
value is the norm, but there may be exceptions.

Value and modality are the only facet properties to have an intended semantics. Users may
add others, for example to emulate KM’s likelihood, necessity, cue-validity and uniqueness
facets.

Subordinate value facets

A statement can have only one value (although several value items). There are situations
however, when it is desired to say several things involving a particular subject and
predicate.

For example, one might want to say that while the caregivers of a child are typically their
parents, another option is that the caregivers are foster parents. This can be expressed by
adding a subordinate value facet (as a sibling of the regular value facet, i.e. with the same
subject and predicate) into which foster parents would be placed, and to which would be
attached an ‘optional’ modality.

Value and modality consistency maintenance

An inference mechanism proposed as an extension to CODE4 is automatic value and
modality consistency maintenance. Such a mechanism (discussed further in chapter 7)
would ensure the following:

• Value consistency: As one moves down the inheritance hierarchy, the values of a
particular property that have the modality ‘necessary’ should represent successive
subtypes, i.e. never become more general.

62

• Modality consistency: The values of a particular property that have the modality
‘necessary’, should remain ‘necessary’ as one moves down the inheritance hierarchy. i.e.
a necessary value should not be overridable.

Mechanisms like this are common in KR systems, but most such systems assume a
‘necessary’ modality for all statements. It would be important in CODE4 not to force users
to maintain such consistency.

Multiple value items as sets

The intended interpretation of multiple value items is that the range of the relation is a set,
containing one member from the extension of each value item. For example, if the value of
the statement about a person’s parents were ‘(man, woman)’ this is saying that a person
has a set of two parents, one of which is a man and the other of which is a woman.

A useful extension to CODE4-KR would be to allow for a fuller range of set-construction
capabilities in values, and to consider these sets to be concepts themselves. Set-construc-
tion capabilities similar to those provided in the Z language (Spivey 1989) would be
appropriate. Currently, users are only able to give complex set specifications using infor-
mal character strings.

It is intended that for a given statement, S , its substatements should have value items that
are subsets of the value items of S . For example, consider the properties of person: A
statement at a high level in the statement hierarchy might have as its predicate relatives
and as its value, set of persons. Substatements might have predicates ancestors,
siblings and descendants. Each of these would have values that specified subsets of the
relatives. In a similar manner, a subset of ancestors would be parents, which further
divides into father and mother.

3 . 6 . 3 Observations on use

The only facet used by about 80 percent of the users who participated in this research was
the value facet. Much of the time the users only used informal character strings43. The
values of statements involving properties high in the property hierarchy are rarely specified.
For the above reasons there is little demand for automatic value consistency maintenance.

As a layer on top of the value specification mechanism, certain aspects of a language called
ClearTalk (Skuce 1988; Skuce 1992b) were implemented in CODE4. ClearTalk was
designed to allow for the easy expression of a wide variety of ideas in values, and to do
this unambiguously. ClearTalk is based on linguistic principles and has a grammar that

43 Statistics about feature usage are given in chapter 6.

63

reads sufficiently like English to be usable by most people. Certain elements of ClearTalk
have proved useful for users to express ideas that have meaning to them.

In the latest versions of CODE4, actual processing of ClearTalk has been reduced to the
resolution of references to one or more value-items as described above. Users are still
encouraged to use ClearTalk when they specify values using informal character strings.

3 . 6 . 4 Knowledge management problems addressed by statements and
facets

CODE4-KR’s statements contribute to the solution of several problems listed in section
1.4:

• Problem I-2: Categorizing. Statement hierarchies, derived from property hierarchies
help in this process.

• Problem I-3: Making distinctions. The fact that one can attach facets (a whole
hierarchy in fact) to any statement helps in the process of making distinctions. Informal
values allow specialized syntaxes to be used if the user cannot represent certain
knowledge with CODE4’s built-in facilities.

• Problem I-4: Understanding effects. The values of computed facets such as
sources of value help with this. The uniform combination rule helps ensure that users
know what values to expect when multiple inheritance occurs.

• Problem A-2: Expertise restriction. Informal values reduce the need for the user to
learn a particular syntax when representing knowledge

3 .7 Terms

3 . 7 . 1 Practical effects

CODE4-KR treats the words or symbols used to name concepts as full-fledged concepts
themselves. Such concepts are called terms.

Naming concepts

An instance of the primitive type term is created automatically whenever a user enters a
name44 for a main subject or property, where no term with that name previously existed.

When a concept is first created, it is given a system-created label (e.g. ‘instance 12 of car’
or ‘specialized vehicle’45). This label:

44 A term is a kind of concept; a name is a string used to identify a concept (associated with a term); a label

is what is displayed on the screen to identify a concept.

64

• Helps distinguish the concept from other concepts.

• Avoids forcing the user to immediately think of a name.

• Means the interface can remain non-modal (see chapter 4) because there is no need to
prompt the user for something with which to identify the concept.

Such a system-labelled concept does not have any term assigned to it. Furthermore, its
label will change dynamically if the context from which the label is derived changes (e.g. if
the superconcept changes). Shortly after most main subjects and properties are created,
users almost always assign a term to the concept by replacing the generated label with a
name of their own choosing.

Properties of terms

Terms have properties such as part-of-speech, plural or French equivalent. Values
for some of these can be automatically obtained from an on-line dictionary to which
CODE4 may be connected.

The only necessary property of a term is its character string; and there is a one-to-one
mapping between terms and character strings. There are few restrictions on the internal
syntax of a term’s string except that if it starts with an octothorpe, then it is assumed to be
an encoded binary bitmap – the term then represents a graphical icon. Encoded bitmaps are
never returned when an alphabetic name for a concept is requested. They are used in the
graphical mediating representation (see chapter 4).

The assignment of terms to concepts

There may be several terms (synonyms) for a concept, and a single term may refer to sev-
eral concepts (i.e. a term can have several senses or meanings). For example: term
‘person’ and term ‘human’ may be synonyms for the same concept. Likewise, term
‘bus’ may be a homonym for all of: 1) an activity done by a restaurant employee, 2) a
computer part and 3) a vehicle.

In the case of homonyms, users have to distinguish concepts based on their properties
(including their relationships to other concepts, graphical layouts, informal values etc).
Inside CODE4 however, two identical concepts (e.g. siblings with no terms and no
properties) are always considered distinct.

Interestingly, CODE4-KR’s uniform architecture allows terms to be assigned to any
concept, including terms themselves (although there is little value in doing so!)

45 For user instances and types respectively. Properties, statements and terms have their own rules in this

regard. When there are multiple parents, the generated labels combine their names.

65

To find the complete list of terms of a concept, one needs to look in the metaconcept prop-
erty terms. Also one can find out what concepts a term represents by looking at the term
property meanings. The triad of concepts, terms and metaconcepts thus implements a
meaning triangle (Regoczei and Hirst 1989).

3 . 7 . 2 Intended semantics

There is very little additional semantics attached to terms beyond that of ordinary instance
concepts. Their single point of extension refers to the relationship between their character
string and their meaning.

The terms property is attached to metaconcepts because it is not the underlying thing that
has a name – names are associated with the concept of the thing. Different knowledge bases
may use different terms for a given thing.

3 . 7 . 3 Observations on use

Amongst knowledge management systems, only the Active Glossary system (Klinker,
Marques et al. 1993) appears to treat terms as seriously as CODE4-KR does. Experience
(with earlier CODE systems) has taught that the flexibility of CODE4-KR’s terms is
essential for practical knowledge management. The constraint imposed by a one-to-one
mapping between words and concepts was too great.

3 . 7 . 4 Knowledge management problems addressed by terms

Terms address the following problems:

• Problem I-2: Naming. Terms relieve users from being forced to create artificial names
just to satisfy internal system needs. This benefit derives from several sources: 1) If a
user can immediately think of no term, there is no requirement to make one up; and 2) If a
term has already been used to name another concept, there is no reason why it cannot be
used again. Terms also prevent users from having to choose between terms – they can
give a concept as many as they want.

• Problem I-3: Making distinctions: Term properties can be used to express such
important linguistic details as language, part of speech, special usages etc. Without terms
this knowledge would typically be omitted or attached (inappropriately) to the underlying
concept.

• Problem I-5: Extracting. Because concepts can be given terms that exactly match
those in natural language, it is easier to find such concepts.

• Problem I-6: Handling errors. When a user has made a mistake entering a term, it
can be readily changed without effecting any formally-expressed knowledge. In some
other systems, poorly chosen terms become entrenched.

66

• Problem A-2: Expertise restriction. The ease of naming and extracting provided by
terms helps make the system more usable.

3 .8 Metaconcepts

3 . 8 . 1 Practical effects

When representing knowledge, it is frequently necessary to describe properties not of the
thing a concept represents, but of the concept itself. For example, a non-metaconcept such
as car would have properties that describe actual cars. e.g. specifying that they have
wheels, a chassis, an engine and a body. However, the metaconcept concept of car
would have properties such as inventor or comment that do not apply to particular
instances of car but rather apply to the overall idea (i.e. concept) of cars.

To explain further; metaconcepts allow for distinctions of the following kind to be made:
While it is appropriate to say a particular car has wheels, it is inappropriate to say that the
concept of car (something in a knowledge base) has wheels. Conversely, while it is
appropriate to say that the concept of car was invented in a given year, it is inappropriate to
say that an actual car has a particular year of invention – One would not say, “My car was
invented in 1896,” one would rather say, “The car [the idea of the car] was invented in
1896.”

The circumstances under which metaconcepts exist

Each concept has exactly one metaconcept associated with it, and vice-versa. A concept
represents a thing in the world and its metaconcept represents that concept. A concept is
called the defining concept of its metaconcept.

As with a statement, a metaconcept is a dependent concept. It conceptually comes into
existence when its defining concept is created and ceases to exist when its defining concept
ceases to exist.

Also as with a statement, a metaconcept that conceptually exists need not be physically
created in a knowledge base; i.e. it may be virtual unless the user desires to add knowledge
involving it (making it the most general subject of a property; specifying the value of a
statement of which it is the subject, or using it in the value of statement46). Likewise, a
metaconcept can be physically discarded and made virtual again when all such knowledge

46 The astute reader might notice the following: Since all concepts except the top concept have

superconcepts, and since superconcept is a metaconcept property, then one might expect most
metaconcepts to be physically created to store superconcept information. Although the system acts as if
this is true, in fact properties such as superconcept are primitively managed by optimized
mechanisms (see section 3.9) so physical metaconcepts are only created when values of non-primitive
properties are to be stored.

67

is deleted. For mere display purposes, a temporary empty47 metaconcept can be created;
this can be discarded whenever the display is no longer needed. This manipulation of the
existence of metaconcepts is done by the system, never directly by the user, hence
metaconcepts are a kind of system-manipulated concept.

Metaconcepts as a way to support non-inheriting properties

Metaconcepts are instances of the primitive type metaconcept. This is the most general
subject for a number of properties shared by all metaconcepts, such as:

• enterer, the person who entered the knowledge about the concept;

• entry date, the date the concept was entered;

• properties relating the concept to others (superconcepts, subconcepts, kinds ,
dimensions, disjoint concepts);

• information about how the concept can be referred-to or visualized (terms, graph
layout position);

• information about which properties have the defining concept as their most general
subject (source properties);

• descriptive information (comment).

These are all primitive metaconcept properties, many of which are described further in
various parts of this thesis (including below). Of course, the user is free to add other
metaconcept properties.

The important thing to note about all such properties is that they inherit to each individual
metaconcept, but not to subconcepts of a metaconcept’s defining concept. Also, a value of
a statement (having one of these properties as predicate and a particular metaconcept as
subject) would not be inherited by any other concept. This naturally derives from the fact
that metaconcepts are instance concepts; like other instance concepts they can have no
subconcepts, and hence nothing can inherit from them.

So by having metaconcepts, CODE4-KR provides an elegant and intuitive mechanism for
non-inheriting properties. Whereas most knowledge representations require that non-
inheriting slots be tagged as such, CODE4-KR has a uniform rule that all properties inherit,
and uses metaconcepts, separate from their defining concepts, to provide non-inheriting
properties.

Sometimes it is desired to have values involving metaconcept properties appear to inherit.
For example, assume user ‘Joe’ creates a whole hierarchy of concepts. Then assume he

47 A temporary empty concept is merely a placeholder for a virtual concept.

68

wants to record his name as the enterer of each concept. Since the property enterer is a
metaconcept property, and hence does not inherit, he might individually fill in values for
the metaconcept of every concept he entered. In other cases, it is desired to have groups of
unrelated metaconcept statements have similar values. These requirements can be handled
in two ways:

• Using delegation (section 3.10). This allows the value of a statement to be computed
from another value.

• Using specialized subconcepts of the metaconcept primitive type. These can be made
the superconcepts of a certain subset of metaconcepts.

The implicit metaconcept hierarchy

Metaconcepts are full-fledged concepts and can be treated just like terms, statements, prop-
erties and main subjects. In fact, although rarely used, CODE4’s uniformity permits a
metaconcept to have its own higher-order metaconcept (e.g. to hold properties describing
who updated the first-level metaconcept). If a user asked to look at a metaconcept of a
metaconcept of a metaconcept (to any depth), the system would create the appropriate tem-
porary empty metaconcept for display. The user can continue to create successively higher
order metaconcepts, although only the first level is usually of any use.

It thus can be said that, as with statements, a knowledge base implicitly contains an infinite
number of metaconcepts, most of which serve no conceptual purpose.

Important metaconcept properties

It has been mentioned before that all primitive properties that show the interrelation between
concepts (as opposed to between things in general) are attached to metaconcepts. Three
interesting such properties are dimensions, and its cousin inherited dimensions as
well as kinds.

A dimension is a partitioning of a concept into subconcepts based on one point of view or
criterion, for example, the sex of persons. The concept person might have four subcon-
cepts: female person, male person, adult and child. The first two subconcepts
constitute the dimension ‘by sex’, while the second two constitute the dimension ‘by age’.
The dimension property of the metaconcept for female person, would contain ‘by sex’.
CODE4 labels subconcept arcs using dimensions. The regular subconcept relation can be
considered a ‘nameless’ dimension.

The following are normally also true when a concept’s subconcepts are divided into several
dimensions:

• The concepts inside each dimension are usually declared disjoint from each other.

• Concepts with multiple parents are usually created. Each of these concepts inherits from a
a different one of the dimensions (e.g. adult female person).

69

• Properties are usually created that have the same name as each of the dimensions.

Since dimension is a metaconcept property, it does not inherit. This is valid because usu-
ally at lower levels in the inheritance hierarchy the dimension of some remote superconcept
is no longer relevant. For example, the fact that adult was a subconcept ‘by age’ of
person is of little relevance to the concept Class 3 school bus driver (all of whom
happen to be adults). There are cases, however, when one might be interested in inherited
dimensions, and it is for this reason that the additional metaconcept property inherited
dimensions was created. The concept girl, for example, might inherit from both child
and female person. Its inherited dimensions would be ‘by sex’ and ‘by age’. Note that
inherited dimensions does not use the ordinary inheritance mechanism because it is a
metaconcept property.

Figure 3.12: Metaconcept properties. Shown are statements whose subject is the
metaconcept concept of living thing and whose predicates are the metaconcept
properties possessed by that metaconcept. All of the properties shown are primitive

Another primitive metaconcept property related to dimensions is kinds. Statements whose
predicate is the kinds property contain text that describes which subconcepts are in which
dimension. For example, the value of kinds for concept of person may be listed as: ‘by
age: (concept of child, concept of adult); by sex: (concept of female person, concept of
male person)’. The reason why ‘concept of…’ precedes each concept name is that what are
being listed are metaconcepts.

Figure 3.13 illustrates some of the above ideas:

70

• thing is divided into two dimensions, ‘by aliveness’ and ‘by truth’.

• The value of concept of thing’s kinds property would be listed as: “by aliveness:
(concept of nonliving thing, concept of living thing); by truth: (concept of nonfictional
thing, concept of fictional thing)”.

• concept of living thing would have ‘by aliveness’ as the value of its dimensions
property. This is indicated in figure 3.12, and by the label on the arc in figure 3.13.

• concept of unicorn would have ‘by truth, by aliveness’ as the value of its inherited
dimensions property.

Figure 3.13: An example showing dimensions. Thing is divided into two dimensions,
each containing two concepts. Each dimension specifies a criterion by which thing is
divided into subconcepts. This figure was drawn by CODE4.

3 . 8 . 2 Intended semantics

From the perspective of semantics, metaconcepts are instance concepts just like any other.
Their single point of extension is another CODE4-KR concept, whereas the extensions of
non-metaconcepts are things outside the currently running CODE4 system.

In the current implementation of CODE4-KR, the dimensions, inherited dimensions
and kinds metaconcept properties do not have an intended semantics. The values of
statements involving these are merely character strings.

3 . 8 . 3 Observations on use

Most users understand the idea of metaconcepts, although for most users usage of them is
limited to:

• Looking at listings of metaconcept properties that are automatically maintained.

71

• Editing the comment (i.e. English description).

Dimensions have been found to be an important mechanism for organizing knowledge. A
similar idea with this name exists in Classic. Library scientists, however, call a taxonomy
breakdown where there are several independent criteria facetted classification (Vickery
1960; Hunter 1988; Dahlberg 1993) (there is no relation to CODE4’s facets). The principle
is called discriminators in OMT (Rumbaugh, Blaha et al. 1991).

3 . 8 . 4 Knowledge management problems addressed by metaconcepts

Metaconcepts address the following problems:

• Problem I-3: Making distinctions. Metaconcepts allow concepts to be dis-
tinguished from the thing they represent.

• Problem I-4: Understanding effects. Due to the presence of metaconcepts,
inheritance is simplified. This helps the user understand what will occur when a particular
value is specified.

3 .9 Primitive concepts

3 . 9 . 1 Practical effects

When a knowledge base is first created, a set of primitive concepts are installed, and terms
for them are also installed.

There are two classes of primitive concepts, primitive types and primitive properties.
Primitive types are primarily just placeholders in the inheritance hierarchy, whereas primi-
tive properties have several reasons for existence including: 1) giving rise to statements that
display computable values and 2) optimization of storage.

In no case is the name of a primitive concept fixed, although they all have default names.
Also, with only a few exceptions they may be moved around in the inheritance hierarchy or
property hierarchy. Obvious exceptions are that the top concept, thing, which must remain
at the top of the inheritance hierarchy; and the top property, properties, which must
remain at the top of the property hierarchy48. Also the most general subject of primitive
properties must not be changed such that the properties no longer inherit to their original set
of concepts.

48 These two ‘tops’ do not impose an ontological committment on CODE4 users. The concepts are merely

collecting places; users are not forced to do anything with them.

72

Primitive types

Primitive types behave just like ordinary types except in the following ways:

• They are created when any knowledge base is first created.

• The user cannot delete them.

The most important primitive type is the top concept, usually labelled ‘thing’. A top concept
must exist for all other concepts to be subconcepts of. The four other primitive types are,
respectively, the common superconcept of all:

• metaconcepts,
• statements,
• terms, and
• properties.

It is rare for users to directly access the hierarchies below these primitive types (users use
primitive operations instead), however the four primitives must exist so that CODE4 knows
where to put the special concepts when it creates them. These concepts are named
according to the class of concept of which they are a superconcept. For example, the
superconcept of all statements is statement49.

Primitive properties

Primitive properties are distinguished along the following three dimensions:

1) by which special class of concept they are inherited (metaconcepts, statements, terms or
properties);

2) by their purpose (to optimize storage or for the display of computed values), and

3) by the degree to which users can edit the resulting statement values (no editing allowed;
editing constrained by rules, or unlimited editing allowed).

Metaconcepts inherit the most primitive properties (discussed in section 3.8). Statements
come next (i.e. inheriting the primitive facet properties discussed in section 3.6) followed
by terms and properties. Details of the primitive properties of each class of concept can be
found in previous sections.

Computed primitive properties

Most primitive properties are intended to give rise to statements that display computed val-
ues; these are called computed properties. Examples are: subconcepts, subject,

49 In older knowledge bases, the terms ‘statement within self’ or ‘statement in this KB’ are used, but users

found this confusing so it was changed.

73

superproperties, and meanings. In an alternate design, some computed properties
could be ordinary properties50 whose values would use the standard property-lookup
mechanism. However not all could be ordinary without a paradox being created.

For example, the most important computed metaconcept property is superconcepts. But
this property inherits from the common superconcept of all metaconcepts, and thus to look
it up CODE4 would need to know about superconcepts in advance; the actual values of
computed properties are therefore obtained by implementation-dependent internal
mechanisms.

The values of most computed properties contain lists of concepts as their value items; there
are a few exceptions however, which can contain strings:

• The value property itself.

• The string property of terms.

• The dimensions property of metaconcepts.

Optimized primitive properties

A few properties whose values contain documentary information are only primitive because
they are used very frequently, hence it is desired to increase performance and reduce
memory requirements.

An example of this is the metaconcept property comment (also often renamed ‘English de-
scription’). This is optimized to reduce the necessity of turning virtual metaconcepts into
real ones: In general, CODE4 does not have to explicitly create metaconcepts – information
about conceptual relations is maintained using primitive mechanisms associated with the
underlying concept (if this optimization were not done, then the whole infinity of implicit
metaconcepts would need to be created!). As soon as a user edits a metaconcept, however,
by adding a property or filling in the value for some non-primitive property, the
metaconcept must be explicitly created. Since comment is the most heavily used non-
computed metaconcept property, it is primitively implemented to save space and computa-
tions.

Another example of an optimized property is knowledge reference: This is a facet
property and the optimization prevents the creation of real facets from virtual ones. In
addition to providing performance optimizations, the presence of non-computed primitive
properties helps remind the user about useful statements that she or she should make.

50 i.e. non-primitive properties.

74

Editable and non-editable primitive properties

The values of most primitive properties are editable: i.e. the user can change them. In the
case of a value that expresses a conceptual relation such as subconcepts, editing has the
effect of changing the relation (in this case changing the inheritance hierarchy). Each
editable primitive property has special editing rules for its values to prevent a violation of
structural constraints (e.g. no loops in are allowed in the inheritance hierarchy).

In general, changes to computed primitive property values can be effected in multiple ways.
For example, the following are the ways that a user can edit the dimension property of the
concept of child:

• By directly editing the value of dimension in concept of child.

• By editing the label of the superconcept link to person.

• By editing the value of the kinds property of concept of person.

Regardless of the method used, all three manifestations of the relationship are changed syn-
chronously.

A few primitive properties have values that cannot be edited; for example, the predicate and
subject of a statement. This is because a statement is defined by its predicate and subject, as
discussed in section 3.6.

3 . 9 . 2 Intended semantics

There is no intent to force the user to accept ontological commitment by the default posi-
tioning of primitive concepts. However, the default conceptual structure is intended to
show the important distinction between concepts and non-concepts.

3 . 9 . 3 Observations on use

Users rarely directly edit the values of primitive properties that express conceptual relations;
they normally use primitive operations to do the manipulation, only observing the results in
computed values.

3 . 9 . 4 Knowledge management problems addressed by primitive concepts

Most artificial intelligence-based knowledge management technologies have the idea of
primitive concepts, although they are not typically called by that name. As in other systems,
CODE4 primitive concepts are a supporting mechanism for properties, statements, terms
and metaconcepts. The reader should thus refer to the previous four main sections (3.5 to
3.8) for details about the problems they address.

75

3.10 Further details of inference mechanisms

This section provides additional details about the inference mechanisms provided in
CODE4. As explained earlier, since users of CODE4 are largely concerned with its
structuring techniques, and since they are free to violate many constraints that would
enforce CODE4’s intended semantics, only several simple inference mechanisms are
provided.

Additional inference capabilities can be added on top of those in the knowledge engine:

• CODE4’s user interface provides a ‘mask’ capability (section 4.3) that constrains what is
displayed based on potentially complex criteria.

• CODE4’s knowledge map capability (section 4.2) extracts useful patterns of knowledge
from a knowledge base.

• Various CODE4 researchers have added facilities such as: a) the ability to embed
Smalltalk expressions in values so the values can be computed using arbitrary formulas,
and b) a simple expert system that extracts the knowledge it needs from CODE4 (see
section 3.13).

3 . 1 0 . 1 Delegation

Delegation is a mechanism whereby a statement’s value is determined by referring to the
values of other statements; hence it can be used to specify certain kinds of constraints.
Delegation can be considered a generalized form of inheritance, but whereas inheritance
always occurs unless overridden, the knowledge enterer must explicitly request delegation.

The following is an example of delegation in action: If a person owns something, then he
or she is almost always the owner of that thing’s parts. It would be nice, therefore, to be
able to specify the value of the owner property and have the owner properties of the parts
of that entity take on the same owner automatically. As with some other KR systems, e.g.
Cyc, it can be said that the ‘owner’ property transfers through the parts property. To
achieve this result in CODE4, one would, at the most general subject of part-of (e.g.
entity) specify that the value of owner should be the same as the owner of whatever the
entity is part-of. A special syntax is provided for this which is documented in the CODE4
reference manual (Lethbridge and Eck 1994).

Delegation can be considered similar to the formula mechanism provided in spreadsheets.
Indeed, a reference can be absolute or relative, and most references are relative. In the
above example, the delegation directive is inherited by all subconcepts of entity, but the
owner of all entity’s subconcepts is not the same as the owner of entity. Instead the
owner is the determined relative to the current subject – in other words in the concept car-
engine, the owner would be determined by looking up the owner of whatever a car-engine
is part of (presumably car).

76

3 . 1 0 . 2 Inheritance

In the context of CODE4 there are two senses of the verb ‘to inherit’:

• Property inheritance: This is described in section 3.5. A concept always possesses
those properties possessed by its superconcepts.

• Value inheritance: This is derived from the first sense and is described in section 3.6.
Value inheritance is a special case of facet inheritance.

In section 3.6, it was explained how the value facet inherits; in fact the value facet is the
only facet that always inherits, and it does so using a primitive mechanism. The values of
other facets never inherit unless explicitly directed to do so using a delegation directive (see
above); this directive is specified at a facet property’s most general subject (usually
statement). Each facet inherits independently, i.e. if the value is overridden in a
subconcept, other inheriting facets would still inherit unchanged.

3.11 Knowledge organizing techniques at the representation
level

This chapter so far has presented details of CODE4-KR, including details of its organizing
techniques. This section summarizes and categorizes the organizing techniques. The
evaluation of how much the techniques contribute to practicality is left to chapter 6.

An organizing technique is a way of thinking about a knowledge base; a way of mentally
modelling how concepts interrelate to each other. The techniques can be considered
‘dimensions’ of a knowledge base, since they are to some degree orthogonal to each other
(one need not be concerned about other dimensions when working within one). As a user
is arranging concepts, he or she typically thinks in terms of several organizing techniques;
but at any point in time, decisions are being made within just one. For example, the user
might spend some time organizing the inheritance hierarchy (one organizing technique) and
then may spend more time thinking about synonyms and parts of speech (linguistic
knowledge – another organizing technique).

The following list presents the organizing techniques in a sequence in which it would be
reasonable to learn them. However, to learn a subsequent primary organizing technique (A
to G), it is not necessary to know the special features of a given technique. Each technique
is characterized in terms of the main knowledge representation decisions users must make.

The decision about which features should be considered primary organizing techniques,
and which should be considered special features is not definitive. Other categorizations are
possible.

A summary of the organizing techniques is found in figure 3.14, and a comparison of
various knowledge representation systems is presented in figure 3.15.

77

A Main subjects in the inheritance hierarchy: At the very basic level the user
merely lists and names concepts.
• What main subjects should be present?
• What should the order of the main subjects be?
• What should a concept be named?
A1 Categorizing: At this stage a true inheritance hierarchy is being built.

• What should be the children and parent of a main subject?
• How should main subjects be grouped?

A2 Multiple categorizing
• What set of parents should a main subject have?

A3 Types and instances
• Should a main subject be a type or an instance?

A4 Dimensions
• How should subconcept links be labelled?
• Based on what criteria should a concept be divided into subconcepts?

A5 Disjointness
• Which concepts should be disjoint from others?

B Properties: The second fundamental organizing technique involves the user ‘saying
things’ about concepts.
• What properties should a concept ‘possess’?
• What should be the order of properties?
• What should a property be named?
• What should the value of a property be at a subject?
B 1 Inheritance: Here the user learns the simple inheritance rule of CODE4.

• What properties should a concept and all its subconcepts have?
B 2 Property categorizing

• What should be the children and parent of a property?
• How should properties be grouped?

B 3 Property multiple categorizing
• What set of parents should a property have?
• How are values combined under multiple inheritance?

B 4 Global and local property hierarchy
• How should the global property hierarchy be organized?
• What subhierarchy should each concept possess?

C The uniformity of concepts: Properties and main subjects are subsumed by the
idea of concepts. This organizing technique is very fundamental to subsequent ones.
• What properties can properties and other special concepts have?

D Statements as concepts:
• What properties (facets) should a statement have?
• What should the modality of a statement be?
D1 Statement hierarchies

• How should statement hierarchies be derived from the property hierarchy?

78

D2 Facet hierarchies
• How should a hierarchy of facets (facets of values and other facets) be arranged?

D3 Subordinate values in other facets
• What other values should a statement have?

E Formal and informal values
• Should a value be formal or informal?
• To what concepts should a formal value point?
E1 Arbitrary relation networks

• How should arbitrary networks of concepts be arranged?
E2 Delegation networks

• From what other values should a statement obtain its value and using what
method of calculation?

E3 Value specialization and modality
• How necessary is a statement or value?
• How should values of statements be specialized down the inheritance hierarchy?

E4 Value subsetting down the statement hierarchy
• How should values of substatements be related to values of superstatements?

E5 Value-dependent subproperties
• What special statement should be described by virtue of a value item?

F Metaconcepts:
• What properties are of the concept rather than the underlying thing?
• What properties should not inherit?
• How should the hierarchy of metaconcepts be arranged?

G Terms and linguistic capabilities
• What names should a concept have?
• What graphic symbols should a concept have?
• What properties should a term have?
• What meanings should a term have?

79

Organizing technique Prerequisite
techniques

Section
discussed

Expertise Novelty
in

CODE4

A. Main subjects & inheritance hierarchy 3.2 Beg - -
A1. Categorizing A 3.2 Beg -
A2. Multiple categorizing A1 3.4 Int -
A3. Types and instances A1 3.4 Int Low
A4. Dimensions A1 3.8 Int High
A5. Disjointness A2 3.4 Exp Med

B. Properties & property hierarchy A 3.5 Beg - -
B1. Inheritance A1, B 3.5 Beg -
B2. Property categorizing B 3.5 Beg High
B3. Property multiple categorizing B2 3.5 Int High
B4. Global and local property hierarchies B2 3.5 Int High

C. The uniformity of concepts A 3.2 Int High

D. Statements as concepts B, C 3.6 Int High
D1. Statement hierarchies D,B4 3.6 Int High
D2. Facet hierarchy D 3.6 Exp High
D3. Subordinate values in other facets D2 Exp + High

E. Formal and informal values B 3.6 Int Med

F. Metaconcepts C 3.8 Int High

G. Terms and linguistic capabilities C 3.7 Exp High

Figure 3.14: Summary of knowledge organizing techniques. The prerequisites column
indicates the techniques that must be learned in advance, and which must be present in a
system before a given technique can be added. The expertise column indicates the
techniques that a given level of user typically understands (beginner, intermediate, expert).
The novelty column indicates how rare it is to find the feature in other knowledge man-
agement systems such as those discussed in chapter 2.

3.12 Comparison of CODE4-KR with other knowledge
management technologies

Figure 3.15 provides a comparison between CODE4-KR and some of the knowledge
management technologies discussed in chapter 251. All of these technologies have certain
basic features like multiple inheritance hierarchies and the ability to attach properties to
concepts. The following are some of the main ways these tools differ from CODE4:

51 Technologies such as hypertext and personal productivity software, whose strength is in their user

interface, are not listed. None of the techniques apply to them.

80

• Some of the tools treat types and instances significantly differently from CODE4. In KL-
One derivatives, instances (individuals) are not represented using the same language as
types. These tools also focus on automatic classification (discussed in section 2.1.3). In
KM and Cyc, a concept can be both a type and an instance at the same time.

• Several of the tools support dimensions as in CODE4, but this feature does not appear in
Cyc and KM.

• Tools like Cyc and KM allow the user to organize slots in a hierarchy, but such a hierar-
chy is treated very much like the inheritance hierarchy. Also, the property hierarchy is not
really used to help organize the knowledge in frames. In CODE4, properties are instance
concepts, and the property hierarchy is fundamentally important in the organizing of
knowledge.

• CODE4 gives the word ‘concept’ a wider definition than other tools. This introduces
more uniformity and flexibility into the way knowledge is organized.

• No tool, aside from CODE4, treats statements as concepts; i.e. as units of knowledge that
can have properties etc.

• None of the technologies allows for the flexible integration of formal and informal
values. Although tools such as Cyc allow certain slots to be filled with character strings,
these are considered ‘special’ slots.

• None of the technologies supports what CODE4 calls metaconcepts. Cyc and KM allow
higher order knowledge to be represented, but both mix properties that in CODE4 would
be divided between a concept and its metaconcept.

• None of the technologies support terms or the management of linguistic knowledge in as
flexible a manner as CODE4. The flexibility of Cyc and KM allows separate concepts to
be created that could represent terms; but inflexible internal identifiers would still have to
be used when actually representing facts.

81

Organizing technique CODE2 KM &
Cyc

KL-ONE
derivatives

OMTool

A. Main subjects & inheritance hierarchy • • • •
A1. Categorizing • • • •
A2. Multiple categorizing • • • •
A3. Types and instances • ~ ~ •
A4. Dimensions ~ • •
A5. Disjointness • • •

B. Properties & property hierarchy • • • •
B1. Inheritance • • •
B2. Property categorizing ~ ~
B3. Property multiple categorizing ~
B4. Global and local property hierarchies

C. The uniformity of concepts ~

D. Statements as concepts ~
D1. Statement hierarchies
D2. Facet hierarchy ~
D3. Subordinate values in other facets ~

E. Formal and informal values ~ ~ ~

F. Distinct metaconcepts ~

G. Terms and linguistic capabilities ~

Figure 3.15: Comparison of organizing techniques in various representations. A bullet in-
dicates that the technique is a feature of the tool and works in a manner similar to
CODE4. A tilde indicates a capability significantly different from CODE4. A blank
indicates the technique is not applicable to the tool.

3.13 CODE4-KR as an abstract schema

The descriptions of the knowledge representation covered so far in this chapter have been
very abstract in nature: Little commitment has been made to appearance, implementation,
syntax, or medium or mode of transmission. This section discusses how one can consider
CODE4 to have several different knowledge representation schemata, all of which are
manifestations of the abstract schema described so far.

3 . 1 3 . 1 Alternate schemata

Figure 3.16 shows various schemata whereby the CODE4-KR abstract schema can actually
be manifested. Figure 3.17 shows how they are embodied in the CODE4 architecture.

82

The schemata can be divided along several dimensions:

• The top and bottom of the figure distinguish static from dynamic schemata. Dynamic
schemata describe syntaxes for commands that allow a knowledge base (a representation
using one of the static schemata) to be modified or updated.

• The left and the right of the figure distinguish physical from mediating representations.
Physical representations either use the CKB syntax discussed in the next section or an
object oriented representation in memory. Mediating representations display knowledge
on the screen and are discussed in chapter 4.

CKB

CKB
File

CKB
Knowledge

Server

Smalltalk
Objects

in memory

API

Browser
Screen

Displays

Knowledge
Map

Protocol

User
Commands

Static
Representations

Dialog
Representations

Figure 3.16: Seven manifestations of CODE4-KR. Each ellipse represents a distinct
syntax into which the abstract schema of CODE4-KR is mapped. All manifestations have
a common semantics. Arrows show syntax translation paths.

Knowledge
Engine

CKB
Interpreter

Knowledge Map
Interface

Other
Applications

Browser
User Interface

CKB
File I/0

Knowledge
Server

CKB

API

Figure 3.17: The top-level architecture of CODE4. At the top are various applications
which interface to the knowledge engine.

83

3 . 1 3 . 2 The CODE4 API and its manifestation as the CKB syntax

All operations on physical representations of CODE4-KR are performed using a limited set
of well-defined commands. The commands are partitioned into two major sets:

• Those that update the knowledge base are called modifiers.

• Those that query the knowledge base are termed navigators (because applications using
navigators use the results of one query to construct the next query, and thus navigate
around the knowledge base).

An important subset of modifiers are the constructors: commands that add concepts and
links between concepts, but do not delete or merely change knowledge. The basic construc-
tors form a minimal set necessary and sufficient to construct any CODE4 knowledge base.

The physical representation and the API

In-memory knowledge (i.e. as operated on by CODE4’s ‘knowledge engine’) is stored as a
network of Smalltalk objects52. The modifiers and navigators are implemented as a set of
Smalltalk messages sent to these objects. These messages collectively form CODE4’s ap-
plication program interface (API), and are the only means by which in-memory knowledge
can be queried or updated.

When an application dialogues with the API, it passes knowledge backwards and
forwards. The API is therefore a language; in fact it is a distinct manifestation of CODE4-
KR.

The knowledge map layer

CODE4’s knowledge map layer provides another language. This provides high-level
abstractions for the user interface and is described in section 4.1.

CKB Format

Another major application using the API is the CKB (CODE4 Knowledge Base) language
interpreter. Expressions in CKB are ASCII representations of modifiers and navigators,
and form yet another manifestation of CODE4-KR. Appendix D gives an example of CKB
syntax.

52 In fact some other physical representation could be substituted leaving all the other manifestations

unchanged – it would only be necessary to ensure the new representation used the same API.

84

Uses of CKB format

CKB is used for two major purposes:

• For persistent storage: When knowledge is saved to disk, CODE4 generates the
minimal set of basic constructor commands needed to regenerate that knowledge. When
the knowledge is loaded from disk, the CKB interpreter translates the commands directly
into API messages, and the knowledge base is thus reconstructed. From the perspective
of the CODE4 knowledge engine, it makes no difference whether a memory-resident
knowledge base was built using the knowledge map layer, the CKB interpreter or some
other application.

• For inter-process communications: A running CODE4 system can be used as a
knowledge server. CKB commands are sent using two-way communication between
CODE4 and other software, possibly running at distinct geographical locations. This
mechanism has been used for two purposes: 1) knowledge-based application programs
(e.g. expert systems), and 2) knowledge translators.

Peter Clark of the University of Texas (not yet published) has built a Prolog-based expert
system called ‘Electronic Trader’ (ET) that attempts to make money by chosing sequences
of currency, option and bond transactions. One version of this system connects to a
remote CODE4 knowledge base to obtain the knowledge it needs to make inferences.

 To date, two translators have been built: One converts a subset of Ontolingua into CKB
and pipes it into CODE4. The other does the same with KM.

Design of the CKB syntax

The CKB language is designed to be compact, but human readable. Human-readability (i.e.
using a format composed of printable ASCII characters rather than binary) is believed to be
important because it simplifies the job of writing and debugging two kinds of programs
(corresponding to the above major uses of CKB format):

• Those that read or write CKB files.

• Remote clients that connect via telnet.

It is not an objective to provide sufficient human readability to allow for publication. Nor is
it an objective to allow users to study the knowledge’s content by reading this particular
textual form53. This is because knowledge is typically composed of intertwined networks
of concepts, and a tool like CODE4’s user interface is needed to effectively study it.

53 CODE4 does provide a number of formats whereby aspects of the knowledge can be printed for

publication or study.

85

CKB’s readability is limited by two important objectives: 1) compactness, and 2) extreme
ease of machine-parsing. A goal is to minimize bandwidth and maximize the speed of file
operations. As a rough rule of thumb, each concept uses about 30 bytes of disk space and
each main subject (including the terms, statements, properties and metaconcepts it intro-
duces) uses about 350 bytes of space.

Order dependence

A major difference between CKB and other textual knowledge representations like KIF,
Ontolingua and KM is order dependence.

As was discussed earlier, CODE4-KR does not rely on external names to identify a
concept. A consequence of this symbol independence is that when loading a knowledge
base, a concept must be created before it can be referred to in subsequent commands. This
imposes a partial ordering on a CKB file which is lacking in a KM or Ontolingua file.
Although initially this may appear to be a disadvantage of CKB, in practice it is not. CKB
files are never written by humans and there is no need for them to be; the CODE4
mechanism that writes CKB files can easily compute the partial ordering using a near-linear
algorithm.

Order dependence does impose a constraint on two-way communication with the server: A
client must obtain a reference to a concept (e.g. by name matching) before it can perform an
update or query using it. This constraint appears to help maintain integrity: In a typical
textual knowledge language, it is possible to assert facts that contain references to nonexis-
tent concepts.

86

Chapter 4

User Interface Techniques for Practical
Knowledge Management

This chapter continues the discussion of CODE4 by describing the main techniques by
which the presentation of knowledge is organized.

Knowledge maps, described in section 4.1, provide an abstract mechanism for arranging
knowledge that is intermediate between the concept level (described in chapter 3) and the
mediating representation level (section 4.2). Several different mediating representations can
be used to display the information in a knowledge map; and these can be organized into
browser hierarchies. Masks (section 4.3) are used to highlight knowledge and control
which details are displayed.

Figure 4.1 is an example CODE4 session showing various windows.

Figure 4.1: An example screen showing the CODE4 user interface. Clockwise from top
left: The Smalltalk ‘Launcher’ which is used to start various applications. The control
panel (section 4.4.1). An outline mediating representation (section 4.2.2) showing a
statement hierarchy. A graphical mediating (section 4.2.3) representation showing a
complex knowledge map.

87

4 .1 Knowledge maps

A knowledge map is a software abstraction that allows for the manipulation of a network of
related concepts. The knowledge map defines this network in terms of:

a) One or more starting concepts.

b) One or more relations that recursively relate the starting concepts to other concepts.
These are discussed in more detail in section 4.1.1.

c) A limit on the traversal depth.

The nodes in the network are the starting concepts plus those concepts that can be reached
by following the relations to the specified depth. The set of arcs in the network are the set
of statements that link nodes.

The word ‘map’ is used instead of ‘directed graph’, which may be preferred by some math-
ematicians, for two reasons:

• The word ‘graph’ could cause confusion with the graphs drawn by the user interface. All
mediating representations, not just graphs, use knowledge maps.

• The cartographical analogy is useful: The user can define the map he or she wants to look
at, and can then navigate around that map. The user can use masks (associated with
knowledge maps) to highlight part of the map. The user can change the kind of
information displayed by changing the knowledge map’s relations54.

4 . 1 . 1 Details of how relations are specified

Each of a knowledge base’s relations is specified by a concept, and each relation defines a
set of arcs that will appear. A relation can be specified using any of the following three
types of concepts:

1. A property. In this case the subject of an arc is the node at the origin of the arc. The
predicate of the arc is the given property, or one of its subproperties. An arc appears
with a given node as its origin if: a) there is a formal statement whose subject is that
node and whose predicate is the specified property or one of its subproperties; and b)
the knowledge map’s traversal depth limit has not been reached.

2. A property possessed by metaconcepts55. An arc is defined in the same way as
the above, except that its subject is now the metaconcept of the node at its origin. This

54 This is analogous to changing whether a cartographical map shows major roads, all roads, railroads,

topographical contours, or any combination of these.

55 If a property is not inherited by a concept, but is inherited by its metaconcept, then the arcs are defined
in this way.

88

is useful for displaying relations between concepts, rather than relations between the
things the concepts represent.

3. A statement. This directly specifies a particular arc, which appears if its subject
appears as a node (and if knowledge map traversal depth has not been reached).
Specifying relations using individual statements is useful for the creation of very
specific networks. Unless specific statements are used to define relations, the network
will have as arcs all the statements whose predicate is a given property.

Any number of any combination of the above can be used to define a knowledge map’s
relations. For example, a complex knowledge map might show all of the following:

• An inheritance hierarchy (specified using the subconcepts metaconcept property).

• Links among concepts that represent things in a part-whole relationship (specified using
the parts property)

• A few additional arcs of interest, e.g. showing particular people who own certain things
(specified with a few statements whose predicate is owner).

Figure 4.2 shows a graph that illustrates the above knowledge map.

Figure 4.2: A graph showing a knowledge map with several relations. The starting
concept is thing . The relations are subconcepts and part, plus several o w n s
statements.

When several relations are used in the definition of a knowledge map, the first property
listed is known as the primary relation. The importance of this will become apparent later.

It is important to note that ordinary users do not need to know any of the details in this
section to work with knowledge bases. Such users have a few simple commands available
that create the most useful types of knowledge map. More details on types of knowledge
map and commands are found in the following two sections and in section 4.2.1.

89

4 . 1 . 2 Classes of knowledge map

The following are the main classes of knowledge map. All are defined in the manner
described above, but each has a specific use and a simple command whereby the user can
create it. There are separate commands, for example, to open an inheritance hierarchy or a
property hierarchy. Also, the implementations of each class are optimized.

Inheritance hierarchies

Knowledge maps showing inheritance hierarchies have the subconcepts primitive
property as their relation:

• The most commonly used knowledge maps are those which display the entire inheritance
hierarchy. They have a single starting concept, the top concept: thing. Because the entire
inheritance hierarchy can become very big, masks (section 4.3) are used to help constrain
what is visible.

• A knowledge map that displays a subtree of the inheritance hierarchy would have a
different starting concept, but the same subconcept relation. Several distinct subtrees are
shown if there are several starting concepts.

Property hierarchies

These generally have the top property as their starting concept and use the subproperties
primitive property as their relation. It is also possible to display subtrees of a knowledge
base’s property hierarchy, but this is rarely done.

Statement hierarchies

As their starting concept, these generally have a statement whose predicate is the top
property. They use the substatements primitive property as their relation.

Arbitrary relations graphs

These are the most general knowledge maps, and also the most sophisticated since users
must explicitly choose the starting concepts and relations. The following show how to
construct particularly useful types of knowledge map:

• To display a finite state machine, create a knowledge map with several starting concepts
that are instances of state and use the outgoing transition relation.

• To display a finite state machine that also includes superstates and substates (Harel 1987);
do the same as the above, but also include the substate property as a relation.

• To show all the possible ways a set of starting concepts are related to each other, create a
knowledge map that uses the top property as its relation, and has a traversal depth of one.

90

• To show all the possible human relations among a particular set of people, do the
following: Make person possess a property related persons, which has subproperties
for various types of human relations (father, mother, friends, spouse etc). Then
create a knowledge map whose starting concepts are a set of instance of person and
whose relation is related persons.

4 . 1 . 3 Commands available on the knowledge map interface

As figure 3.17 shows, all communication between the knowledge engine and the mediating
representations that actually display knowledge is mediated by the knowledge map
interface. The interface of the knowledge engine has a set of low-level functions to access
and manipulate specific concepts. The interface of the knowledge map layer, on the other
hand, is more abstract.

The same knowledge map command can be used for any relation. Thus the user does not
have to remember separate commands to add subconcepts, subproperties, parts etc. There
is just one command that performs the appropriate action depending on the relation. For
example if an inheritance hierarchy is displayed (i.e. the primary relation is subconcepts),
then adding a child of a selected node creates a subconcept. On the other hand, if a
statement hierarchy is displayed, then a new substatement (and its corresponding
subproperty) is created. This benefit is called polymorphism in the object-oriented world.

Another way by which knowledge maps provide abstraction is that they allow operations
on sets of nodes and/or arcs, or even on entire subhierarchies. To do this, knowledge maps
automatically maintain a set of selected concepts, and one master selected concept. These
selections can contain either nodes or arcs. More details about selections can be found in
section 4.2.1.

The following are the main classes of commands available on the knowledge map interface.
Details are not specified since they can be found in the CODE4 user manual (Lethbridge
and Eck 1994).

• Adding children or siblings of one or more nodes.
• Deleting one or more nodes or arcs.
• Renaming a node.
• Changing the parent of one or more nodes (reparenting).
• Adding a new parent of one or more nodes.
• Changing the order of sibling nodes.
• Creating a new knowledge map whose starting concepts or relations are one or more

nodes or arcs.

4 . 1 . 4 Knowledge management problems addressed by knowledge maps

The following are ways in which knowledge maps are designed to help with knowledge
management problems (as listed in section 1.4):

91

• Problem I-5: Extracting knowledge. Knowledge maps provide useful ways to
define the kind of knowledge that should be extracted. They can also be hooked together
so that concepts selected in one knowledge map can change the definition (starting
concepts and/or relations) of another knowledge map. This provides the basis for a very
flexible browsing mechanism, described in the next section. Knowledge maps are also
designed to work with masks, described in section 4.5.

• Problem A-1: Special purpose restriction. Knowledge maps are a very general
purpose mechanism.

• Problem A-2: Expertise restriction. Despite the power of knowledge maps when
used by experts, the beginner need see none of that. For the beginner, knowledge maps
mean learning fewer commands (due to their polymorphic nature). Knowledge maps also
form the foundation on which user-friendly mediating representations can be built.
Because knowledge maps provide the same interface to each mediating representation, the
latter resemble each other more closely and hence are easier to learn.

4 .2 Mediating representations and browsing

In CODE4, a browser is a mediating representation that operates on the set of concepts
defined by a knowledge map. CODE4 has three types of browsers:

• The outline mediating representation displays knowledge in a manner similar to an outline
processor, using indentations to show relationships.

• The graphical mediating representation displays knowledge as a two-dimensional
network of nodes and links.

• The matrix mediating representation displays knowledge like a spreadsheet, with cells
organized into rows and columns.

There is also a fourth class of mediating representation called the ‘user language’
representation. A member of this class is not called a browser because its purpose is purely
to allow the value of a single statement to be edited. It uses a degenerate knowledge map
with the single statement as its starting concept, and a null relation. It is called a mediating
representation in its own right, distinct from the others, for the following reasons:

• To maintain a one-to-one mapping between knowledge maps and mediating repre-
sentations.

• Because it has a distinct set of commands, e.g. to perform special formatting.

• Because it is a distinct unit in the browser hierarchies discussed in the next section.

92

4 . 2 . 1 Common features of CODE4’s mediating representations

The following are descriptions of general features shared by two or more of CODE4’s
mediating representations. Some features are inapplicable to the user language mediating
representation and others are inapplicable to the matrix representation, but they all apply to
the outline and graphical representations.

Uniform ways of making selections

Since browsers display sets of concepts, CODE4 provides various ways of manipulating
these sets. Of most importance are ways to select such sets so that commands may be
performed on them. Any combination of nodes and arcs may be selected in the following
ways:

• By clicking with the mouse on a concept (or sweeping the mouse over a set of concepts),
possibly with combinations of special keys (shift, control) also pressed, the user can: a)
select or deselect concepts, b) add to or subtract from an existing selection, c) add or
subtract whole hierarchies.

• Any command that creates a new concept always selects it so subsequent commands can
operate on it. This facilitates performing sequences of commands rapidly.

• The user may use the highlighting mask, described in section 4.3, to select concepts that
fulfill arbitrary criteria.

Details of the procedures to select concepts can be found in the CODE4 user manual.

Any selected concept appears in reverse video. Figure 4.3 shows three selected concepts
(in two different subwindows): person, dog and owns . Among every selected set of
concepts, the most recent one selected is always considered the master selection. The
master selection is always surrounded by a ‘barbershop’ pattern, and is used whenever
some operation (such as renaming) can only logically operate on a single concept. In figure
4.3, person and owns are master selections.

When a set of concepts is selected, that selection is passed to the underlying knowledge
map. This may result in the changing of any driven knowledge maps as described in the
next subsection.

Organization of mediating representations into hierarchies

It was mentioned in section 4.1 that knowledge maps can be linked together so that the
selection in one knowledge map controls the definition of another knowledge map. A
knowledge map whose selection affects another is called a driving knowledge map (and the
corresponding mediating representation is called a driving mediating representation or
driving browser). Whole hierarchies of knowledge maps, and thus mediating
representations, can be constructed ‘on the fly’ using this mechanism. These are called

93

browser hierarchies, and are considerably more powerful than the kinds of browsers made
popular by the Smalltalk environment (Goldberg 1984).

Figure 4.3 shows three mediating representations arranged in a hierarchy.

• At the left is an inheritance hierarchy. The concepts selected in this determine what is
shown in the other two subwindows.

• At the upper right is a statement hierarchy. The subject of all statements shown is the
master selection in the inheritance hierarchy56, but a statement is only shown if its
predicate is possessed by all of the concepts selected in the inheritance hierarchy. The
statement selected in the statement hierarchy is passed to the bottom-right subwindow.

• The bottom right subwindow contains a user language mediating representation that
displays the value of the statement selected in the statement hierarchy.

Figure 4.3: A simple compound browser. On the left is an outline mediating
representation showing an inheritance hierarchy. On the right (upper part) is another
outline mediating representation showing a statement hierarchy. At the bottom right is a
user language mediating representation. Near the top of both outline subwindows is a
pane where the user can edit the text of the master selected concept (i.e. person or
owns). At the top of all three mediating representations is a list of useful commands
(e.g. ‘all’, ‘honly’).

56 If no concept is selected in the inheritance hierarchy, then the top-right subwindow becomes a property

hierarchy.

94

Any selection made in a driving subwindow can thus completely change the knowledge
displayed in all driven subwindows. This permits rapid navigation of a knowledge base.
The depth and breadth of browser hierarchies is unlimited, although hierarchies created by
users rarely exceed four levels deep and twelve mediating representations in total.

Organization of mediating representations into compound browsers

A window containing one or more browsers is called a browser window. When such a
window contains more than one mediating representation, it is called a compound browser.
The mediating representations within compound browsers are always in driver-driven
relationships. To make it easy to build and use browser hierarchies, CODE4 provides a set
of predefined templates for browser windows, most of which describe compound
browsers. Figure 4.3 illustrates the most popular of these.

Within a browser window, the subwindow at the top right contains the primary browser
(its knowledge map is hence called the primary knowledge map).The other browsers in the
window (if any) are driven, directly or indirectly, by the primary browser.

To open a new browser window, the user chooses from a menu of possibilities. There are
two places from where the user can obtain such a menu:

• From the control panel (see section 4.4). Unless the user explicitly requests
otherwise, the primary knowledge map of a browser window opened from the control
panel uses default starting concepts (generally the top concept or the top property). The
user may optionally, however, pick any starting concept from a menu.

• From any other browser. In this case, the starting concepts of the primary
knowledge map are the selected concepts in the originating browser. The primary
browser, however, may or may not be driven by the originating browser. The newly
opened browser window is described as dynamic if its primary browser is driven (i.e.
changes when selections in the driving browser change); otherwise it is termed static. A
command is available to make any dynamic window static – i.e. so its primary browser is
no longer driven. A dynamic browser window is automatically closed when its driving
window is closed.

In addition to creating a separate window, it is also possible to add new driven
subwindows inside an existing browser window. Furthermore, one can delete or rearrange
subwindows.

Displaying the current state of the knowledge base

Unless otherwise specified, mediating representations keep themselves current with respect
to the state of the knowledge base. In other words, whenever a knowledge base is updated,
all mediating representations must regenerate their contents by querying their knowledge
maps. Of course, various optimizations can reduce the amount of computation involved.

95

Commands are available to switch off this automatic updating to prevent repeated
redrawing of complex displays. This can be useful, for example, when the user wants to
rapidly enter knowledge in one window while ignoring others. When a mediating
representation is out of date with respect to the knowledge base, its background colour
changes to grey.

Uniform handling of commands

Mediating representations handle some user commands themselves (e.g. changing their
appearance) but pass most to their knowledge map (see section 4.1.3).

Like some personal productivity software, CODE4 has a flexible way of allowing users to
tailor how they issue commands. They can be issued in any of the following ways:

• By using particular combinations of keystrokes (definable by the user).

• By selecting from menus.

• By clicking the mouse on icons that appear at the tops of each mediating representation.

The bindings from particular keys, menu items etc. to particular commands can be readily
tailored.

Additionally, two commands can be issued by directly typing text. These are: a) the
command to rename the master selection (to change the value in the user language
mediating representation), and b) the ‘fast goto’ command discussed in section 4.3. Aside
from these textual commands, all commands in mediating representations have three
sources of arguments:

1. The set of selected concepts in the knowledge map from which the command is issued.

2. The single master selected concept in the knowledge map.

3. A concept that has been buffered. There is a specific command to place in a buffer the
currently master selected concept of any knowledge map. This remembers a particular
concept that is then globally available to subsequent commands performed on the
knowledge base. Buffering acts like the ‘copy’ function available in most graphical user
interface environments, and indeed is an extension of this function (so that the user can
‘paste’ concepts, or textual representations of concepts, into various parts of the
interface). The word ‘buffer’ is used, however, because ‘copy’ gives the user the
wrong impression about what the buffer command does.

4. A numeric argument that the user can optionally type before issuing the command. If
the user does not type a number, then the number 1 is assumed.

There are six basic types of commands; these use the different argument sources as
follows:

96

a) Commands that require one argument which can be a set of concepts,
but which cannot be repeated (e.g. deleting any number of nodes). These use
argument source 1.

b) Commands that require a set argument and which can be repeatedly
performed on the same argument (e.g. repeatedly adding child nodes). These
accept argument sources 1 and 4.

c) Commands that require one argument which cannot be a set (e.g. renaming
a concept) use argument source 2.

d) Commands that require two distinct arguments (e.g. moving concepts to a
new parent) use argument sources 1 and 3.

e) Commands that just take a numeric argument (e.g. setting traversal depth). use
argument source 4.

f) Commands that take no arguments (e.g. closing a window).

This scheme for supplying arguments to commands is relatively straightforward since each
kind of operation naturally falls into one of the six categories. The only difficulty arises
with commands of type d) where users must know which argument has to be buffered and
which has to be selected. The labels in menus are designed to make this clear.

The above command structure helps with a major objective: Making the interface largely
non-modal. Since the interface does not need to prompt users for arguments, they are free
at almost all times to choose their next actions – this puts them in control of the interaction.

4 . 2 . 2 The outline mediating representation

The outline mediating representation displays one node per line. Indentation indicates the
relationship between nodes. Child nodes are found at an indentation level one greater than
their first parent, in whatever relationship is being displayed.

The most common use for outline mediating representations is a pair of them displaying, a)
the inheritance hierarchy (complete or partial), and b) the statement hierarchy of a particular
subject selected from that inheritance hierarchy. A browser with such a pair is shown in
figure 4.3. However, it is also reasonable to use an outline mediating representation to
display any knowledge map that describes a hierarchy or near-hierarchy57 (e.g. a
meronomy or part-of hierarchy). The outline mediating representation is less useful when
cycles can occur (e.g. in a finite state machine). Figures 3.11 and 3.12 also show this
mediating representation.

The outline mediating representations has the general features discussed above, plus the
following special features:

57 A near-hierarchy is a hierarchy with the possibility of a node being an immediate child of itself.

97

• When a concept appears multiple times (due to multiple inheritance, cycles in a graph
etc.), the second and subsequent occurrence is followed by an ellipsis, ‘…’. To avoid
infinite displays, no deeper levels of the hierarchy are redisplayed following such a
repeated concept.

• Both nodes and arcs of the knowledge maps are displayed (and can be selected, edited
etc). The arcs are the ‘bullets’ that appear on each line before the node name. Bullets have
distinctive shapes depending on their predicate.

• In addition to a concept’s name, the values of properties can also be displayed on each
line. In figure 4.3, values of the property ‘owns’ are shown next to every subject that
possesses this property. Also, statements are shown as the predicate name followed by
the value, followed (optionally) by other selected facets.

• The display can be alphabetically sorted.

4 . 2 . 3 The graphical mediating representation

The graphical mediating representation displays nodes in boxes joined by lines which
represent the arcs. All of the features of mediating representations in general (section 4.2.1)
are applicable, plus the following special features:

Figure 4.4: Format options for the graphical mediating representation.

98

• Groups of selected nodes can be freely moved around a conceptually infinite ‘canvas’.
Users can scroll the display by moving the cursor off the side of the window or by using
scrollbars.

• Several graph layout algorithms can be invoked to rearrange the whole graph or just a
portion of it. Figure 4.4 shows a non-modal dialog used to control which algorithm will
be used as well as various other aspects of a graph’s appearance.

• The current layout of the graph (or of a particular subset of the nodes) can be saved for
later recall. Layout information is stored as the values of a particular primitive
metaconcept property. This facility helps users by recording their particular visualization
of how concepts are arranged.

An example of a graphical mediating representation is in figure 4.2. Other examples are
figures 3.2, 3.4, 3.5 and 3.13.

4 . 2 . 4 The matrix mediating representation

A matrix mediating representation displays the contents of a special knowledge map that
contains several rows and columns of concepts. On one axis is a set of concepts (the
subjects58) and on the other axis is a set of properties (the predicates). The intersections of
rows and columns are ‘cells’ containing statements formed from subject/predicate pairs.

The starting concepts used to generate the display generally come from driving knowledge
maps. A number of options are used to compute which subjects and predicates will actually
appear.

The subjects can be:

• The starting concepts themselves.
• The siblings of the starting concepts.
• The coordinates of the starting concepts (those in the same dimension).
• All concepts above the starting concepts in the inheritance hierarchy.

The predicates can be:

• The starting concepts themselves (or the predicates of the starting concepts if the latter are
statements).

• All the predicates possessed by all the subjects (i.e. the union of the subjects’ predicates).
• Only the predicates possessed by all the subjects (i.e. the intersection of the subjects’

predicates).

58 These concepts may not yet have anything said about them, so they may not strictly-speaking be called

subjects. However, a major purpose of the matrix mediating representation is to allow users to turn
them into true subjects by specifying values of statements.

99

• Only the predicates shared by two or more of the subjects (i.e. the union of pairwise
intersections; or the union of predicates less those possessed by only a single subject).

Additionally, the predicates can be restricted to:

• Just those where one of the values is different from the others.
• Just those where at least one of the values is non-nil.
• Just those where at least one of the values is locally specified.

Figure 4.5 shows a non-modal dialog that can be opened to set most of these options.

Figure 4.5: Format options for the matrix mediating representation. These options,
discussed in the CODE4 user manual, alter how the concepts selected in a driving browser
affect what appears in a property comparison matrix.

The matrix mediating representation has many of the features also found in the graphical
and outline mediating representations. These include: a) the ability for users to select
concepts on which to perform commands; b) the ability to be driven by other browsers; c)
the ability to be part of a compound browser; c) the fact that the knowledge displayed is
always kept current, and d) the ability to work with the mask (section 4.3).

There are several important functions of the matrix mediating representation:

100

1) To help a user understand the differences among a set of concepts. The user studies the
cells that differ. Figure 4.6 illustrates such a situation, where a user is comparing
persons and dogs plus particular instances of each. To do this, users request the
predicates that differentiate among the subjects.

2) To help a user make distinctions between concepts. The user displays all the predicates
of the subjects and fills in appropriate cells.

3) To help a user understand how a predicate is refined in successive subconcepts. Figure
4.7 shows such a ‘property history’ matrix that illustrates how the legs and arms
properties of person are derived. This is particularly useful when trying to understand
how values are combined due to multiple inheritance.

Figure 4.6: A property comparison matrix. This shows the values of all the statements
that have particular subjects (columns) and predicates (rows). The subjects and predicates
are generally determined by a driving knowledge map in conjunction with the options
shown in figure 4.5. ‘n/a’ means that the subject does not possess the predicate.

4 . 2 . 5 Knowledge management problems addressed by mediating
representations

CODE4’s mediating representations help solve many of the problems listed in section 1.4:

• Problem I-1: Categorizing. The mediating representations display categorizations in
various different ways so users can understand them better (e.g. by visualizing them in a
graph, studying distinctions in a matrix etc.).

101

• Problem I-2: Naming. This is facilitated by the ease of naming concepts, by the
ability to rapidly open driven subwindows to manipulate or explore the terms of selected
concepts.

• Problem I-3: Making distinctions. The matrix mediating representation helps with
this by displaying the values of all properties of several concepts.

• Problem I-4: Understanding effects. This is aided by the fact that knowledge can
be displayed in various ways in several windows, and by rapid browsing of large
amounts of knowledge. The matrix mediating representation helps particularly in this
regard.

Figure 4.7: A property history matrix. This shows how the values of statements of the
properties legs and arms become more specialized as their subjects become more
specialized. ‘n/a’ means that the subject does not possess the predicate.

• Problem I-5: Extracting. The chaining of browsers helps with this as does the matrix
mediating representation.

• Problem I-6: Handling errors. The matrix mediating representation helps users
notice inconsistencies and incompletenesses.

• Problem A-1: Special purpose restriction. The mechanism is not limited to any
domain.

• Problem A-2: Expertise restriction. Simple graphs and outline representations are
easy to use. The non-modality of commands also help reduce the amount of expertise

102

required to use them. Although there are numerous facilities available, the beginner can
add basic knowledge as soon as she or he learns how to: a) open a basic browser, b) add
a child, and c) type a name or statement value.

4 .3 Masks

A mask is a logical expression evaluated for each concept in a knowledge map as the con-
cept is being prepared for display. It is composed of a set of conditions (or criteria) related
by logical operators, and is either ‘true’ or ‘false’ for each concept. Each knowledge map
has two masks59:

• A visibility mask that determines whether the concept will be displayed (true) or hid-
den (false). The default visibility mask allows every concept to be displayed.

• A highlighting mask60 that determines whether a concept will be highlighted
(underlined). The default highlighting mask highlights no concept.

Whenever a knowledge map needs to be redisplayed (when the knowledge base is edited,
when the knowledge map’s definition changes or when a mask changes) the masks are
reapplied. This is because the set of concepts that fulfil the masks’ criteria may have
changed.

The set of conditions in the mask is often very simple, e.g. showing or highlighting the
concepts whose colour property has value ‘blue’. An expert, however, may create a
complex mask combining several conditions into an arbitrary logical expression. Each
condition is composed of a mask predicate and possibly other arguments. A mask predicate
is simply a function that takes a concept as an argument61 and returns true or false.

4 . 3 . 1 Using masks

Masks are used for several related purposes:

• To focus the display or reduce ‘clutter’: For example to show only one or two sub-hierar-
chies or to show only those concepts that are ‘complete’ i.e. finished. (‘Completeness’
could be determined, for example, by examining some metaconcept property).

• To perform database-like retrieval: E.g. “show me only concepts having the property
‘connected-to’ where one of the statement values is ‘power supply’, and which have been
entered since last Friday”. The display would be instantly restricted to just these concepts

59 Knowledge maps for user language mediating representations lack masks.

60 Called the ‘selection criteria’ in the system for historical reasons.

61 In object oriented terms, a method whose receiver can be any concept.

103

(in the graphical mediating representation a partial graph may be shown with dotted lines
indicating the union of several arcs).

• To find concepts rapidly: The highlighting mask may also be used to select all concepts
that fulfil its criteria. Optionally, the visibility mask can be overridden by the highlighting
mask so the user can find concepts that are excluded from view. One might apply such a
mask to select some concepts in order to apply some command to them.

There are two primary methods of performing the above functions:

• Users can use special commands that perform specific actions, e.g. to exclude the
selected concepts from display. These actions indirectly update one of the masks.

• They can open a mask window, such as the one shown in figure 4.8 in order to edit the
mask directly. Once editing is completed they can issue a command to reapply the mask.

Figure 4.8: An example mask window. This mask has three mask predicates that are
logically conjoined. This mask displays or highlights those concepts that are in the
hierarchies of either living thing or nonliving thing (first condition), and that are
neither terms, statements nor metaconcepts (third condition). The second predicate
currently has no arguments so it has no effect.

Beginners use the first method almost exclusively. A particularly useful command is the
‘fast go to’ facility62. If a user types a ‘>‘ symbol63 followed by a regular expression, the

62 Not yet available in the matrix mediating representation.

63 Whenever a ‘>‘ symbol is the first character typed, the ‘fast go to’ command is invoked instead of the
rename comand. To actually give a concept a term beginning with ‘>‘ the user would have to type the
name directly into the name field at the top of the outline and graphical mediating representions.

104

highlighting mask will be used to select any concept whose label matches that expression.
The mediating representation also scrolls to the first selected concept. If the user types ‘>>‘
followed by a regular expression, the same thing happens, except that the visibility mask is
temporarily overridden.

4 . 3 . 2 Knowledge management problems addressed by masks

The following are some of the problems (from section 1.4) that the mask facilities help
solve:

• Problem I-2: Naming. This is helped by the ability to find or highlight concepts by
any one of multiple names.

• Problem I-5: Extracting knowledge. This is the primary use of the mask.

• Problem I-6: Handling errors. The mask can help users find errors in their
knowledge; for example a user could ask to find all concepts that have mutually exclusive
values of particular properties.

• Problem A-4: Individual-use restriction. The mask can be used to help a user
focus on just those aspects assigned to him or her. It can also highlight parts of the
knowledge for group discussion.

• Problem A-3: Size restriction. The ability of the mask to restrict what is on display
helps deal with large knowledge bases.

4 .4 Other interface features

This section summarizes two other important features of CODE4’s user interface. This
thesis does not focus on these features, but they are mentioned for completeness.

4 . 4 . 1 The control panel

As with many software systems, CODE4 has a control panel window. This is the master or
‘top level’ window of the user interface. It is used to initiate all loading and browsing of
knowledge bases and to set detailed parameters that control how CODE4’s various features
will work. Part of a control panel window is visible at the top right of figure 4.1.

One of the most important parameters set in the control panel window is the ‘user expertise
setting’. At any time when using CODE4, the user can choose one of ‘beginner’,
‘intermediate’ or ‘expert’. In beginner mode, the whole user interface has fewer menu
choices and a simpler appearance than in intermediate or expert mode. The expertise
options are always visible at the top left of the control panel window.

Normally, users can rename concepts by typing anywhere in the mediating representation.

105

Also permanently visible, below the expertise settings, are a set of selections that control
which specific control panel appears in the right of the control panel window. The
following are some examples of specific control panels:

• The ‘knowledge bases’ control panel allows the user to perform such operations on
knowledge bases as loading, saving, merging, opening browsers etc. Figure 4.1 shows a
‘knowledge bases’ control panel.

• Various format control panels allow the user to tailor the look and feel of the different
mediating representations, either globally or on a window-by-window basis.

• The help control panel gives access to an online help system64.

The primary benefit of the control panel is to help solve problem A-2 (expertise restriction).

4 . 4 . 2 The feedback panel

In section 4.2 it was mentioned that CODE4’s user interface has been made largely non-
modal by the use of commands that do not require prompts. However, requesting
arguments is not the only reason why software systems display prompts (also known as
modal dialogs). Other reasons of the display of such dialogs are:

a) To indicate to the user that something major is to be deleted (or some other drastic
action is to take place) and to ask whether the user really wants to go ahead.

b) To warn the user that a requested command has side-effects of which he or she may not
be aware, and to ask whether the user still wants to go ahead. An example occurs when
deleting a property: The user may not realize that the property will be deleted from the
system as a whole and not just from one main subject.

c) To indicate to the user that a command cannot be executed because some condition is
not met, and to ask the user for an acknowledgement . An example occurs when
attempting to delete a primitive property: The system responds that this cannot be done.

d) To indicate to the user that there are alternative ways of performing a command and to
ask the user to chose one. An example occurs when changing the most general subject
of a property: In this case the system needs to know whether to also move the value of
the statement at the old most general subject.

In CODE4 non-modality is maintained in the above circumstances by the use of the
feedback panel. Instead of presenting a modal dialog, the problem the system wants to
point out is placed in the feedback panel which is brought to the front of the display. In the
cases where further action is needed (cases a, b and d), the choices are listed in a pane of
the feedback panel. The user may complete the command by selecting a choice, but in no

64 Currently only partially implemented. This can also be invoked for any command by holding down the

shift key when requesting that command.

106

case is obliged to do so. He or she is free to do some other action, optionally returning later
to complete the command.

This is important because users frequently need to gather further information before they
can decide which of several choices to take. The feedback panel thus helps with the
following problems: problems I-4 (understanding effects) and problem I-6 (handling
errors). As will be discussed in chapter seven, the feedback panel is only partly developed
in the current implementation of CODE4.

107

Chapter 5

Knowledge Base Measurement

In chapter 1 it was stated that the goal of this research is to provide techniques to make
knowledge management practical – so people can productively construct useful knowledge
bases. In addition to facilitating construction, however, it is also necessary to be able to
analyse what has been created to determine how much work has been done, how good it is
and how it compares with other work. Chapters 3 and 4 contained ideas about the represen-
tation and presentation of knowledge; this chapter discusses the measurement of that
knowledge.

It must be emphasised that this chapter is not an evaluation of the thesis research – all eval-
uation (including evaluation of the metrics themselves) is found in chapter 6.

5 .1 Introduction

There are several purposes in attempting to measure knowledge bases:

• To allow knowledge engineers to monitor their work and to provide baselines for its con-
tinual improvement.

• To facilitate research into how knowledge bases, users and domains differ in terms of
characteristics such as quality, experience and structural characteristics.

• To facilitate research into user interface and knowledge representation features, by pro-
viding grounds both for their comparison and for the comparison of knowledge bases
built using them.

• To provide means whereby research using different systems can be put on a common
footing.

Measuring knowledge bases appears to be a novel idea in knowledge representation; no
precedents for the ideas described here have been found in the artificial intelligence litera-
ture.

The approach taken in this chapter is as follows: Section 5.2 defines exactly what mea-
surement means and what is being measured. The section also surveys measurement in the
related field of software engineering. Section 5.3 discusses the kinds of general measuring

108

tasks people may want to perform; and Section 5.4 then presents some ideas for metrics
that can be used in the measuring tasks.

The ideas in this chapter are largely intended to stimulate further research. Only with the
analysis of very large amounts of data can metrics, like those proposed here, gain compara-
ble stature to those in software engineering.

5 .2 Some important definitions and background

5 . 2 . 1 Measurements vs. measures vs. metrics

It is necessary to understand subtle differences between the words ‘measurement’,
‘measure’ and ‘metric’. The word ‘measurement’ has two main senses that are of concern
to this work: 1) The general process of measuring, and 2) a specific value (generally nu-
meric) found as the result of a particular activity of measurement (in sense 1). These two
senses are almost always distinguishable by context.

In normal English, an important sense of the word ‘measure’, as a noun, is as follows: A
scale or unit for taking measurements. Often implicit in a measure is a procedure for mak-
ing those measurements. Two simple examples: 1) The meter is a measure of length. 2)
Words-per-minute is a measure of productivity for a typist, and implies timing a typist over
a fixed interval and counting the number of words produced. A measurement (in sense 2) is
the result of applying a particular measure.

In computer science and in other technical fields the word ‘metric’ has come into use, as a
slightly specialized type of measure. A metric is a measure that normally has some specific
purpose, often providing a concrete or objective way of gauging some abstract or subjec-
tive phenomenon. In general, a metric is chosen or proposed for standard use because it
has useful qualities such as understandability. In the field of typing for example, words-
per-minute is the normal metric for the abstract phenomenon of productivity; whereas mil-
liseconds-per-word and keys-pressed-per-hour (while conveying much the same informa-
tion) are measures that would not generally be used as metrics. In this thesis the word
‘metric’ is used as opposed to ‘measure’, in accordance with common practice in computer
science.

This chapter discusses aspects of knowledge bases that might be measured and proposes
specific metrics that can be used in that process. The major goal in developing the metrics is
maximizing their usefulness.

5 . 2 . 2 Open-ended vs. closed-ended metrics

A closed-ended metric is one where measurements can only fall within a particular range –
and where it is logically impossible for them to fall outside that range. The ratio of some

109

part to its corresponding whole is of this type: Its range can only be from zero to one. An
example is the fraction of all concepts in a knowledge base that are type concepts.

An open-ended metric is one where at least one of the ends of its range are not absolutely
fixed. Although the probability of a measurement outside a particular subrange might be
very small, it is still finite. An example of an open-ended metric is the number of type con-
cepts in a knowledge base.

5 . 2 . 3 Important metrics in software engineering

In the field of software engineering the need for metrics has been widely recognized. It is
therefore worth trying to learn some lessons from them before setting out to develop met-
rics for the allied field of knowledge management. Software engineering metrics are used
as measures of productivity and as tools in project planning. The following are some of the
more widely used:

Lines of code

Lines of code (LOC or KLOC for thousands) is a very basic and intuitively obvious metric;
it is widely used but has many flaws. A major use, now frowned upon by many people, is
to judge programmer productivity. The main problem is that LOC varies widely with the
application, programming language, coding style and type of module being programmed.
Also, programmers can ‘pad’ their apparent productivity by writing unnecessarily verbose
programs or adding whitespace. A further problem is an inconsistent definition: Does LOC
include comments? Does it include blank lines?

Another use to which lines of code has been put is helping project the completion time of a
software engineering effort. The typical scenario is as follows: Based on the requirements,
a management team makes a subjective estimate of the number of lines of code (using pre-
vious experience as a guide). Various heuristics are then used to project how long it will
take to develop that number of lines: For example, depending on the environment and the
individual, a programmer might be able to program between 5 and 100 lines per day. These
methods for projecting project completion have fallen into disrepute due to persistent diffi-
culties in making accurate estimates. As was discussed in the previous paragraph, lines of
code is just not well enough correlated with volume of work.

Function points

Function points (Low and Jeffrey 1990) is becoming widely recognized as a better metric
than lines of CODE. It measures functionality, and is determined by counting specific items
in a software requirements specification (unadjusted function points), and then factoring in
other subjectively-estimated aspects of a project such as the importance of reuse.

The International Function Points User Group (IFPUG 1994) is now the custodian of the
function points methodology. This organization works to refine the counting methods and

110

adjustment formulas and to adapt them to different technologies. A major goal is that the
subjective perception of the amount of functionality in any project should correlate well
with that project’s function point count.

Function points works far better than lines of code for judging productivity since it is inde-
pendent of programming language and cannot be padded during implementation (although
it can certainly be padded during analysis in order to increase the value of a contract).

The function points metric is also much better than lines of code as a basis for estimating
project completion time. Project planners follow a defined methodology when calculating
function points, whereas lines of code estimates are often little more than guesses. Function
points can be calculated early in development, because they are based on an actual docu-
ment that is produced in the early stages. On the other hand, lines of code cannot be truly
calculated until coding is complete: they can only be projected.

The biggest flaws with function points are: 1) They require significant training to calculate,
and cannot be automatically calculated from an informal specification. 2) The formula for
computing function points considers many aspects of complexity but weights them all
equally, even though there may be huge differences in the importance of these factors.
Despite these flaws, function points is a very useful metric.

Constructive Cost Modelling (COCOMO)

COCOMO (Boehm 1981) is a methodology for projecting elapsed time to completion (in
calendar months) as well as total person-time. It provides a number of formulas that take
into account various aspects of the complexity of a project. A major flaw, however, is that
COCOMO requires as input an estimate of the number of lines of code. COCOMO is also
becoming obsolete because of lack of ongoing research. It is also questionable whether
COCOMO formulas can be called metrics at all – unlike lines of code and function points
they are only used to project, never to measure an existing entity (source code or elements
in a requirements document).

Function points, lines of code and COCOMO can be used together as follows: A function
point estimate is first made. This is then converted into an estimate of lines of CODE after
decisions about implementation technology are made (using heuristics that state how many
lines in a particular language it takes on average to produce a function point). The lines of
code estimate is then converted into time estimates using COCOMO.

Lessons learned

As a result of studying the above metrics, the following are some of the lessons that should
be considered when designing a metric in another field such as knowledge management:

• One should ensure that the metric correlates well with the subjective phenomena about
which it is designed to yield information (unlike lines of code).

111

• One should try to make the metric automatically calculable from a document (unlike
function points and COCOMO).

Luckily there are a great number of possible aspects of a knowledge base that can be
counted, and thus there is wide scope for experimenting with potentially-useful metrics.

5 . 2 . 4 Measuring knowledge bases vs. measuring knowledge

A question that could be asked about this research is: Should one talk about measuring
knowledge or measuring knowledge bases?

In other domains it is conventional to give equivalent meanings to analogous pairs of
phrases (where the objects are in a part-whole or substance-container relationship). For
example measuring the quality of the stocks in a portfolio is considered to mean roughly the
same as measuring the quality of the portfolio. Similarly, measuring the maintainability of a
software system implies measuring the maintainability of the source code.

Knowledge is contained in a knowledge base. So in this thesis the measurement of knowl-
edge is considered to be equivalent to the measurement of knowledge bases.

5 . 2 . 5 The kind of knowledge bases to be measured

This study is concerned with the types of knowledge bases discussed earlier in this thesis;
i.e. concept-oriented (frame-based or semantic-net based) representations such as CODE4-
KR, KM, CycL and KL-ONE. These are now sometimes called object-oriented knowledge
representations, although they should not be confused with object-oriented programming
languages. However, the design of the metrics in this chapter does not preclude their use
with other forms of knowledge base such as those containing rules or problem-solving
methods65.

The reason for the latter assertion is that concept-oriented representations can be made to
subsume the others; or the latter can be seen as more specialized abstractions for the pur-
poses of certain tasks. For example, when representing rule-oriented knowledge in
CODE4-KR one might encode the rules as instance concepts and have additional concepts
for: 1) the things affected by these rules; 2) properties of the rules; 3) statements about
them, etc. One can likewise imagine encoding problem solving methods in a concept-
oriented way. In order to extend a concept-oriented knowledge base so that it can handle
more specialized representations the primary tasks would be to provide new primitive
mechanisms and concepts as well as new mediating representations.

65 A major area of research in the knowledge acquisition community involves encoding problem solving

methods in knowledge bases.

112

5 .3 General tasks for which knowledge base measurement may
be useful

The following subsections list tasks that involve measuring attributes of knowledge bases.
Many of the tasks have analogs in conventional software engineering, but others do not.
The purpose of this section is to further motivate the development of metrics; suggestions
for actual metrics and examples of their use can be found in section 5.4.

The measuring tasks can be divided into three rough categories: 1) assessing the present
state of a single knowledge base (for completeness, complexity, information content and
balance); 2) predicting knowledge base development time and effort, and 3) comparing
knowledge bases (with different creators, domains, knowledge acquisition techniques and
knowledge representations). These tasks are certainly not independent – most tasks depend
explicitly on others; however, categorizing the measuring tasks provides a useful basis to
decide what metrics should be developed.

A clear mapping between tasks and metrics should not be expected: Some metrics might
help with several tasks, and some tasks may require several metrics.

5 . 3 . 1 Tasks A to D: Assessing the present state of a single knowledge
base

Present-state assessment tasks are those where the measurer wants to determine how a par-
ticular knowledge base fits on one of several possible scales. These tasks can be subtasks
of task A, but can also be performed for other reasons.

Task A – Assessing completeness

Important questions in knowledge engineering are: What does it mean for a concept-
oriented knowledge base to be complete? And furthermore, how can one tell when a
knowledge base is complete? A related question is: Given a particular knowledge base,
how close is it to a state of completeness? Unless these questions are answered, it cannot
be possible to predict the effort required to get to that state.

In a well-managed standard software engineering project (where requirements are not con-
stantly changing), completeness can be assessed by determining if the software fulfils its
specification (e.g. passing appropriate testcases). The degree of completeness for a partially
finished project can be estimated based on such factors as the proportion of function points
represented by testcases that have been passed. However, there are a number of fundamen-
tal differences between standard software engineering and knowledge engineering that
make it necessary to find different ways of determining completeness:

113

• In knowledge base development, there rarely is a specification. Knowledge engineering
typically progresses fluidly, perhaps using a prototyping approach or perhaps only with
the rough objective of “documenting a domain” or “designing a widget”.

• Whereas standard software can be broken down into well-defined modules with a well-
defined interface that can be tested; most knowledge bases have a much finer grain –
being composed of concepts or rules that can be referred to by many others in widely
different parts of the knowledge base.

• Knowledge can be expressed in a rough form that is partially suited to the task at hand,
and then gradually refined and formalized so that it becomes more suited to the intended
task. Standard software tends either to work or not to work so there is less scope for
incremental development at the detailed level.

For a knowledge base developed with a particular performance task in mind (e.g. a set of
rules for a diagnosis system) a way of measuring completeness is to apply the performance
system to a set of test tasks that have optimum expected outcomes (e.g. correctly diagnos-
ing faults), and to measure how well the system performs. Unfortunately where no specific
performance task is envisaged (commonly the case for the kinds of concept-oriented
knowledge bases created by users in this research) the above approach is not feasible.

An alternative approach might be as follows: The first step is to recognize there may be no
certain state of completeness. Secondly, it should be possible to measure the amount and
kind of detail supplied about each main subjects in the knowledge base. Finally it should be
possible to ascertain how close this is to the statistical average for knowledge bases that
have been subjectively judged complete. This method has promise if users sketch out the
inheritance hierarchy (i.e. the main subjects) as the first step in developing a knowledge
base (or a part thereof).

Task B – Assessing complexity

A number of metrics allow software engineers to determine the complexity of modules or
subsystems. There are several reasons for doing this: High complexity may be predictive of
greater cost in future stages of development; and it may expose situations where designs
can be improved. A measure of complexity may also help in accurately measuring produc-
tivity, because a small but complex project may take as much work as a large but simple
project.

In software engineering, some measures of complexity include cyclomatic complexity
(McCabe 1976), coupling, fan-out and hierarchy depth (descriptions of these can be found
in any good software engineering textbook, e.g. (Sommerville 1992)). Adaptations of the
latter three may well apply to knowledge bases, but the special nature of knowledge bases
may suggest additional useful metrics.

114

Task C – Assessing information content

It is unusual to pose the following query to conventional software: How much information
is in this system? Rather, one asks: How well does it perform one of its limited number of
tasks? With many knowledge bases however, a major goal is that they be queriable in novel
ways – deducing new facts using various inference methods. The objective is to be able to
uncover latent knowledge. The word ‘multifunctional’ has been used for such knowledge
bases (Acker 1992).

Estimating information content can help determine both the potential usefulness of a knowl-
edge base and the productivity of its development effort. Such metrics should take into ac-
count the fact that some knowledge is a lot less useful than other knowledge.

Task D – Assessing balance

The balance of a knowledge base is defined as either: 1) the degree to which a group of
measurements using related metrics are close to their respective ‘normal’ values, or 2) the
degree to which measurements of different parts of a knowledge base using a single metric
are close to each other.

Knowledge bases are typically composed of a mixture of very different classes of knowl-
edge; e.g. concepts in a type hierarchy, detailed slots, metaknowledge, commentary
knowledge, procedural knowledge, rules, constraints etc. Each project may require a dif-
ferent proportions of these classes; a balance metric of the first type would indicate how
normal a knowledge base is. For example, a knowledge base would be considered unbal-
anced if it contains a large amount of commentary knowledge but very few different
properties. This might indicate that the person building the knowledge base has not been
trained to use an appropriate methodology that involves identifying properties.

The second type of balance metrics are those that show whether different parts of a knowl-
edge base are equally complete or complex, i.e. whether completeness and complexity are
focussed in certain areas or not. A knowledge base would be unbalanced if one major part
of the inheritance hierarchy contained much detail while another part did not.

There is likely to be a strong relationship between metrics for completeness and metrics for
balance; and some balance metrics may be used in the calculation of a composite metric of
completeness. For example if a knowledge base has a low ratio of rules to types, it may be
concluded that there is scope to add more rules; likewise if one subhierarchy is far more
developed than another, the overall KB may be incomplete. However, there are reasons for
measuring balance variables separately (perhaps after a subjective judgement of
completion): They can allow one to characterize the nature of knowledge and to classify
knowledge bases. For example it may be that for some applications, different proportions
of the various classes of concept are normal.

115

There are not many analogs to the idea of balance in general software engineering, but one
example is the measure of the ratio of comment lines to statement lines.

5 . 3 . 2 Task E. Predicting knowledge base development time and effort

This is one of the main tasks for which software engineering metrics are developed: People
are interested in ascertaining the amount of work involved in a development project so they
can create budgets and schedules, or so they can decide whether or not to go ahead with a
project as proposed.

The following general framework illustrates the scenario for such metrics; here the term
‘product’ stands for either ‘software system’ or ‘knowledge base’:

a) Measurements have been taken of a number of products, P1…Pn-1.

b) There is an interest in making predictions about product under development, Pn.

c) One of the metrics, Mt, represents time to create a product.

d) Another metric, Ms, can be calculated early in product development and is found to be
correlated (linearly or otherwise) with Mt.

e) By analysing P1…Pn-1, a function, fp, is developed that reasonably accurately predicts
Mt, i.e. fp(Ms) -> Mt.

In the software engineering world, function points is used for Ms and COCOMO has for-
mulas that fulfil the role of fp, predicting the number of person-months to complete the
project, given Ms.

No similar metrics or functions for the production of concept-oriented knowledge bases
have been found in the literature. Some people consider the production of such knowledge
bases to be a case of software engineering (especially when a KB is being developed for
use in an inference oriented system such as an expert system); however, it is intuitively ap-
parent that lines of code, function points or COCOMO formulas have little meaning and
hence no predictive value for knowledge bases. Furthermore other measures of standard
software engineering projects (e.g. the number of modules, classes etc) are irrelevant in a
concept-oriented framework.

For knowledge management, there is a need to come up with new candidates for Ms and
new functions for fp. Furthermore, there is a need to understand the set of assumptions un-
der which Ms and fp are valid. For example the original function points metric is only ef-
fective for data processing software; and COCOMO has become outdated as a predictive
technique due to improvements in software engineering methods.

As with standard software engineering, prediction cannot be an exact science: Domains,
problems and knowledge engineers differ; and furthermore completeness can only be sta-
tistically estimated (as discussed in section 5.3.1). Nevertheless it still seems a worthwhile

116

effort to give knowledge engineers metrics to help judge how much work they might rea-
sonably need to do.

5 . 3 . 3 Tasks F to I: Comparison

The last section described some uses of assessing a single knowledge base in isolation,
perhaps comparing it with a goal or norm. Another task for metrics is to find relative differ-
ences between knowledge bases so as to indirectly compare their creators, domains, tech-
niques and representations.

Task F – Comparing users

Most of the metrics derived from tasks listed above can lead to useful differential measures
of the skills or productivity of users. By examining knowledge bases they have built, one
can also determine which users are familiar with which features.

Task G – Comparing domains

By measuring various attributes about knowledge bases in particular domains, it may be
possible to ascertain certain constant factors that characterize a domain, distinguishing it
from others.

This kind of knowledge can feed back into the prediction process (task A). For example in
the COCOMO method, different predictive formulas are applied to embedded software and
to data processing software. Similarly it may be possible to distinguish classes of knowl-
edge base that would lead to the creation of different prediction formulas (or different coef-
ficients in the same formulas) for, say, medical rule based systems, electronics diagnosis
systems and educational systems.

Task H – Comparing development techniques

By comparing measures of knowledge bases developed using different knowledge acquisi-
tion techniques it might be possible to decide which techniques are better for certain tasks.
A subsequent objective might be to incrementally improve the techniques using metrics to
evaluate success.

Task I – Comparing representation schemata

In a similar manner to comparing development techniques, it is useful to compare represen-
tation schemata. Even though such a process might require converting knowledge bases to
some common denominator before measuring, it might still be possible to gain useful
knowledge about the effectiveness of the abstractions in each schema.

117

5 .4 Proposals for metrics

This section proposes actual metrics that can be used in the general measurement tasks
discussed in the last section. Evaluation of the metrics, including actual measurements of
knowledge bases, is deferred to chapter 6. There are three classes of metrics: 1) general
open-ended measures of size, 2) measures of various independent aspects of complexity,
and 3) compound metrics.

5 . 4 . 1 Metrics for raw size

One of the most basic questions that can be asked is: How big is a knowledge base; what is
its size? Knowing this can help predict development time and judge information content.
But what do ‘big’ and ‘size’ mean? In conventional software engineering, lines of code is a
useful concrete metric that is easy to calculate given some source code. Knowledge engi-
neering needs a similar metric. Several options were considered, the following two being
the most promising:

The total count of all CODE4 concepts, MALLC

This very physical size measure is appealing as an analog to lines of code which, despite its
problems, is understandable and easy to calculate. Concepts in a knowledge base, how-
ever, can be far more diverse in nature than lines of code: They may include main subjects,
properties, statements, metaconcepts etc. Some concepts may even be created without typi-
cal users realizing it. E.g. a term concept in CODE4 is automatically added when a user
types a new name for another concept.

MALLC might be most useful as a measure of how much memory and loading-time a
knowledge base might require, or how much time certain search operations might take.

The number of main subjects, MMSUBJ

MMSUBJ is the count of just the main subjects, i.e. the important concepts that users specify
directly. It excludes concepts about which nothing is said (e.g. example instances) and also
excludes CODE4’s ‘special’ concepts: properties, statements, metaconcepts and terms.

The benefit of such a metric is that since it ignores the detail that has been ‘filled in’ around
each main subject, it helps in the process of separating the sheer size of a knowledge base
from other aspects of its complexity. MMSUBJ should also be intuitive to users because
most of them directly look at lists or graphs of main subjects, but only indirectly work with
other concepts. Furthermore, since users typically develop knowledge bases by initially
drawing a hierarchy of main subjects and then filling in details, MMSUBJ has the potential to
provide a baseline for the estimation of completeness and the prediction of development
time. All these advantages make it potentially more useful than MALLC.

118

Both MALLC and MMSUBJ have the problem that since concepts differ in importance, what
they count are not ‘equal’ to each other. For example, in many CODE4 knowledge bases
people create a core of concepts which are central to their domain and about which they add
much detail. Typically though, users also add a significant number (10-30%) of concepts
that are outside or peripheral to the domain. In a typical case, a user creating a zoology
knowledge base might also sketch out a rough hierarchy of plants. Both MALLC and
MMSUBJ would consider these peripheral concepts to be as important as the main zoological
concepts.

5 . 4 . 2 Independent and closed-ended metrics for complexity

A number of factors contribute to the complexity of a knowledge base. Seven complexity
metrics have been developed that are logically independent of the raw size. They have also
been designed to be as independent of each other as possible. Of course, just because one
metric is designed to be independent of another does not prevent correlations from
appearing in practice: It may happen that the normal process of knowledge acquisition
results in increasing complexity along the different scales in parallel. Correlation is
discussed in section 6.2.1.

Each of these complexity measures falls in the range of 0 to 1 so that they can be easily
visualized as percentages, and so they can be easily combined to form compound metrics.

Relative Properties, MRPROP

This is a measure of the number of user properties, relative to the number of main subjects.
It is calculated as the square of the ratio of user (non-primitive) properties to the sum of
user properties and main subjects:

MRPROP = (MUPROP / (MUPROP + MMSUBJ))2

Where MUPROP is the number of user properties in the knowledge base.

If a user adds no properties, then MRPROP is zero; MRPROP approaches one as large num-
bers of properties are added to a knowledge base. In the average knowledge base, the
number of user properties tends to be slightly more than the number of main subjects
(0.55, i.e. people seem to add just over one new property for every main subject), hence
MRPROP averages 0.3 (which is 0.55 squared).

The metric is squared to reduce a problem that arises due to the deliberate decision not to
make it open-ended: For each additional property, the increase in the metric is less. Thus in
a 100 main-subject knowledge base, increasing the number of user properties from zero to
100 causes a 0.25 increase, whereas raising it another 100 only causes a 0.19 increase. If
the metric were not squared, this problem would be much worse (the first 100 properties
would cause a 0.5 increase and the next 100 only a 0.17 increase). In practice these dimin-
ishing returns only become severe at numbers of properties well above what have been en-

119

countered. Intuitively there appears to be diminishing returns in the subjective sense of
complexity as well.

Figure 5.1 shows how MRPROP varies as additional properties are added to a 100 main
subject knowledge base.

0
0.1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7
0 .8
0 .9

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

Figure 5.1: Values of MRPROP when there are 100 main subjects. The x axis shows the
effect of an increasing number of user properties. The bold plot is that of MRPROP while
the dashed plot shows what the metric would look like if it were not squared. The squar-
ing flattens the curve and thus makes the metric more useful.

Detail, MDET

This metric is the fraction of statements about main subjects, that have a locally specified
value. Such statements contrast with those that have an inherited value, or no value at all as
can be the case if a property is added and no statements are created using it. If no statement
values are filled in at all in a knowledge base, MDET is zero. If every possible statement
about every main subject is given a specialized value, then MDET equals one. However
should MDET have a value too near one it would indicate that inheritance is not being prop-
erly taken advantage of, and thus there is no knowledge reuse with its complexity-reducing
effect.

To summarise, the formula for MDET is as follows:

MDET = MMSSLV / MMSS

where MMSS is the number of main subject statements (statements whose subject is
a main subject)

and MMSSLV is the number of main subject statements which have local values

120

Whereas MRPROP measures the potential number of specialized statements , MDET indicates
the amount of use of that potential. The next measure, MSFORM, goes one step further and
measures to what degree that use results in the interconnection of concepts.

Statement Formality, MSFORM

This measures the fraction of values (of statements about main subjects) that contain actual
links to other concepts in the knowledge base. If MSFORM is zero, then the user has merely
placed arbitrary expressions in all values. The higher MSFORM is, the more a knowledge
management system would be able to infer additional network structures (i.e. knowledge
maps describing such things as the part-of relation) inherent in the knowledge. The idea of
formality vs. informality, and why these terms are used, is discussed in section 1.2.5.

The formula for MSFORM is as follows:

MSFORM = MMSFS / MMSSLV

where MMSSLV is the number of main subject statements with local values (see
MDET)

and MMSFS is the number of main subject formal statements, i.e. those with local
values containing value items that are other concepts

The denominator of MSFORM is composed of only those statements that form the numerator
of MDET – those statements with locally specified values. It thus should be independent of
MDET : i.e. regardless of whether MDET is near zero or near one, MSFORM can still range
from zero to one. The one exception is when there are no statement values, in which case
MDET is zero and MSFORM is undefined.

Diversity, MDIV

While high measurements of relative properties, detail and formality may indicate that sub-
stantial work has been done to describe each main subject, that detail may be largely in the
form of very subtle differences. There may be a large amount of mere data, expressed as
statements of the same set of properties about each main subject. For example in a knowl-
edge base describing types of cars, hundreds of classifications of cars may be described but
only using a fixed set of properties (engine size, fuel consumption etc.) – such a knowl-
edge base would be subjectively judged to be rather simple despite having a lot of ‘facts’;
MDIV attempts to quantify this subjective feeling.

The diversity metric, MDIV, measures the degree to which the introduction of properties is
evenly spread among main subjects. If all properties are introduced in one place (e.g. at the
top concept) then MDIV is close to zero because the knowledge base is judged to be simpler.
Likewise, MDIV is close to zero if properties are introduced mostly on leaf concepts (so
there is no inheritance). Maximum MDIV complexity of one is achieved when some proper-

121

ties are introduced at the top of the inheritance hierarchy, some in the middle and some at all
of the leaves.

The method of calculating MDIV is described in the following paragraphs; figure 5.2 is used
to illustrate the calculations.

B

C D

A

T

B

C D

A

T

B

C D

A

T

B

C D

A

T

c) d)

MDIV = 0.36
MCONCEN = 0.63

MDIV = 0.36
MCONCEN = 0.63

a) b)

MDIV = 0
MCONCEN = 1

MDIV = 0
MCONCEN = 1

B

C D

A

T

B

C D

A

T

e) f)

MDIV = 0.64
MCONCEN = 0.45

MDIV = 1
MCONCEN = 0

Figure 5.2: Calculation of MDIV. Each part shows an inheritance hierarchy with five
main subjects and five properties (shown as five distinct shapes). Parts a and b show
pathological situations where properties are all introduced at a single concept (the top and
a leaf respectively) and MDIV is thus zero. Part f shows a well balanced case, where each
concept introduces exactly the same number of new properties (one in this case) and
MDIV is one. Parts c, d and e show intermediate cases.

122

To calculate MDIV, the first step is to calculate the standard deviation of the number of
properties introduced at each main subject. This is zero if the introduction of properties is
evenly distributed, and some higher number otherwise. The next step is to normalize this
standard deviation into the range zero to one. The following formula accomplishes this:

MCONCEN = ((σ PI) / MUPROP) * MMSUBJ

where MUPROP is the number of user properties in the knowledge base
and PI is the number of properties introduced at a main subject
and σ is the standard deviation operator

A simple way to convert MCONCEN into a diversity metric would be to calculate 1-MCONCEN.
However, thus results in measurements being too crowded towards zero. MDIV is actually
calculated using the following more subjectively appealing formula:

MDIV = (1 - MCONCEN2)2

Figure 5.3 plots the relationship between MCONCEN and MDIV.

0

0.2

0 .4

0 .6

0 .8

1

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

MDIV

MCONCEN

Figure 5.3: The relationship between MCONCEN and MDIV . MCONCEN, shown in the x
axis is a normalized version of the standard deviation of the number of properties intro-
duced at each main subject. This is transformed using a sigmoid function, as plotted in
the above graph, in order to obtain a metric that has a good subjective ‘feel’.

Second Order Knowledge, MSOK

The metrics described so far totally ignore the presence of second order knowledge, i.e.
knowledge not about the things in the world represented by concepts, but about the repre-
sentations of those things. MSOK measures the use of two types of second order
knowledge:

123

• The use of metaconcepts, i.e. the concepts that describe concepts themselves
• The use of terms, i.e. symbols that represent things.

Every main subject in principle has a metaconcept, but most are ignored by users. Of inter-
est are those which users have explicitly made the subjects of statements (i.e. those which
users have said something about). Similarly, every main subject generally has a term that is
used to name it. However, of interest are those cases where extra terms are specified: This
indicates that users have paid attention to linguistic issues.

MSOK is zero if the user has neither worked with metaconcepts nor specified synonyms for
any concept. The metric gives a measurement of one if every main subject has both multiple
terms and metaconcept statements. MSOK is thus calculated as follows:

MSOK = (MFMETA + MFTERM) / 2

where MFMETA is the fraction of main subjects whose metaconcept has a user-spec-
ified statement

and MFTERM is the fraction of main subjects that have more than one term

Isa complexity, MISA

This metric combines two factors in order to measure the complexity of the inheritance hi-
erarchy. The first factor is the fraction of types that are leaves of the inheritance hierarchy,
ignoring instance concepts which are always leaves (i.e. the fraction of types that have no
subtypes). This measure is called MFLEAF:

MFLEAF = MLEAF / MTYPES

where MLEAF is the number of leaf types
and MTYPES is the total number of types

For any non-trivial knowledge base, MFLEAF is a function of the branching factor, MBF66,
however the latter is not used as a metric because it is open ended (i.e. not in a zero-to-one
range). The formula relating branching factor to MFLEAF is as follows:

 Lim MFLEAF = (MBF - 1) / MBF

MTYPES->∞

where MTYPES is the total number of types

Figure 5.4 shows several simple inheritance hierarchies along with their measures of
MFLEAF. MFLEAF approaches 0.5 when the inheritance hierarchy is a binary tree (figure 5.4,

66 The branching factor is 2 for a perfect binary tree, 3 for a perfect ternary tree etc.

124

parts c and f). It approaches zero in the ridiculous case of a unary ‘tree’ with just a single
superconcept-subconcept chain (part b) and it approaches one if every concept is an imme-
diate subconcept of the top concept (part a).

Types = 15; Leaves = 5
MFLEAF = 0.33
MALLSUP = 3.92
MISA = 0.25; MMI = 0.4

Types = 15; Leaves = 7
MFLEAF = 0.47
MALLSUP = 2.86
MISA = 0.31; MMI = 0

Types = 6; Leaves = 1
MFLEAF = 0.17
MALLSUP = 3
MISA = 0.11; MMI = 0

Types = 6; Leaves = 5
MFLEAF = 0.83
MALLSUP = 1
MISA = 0; MMI = 0

Types = 6; Leaves = 3
MFLEAF = 0.5
MALLSUP = 1.33
MISA = 0.12; MMI = 0

Types = 6; Leaves = 3
MFLEAF = 0.5
MALLSUP = 1.83
MISA = 0.23; MMI = 0.5

Types = 15; Leaves = 12
MFLEAF = 0.8
MALLSUP = 1.71
MISA = 0.33; MMI = 0

Types = 15; Leaves = 10
MFLEAF = 0.67
MALLSUP = 2.29
MISA = 0.38; MMI = 0.53

Types = 15; Leaves = 10
MFLEAF = 0.67
MALLSUP = 2.57
MISA = 0.41; MMI = 0

a) b) c)

d) e) f)

g) h) i)

Figure 5.4: Complexities of various inheritance hierarchies. Parts a through i show in-
creasing complexity using the MISA metric. Parts a and b show simplistic cases (MISA
would be small regardless of the size of the knowledge base). Parts c and d show the same
structure, with variation only in multiple inheritance. Pairs (e,f) and (g,h) also show sim-
ilar structures with variation in multiple inheritance, however MISA can be seen to be
somewhat independent of the adding of extra parents (such an action may either increase or
decrease MISA).

On its own, MFLEAF has the undesirable property that for a very shallow hierarchy (e.g.
just two or three levels) with a high branching factor it gives a measurement that is unrea-
sonably high, from a subjective standpoint (part a of figure 5.4 illustrates this)

To correct this problem with MFLEAF , an additional factor is used in the calculation of
MISA: the average number of direct and indirect superconcepts per non-root67 main subject,

67 i.e. excluding the top concept, which cannot have parents.

125

MALLSUP. This second factor is related to hierarchy depth but depends to some extent on the
amount of multiple inheritance.

MISA is thus calculated using the following formula:

MISA = MFLEAF - (MFLEAF / MALLSUP)

MISA approaches zero in either of the following cases: 1) when there is just a single layer of
concepts below the top concept (no matter how many concepts); or 2) when the branching
factor is one. MISA approaches the value of MFLEAF (e.g. 0.5 for a binary tree) as the hier-
archy becomes deeper (as the average number of direct or indirect parents per main subject
increases).

Multiple Inheritance, MMI

This measures the extent to which main subjects have more than one parent, thus introduc-
ing complex issues associated with multiple inheritance such as the combination of values
when two inherited values conflict. If just single inheritance is present, this metric is zero.

MMI measures the ratio of extra parents to main subjects, thus if all main subjects had two
parents (impossible in fact because the concepts directly below the top concept cannot have
more than one parent) then the metric would be one; it could also be one if a substantial
number of concepts have more than two parents. Although the metric, as described, could
theoretically give a value above one, it is assumed that this could not be the case in any rea-
sonable knowledge base. Thus a ceiling of one is imposed that the metric cannot exceed,
even if there are an excessive number of parents.

5 . 4 . 3 Compound metrics for complexity

In this subsection, the simple metrics for complexity described in section 5.4.2 are
combined into compound metrics in an attempt to give useful overall pictures of a
knowledge base. In the previous subsection, the metrics were designed with reasonable
confidence that they are generally applicable. Here however, the necessity of combining
metrics requires finding numerical coefficients that optimize the usefulness of the result.
Determining such coefficients requires extensive examination of data. In this research the
only data available was that of the user study described in the next chapter. While the
amount of data is quite large for testing metrics, it is not nearly large enough to act as a
‘training set’ for metric optimization. As a result, the main contributions of this subsection
are proposals for procedures for designing metrics, rather than proposals for actual
formulas (the formulas presented are examples of the application of the procedure).

The generic procedure for designing a compound metric is as follows:

1) Choose the metrics that are to be combined by looking for those with certain desired
characteristics.

126

2) Normalize the metrics so that they are not arbitrarily biased.

3) Weight the metrics based on decisions about which are most important, and how much
their values should contribute to the resulting metric

4) Design a formula that combines the metrics.

Although both step 2 and step 3 involve finding coefficients that modify the original values
of the metrics, they are logically separate steps. After step 2, accidental bias is removed.
Such bias may be caused by the fact that the metrics might have quite different expected
values or ranges. In step 3, deliberate weighting is added. For this initial research, step 3 is
ignored since it would require a very large amount of data to justify an unequal weighting.
The most important step in this research is step 4.

Apparent completeness, MACPLT

This metric combines those metrics that, intuitively, should steadily increase as a project
progresses. The idea is to create a metric that ranges between 0 and 1 so that users can ob-
tain an impression of how much work needs to be done on a knowledge base to make it
‘complete’ (i.e with a reasonably high percentage of detail, formality etc). See section 5.3.1
for a discussion of what it means for a knowledge base to be complete.

The metrics chosen to compose MACPLT are:

• MRPROP, indicating the extent to which properties have been added
• MDET, indicating the proportion of potential statements with actual values, and
• MSFORM indicating the extent to which the knowledge base has been formalized.

The possibility of adding MSOK was considered, but it was decided not to do this because
the amount of second order knowledge might be heavily dependent on the domain, whereas
the extent to which statements are filled in and formalized appears much more likely to
measure the state of completeness, independent of domain.

To remove accidental bias from the metrics, actual knowledge bases were studied to see
how the component metrics range in practice. None ever approached one, and the maxi-
mums for well-worked out knowledge bases were all about 0.7. It seems reasonable that
none of these metrics would ever reach one for the following reasons:

• MRPROP can only asymptotically approach one as ever larger numbers of properties are
added. A measurement as high as 0.7 already indicates that there are over five times as
many properties as main subjects. Experience has shown that it is unlikely for a
knowledge base to have a much higher proportion of properties than this.

• If MDET were to approach 1, it would mean that hardly any statements are inherited; all
would be locally specified (i.e. they all override inherited values). This seems unlikely to
happen in most knowledge bases.

127

• If MSFORM were to approach 1, the user has been able to formalize all statements. This
seems unlikely in a normal knowledge base.

It was thus decided that all metrics should be normalized so that when a measure using
them has a value of about 0.7, it is considered to indicate that the particular aspect of the
knowledge base is reasonably complete. It is purely coincidental that the 0.7 is used for all
three. The coefficient used to normalize the metrics is the reciprocal of 0.7, i.e. 1.4. As a
result of this, MACPLT can give measurements greater than one – that would merely indicate
that more detail has been provided than in a normal complete knowledge base.

The following points explain how it was decided to combine the metrics:

• MRPROP must dominate the calculation for the following reason: If there are few proper-
ties, then high measurements of detail and formality mean little (because there can only
exist a few statements with potential for having detail and formality). Thus MRPROP

should be a multiplicative value for the whole metric formula – if MRPROP is zero then
MACPLT should be zero.

• For similar reasons, MDET must dominate MSFORM. If there are few statements, then a
high measurement of formality means little because there are only a few statements to be
formal.

The basic formula for combining the three metrics is therefore:

MACPLT = C * MRPROP * (W + C * MDET * (X + Y * C * MSFORM))

Where C is the constant 1.4 used to unbias the metrics; i.e. to convert their 0 to 0.7
range to a range of 0 to 1. If this factor were missing , the resulting metric
could only yield measurements that would approach 70%.

And where W, X and Y are coefficients used to weight the metrics. As discussed
earlier it was decided to weight the metrics equally. These three coefficients
should all be 0.33 then. That would mean that if all three input metrics ap-
proached one, the result would be 0.33 * 3 = 1.

Simplifying the above, where Z is used in place of W, X and Y, gives:

MACPLT = MRPROP * (C * Z + MDET * (C2 * Z + C3 * Z * MSFORM))

After application of the constants, the derived formula for MACPLT is thus as follows:

MACPLT = MRPROP * (0.47 + MDET * (0.65 + 0.91 * MSFORM))

An interesting derivative use of MACPLT would be to apply it to different subhierarchies of a
knowledge base in order to determine which areas need work, or alternatively, which areas
contain more useful knowledge.

128

Pure complexity, MPCPLX

The objective of this metric is to combine all the independent complexity measures into a
size-independent metric for the ‘difficulty’ or ‘sophistication’ of a knowledge base. It was
decided to use a mechanism similar to that used to calculate function points (see section
5.2.3). MMACPLT is used as the analog for ‘unadjusted function points’. The four metrics
not included in the calculation of MMACPLT are then used as ‘complexity adjustment
factors’. After the application of each to either increase or decrease the unadjusted metric,
the resulting metric MPCPLX is an analog of ‘adjusted function points’.

To calculate adjusted function points, the first step is to measure fourteen complexity ad-
justment factors using simple scales and then to sum the measurements (without weight-
ing). The sum can be called the ‘compound adjustment factor’. In the second step, a
formula involving the compound adjustment factor results in the multiplication of the
unadjusted function points by a factor ranging from 0.65 to 1.35. In the following
paragraphs, a similar two-step approach is applied to knowledge base metrics.

Step 1: Scaling and summing. The four metrics not included in MMACPLT have
theoretical ranges of zero-to-one. However, upon examining data from user studies, it was
determined that measurements of three of the four metrics rarely approach the top of that
range (MSOK is the exception).

Thus it was decided to apply multiplicative scaling factors to MSOK, MISA and MMI in order
to unbias them (so that each metric contributes fairly to the result). The scaling factors (2.5,
1.6 and 1.2 respectively) were determined by examining the means and ranges of the test
data. These scaling factors are the least objective aspect of the calculation of MPCPLX –
extensive data analysis would be needed to fine tune them; however since this research is
intended to propose a method for developing metrics rather than a definitive formula, these
figures are considered adequate. The resulting compound adjustment factor has a range of
zero to four (see formula below).

Step 2: Creating the adjusted metric: It was decided to adjust MMACPLT so that the
resulting metric is MMACPLT multiplied by between 0.25 and 1.85. This is a wider range
than that used for function points, but it was decided the four adjustment factors should
have a larger influence than those used for function points. Again, more extensive data
analysis would be needed to arrive at a more objective range.

The derived formula for MPCPLX is thus as follows:

MPCPLX = MMACPLT * (0.25 + 0.4 *
(MDIV + 2.5 * MSOK + 1.6 * MISA + 1.2 * MMI))

where the second line is the compound adjustment factor

129

Overall complexity, MOCPLX

The overall complexity measure is simply MMSUBJ multiplied by MPCPLX. In other words
the count of the number of main subjects is adjusted using the measure of ‘pure’ complex-
ity of the knowledge base. MOCPLX might be considered to measure ‘fully specified main
subjects’. It is intended to serve as a measure of productivity or information content.

5 .5 Desirable qualities of the metrics

This section discusses various useful qualities of the metrics presented in the previous
section68. The following criteria are used to judge the quality of the metrics: 1) Does each
metric have use that is independent of th others? 2) Is each metric understandable? And, 3)
does each metric have a reasonable mapping onto the subjective phenomenon (including
behaviour at extremes)?

5 . 5 . 1 How subjectively useful are the metrics?

Each metric must perform some useful task. There should be some reason why a user
might want to use the metric independently of the others. The following paragraphs indicate
that each metric apparently has a valid use by showing what the user can learn by using it.

• All concepts: MALLC: This gives an idea of the amount of memory and disk space
used by the knowledge base. It also gives an idea of the number of discrete facts in the
knowledge base.

• Main subjects: MMSUBJ: This indicates to the user the number of things being talked
about in the knowledge base, and hence is a natural measure of size that is independent of
complexity. If the user follows a methodology of sketching out the inheritance hierarchy
before filling in details, this metric can help him or her estimate the eventual size of the
knowledge base and hence the amount of work that might be required to create it.

• Relative Properties: MRPROP: This indicates to the user whether a knowledge base
has a reasonable number of properties, relative to the number of main subjects. A low
measurement might indicate that more properties should be added.

• Detail: MDET: This indicates whether a knowledge base (or portion thereof) has a rea-
sonable number of statements. A low measurement might suggest that additional
statements should be added.

68 This section should not be confused with an evaluation of how the metrics fared in actual use. Some

discussion of the latter type is found in section 6.2.

130

• Statement Formality: MSFORM: This indicates whether a knowledge base has a rea-
sonable number of formal links. A low measurement indicates that the user would be un-
likely to be able to generate sophisticated graphs of relations.

• Diversity: MDIV: This indicates the degree to which knowledge is focussed at the top
or bottom of the inheritance hierarchy. A low value might indicate that inheritance is not
being properly used and that many concepts are merely placeholders.

• Second Order Knowledge: MSOK: This indicates the extent to which knowledge is
included about concepts themselves as opposed to the things represented by concepts. A
low measurement indicates that there is probably significant knowledge missing.

• Isa Complexity: MISA: This metric indicates the degree to which the inheritance hier-
archy has a non-trivial pattern of branching. A low measurement indicates that many con-
cepts do not have siblings and thus relatively few distinctions are being made.

• Multiple inheritance: MMI: This indicates the extent of the complexity added due to
multiple inheritance. A low measurement indicates that little multiple inheritance is being
used.

• Apparent completeness: MACPLT: By combining those metrics that should logically
increase as a knowledge base approaches completion, this metric gives the user an idea of
how close to completion the knowledge base might be.

• Pure complexity: MPCPLX: By combining all the complexity metrics this gives the
user an overall value of the ‘difficulty’ of the knowledge base, independent of size.

• Overall complexity: MOCPLX: In combining pure complexity with size, this metric is
intended to give the user an idea of the information content in a knowledge base.

5 . 5 . 2 How intuitive or understandable are the metrics?

To be preferred are simpler metrics, i.e. ones where users can easily understand the rea-
sons for the calculations.

The methods of calculating MALLC and MMSUBJ are the simplest, being mere counts. MDET,
MSFORM and MMI have a slightly lower level of understandability since they are simple
ratios of reasonably understandable counts. MRPROP is lower again in understandability
since it is squared in order to give it better responsiveness to the underlying phenomenon.
The other metrics all have relatively complex formulas.

5 . 5 . 3 How good is the mapping between the metric’s function and the
subjective phenomenon?

The function described by the metric (the objective phenomenon) must correspond well
throughout its range with the subjective phenomenon in the mind of the metric’s interpreter.

131

If the correspondence is poor, it might be because some objective factor is omitted or
incorrectly weighted.

Metric Meaning
approaching 0

Meaning near 0.5 Meaning
approaching 1

 MRPROP No properties 2.5 properties per concept Very many properties per

concept

 MDET No values specified Values specified on half of

statements

Value specified wherever

possible

 MSFORM No formal values Half of values are formal All values are formal

 MDIV Properties introduced on

one concept

Properties introduced on

half of all concepts

Properties introduced

evenly on all concepts

 MSOK No second order knowledge Metaconcept detail and ex-

tra terms on about half of

concepts

Both metaconcept detail

and extra terms on every

concept

 MISA Each concept has about one

parent - very simple

Binary tree Very bushy tree - very

complex

 MM I No multiple inheritance Half of concepts have an

extra parent

Very high degree of multi-

ple inheritance

Figure 5.5: Interpreting metrics – meanings of various values. Rows show metrics de-
fined that are closed-ended. Columns indicate the interpretation of measurements at the
extremes of that range and in the middle.

One test of correspondence for metrics with a zero-one range is as follows: The metric
should yield a value of 0.5 when the subjective phenomenon is at about the half-way point,
i.e. the subjectively ‘normal’ point. Another test is to ensure that the endpoints correspond
with what one would intuitively expect. Figure 5.5 gives interpretations for the endpoints
and centre points of the closed-ended metrics and shows that they behave well in these re-
spects. The only possible exception is MRPROP whose middle point indicates that there are
2.5 properties per concept – however this occurs in order to ensure that equal deltas of the
metric correspond more closely with equal changes in the subjective phenomenon.

5 . 5 . 4 Summary of desirable qualities of the metrics

Figure 5.6 summarizes how well the metrics appear suited to the various tasks described in
section 5.3.

Figure 5.7 lists each metric and then rates it using the three criteria discussed in the above
subsections. The following are some general observations:

132

• The most useful metrics appear to be MOCPLX, MDET and MSFORM. The overall complex-
ity metric correlates reasonably well with time-to-complete, whereas MDET and MSFORM

give clear indications of where work needs to be done in a knowledge base.

• The metrics that have the best combination of understandability and usefulness are
MMSUBJ and MDET. These should require the least explanation to users. MALLC requires
an understanding of CODE4’s uniform representation of all knowledge units as concepts,
whereas MISA and MACPLX have less-than-simple formulas.

• Most metrics correspond well with subjective phenomena.

• All the metrics with a zero-to-one range have good meanings for the ends of the ranges

Suitable

Task Metrics Observations

A to D. Assessing the present state of a knowledge base

 Completeness MACPLT The compound metric of apparent completeness.

 Complexity MPCPLX, MDET,
MSFORM

Pure complexity, and two of its most important compo-
nents: detail and statement formality

 Information content MOCPLX The overall complexity of the knowledge base

 Balance MDIV The diversity of distribution of properties; other balance
metrics could be created.

E. Predicting MMSUBJ The number of main subjects can typically be determined
earlier than other metrics

F to I. Comparing all

Figure 5.6: Measuring tasks and how well they can be performed. At the left are the
measuring tasks listed in section 5.3. The middle column lists some of the metrics that
may be useful in the performance of the task.

5 .6 Summary

The primary purpose the research in this thesis is to make knowledge management practi-
cal. It is very hard to manage something, however, unless one can quantify it.

This chapter has discussed several metrics that can be applied to frame-based knowledge
representations. The metrics can be divided into three classes: 1) raw measures of size; 2)
measures of various attributes of complexity, and 3) compound measures intended to help
users assess their productivity.

With the help of metrics, users can better do such things as the following:

133

1. Estimate completeness of a knowledge base, or a component thereof. Using a metric
like MACPLT, a user can decide how much work might need to be done and where.

2. Judge the overall volume of knowledge in a knowledge base, using MOCPLX.

3. Obtain a rough idea of how difficult a knowledge base might be to navigate or modify;
MPCPLX can help with this.

4. Compare subjectively ‘complete’ knowledge bases to see how domains differ, in order
to help in the estimation of future knowledge base development tasks.

The main scientific contribution of this chapter has been to point out several kinds of things
that one might wish to measure in a knowledge base. It is hoped that the chapter work will
stimulate further research.

Criterion: 1.
Useful

2.
Understandable

3.
Mapping (well-

behaved at center
and extremes)

Raw size metrics

 All concepts: MALLC 2 5 5
 Main subjects: MMSUBJ 4 5 5

Independent complexity metrics

 Relative Properties: MRPROP 3 3 5
 Detail: MDET 5 4 5
 Statement Formality: MSFORM 5 3 5
 Diversity: MDIV 4 2 4
 Second order Knowledge: MSOK 4 3 5
 Isa Complexity: MISA 3 2 3
 Multiple inheritance: MMI 3 4 5

Compound complexity metrics

 Apparent completeness MACPLT 4 2 2
 Pure complexity: MPCPLX 4 3 4
 Overall complexity: MOCPLX 5 4 3

Figure 5.7: Ratings of the metrics based on three criteria. On the y axis (listed at left) is
each of the metrics. On the x axis (listed at top) are the evaluation criteria discussed in
sections 5.5.1 to 5.5.3. The numerical scores are on a scale of 0 to 5, with 5 being the
best. Numbers are subjective judgements on the part of the author.

134

Chapter 6

Evaluation

This chapter presents an evaluation of the work discussed in the previous three chapters.
The first section discusses the basic procedures used. Subsequent sections discuss the
evaluation of the metrics (from chapter 5) and of the ideas built into CODE4 (from chapters
3 and 4).

6 .1 The basic evaluation procedure

The basic procedure used to evaluate this research was as follows: To have as many people
as possible build knowledge bases using CODE4, and then to study their work experiences
and the knowledge bases they produced. Details of this procedure are discussed in section
6.1.1. Subsequent sections discuss the questionnaire that was used to gather information,
statistical procedures used, and alternative procedures that were considered and rejected.
Discussion of actual results is deferred to sections 6.2 and 6.3.

6 . 1 . 1 Details of the evaluation procedure

The basic steps were: 1) Solicit people to build knowledge bases; 2) Train them; 3) En-
hance the system to accommodate their needs, and 4) Study the results of their knowledge
base building efforts. Details of these steps follow:

Step 1: As many people as possible were solicited to build knowledge bases
using CODE4.

A total of at least 30 individuals are known to have used CODE4 to build knowledge bases.
These fall into three main groups: 1) industrial customers, 2) researchers and 3) graduate
students taking courses. In addition, about ten other groups are known to have obtained
copies of a demonstration version that cannot save knowledge bases.

The primary industrial customers for CODE4 have been groups headed by Jeff Bradshaw,
formerly of Boeing Aircraft Corporation in Seattle, and now of Eurisco in Toulouse,
France. Bradshaw’s work has primarily involved building CODE4 into other applications.
In (Bradshaw, Boose et al. 1992) an application involving design rationale capture is
presented. Another application involving organizational modelling is discussed in
(Bradshaw, Holm et al. 1992). Bradshaw is in the process of starting a further project

135

involving an application of CODE4 to a medical domain. This will be taking place at the
Fred Hutchinson Cancer Research Center in Seattle (Bradshaw, Chapman et al. 1992)

The Cogniterm project, which started with the use of CODE2 (see chapter 2), has contin-
ued its very successful work with CODE4 as its knowledge management tool. Some of the
published literature includes Eck’s MSc thesis (Eck 1993) and papers by Skuce and Meyer
(Skuce 1993c; Meyer, Eck et al. 1994). Bowker (Bowker and Lethbridge 1994) is using
CODE4 as a major tool for her PhD research.

Several other student research projects and theses have used CODE4 as their major tool;
these include (Iisaka 1992), (Ghali 1993) and (Wang 1994). CODE4 has been used as a
teaching tool in several courses in artificial intelligence, and there are plans to use it as a
resource for programming languages and operating systems courses at the University of
Ottawa.

Others who have used or studied CODE4 in significant ways and have expressed enthusi-
asm for it include David Aha (of the Naval Research Laboratory), Peter Clark (of the
University of Texas at Austin) and Denys Duchier (of the University of Ottawa). The latter
two have worked on applications that connect to the CODE4 knowledge server (see section
3.13). Another important user is Chris Drummond who has created several knowledge
bases and exercised almost all the features available.

Step 2: The users were trained to use the system, or trained themselves.

A 100-page user manual (Lethbridge and Eck 1994) was created to train users.
Additionally, users received training: 1) from graduate lectures, 2) by following a step-by-
step tutorial created by members of the Cogniterm team, and 3) by personal consultation
with members of the development team.

Step 3: CODE4 was regularly enhanced in response to requests from the
users.

It was not possible to have CODE4 remain static during the research. Significant new fea-
tures were added over a three-year period in order to meet the requirements of users. The
kinds of features added after CODE4 started to be used seriously include:

• Knowledge representation features such as dimensions.
• New mask predicates to permit specialized queries.
• New primitive properties to permit the display and storage of specialized information

such as multiple graph layouts
• New display options for existing mediating representations.
• An entirely new mediating representation: the property comparison matrix.

CODE4 was designed with a modular architecture to allow this kind of modification to be
made relatively easily. Also, an automatic problem reporting feature is included in the

136

system: When a user has a problem (or suggestion, request etc.) he or she can invoke the
problem reporter. The problem reporter emails text of the problem, along with the current
state of the system and various debugging information, to the CODE4 developers.

Step 4: Information was gathered from as many users as possible

A significant percentage of CODE4 users were willing to have their work studied in detail.
These users are called the participants69 in the following discussions.

The total number of participants was twelve; all used CODE4 at the University of Ottawa.
Eleven were graduate students and one was a professor. Of the graduate students, five
were terminologists participating in the Cogniterm project. Student usage was divided
between those using CODE4 for course work, and those using it in thesis research.

The participants created 25 knowledge bases. These covered a very wide range of topics,
categorized as follows:

• Computer languages and operating systems (eleven knowledge bases).

• Other technical topics (e.g. optical storage, electrical devices, geology, matrices – nine
knowledge bases).

• General purpose knowledge (e.g. people, vehicles, fruit, top level ontology – five
knowledge bases).

The total amount of work involved in creating these knowledge bases was reported to be
about 2000 hours, i.e. an entire person-year.

The work of the participants was studied in two ways:

1) By analysing the participants’ responses to a detailed questionnaire and follow-up inter-
view questions. Further details about the questionnaire are found in the next sub-
section.

2) By measuring the knowledge bases, in particular using the metrics discussed in the
previous chapter.

6 . 1 . 2 The CODE4 user questionnaire

Twenty copies of a questionnaire were distributed and twelve were returned. Some of the
questionnaire is repeated in Appendix A, along with summaries of the answers. Other parts
of the questionnaire are presented directly later in this chapter. This thesis omits considera-
tion of responses to questions of the following types:

69 There were other users in addition to the participants. These did not actively particpate (filling out

questionnaires, being interviewed etc.) because they were busy, their work was confidential etc.

137

• Questions that were merely administrative (e.g. requesting names, permission-to-use
etc).

• Questions that received too few responses to draw statistically significant conclusions
(see next subsection).

• Questions which, as was discovered in follow-up interviews, users had misunderstood
or had interpreted in different ways.

The questionnaire contains six parts containing a total of 55 main questions, many of which
have sub-questions: There are a total of 259 sub-questions about CODE4 in general and
130 sub-questions about each knowledge base. Most participants took several hours to
complete the questionnaire and some were quite enthusiastic about it despite the amount of
work involved.

The first two sections of the questionnaire ask general questions in order to ascertain how
much users know about CODE4, how they learned it and how much they have used it. The
subsequent two sections focus on the user’s reactions to specific features of the software.
The fifth section deals with users’ experiences developing individual knowledge bases.
Questions in this section were designed to complement the measurement of the knowledge
bases. The final section of the questionnaire covers problems and desires users encountered
in the use of CODE4.

6 . 1 . 3 Statistical tests

In order to verify that numbers reported are not likely to be chance occurrences, statistical
tests were applied to data gathered from the questionnaires and from the measurement of
knowledge bases. There were three types of tests:

Test type 1: Confirming that the mean reported for a question or measure is
significant

The objective here is to confirm that each mean reported from the sample (of users or
knowledge bases) is sufficiently close to the population mean (the actual mean that would
be obtained if data could be gathered from all users or knowledge bases of the type
studied). For this objective, sufficiently close means that, 19 times out of 20, the
population mean must be within an interval defined as the sample mean plus-or-minus 10%
of the range of the sample.

Standard t-tests were used to make the above confirmations. Such tests require that the un-
derlying distributions of data be normally distributed or, failing this, that the sample size be
greater than about 30 (thanks to the central limit theorem). In this research both conditions
are close to being fulfilled much of the time: The number of knowledge bases studied was
25; also most of the measurements and questions were of the type where values were far
more likely to occur in the center of a range than in either tail, but where values do occur in

138

both tails. The following are examples of the kinds of populations from which samples
were taken and which would appear close to normally distributed:

• Complexity measurements that range from zero to one but for which a value in the middle
of the range is to be expected.

• Size measurements, where very small and very large knowledge bases are far less
common than medium-sized ones.

• Users opinions placed on a scale, where intermediate values are to be expected.

If there are cases where the prerequisites for a t-test might not have been fully met, many of
the conclusions presented are still likely to be valid because many of the tests indicated
statistical significance even in a 99% confidence interval.

If confirmation of significance could not be reached for a given question or measure, the
data is not reported in this thesis. This generally occurred when not enough participants re-
sponded to a particular question and/or when they disagreed markedly in their responses.

Test type 2: Confirming that the coefficient of linear correlation between
two measures (or a measure and a question) is meaningful.

The objective here is similar as that in test type 1: To confirm that the correlation coefficient
is sufficiently close to the population correlation coefficient. The criterion is that it should
be within plus or minus 0.1, of the sample value, 19 times out of 20. As above, t-tests are
used to confirm this.

Note that this test is not attempting to show that measures are independent or dependent.

Test type 3: Verifying that there is a statistically significant difference
between two means.

Such tests were made to compare several related measures or questions (e.g. when
determining which of two features users preferred). The objective is to determine that the
actual difference between means is non-zero, with 95% confidence. Again t-tests were used
to do this.

6 . 1 . 4 The indirect nature of the evaluation

The evaluation of this research must be understood to be constrained by a number of
factors including the following:

• The benefits of most aspects of the research can only be assessed indirectly; i.e.
subjective interpretation of users and/or the author is involved.

• A particular tool, CODE4, is used in the evaluation. It therefore may not be possible to
extrapolate all conclusions to the general case. For example: CODE4 may constrain users

139

to choose only certain domains or to represent only certain details (and thus the users may
encounter more or fewer of the problems listed in section 1.4).

• Only a relatively small selection of users participated in this study, and they were largely
students. It is possible that different results may be obtained from other sets of users.
One should thus consider all statistical results as only being applicable to populations
similar to the users in the study.

6 . 1 . 5 Why not run a ‘controlled’ experiment?

The methodology described above for the evaluation of this thesis has been that of a natural
experiment (i.e. trying to reach conclusions about an activity by observing as many cases
of that activity as possible, but without interfering). An alternative approach would have
been to design a controlled experiment.

In the field of knowledge engineering, a controlled experiment might involve a procedure
like the following: First, create two versions of a knowledge management system that differ
according to the presence or absence of some feature. Then have separate sets of users cre-
ate knowledge bases with each system. Finally, measure the resulting knowledge bases to
see if the presence or absence of the feature causes any difference in the resulting work.

Such an experiment involves varying one parameter (in this case a feature) while ensuring
that differences in other factors, including ongoing changes to the system, do not influence
any conclusions. This was judged impractical for the following reasons:

• It is not reasonable to assign a small number of people to create knowledge bases and
expect that the resulting work will be comparable. Knowledge enterers have dramatically
different levels of skill (analysis ability and understanding of knowledge representation)
as well as background (general knowledge that they can apply to the problem).

• It might be possible to control for skill and background differences by using a large num-
ber of knowledge enterers. However it was found to be too difficult to find enough peo-
ple with sufficient motivation to work for tens of hours on a single assigned problem.
People were only willing to be participants if they could work on a topic that interested
them.

• It might be possible to overcome biases imposed by a particular domain by having partici-
pants create several knowledge bases from a small pool of domains. Again however,
finding willing people is extremely difficult (it was even difficult to get enough partici-
pants, who had already created knowledge bases, to fill in a questionnaire).

• During the conduct of this study, users would frequently ask for new features. If all
participants were assigned a topic, it might have been possible to deny their requested
modifications for the sake of gathering ‘good data’. However since most users were
working on their own research projects, it was necessary to make regular incremental

140

modifications to the system. Otherwise many users would not have felt comfortable
trusting CODE4 to be a reliable tool for their research.

In conclusion, without a very significant amount of money with which to pay participants
for long periods of time, it was only feasible to perform an exploratory study of the type
described in the previous subsections.

6 .2 Evaluation of the metrics

This section presents an evaluation of the knowledge base metrics that were introduced in
chapter 5, focussing on their independence from each other.

Figure 6.1 summarizes measurements taken of the knowledge bases prepared by the
participants in this research. Details for individual knowledge bases can be found in ap-
pendix B.

Metric Theoretical
Range

Mean Minimum Maximum St. Dev.

Raw size metrics

 All concepts: MALLC (40-∞) 842 224 2825 612
 Main subjects: MMSUBJ (0-∞) 91 21 278 61

Independent complexity metrics

 Relative Properties: MRPROP (0-1) 0.33 0.05 0.70 0.17
 Detail: MDET (0-1) 0.18 0.03 0.69 0.14
 Statement Formality: MSFORM (0-1) 0.16 0.00 0.67 0.19
 Diversity: MDIV (0-1) 0.71 0.00 0.99 0.27
 Second Order Knowledge: MSOK (0-1) 0.06 0.00 0.41 0.11
 Isa Complexity: MISA (0-1) 0.40 0.19 0.59 0.11
 Multiple inheritance: MMI (0-1) 0.19 0.00 0.87 0.23

Compound complexity metrics
 Apparent completeness: MACPLT (0-2) 0.20 0.03 0.39 0.11
 Pure complexity: MPCPLX (0-5.6) 0.19 0.02 0.38 0.10
 Overall complexity: MOCPLX (0-∞) 16 2 56 14

Figure 6.1: Statistics about knowledge bases created by the participants. Each row corre-
sponds to one of the metrics discussed in chapter 5.

The following are some general observations about figure 6.1:

141

• The knowledge bases differ substantially in size. When measured using MALLC and
MMSUBJ the ratio of largest to smallest is about 13:1. When measured using MOCPLX,
however, a more realistic ratio appears, i.e. 28:1.

• The knowledge bases vary widely according to all of the independent complexity metrics,
in particular according to MDIV and MMI. Of these, MDIV is probably the most interesting
since it seems to be more of an indicator of the individual style of the knowledge base de-
veloper than the other metrics.

6 . 2 . 1 How independent is each complexity metric from the others?

Metrics should be as independent as possible because it would be redundant to make mea-
surements using two metrics that are dependent on each other. The simple complexity met-
rics were designed to be independent of each other – all involve separate aspects of a
knowledge base. However, the only way to really test for independence is to calculate cor-
relation coefficients.

As figure 6.2 indicates, for the most part success has been achieved. The biggest exception
is the reasonably strong negative correlation between the isa complexity and the amount of
multiple inheritance. This can be accounted for theoretically because if there are more parent
concepts to be multiply inherited (including by leaves), then the proportion of leaf types
should decrease. Despite this moderate correlation, having a separate measure of multiple
inheritance still appears to be useful.

Multiple
Inher.

Isa
Complex.

Second
Order

Diversity Statement
Formality

Detail

MMI MISA MSOK MDIV MSFORM MDET

Relative Properties: MRPROP 0.15 -0.23 0.11 -0.13 -0.17 0.17
Detail: MDET 0.12 -0.28 -0.21 -0.06 -0.16
Statement Formality: MSFORM -0.19 0.04 -0.02 0.34
Diversity: MDIV -0.18 0.07 -0.08
Second Order Knowledge: MSOK -0.21 0.14
Isa complexity: MISA -0.58

Figure 6.2: Coefficients of linear correlation among the seven complexity metrics. The
data used in calculating these coefficients was obtained from the knowledge bases prepared
by the participants.

6 .3 Evaluation of CODE4

This section presents an evaluation of the ideas built into CODE4 as part of this research.
The ideas themselves are found in chapters 3 and 4.

142

The evaluation is divided into four subsections: Section 6.3.1 discusses conclusions that
can be drawn from the enthusiastic reception of CODE4 by users. Sections 6.3.2 to 6.3.4
discuss responses to the questionnaires. Section 6.3.5 evaluates the system by looking at
measurements.

6 . 3 . 1 Evaluation by observing the general use of CODE4

One of the most important attributes of this research has been its use by significant numbers
of users. The inference that can be drawn from this is that CODE4 has achieved its general
goal of providing practical knowledge management.

The following are two specific questions that must be answered affirmatively in order to be
sure that the software has a broad practicality.

Do people choose to use the software in their work over a significant pe-
riod of time and in significant projects?

If this is true, then there must be an advantage to the software. The software must be, in
some sense, more practical than other software available.

For CODE4, the answer to this question is yes. In particular, the Cogniterm project and
Jeff Bradshaw’s projects demonstrate that users perceive CODE4 to have desirable
features.

Is the software used in a variety of domains?

Positive answers to this indicate that the software is general purpose. It is far easier to cre-
ate special purpose software; however a practical knowledge management tool must be
general purpose.

For CODE4, the answer is again yes. Knowledge bases have been developed in such di-
verse domains as software engineering, geology, organizational modelling, optical storage
devices and top-level ontology development.

6 . 3 . 2 Features users found useful

Users were asked various questions in order to assess the usefulness of the various
features built into CODE4.

What aspects of knowledge bases convey more of their content?

For each knowledge base, users were asked to estimate how much various aspects of the
knowledge representation contributed to conveying its actual content (i.e. to expressing the
important facts or information in the knowledge base).

143

The results are shown in figures 6.3 and 6.4. Figure 6.3 lists the 14 knowledge
representation aspects about which users were asked. Note that the aspects are not
necessarily disjoint; e.g. users were asked about values (of statements) in general as well as
particular types of value.

The aspects are listed in decreasing order by mean, however there is no statistically
significant difference70 between aspects whose means are close together. An analysis of
where statistically significant differences do exist showed that the aspects can be divided
into eight groups (i.e. equivalence classes) labelled A through H. Figure 6.4 can then be
used to determine which groups convey significantly more knowledge than others. For
example none of the aspects within group A were considered more important than others,
whereas all of group A was considered more important than all of the others (groups B
through F). Similarly the aspect in group B is only more important than aspects in groups
D and F, but not more important than any of the aspects in group C.

Some general observations about figures 6.3 and 6.4:

• As group A shows, names are considered to be of paramount importance. Users appear
to attach great significance to the fact that humans will be using the knowledge base and
thus concepts must have effective names. In a purely formal system, operated on by a
computer, names might be less significant.

• Group A supports the intuitive notion that the inheritance hierarchy, with labelled
concepts and attached properties, is the fundamental framework for building knowledge
bases. Other aspects of knowledge can only be added once a rough inheritance hierarchy
is specified.

• The way the property hierarchy is structured has as much importance as the values of
statements. This validates CODE4’s emphasis of this feature.

• Informal values are considered significantly more important than formal ones (and more
important than the graphs of relations that the latter permit to be drawn). This suggests
that developing effective ways of dealing with informal values can be a worthwhile
exercise. Substantial and useful knowledge bases can be built that contain largely
informal knowledge.

• As would be intuitively expected, values of statements about main subjects were
considered more important than values of statements about metaconcepts; although
metaconcept values were important to some.

• Graph layouts and dimension labels, features supported strongly in CODE4, were
considered moderately important. Among knowledge bases, however, these features
varied a lot in importance.

70 According to pairwise t-tests.

144

Group A s p e c t Mean Max Min Std. Dev Responses

A The names given to main subjects 9.3 10 7 1.0 21

The names given to properties 9.1 10 6 1.6 21

The structure of the inheritance hierarchy 9.1 10 5 1.5 21

B The structure of the property hierarchy 8.0 10 0 2.5 21

C Values of statements about main subjects 7.5 10 0 3.2 21

Informal values as carefully thought-out natural lan-
guage expressions or sentences

7.2 10 3 2.8 21

Informal values that are commentary and descriptive 7.2 10 1 3.2 21

D The layout of graphs 5.9 10 0 3.6 21

The dimension labels 5.6 10 0 4.0 21

E Values of statements about metaconcepts 4.7 10 0 3.9 21

The structure of other relation graphs 4.5 10 0 3.5 21

Formal values 4.1 10 0 3.7 21

The order of subproperties in a property hierarchy 3.6 9 0 3.5 21

F The order of subconcepts in an inheritance hierarchy 2.8 9 0 3.4 21

Figure 6.3: Aspects of a knowledge bases that convey its content. For each knowledge
base, each aspect was ranked by the participants on a scale where 0 means unimportant
and 10 means essential. The horizontal lines distinguish groups of aspects that are
independently comparable with other groups, as shown in figure 6.4

F E D C B

A √ √ √ √ √

B √ √ √

C √ √

D √

Figure 6.4: Significant differences among groups of knowledge-conveying aspects. The x
and y axes indicate groups of content-conveying aspects from figure 6.6. Wherever a
check mark appears, users believed that row aspects were significantly more important
than column aspects. Significance was determined using t-tests.

How useful were the particular knowledge representation features?

Users were asked how useful they perceived various knowledge representation features to
have been in their work. This set of questions differs from the last set in the following
ways:

• The previous set of questions ask about specific knowledge bases, whereas these
questions ask for overall impressions of users. The sample sizes are thus smaller.

• These questions ask about features in more detail than the previous ones. The result is
that fewer users were able to answer any given question.

145

• These questions ask about usefulness in general, whereas the previous ones focussed on
how information content was conveyed. These questions use a scale where -5 indicates
that the feature was harmful to their work (i.e. negatively useful), 0 indicates that the
feature is of no use, and +5 indicates that the feature is very useful. The previous
questions on the other hand, had just required responses on a scale of zero to 10.

Complete statistics for this set of questions is found in appendix A2. The following are
some comments:

• Inheritance and multiple inheritance were judged more important than any other feature,
and were classed as ‘essential’. This corroborates the conclusion (from the questions
about information content) that the inheritance hierarchy is of paramount importance.

• Significantly less important, statistically speaking, was the property hierarchy, however it
too was judged very close to essential.

• The next most important feature was multiple parents in the property hierarchy, however
no conclusion can be drawn about whether it is in fact more important than the twelve
features that follow it in the ranking. Despite this, the emphasis CODE4 places on the
property hierarchy appears to correspond with users’ needs.

• A large number of features were ranked close together and no conclusions can be drawn
about the exact order. In this group are formal and informal values (formal values are
ranked marginally higher than informal ones, contrary to findings discussed earlier, but
not significantly higher).

• Ranked close together at a moderate level of importance were several features associated
with naming (synonyms, unrestricted syntax for names, and treating terms as concepts).
However the feature of CODE4 that results in automatic default naming was ranked far
lower (close to ‘unimportant’). The latter might be because users almost always name a
concept as soon as they create it, so they consider the default name of little use.
However, generating a default name permits the interface to be non-modal (this was
ranked highly in a question discussed in the next subsection).

• Although no features were given an overall assessment of ‘harmful’ (i.e. negatively
useful), three features were given such an assessment by individual users. These were
automatic combination under multiple inheritance, treating facets as properties and
automatic default naming.

How useful were particular user interface features?

In a similar manner to the questions about knowledge representation features, users were
asked a series of questions about user interface features. They used the same scale as the
above (where -5 means harmful and 5 means essential).

Most of the features about which questions were asked are either novel in CODE4 or are
emphasised far more in CODE4 than in other knowledge management technology.

146

Complete statistics are in part 3 of appendix A; the following are some specific
observations:

• Four features were ranked as close to essential and were significantly more important
than most of the others. Foremost of these was the outline mediating representation.
Close behind this was: a) dynamic updating of windows, b) direct typing to change a
name and c) the graphical mediating representation.

• Ranking significantly behind the above four, but still ‘very important’ were the ability to
save multiple graph layouts, the control panel and the ability to make multiple selections.
These features are not ‘new ideas’, but their inclusion appears to greatly enhance the
system.

• A very large number of features were ranked indistinguishably close to each other as
‘important’. Examples are the non-modality of the interface, the matrix mediating
representation, relation knowledge maps and features concerned with the mask.

• No features were ranked as ‘unimportant’ or ‘harmful’ but a few features were ranked as
only slightly useful. These included the ability to attach a graphical icon to a concept and
the ability to have multiple knowledge bases loaded at once. The latter feature was ranked
as harmful by one user.

Which mediating representation did users use most when entering
knowledge?

For each knowledge base, users were asked to estimate how much of the knowledge was
entered using the four major mediating representations. In agreement with the above
general questions, users reported using the outline representation far more than any other.

The matrix representation was used relatively little, although it was developed after some
users had started their work. Also, it is not (yet) possible to start creating a knowledge base
using a matrix window; it can only be used as a query mechanism or to fill in missing
values.

Figure 6.5 gives the data about mediating representation usage. The statistics for the ‘user
language’ mediating representation and the outline representation are likely to be too low
and high respectively. This is because many users are not aware that the user language
representation is considered distinct from the outline representation (the former, which is
used only for entering a single property value, is usually associated with an outline but can
be associated with a graph).

147

Mediating Representation Mean M a x M i n Std. Dev

Outline 64.4 100 30 22.8

Graphical 14.8 50 0 18.7

User language 16.3 50 0 16.7

Matrix 4.6 20 0 6.1

Figure 6.5: Amounts of knowledge entered using different mediating representations.

What other information can be learned about formality and informality in
CODE4?

One of the major tenets in the design of CODE4 was that users should be able to represent
knowledge both formally and informally. The following questions were designed to ascer-
tain whether participants took advantage of this:

Participants were asked to judge the degree of formality of their knowledge bases on a scale
where 0 means completely informal and 10 means completely formal. The mean response
was 4.8 with a standard deviation of 2.7. Responses ranged from 0 to 9 for the 24 knowl-
edge bases from which responses were received. Interestingly, individual participants gave
very different responses for different knowledge bases they created. It thus appears that
informality and formality are both necessary, although as was discussed above, users feel
the informal aspects might convey more knowledge.

Participants were also asked to indicate how rapidly they would represent an idea when it
occurred to them. The principle here is that informal capabilities should allow users to
rapidly record their thoughts, if they so wish. The scale used was as follows: 0 means that
they would represent the idea immediately and later on worry about whether it was correct;
and 10 means that they would never represent the idea until they were absolutely sure they
could do it correctly. The mean response was 4.2, with a range of 0 to 8 and a standard de-
viation of 2.4. Being in the middle of the range, this suggests that users need both facilities
to rapidly enter ideas, and also facilities to rapidly help them decide whether they should
enter an idea.

6 . 3 . 3 Tasks performed during knowledge management

Users were asked several questions pertaining to the tasks or activities they perform while
doing knowledge management. The objective of asking these questions was to ascertain
whether the features provided in CODE4 are likely to be solving the most prevalent
problems or not.

148

How difficult do users find various knowledge management tasks?

For each knowledge base, users were asked how difficult various tasks were to perform.
Difficulty was ranked on a scale where zero indicates extremely easy and ten indicates
extremely difficult.

The data is shown in figures 6.6 and 6.7. Figure 6.6 orders tasks by mean. Figure 6.7
shows which groups of tasks were significantly more difficult than others. The following
are general observations:

• None of the tasks was judged to be extremely difficult; most of the tasks were closer to
‘easy’ than to ‘difficult’. This suggests that CODE4 is helping users.

• The only possible exception was ‘Determining whether a part of the knowledge base is
correct, coherent and consistent’. This task was judged significantly more difficult than
almost all others. This suggests the need for more facilities to provide feedback.

• Judged to be less difficult than the above, but still moderately difficult, were two
‘understanding’ tasks: understanding the domain, and understanding CODE4’s error
messages. The latter again suggests that better feedback facilities are needed.

• Several tasks related to specifying properties are rated moderate (neither easy nor very
difficult). These tasks include naming a property, dealing with several properties that
have the same name, determining the most general subject for a property, determining
whether a property is already present or not, and moving a property to a new most
general subject. This suggests that a ‘property assistant’ tool would prove useful.

• Tasks that are largely mechanical in nature were judged reasonably easy by the
participants. Such tasks included reparenting and setting up windows.

• Two tasks were judged significantly easier than the others: These were finding a main
subject that already exists and understanding the effects of inheritance. This helps show
that CODE4’s querying and display capabilities are effective.

149

Group Knowledge management task Mean Max Min Std. Dev Responses
A Determining whether a part of the knowledge base i s

correct, coherent and consistent
5.8 10 2 2.4 23

B Understanding the subject matter being entered into
the knowledge base

5.2 10 0 3.2 23

Understanding what is the problem when the system
does not permit a command

5.1 10 0 3.2 23

C Naming a property 4.3 8 0 2.9 23
Determining the interrelationships among a particu-
lar set of concepts

4.2 9 1 2.5 19

D Determining whether a part of the knowledge base i s
complete enough

4.2 8 1 2.9 20

Dealing with the situation where there are several
properties with the same name which should really
have been the same property

4.2 9 0 2.9 20

E Figuring out where to put a concept in the inheritance
hierarchy

4.1 8 1 2.2 23

Figuring out the most general subject for a property 4 9 2 1.8 23

F Specifying a special relationship (e.g. part-of) be-
tween concepts

3.8 9 0 2.9 22

G Determining whether a property is important enough
to add

3.6 8 1 2.0 23

Determining whether a property exists already or not 3.3 8 1 2.1 22
Changing a character string (possibly in many
places)

3.3 10 0 3.3 23

H Determining whether a concept is important enough
to add

3.2 8 1 1.8 23

H Filling in a value, in general 3.1 10 0 2.1 23
I Moving a property to a new most general subject 3.1 9 0 3.5 22
H Figuring out where to put a property in the property

hierarchy
3.1 7 1 1.9 23

I Reparenting a property 3.1 9 0 3.5 20
I Reparenting a concept 3.0 9 0 3.2 21
H Determining on what statement to put a value 3.0 7 0 2.0 21
H Setting up windows to show the knowledge in which

you are interested
2.8 10 0 2.8 23

I Naming a main subject 2.7 7 0 2.6 23
I Finding a property that already exists in the knowl-

edge base
2.6 7 1 2.1 21

J Finding a main subject that already exists in the
knowledge base

1.9 7 0 1.7 21

Understanding how inherited values get their content 1.8 9 0 2.3 23

Figure 6.6: Users’ perceptions of the difficulty of tasks. For each knowledge base, each
task was ranked by the participants on a scale where 0 means extremely easy and 10
means extremely difficult. The horizontal lines distinguish groups of tasks that are
independently comparable with other groups, as shown in figure 6.7. Groups H and I
could not be separated by a unique line.

150

J I H G F E D C

A √ √ √ √ √ √ √ √

B √ √ √ √

C √ √ √

D √ √

E √ √ √

F √ √

G √

H √

I √

Figure 6.7: Significant differences among groups of knowledge management tasks. The x
and y axes indicate groups of knowledge management tasks from figure 6.6. Wherever a
check mark appears, users believed that row tasks were significantly more difficult than
column tasks. Significance was determined using t-tests.

How difficult were naming tasks?

Users were asked what percentage of main subjects or properties did not have standardized
terms; i.e. they had trouble putting a term on a concept, deciding if two terms had the same
meaning or even what a term meant. The mean response was 29% (range 10% to 90%;
standard deviation 22%). This indicates naming is not a straightforward task, and justifies
CODE4’s attempts to provide better facilities to handle names.

As figure 6.6 shows, users found naming properties to be significantly more difficult than
naming main subjects.

Users were also asked what percentage of main subjects and properties had a name that the
participant invented, as opposed to one that might be found in an ordinary dictionary or
technical glossary. The mean was 17% (range 0% to 70%; standard deviation 18%).

6 . 3 . 4 General benefits of CODE4

How much insight into the domain did participants obtain?

In almost all instances, the participants report that they obtained substantial insight about
the subject matter when using CODE4. On a scale where 0 indicated that constructing the
knowledge base resulted in no new insights and 10 indicated that many new insights were
obtained, the mean response was 7.1 (range 2 to 10; std. dev. = 2.6).

Was creating the knowledge base a worthwhile exercise?

Users were asked, for each knowledge base, whether creating it was a worthwhile
exercise. Answers were put on a scale where -5 meant ‘strongly disagree’, 0 meant ‘no
opinion’ and 5 meant ‘strongly agree’.

151

The mean response was 4.2 (range 0 to 5; std. dev. 1.5), indicating a reasonably high
feeling that using CODE4 was worthwhile. Users however gave significantly different
answers for different knowledge bases: As would be expected, those knowledge bases
used for serious research were judged more worthwhile.

How do users find CODE4’s capabilities compare with those of other rep-
resentations and tools?

For each knowledge base they developed, each participant was asked to compare CODE4
with other representational technologies with which he or she was familiar.

The question posed was: “How easily could you have represented the same knowledge
using the following types of software or representation methods?”. The answers were
placed on a scale where -5 meant that the knowledge could have been represented much
more easily using the alternate technology than using CODE4; zero meant that CODE4
equalled the technology in representational ease, and 5 meant that using the alternate
technology instead of CODE4 would have resulted in much more difficulty (i.e. that
CODE4 was much better for the task than the alternative technology would have been be).

In all cases, the mean rating indicates CODE4 is easier for the task than alternate
technologies. Figure 6.8 summarizes the results and figure 6.9 shows a plot of the results.
In particular it is notable that CODE4 was perceived as easier to use than both informal
representation techniques (e.g. natural language) and formal representation techniques (e.g.
predicate calculus and conceptual graphs). Hypertext is CODE4’s only significant
competition: One user ranked hypertext as far easier than CODE4, but on average, users
still found hypertext a bit harder to use for knowledge management.

Technology Mean Max M i n Std.
Dev

Responses
(K B s)

Spreadsheet 4 .2 5 2 1.2 1 7
Drawing program 3.9 5 2 1.2 1 7
Relational database 3.0 5 1 1.6 1 5
Natural language (word processor) 3 .0 5 0 1.7 2 0
Outline processor 2 .9 4 0 1.5 7
Hypertext 1 .0 5 - 5 2 .4 1 1
Predicate calculus 4 .6 5 1 1.1 1 4
Prolog 4 .4 5 1 1.2 1 1
Other AI tools (any the user had

used; e.g. expert system shells)
3 .9 5 - 1 2 .0 8

Conceptual graphs 3 .3 5 - 1 2 .0 1 2

Figure 6.8: Perceived ease of use of representational technologies. larger numbers indicate
that the technology is perceived as being more difficult to use for the kind of repre-
sentational tasks studied. CODE4 (the baseline for comparison) is zero. A negative num-
ber would indicate that the technology is perceived as easier than CODE4. There are no
negative means; only a few individual negative values.

152

0

1

2

3

4

5

Spread-

sheet

Drawing

program

Rel-

ational

database

Natural

language

Outline

pro-

cessor

Hyper-

text

Predicate

calculus

Prolog Other AI

tools

Con-

ceptual

graphs

Figure 6.9: Histogram of perceived ease of use (see data in figure 6.8). The technologies
on the right are those from the field of artificial intelligence.

6 . 3 . 5 Analysing the knowledge bases created by participants

The knowledge bases created by the participants can be analysed by measuring various
attributes. Figure 6.10 shows counts of the various classes of concepts in CODE4
knowledge bases. Figure 6.1 shows measures using the various metrics proposed in
chapter five.

Class of concept Total Mean Minimum Maximum St. Dev.
Types (includes 4 primitives each) 2311 96 31 288 60
User instances 182 8 0 55 16
Properties (inc. 32 primitives each) 3744 155 52 397 60
Statements 7399 308 34 1614 355
Terms 6362 265 93 739 168
Metaconcepts 209 9 0 80 20
All concepts: MALLC 20207 842 224 2825 612

Main subjects: MMSUBJ 2177 91 21 278 61
 Statements per main subject 2.45 0.67 8.24 1.61
 Terms per main subject 1.03 1.00 1.20 0.05

Figure 6.10: Counts of classes of concepts created by participants

The following are some general observations arising from the measurements:

• The total number of concepts and main subjects confirms that substantial work has been
done using CODE4. The size of the larger knowledge bases confirms that some of the
work was serious in nature.

153

• The measured formality of the knowledge bases differed substantially from the estimates
of users. Whereas users considered their knowledge bases to be 48% formal, MSFORM
indicates that the knowledge bases were only 16% formal on average. The coefficient of
linear correlation between measured and estimated formality was 0.52. This indicates that
users can recognize formality but they cannot quantify it well.

• The data confirm that users did make use of such features as independent metaconcepts
and terms.

6 .4 Summary

The features CODE4 provides have been used by a significant number of users and have
enabled the production of a significant number of useful knowledge bases. Most users are
happy with the system and use it productively. Most of the features appear to be important
because the removal of any individual one would significantly impact either individual pro-
ductivity or the ability of the system to be adapted to specific needs. The evaluation pro-
vided in this chapter can guide the development of future knowledge management technol-
ogy.

Readers should note, however, that the evaluation is constrained in several ways that limit
the generality of any conclusions. In particular, although a variety of users was involved,
they were mostly students. Also the only tool tested was CODE4, and it cannot be
guaranteed that favourable results with this tool will necessarily extend to other tools.

The following summarizes the results of evaluating important features. More discussion of
the contribution of features can be found in section 7.2. It is important to note that many
features of CODE4 are interdependent. For example, users did not directly judge the uni-
formity of concepts to be important; they nevertheless found facilities to deal with terms,
metaconcepts and properties to be useful. Treating concepts uniformly allows the latter to
be designed more easily; such treatment also facilitates browsing and other useful capabili-
ties. Similar dependences exist that justify the inclusion of such features as multiple selec-
tions and knowledge maps.

• Features for dealing with the inheritance hierarchy: Users judged the inheri-
tance hierarchy to be one of the most generally important features and to convey much of
the knowledge in their knowledge bases. While this is not unexpected, it suggests that
knowledge management systems must provide effective facilities, like CODE4’s outline
mediating representation, for rapid manipulation of this hierarchy.

• The property hierarchy and features for dealing with it: Users found these
both generally important and useful in conveying knowledge.

• Features for dealing with terms and naming: Users found names of properties
and main subjects to be very important in conveying meaning. They also found naming to

154

be intrinsically difficult since they had to frequently invent names or choose among sev-
eral alternatives.

• Features for handling informality: Users judged that informality was important in
conveying much of the knowledge. The actual percentage of informality in the knowledge
bases indicates that these features are important.

• The non-modality of the interface and dynamic updating: These features were
rated important by users.

• Mediating representations: Users rated all three major mediating representations as
useful, particularly outlines. They considered the ability to save graph formats to be
important.

• The mask: Users found the mask to be useful. They also indicated that finding con-
cepts, a task frequently performed using the mask, was one of the easiest tasks to per-
form.

The following needs were identified during the evaluation. These points are discussed
further in the future work section of the next chapter (section 7.3).

• Tools to help specify properties: Users found naming properties to be particularly
difficult. They also found manipulating them to be difficult and in need of support.

• Tools to assist with analysis: Since users reported that one of their most difficult
problems was evaluating correctness and coherence of the knowledge base, there is an
obvious need for analysis tools. The metrics, which were unavailable to users when they
created their knowledge bases, might help in this process.

• Improved facilities for feedback: Users found that understanding CODE4’s error
messages was one of the most difficult tasks.

The following are some points from the evaluation that show that, overall, CODE4 is a
valuable tool:

• Users regarded developing their knowledge bases as a worthwhile exercise.

• Users used CODE4 repeatedly and produced significant knowledge bases with it.

• Users judged CODE4 to be easier to use than other tools for knowledge management.

155

Chapter 7

Contributions and Future Work

7 .1 General summary of the research

The goal of this research has been to develop practical techniques for knowledge manage-
ment; i.e. the process of acquiring, representing storing and manipulating complex patterns
of concepts and their interrelationships. To be practical, a knowledge management system
ought to be usable in a variety of non-computer tasks (see section 1.3) by people with little
computer background; however it should also have sophisticated features for the expert.

As the first stage of the research a set of problems were identified (section 1.4). These were
found to exist in a variety of existing technologies that can be used for knowledge man-
agement. Some of the problems appear intrinsic to knowledge management while others
appear due to inadequate tools.

Many of the ideas developed to assist knowledge management can be described as capabili-
ties or techniques the user can employ to better organize knowledge. Some of these
organizing techniques fall into the domain of abstract knowledge representation (chapter 3),
while others fall into the domain of user interface (chapter 4).

To serve as a testbed for the knowledge organization techniques (and indeed, to help
develop those ideas themselves) a large knowledge management system called CODE4 was
developed. The discussions in chapters 3 and 4 focus on how CODE4 and its abstract
knowledge representation CODE4-KR implement the organizing techniques. In addition, a
set of metrics was developed to help analyse knowledge bases.

To assess the research, a study was made of the use of CODE4 by about twenty users over
three years. The study concludes that the features built into CODE4 combine to make
knowledge management more productive.

7 .2 Contributions of this research

This section lists those ideas developed in this research which are believed to contribute to a
general understanding of how to create a practical knowledge management system. Some
ideas are novel while others represent improvements of existing ideas or else new
applications of old ideas.

156

The most significant contribution is the synthesis of a large number of these ideas in one
system.

Most of the contributions can be thought of as techniques for better organizing knowledge,
both in the knowledge representation as well as in how the knowledge is presented to the
user through the user interface. The degree to which the contributions solve problems is
indicated in figure 7.1.

7 . 2 . 1 Contributions to knowledge representation

The following are some ways in which CODE4-KR contributes to knowledge
representation. In addition to these features, CODE4-KR has several others, such as its
treatment of informal values, that are less novel but that combine with these in useful ways.

a) The uniformity with which concepts are treated: In other systems fewer things
are generally called concepts, whereas in this research an effort has been made to call any
unit of representation a concept. The result of the uniform treatment is that a common set
of operations can be applied to all such units. This research contributes a useful
taxonomy of classes of concept. While other approaches, such as Cyc, have a more
uniform treatment of knowledge representation units than is traditional in artificial
intelligence, CODE4 apparently takes concept uniformity further than any other tool.

b) The separation of terms from the concepts they stand for: Making terms
concepts in their own right permits effective representation of linguistic knowledge. It
also allows for the easy handling of synonyms, multiple natural languages, homonyms
etc. This is believed to be novel in a knowledge management tool.

c) The separation of metaconcepts from the concepts they represent: This
clarifies an important distinction and reduces representational errors. Although the idea of
metaconcepts is not new, certain details are: For example: 1) the assumption of the
existence of a metaconcept for every concept, and 2) the attachment of all non-inheriting
properties to metaconcepts.

d) The treatment of statements as concepts: This apparently novel idea improves
the uniformity of the knowledge representation. It means for example that the arcs or
indentations shown in a mediating representation, which correspond to statements, can be
queried to find their properties.

e) The property and statement hierarchies: These are techniques for organizing
knowledge that users have found useful. Other systems have hierarchies of slots, but the
idea of a global hierarchy and subhierarchies for each subject is believed to be novel.

f) Accessing knowledge using constructors and navigators: This approach to a
text based language for knowledge exchange, while running counter to the trend towards
‘declarativeness’, helps achieve compactness as well as integration with user interface
commands that operate on knowledge.

157

g) Informal and formal knowledge representation: CODE4 nearly seamlessly
allows both formal and informal aspects of knowledge to be managed.

7 . 2 . 2 Contributions to user interfaces for knowledge management

Each of the following contributions is relatively small in its own right. However when the
contributions are combined, the ‘emergent’ abilities of the resulting system are very useful
to the user. For example a matrix browser can be controlled both by masks and by
browsers higher in a chain; which in turn are affected by various selection capabilities, by
their own masks and perhaps by the updating of the knowledge base in yet another
browser.

h) Rapid, easy browsing of knowledge bases using hierarchies of browsers:
Users have found it useful to be able to look at large collection of concepts organized
according to some criteria, and then to be able to switch criteria and study the effect of the
switch. This ‘high-bandwidth browsing’ is a feature that other tools for knowledge
management appear not to support.

i) Interchangeable mediating representations: Providing similar commands and
interaction mechanisms in each mediating representation reduces complexity for the user.
In most tools with multiple mediating representations, each presents a different interface
to the user.

j) The matrix mediating representation: Matrices to view knowledge are found else-
where, such as in spreadsheets. New ideas, however, can be found in the details such as
the operators available to select which sets of properties or main subjects are shown.

k) Knowledge maps to control user interface displays: By creating an abstraction
that defines the kind of knowledge to be displayed in a mediating representation, a
significant degree of flexibility is added to the system.

l) The use of masks to control visibility and highlighting: A contribution of this
research is the use of masks as a flexible mechanism to allow database-like queries,
focussing of the display and highlighting of concepts of interest.

m) The ability to store and recall multiple graph layouts: Users have found that
the way they arrange their knowledge is, to them, a kind of latent knowledge. Being able
to automatically store this knowledge, in the same format as other knowledge, appears to
be a new idea.

n) The ability to display arbitrary relation graphs: While drawing semantic nets is
an old idea, this research contributes by showing the benefit of being able to dynamically
alter both the set of concepts displayed and the set of relations.

o) The variety of ways of selecting concepts: Sets of concepts to be operated on
can be chosen in numerous ways including using masks, using various combinations of
keys or using simple regular expressions. Having these mechanisms available greatly

158

facilitates the knowledge management task. All these mechanisms are generally not
available in other systems.

p) The variety of editing techniques: Links can be made between concepts by direct
manipulation in the various mediating representations, by cutting and pasting or by typing
concept names. This flexibility helps in the editing task.

7 . 2 . 3 Other general contributions

q) Allowing multiple knowledge bases to be loaded at once: Most knowledge
based systems allow a single knowledge base to be loaded, or allow partitioning of a
knowledge base into subhierarchies. Allowing several independent knowledge bases to
be simultaneously loaded (even several copies of the same knowledge base) allows the
user to rapidly switch among various ongoing tasks and to compare and copy portions of
knowledge bases.

r) Measuring knowledge bases: Being able to analyse the quality or complexity of a
knowledge base is a new idea introduced in this research.

7 . 2 . 4 Problems addressed by the research

Section 1.4 listed a series of problems users have while managing knowledge. The
following subsections summarize how CODE4 addresses some of these problems. CODE4
contributes most by the solutions it presents to problems I-1 (categorizing), I-2 (naming),
I-5 (extracting) and A-2 (the expert user restriction).

Problem I-1: Categorizing

CODE4’s three main mediating representations help with this problem. The outline
representation allows users to rapidly rearrange concepts in simple indented lists, while the
graphical representation allows for a two-dimensional view. The matrix representation
helps users to understand existing categorizations and to decide on appropriate distinctions.

The property and statement hierarchies help users with the organization of categorization
criteria. The dimensions and disjointness facilities help fine tune categorization decisions.

The fact that commands and operations are similar among mediating representations helps
reduce the cognitive overhead associated with performing categorization. Mask facilities
assist similarly by helping users identify concepts by content and by helping them narrow
the scope of their work.

Problem I-2: Naming things

Three of CODE4’s abilities allow users to use natural names for concepts, reducing the
need for them to invent artificial ones: a) The handling of synonyms; b) allowing several
concepts to have the same name, and c) the ability to accept any character string as a name.

159

Problem: I-1 I-2 I-3 I-4 I-5 I-6 A-1 A-2 A-3 A-4 Overall
Categ-
oriz-
ation

Nam-
ing

Dist-
ingu-
ishing

Under-
stand-
ing

Ext-
racting

Hand-
ling

errors

Special
-

purpose

Expert-
only

Large
size

Single
user contrib-

ution

KNOWLEDGE REPRESENTATION (section 7.2.1)
a) Uniform treatment of

concepts
* ** * * 8

b) Separate terms * ** ** * * 9
c) Separate metaconcepts * ** ** * 8
d) Statements as concepts ** 7
e) Property and statement

hierarchies
** * ** 9

f) Constructors & navig-
ators/ Knowledge server

* * * 5

g) Formal and informal
knowledge

* * ** * ** 6

USER INTERFACE (Section 7.2.2)

h) Hierarchies of dynamic
browsers

* * ** ** ** * 7

i) Interchangeable mediating
representations

** * ** ** ** ** 8

j) Matrix mediating
representations

** * ** ** ** ** * 8

k) Knowledge maps * * ** ** * 9
l) Masks * * * * ** ** ** * * 8
m) Graph layouts as

knowledge
* * ** * 8

n) Arbitrary relation graphs * ** * ** 7
o) Multiple ways of

selecting concepts
* * ** * * 5

p) Variety of editing
techniques

* * * * * 5

OTHER CONTRIBUTIONS (section 7.2.3)
q) Multiple loaded KBs * * * 8
r) Metrics * * * 8

Overall contribution
of the thesis

8 8 7 6 7 5 8 6 3 1

Figure 7.1: How contributions of this thesis solve knowledge management problems.
Rows represent the contributions discussed in section 7.2. Columns represent problems
presented in section 1.4. Two asterisks indicate a significant contribution to the
problem’s solution. One asterisk indicates a weaker contribution. The rightmost column
places the contributions on a scale of 0 to 10, where 10 is most significant. Factors
determining significance are both novelty and impact. The bottom row uses a 0 to 10
scale to indicate the the relative contribution of CODE4 to the problem’s solution, where
0 is no contribution and 10 is very strong. All entries are the authors’ opinion.

160

The fact that CODE4 does not use the names of concepts as internal identifiers allows users
to freely change a name if they find a better one, and not to worry about getting the name
right in the first place. Several other features allow CODE4 users not to depend on accurate
naming in the initial stages of knowledge base developing: a) The fact that concepts are
automatically given names that are reasonably sensible by looking at the names of their
superconcepts; b) the fact that concepts are almost always entered in an outline or graphical
structure so that the user can identify them by their visual placement, and c) the fact that
concepts can be readily identified by content, using the highlighting mask.

Yet another way in which CODE4 helps in naming is its treatment of terms as full-fledged
concepts. This allows users to focus on linguistic issues at a very detailed level.

Problem I-3: Making distinctions

CODE4 allows properties to be attached to any concept, and includes terms, metaconcepts
and statements among the things it treats as concepts. This means that the user can easily
record fine details in knowledge, and is not forced to commingle properties of what should
be different concepts (e.g. to mix regular inheriting properties with noninheriting
metaconcept properties). The fact that graph layouts and informal values are stored in the
same manner as other knowledge also helps in this regard.

The matrix mediating representation also helps in making distinctions by highlighting cases
where inadequate distinctions have been made.

Problem I-4: Understanding effects

Attaching non-inheriting properties to metaconcepts, and having a strict rule for inheritance,
simplify the user’s understanding the effects of inheritance. The ability to display large
amounts of knowledge in various windows and in various formats helps users visualize the
effects of their actions. Due to automatic updating of windows, the effects of changes are
always visible.

Problem I-5: Extracting knowledge

The mask, chained browsers and the matrix mediating representation are the main facilities
by which CODE4 helps users extract knowledge. CODE4 emphasizes the presentation of
knowledge so that the user can easily extract facts from what is displayed; rather than
requiring the user to specify a query in some artificial language.

Problem I-6: Handling errors

Mask facilities help users detect incompleteness and some inconsistencies. The matrix
mediating representation, and the ability to display multiple windows containing related
knowledge, help the user visually scan for inconsistencies. Various metrics discussed in

161

chapter 5 can help users identify excessive complexity or incompleteness in knowledge
bases.

Features such as informal values and value combination allow the user to temporarily live
with inconsistencies until appropriate resolutions can be found. Thus the user can follow an
incremental approach to knowledge base development.

Problem A-1: Special purpose restriction

CODE4 is not restricted to any particular domain; in a wide variety of domains there is the
need to represent concepts and their properties and to carefully specify arbitrary relations.

Problem A-2: The expert user restriction

A number of features are very usable by novices. Foremost of these are the simple-to-use
mediating representations wherein the user can sketch hierarchies and arbitrary graphs with
no need to understand details of the knowledge representation. A second key feature is the
ability to enter informal text in any facet value, resulting in the ability of the user to set their
own standards and not be tied down to a sophisticated syntax.

Problem A-3: The small knowledge base restriction

CODE4 has been used to create medium-sized serious knowledge bases. The fact that
CODE4’s user interface allows the user to focus on a particular aspect of a knowledge base
helps in this regard.

Problem A-4: The single-user restriction

Although CODE4 remains largely a single-user environment when it comes to editing, the
knowledge server capability and the world-wide-web interface allow large numbers of
users to simultaneously query a knowledge base.

CODE4’s ability to manage multiple knowledge bases at once, and its ability to split and
merge knowledge bases have helped in team-oriented development.

7 .3 Future Research

This section summarizes ideas for potential future work. This list does not include minor
improvements or cosmetic changes that are in the ‘to do’ list for CODE4. Also omitted are
various planned internal design changes (e.g. to improve maintainability of the system).

162

7 . 3 . 1 Future work on user interfaces for knowledge management
systems.

• Improve feedback panel facilities: The current feedback panel (section 4.4.2)
provides rudimentary information when a user executes a command. The following are
some necessary enhancements:

a) A multi-level undo capability. This would require defining an inverse operation for
every knowledge base editing operation.

b) Active suggestions when certain changes are made. For example when a user adds
a property where there already exists a property with that name, a non-modal
warning should be displayed. This could be expanded into a general ‘property
manager’ capability.

c) More useful suggestions when a user performs an ‘illegal’ action. Ideally the user
should be given a non-modal list of possible alternative actions that might be taken
– now this only occurs for a few commands. Generally, the problem is described
to the user in terse wording that can be hard to understand; and the user must infer
the corrective action to take before completing the command.

• Improve facilities for users to manipulate the look of concepts and the
layout of mediating representations: Currently users can specify the layout of a
graph and can set a number of ‘format’ parameters in any mediating representation. The
graph layout is the only aspect of the ‘look’ that is actually stored as knowledge (i.e as
the values of a certain metaconcept property). Also, the format parameters apply to an
entire window. What users need are: 1) to be able to manipulate the fonts, colours, box
shapes etc. of individual concepts; and 2) to be able to treat this information as
knowledge.

• Make the outline and graphical mediating representations have more of the
features of outline processors: Abilities such as dragging and dropping of subhier-
archies to reparent them would be very useful; some gesture would have to be found to
distinguish this from mere visual reordering.

• Improve graph layout algorithms: The interactions among multiple graph struc-
tures, masking and dynamic updating cause a high level of complexity in the automatic
layout algorithms. These algorithms need analysing and improving.

• Enhance the matrix mediating representation so users can actively add
concepts and properties: Currently only cells can be edited.

• Allow users to load and save various configurations of windows and
masks: Users need to be able to save and restore various screen layouts, and other ses-
sion parameters. They also need to be able to maintain a library of masks.

7 . 3 . 2 Future work in knowledge representation

• Make a distinction between words and terms: Currently there is a one-to-one
mapping between character strings used to name concepts and term concepts. Every new
string entered as a name results in the creation of a new term (although terms can stand

163

for multiple other concepts). However it becomes difficult to attach such properties as
part of speech to such concepts because a given character string may be used as sev-
eral different parts of speech. The solution is to add an extra class of concept called
‘word’. There would be a one-to-one mapping between character-strings and words, a
one-to-many mapping between words and terms (i.e. senses of the word), and a many-
to-one mapping between terms and other concepts.

• Implement additional classes of dependent concepts as well as inverse
properties, sets and value-dependent subproperties: These features need to be
implemented as described in this thesis.

• Improve the delegation mechanism: This mechanism could be made to work simi-
larly to the formula mechanism in spreadsheets. As in spreadsheets, references could be
relative (to the current subject and/or property) or absolute (to a particular concept).

• Improve capabilities to deal with the ClearTalk language: Provide fuller pars-
ing capabilities for a restricted version of English that would be intermediate between
formal concept references and informal text.

• Provide explicit support for rules and constraints: Currently this knowledge is
entered informally. While most users have not found this a serious hindrance, it does
preclude automatic checking mechanisms and executable user rules.

• Implement checking for type consistency over inheritance: Currently if a nec-
essary property has one value for a particular subject, it is not constrained to have a nar-
rower value for a subconcept of that subject. While users should continue to be able to
informally override such constraints, a checking capability should be added so the user
can find inconsistencies on demand.

• Provide a capability to store knowledge about the knowledge base as a
whole: Currently this can only be done by adding a user concept to represent the
knowledge base. A primitive mechanism is needed so that knowledge bases can be
indexed.

• Implement capabilities to track updaters of the knowledge base: Currently
there are primitive properties for this purpose, but they are never used.

• Generate dimensions automatically. This can be done by finding statements that
are ‘definitional’; i.e. necessary and sufficient ones; those that state the reason why the
concept exists at all. A facet could be used to declare a statement definitional. For
example, if the the statement about age were declared definitional for the concept child,
then the dimension ‘by age’ could be generated automatically. A distinction between
definitional and assertional statements is fundamental in some KR systems like KM, but
it has been found that the types of users interested in CODE4-KR rarely care about
precise definitions, they are more interested in describing as much about a concept as they
can.

164

• Divide subconcepts into value-dependent subproperties. Rather than having a
property called kinds whose statements are purely textual, a useful extension would be
to consider the various kinds as subproperties of the subconcepts property. A
generalization of the value-dependent substatements mechanism would be needed.

 7.3.3 Future work on CODE4 in general

• Controlled experiments to prove the efficacy of features: CODE4 has too
many features to individually test, however given a large enough pool of participants it
would be useful to perform an experiment of the following kind on certain key features:
Give a control group the system and have them build a significant number of knowledge
bases. Have the test group create knowledge bases using a version of the system that
lacks a certain feature. Then compare the time spent, quality of the knowledge bases
produced etc. Unfortunately this kind of experiment would require a significant amount
of money to properly execute. This is because, to obtain comparable results, participants
would have to spend tens of hours and build knowledge bases on the same topics as
other participants. Because finding volunteers to do this has proved difficult, participants
would probably have to be paid.

• Enhance knowledge-server capabilities: The objective would be to permit
‘groupware’ use of CODE4, wherein several users, using separate CODE4 systems, can
dynamically interact with the same knowledge base under the control of a master CODE4
server.

• Enhance the saving and loading mechanism: This currently operates on a whole
knowledge base at a time. The objective would be to make it incrementally save and load
at a much finer grain, even down to the statement level. This would lift the cap on
knowledge base size, which currently is the amount of available virtual memory. It would
also ease multi-user development of knowledge bases.

7 . 3 . 4 Future work involving metrics

The metrics presented in this research are preliminary ideas. The following suggests lines
of future research:

• Further develop the complexity metrics. A number of additional complexity met-
rics could be devised, and some of the existing ones could be enhanced:

a) The complexity of the property hierarchy should be measured in a similar manner
to MISA.

b) The complexity of graphs computable by following formal links should be mea-
sured (e.g. part-of hierarchies, dependency graphs etc.)

c) The use of dimensions and disjointness should be factored into the computation of
MISA.

165

d) Additional balance metrics could be developed – for example to measure how
complexity differs in different parts of the inheritance hierarchy or property hierar-
chy.

• Test users’ perceptions of the metrics: The metrics should be evaluated and ad-
justed so as to better correspond with subjective phenomena. Participants who are
CODE4 experts should be presented with a series of knowledge bases, and should be
asked to give estimates for various types of complexity, as well as overall complexity and
pure complexity. Next, various formulas and weightings should be adjusted to minimize
the difference between the metrics and participants’ estimates. After this, a further exper-
iment should be run to verify that the adjusted formulae yield useful measurements (the
participants could be divided into a ‘training set’ and ‘test set’).

• Adjust MOCPLX so that it has more meaning: In a similar manner to the above, the
formula for overall complexity could be adjusted so that it becomes a better predictor of
time to create a knowledge base. The idea would be to make MOCPLX more analogous to
function points.

7 .4 Conclusions

Knowledge management systems can be made usable by people who are not trained in
computer science. This has been demonstrated by the development of CODE4 which has
attracted a supportive and on-going set of users. The following paragraphs discuss major
conclusions of this research; these are phrased as recommendations to the developers of
future systems – proposals for features which should all be synergistically combined. It
must be borne in mind that these conclusions are limited to the context of concept-oriented
knowledge management using a tool like CODE4. Such a tool would not be appropriate to
manage, for example, repetitive data (as in a database), bitmapped images or expert-system
rule bases – i.e. large numbers of instance concepts. However, it might be possible to use a
knowledge management system to manage the types of these instance concepts.

Future system developers should focus on enhancing the user’s ability to overcome
intrinsic difficulties such as categorizing and naming concepts. They should also recognize
that there is a large need for technology that can permit average people to manage concept-
oriented knowledge. Cues should be taken from personal productivity software such as
word processors and spreadsheets: The majority of the success of such tools comes from a
very few fundamental ideas that help users, rather than from sophisticated formal represen-
tations. Most of users’ knowledge management work revolves around the manipulation of
hierarchies of named concepts and the attachment of properties to those concepts.

A focus on knowledge organizing techniques has highlighted many areas where knowledge
management technology can be made more practical. Such techniques help with various
aspects of the handling of sets of concepts. In particular developers of knowledge

166

management systems can better organize knowledge both at the abstract representation level
and at the user interface level.

At the abstract representation level, major suggestions for future knowledge management
systems are: 1) to treat terms, metaconcepts and statements as distinct classes of concepts;
and 2) to organize properties and statements into hierarchies. Both of these suggestions can
help users to more easily perform categorization and to make needed distinctions. In
particular, it is important to ensure that the names of concepts can be readily changed, that a
particular name can be used for several concepts and that concepts can have more than one
name.

Another major suggestion is to allow for the integration of formal and informal knowledge.
Formal knowledge is knowledge that is interconnected by networks of links, and informal
knowledge is typically represented as uninterpreted character strings. Whereas much
existing knowledge management technology focuses on managing the formal knowledge,
users need equally effective ways to organize informal knowledge. Experience has shown
that most knowledge actually handled by users is informal and that users consider their
informal knowledge to convey a large fraction of the content of the knowledge base.

At the user interface level, the most important idea proposed is to create a ‘high-bandwidth’
browsing environment using browser hierarchies, interchangeable mediating representa-
tions, knowledge maps and masks. The objective of such an environment is to leverage the
human brain to make inferences about knowledge, rather than relying on the machine to
make those inferences. Browser hierarchies can allow the user to rapidly navigate
knowledge. Graphical and outline mediating representations can allow the user to visualize
and easily manipulate knowledge. Matrix mediating representations permit the user to
compare concepts and to find inconsistencies. Knowledge maps and masks work together
so that the user can extract knowledge that fulfils certain criteria.

Two other things are proposed as important user interface features of a knowledge man-
agement system: 1) As is standard in personal productivity software, the user interface
should be as non-modal as possible; i.e. the number of prompts that have a limited number
of possible responses should be minimized so the user can rapidly switch tasks and remain
‘in control’ of the interaction. 2) The ways the user embellishes graphical displays of
knowledge using particular layouts, colours, box shapes and fonts etc. all should be
recognized as valid knowledge and should be stored in knowledge bases as is any other
knowledge. The principle here is that a knowledge base should be able to represent its
user’s thoughts, and many users apparently use spatial and similar cues as part of their
representation of conceptual structures.

A further proposal is that future knowledge management systems support a number of
ways of measuring knowledge. Possibilities include simple metrics for various types of
complexity and compound metrics that might help the user better understand the true size of
a knowledge base.

167

Each of the above suggestion can prove useful in its own right, however the most
important conclusion of this research is the following: That it is only by the synthesis of the
suggestions into a well-designed system that users can be provided with a truly practical
tool for knowledge management. When the suggestions are integrated, the resulting whole
has many useful emergent properties.

168

Bibliography
Acker, L. (1992) Access Methods for Large, Multifunctional Knowledge Bases, TR AI92-

183, PhD Thesis, University of Texas at Austin.

Anjewierden, A. and J. Weilemaker (1992). “Shelley - Computer-Aided Knowledge
Engineering.” Knowledge Acquisition 4: 109-125.

Barman, D. (1992). "Capturing Design Rationale with Semi-structured Hypertext".
AAAI92 Workshop on Design Rationale Capture and Use, San Jose, 15-22.

Berners-Lee, T., R. Cailliau, A. Luotonen, H. Neilsen and A. Secret (1994). “The World-
Wide Web”. CACM 37(8) Aug 1994: 76-82.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs NJ: Prentice-
Hall.

Bowker, L. (1992) Guidelines for Handling Multidimensionality in a Terminological
Knowledge Base, Master's thesis, University of Ottawa.

Bowker, L. and T. C. Lethbridge (1994). “Terminology and Faceted Classification:
Applications Using CODE4”. Third International ISKO Conference, Copenhagen,
200-207.

Brachman, R., D. McGuiness, P. Patel-Schneider, L. Resnick and A. Borgida (1991).
"Living with CLASSIC: When and How to Use a KL-ONE Like Language" in
Principles of Semantic Networks. J. Sowa ed. San Mateo: Morgan Kaufmann: 401-
456.

Brachman, R. and J. Schmolze (1985). “An Overview of the KL ONE Knowledge
Representation Language.” Cognitive Science 9(2): 171-216.

Bradshaw, J., J. Boose, D. Shema, D. Skuce and T. Lethbridge (1992). "Steps Toward
Sharable Ontologies for Design Rationale". AAAI-92 Design Rationale Capture and
Use Workshop, San Jose, CA.

Bradshaw, J., C. Chapman and K. Sullivan (1992). "An Application of DDucks to Bone-
Marrow Transplant Patient Support". 1992 AAAI Spring Symposium on Artificial
Intelligence in Medicine, Stanford University, March.

Bradshaw, J., P. Holm, O. Kipersztok and T. Nguyen (1992). "eQuality: A Knowledge
Acquisition Tool for Process Management". FLAIRS 92, Fort Lauderdale, Florida.

Bradshaw, J. M. and J. H. Boose (1992) Mediating Representations for Knowledge
Acquisition, Internal Report, Boeing Computer Services, Seattle, Washington.

Bradshaw, J. M., K. M. Ford, J. R. Adams-Webber and J. H. Boose (1993). "Beyond
the Repertory Grid: New Approaches to Constructivist Knowledge Acquisition Tool
Development" in.Knowledge Acquisition as Modeling. K. M. Ford and J. M.
Bradshaw ed. New York: John Wiley. 287-333.

169

Brooks, F. P. (1987). “No Silver Bullet – Essence and Accidents of Software
Engineering.” IEEE Computer, 20(4), April, 10-19.

Conklin, J. (1987). “Hypertext: An Introduction and Survey.” IEEE Computer (September
1987): 17-41.

Dahlberg, I. (1993). "Faceted Classification and Terminology". TKE'93, Terminology and
Knowledge Engineering, Frankfurt, Indeks Verlag: 225-234.

Eck, K. (1993) Bringing Aristotle Into the Twentieth Century: Definition-Oriented Concept
Analysis in a Terminological Knowledge Base, Master's thesis, University of Ottawa.

Eilerts, E. (1994) KnEd: An Interface for a Frame-Based Knowledge Representation
System, Masters Thesis, University of Texas at Austin.

Eriksson, H., Puerta, A., Musen, M. (1994). "Generation of Knowledge Acquisition
Tools from Domain Ontologies". 8th Banff Knowledge Acquisition for Knowledge-
based Systems Workshop, Banff, 7.1-7.20.

Fensel, D. (1993) The Knowledge Acquisition and Representation Language KARL, PhD
thesis, University of Karlsruhe.

Ford, K. M., J. M. Bradshaw, J. R. Adams-Webber and N. M. Agnew (1993).
"Knowledge Acquisition as a Constructive Modeling Activity." in.Knowledge
Acquisition as Modeling. K. M. Ford and J. M. Bradshaw ed. New York: John
Wiley. 9-32.

Gaines, B. (1987). “An Overview of Knowledge Acquisition and Transfer.” International
Journal of Man-Machine Studies. 26: 453-472.

GE (1993) OMTool User Guide, version 2.0, , General Electric Advanced Concepts
Center.

Genesereth, M., Fikes, R. (1992) Knowledge Interchange Format Version 3.0 Reference
Manual, , Computer Science Department, Stanford University.

Ghali, N. (1993) Managing Software Development Knowledge: A Conceptually Oriented
Software Engineering Environment, MSc Thesis, University of Ottawa, Dept of
Computer Science.

Goldberg, A. (1984). Smalltalk-80: The Interactive Programming Environment. Reading,
Mass: Addison-Wesley.

Gruber, T. (1993). “A Translation Approach to Portable Ontology Specifications.”
Knowledge Acquisition 5: 199-220.

Halasz, F. and M. Schwartz. “The Dexter Hypertext Reference Model”. CACM 37(2) Feb
1994: 30-39.

Harel, D. (1987). “Statecharts: A Visual Formalism for Complex Systems.” Science of
Computer Programming 8: 231-274.

Hunter, E. J. (1988). Classification Made Simple. Aldershot: Gower.

170

IFPUG (1994) Function Point Counting Practices Manual, , International Function Points
User Group, Release 4.0.

Iisaka, K. (1992) Knowledge Base of Fundamental Concepts of the Smalltalk-80
Language and Programming Environment, Undergraduate Senior Report, University
of Ottawa.

ISO (1990). ISO 1087: Terminology Vocabulary. ISO: Geneva.

ISX (1991) LOOM Users Guide, ISX Corporation.

Johnson, N. E. (1989). "Mediating Representations in Knowledge Elicitation"
in.Knowledge Elicitation: Principles, Techniques and Applications. D. Diaper ed. New
York: John Wiley.

Klinker, G., D. Marques and J. McDermott (1993). “The Active Glossary: taking
integration seriously.” Knowledge Acquisition 5: 173-197.

Lacey, A (1976). A Dictionary of Philosophy, Routledge & Kegan Paul: London.

Lenat, D. and R. Guha (1990). Building Large Knowledge Based Systems. Reading, MA:
Addison Wesley.

Lethbridge, T. C. (1991). "A model for informality in knowledge representation and
acquisition.". Workshop on Informal Computing,, Santa Cruz, Incremental Systems:
175-177.

Lethbridge, T. C. (1993) CKB Command Documentation, Unpublished Report,
University of Ottawa AI Lab.

Lethbridge, T. C. and K. Eck (1994) CODE4 Reference Manual, Internal Report, AI Lab,
University of Ottawa.

Lethbridge, T. C. and D. Skuce (1992a). "Informality in Knowledge Exchange". AAAI-92
Workshop on Knowledge Representation Aspects of Knowledge Acquistion, San
Jose, CA: 93-99.

Lethbridge, T. C. and D. Skuce (1992b). "Beyond Hypertext: Knowledge Management for
the Technical Documenter". SIGDOC 92, Ottawa, ACM, 313-322.

Longeart, M., G. Boss and D. Skuce (1993). “Frame-based Representation of
Philosophical Systems Using a Knowledge Engineering Tool.” Computers and the
Humanities 27: 27-41.

Low, G. C. and D. R. Jeffrey (1990). “Function Points in the Estimation and Evaluation
of the Software Process.” IEEE Transactions on Software Engineering 16: 64-71.

MacGregor, R. (1991a). "The Evolving Technology of Classification-based Knowledge
Representation Systems" in Principles of Semantic Nets. J. Sowa ed. San Mateo, CA:
Morgan Kaufmann. 385-400.

MacGregor, R. (1991b). "Using a description classifier to enhance deductive inference".
7th IEEE Conf. on AI Applications, 41-45.

171

McCabe, T. J. (1976). “A complexity measure.” IEEE Trans. Software Engineering 2(4):
308-320.

Meyer, I., K. Eck and D. Skuce (1994). "Systematic Concept Analysis Within a
Knowledge-Based Approach to Terminology", in Handbook of Terminology
Management, S. E. Wright and G. Budin eds. Amsterdam/Philadelphia: John
Benjamin.

Meyer, I., D. Skuce, L. Bowker and K. Eck (1992). "Towards a New Generation of
Terminological Resources: An Experiment in Building a Terminological Knowledge
Base". 13th International Conference on Computational Linguistics (COLING).,
Nantes, 956-960.

Miller, D. (1992) Toward Knowledge-Base Systems for Translators, Master's thesis,
University of Ottawa.

Motta, E., M. Eisenstadt, K. Pitman and M. West (1988). “Support for Knowledge
Acquisition in the Knowledge Engineer’s Assistant (KEATS).” Expert Systems 5(1):
21-50.

Motta, E., T. Rajan, J. Domingue and M. Eisenstadt (1991). “Methodological foundation
of KEATS, the knowledge Engineer's Assistant.” Knowledge Acquisition 3: 21-47.

Neale, I. M. (1989). “First generation expert systems: a review of knowledge acquisition
methodologies.” The Knowledge Engineering Review : 105-145.

Nielsen, J. (1990). “The Art of Navigation Through Hypertext.” CACM 33(3): 298-309.

Porter, B. (1994) Personal Commmunication.

Porter, B., J. Lester, K. Murray, K. Pittman, A. Souther, L. Acker and T. Jones (1988)
AI Research in the Context of a Multifunctional Knowledge Base: The Botany
Knowledge Base Project, , The University of Texas at Austin.

Regoczei, S. and S. Hirst (1989) The Meaning Triangle as a tool for the acquisition of
abstract conceptual knowledge, Technical Report, University of Toronto, Computer
Science Dept., TR CSRI-211.

Riedesel, J. D. (1990). "Knowledge Management: An Abstraction of Knowledge Base and
Database Management Systems". The 5th Annual AI Systems in Government
Conference, Washington, D.C., 80-87.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen (1991). Object-
oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall.

Selic, B. and J. McGee (1991). "Object-Oriented Design Concepts for Real-Time
Distributed Systems.". Real-Time and Embedded Systems Workshop, ACM
Conference on Object-Oriented Programming, Systems, and Languages (OOPLSA
91), Phoenix.

Shaw, M. and B. Gaines (1991). "Using Knowledge Acquisition Tools to Support
Creative Processes". proc 6th Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, 27.1 - 27.19

172

Shipman, F. M. (1992) Supporting Knowledge-base Evolution using Multiple Degrees of
Formality, Technical Report, Dept. of CS, Univ. Colorado at Boulder, CU-CS-592-92

Shipman, F. M. (1993) Formality Considered Harmful: Experiences, Emerging Themes,
and Directions, Technical Report, Dept. of CS, Univ. Colorado at Boulder, CU-CS-
648-93.

Skuce, D. (1977) Toward communicating qualitative knowledge between scientists and
machines, PhD thesis, McGill.

Skuce, D. (1988). "An English-like Syntax and a Smalltalk Tool for Conceptual Graphs.".
Workshop on Conceptual Graphs, Minneapolis, p3.1.5.1-3.1.5.10.

Skuce, D. (1991). “A Language and System for Making Definitions of Technical
Concepts.” Journal of Systems and Software 14(1): 39-59.

Skuce, D. (1992a). “Managing Software Design Knowledge: A Tool and an Experiment.”
Resubmitted with reviewers changes to: IEEE Transactions on Knowledge and Data
Engineering .

Skuce, D. (1992b) Notes on ClearTalk, Internal Report, AI Laboratory, University of
Ottawa.

Skuce, D. (1993a). “A Multifunctional Knowledge Management System.” Knowledge
Acquisition 5: 305-346.

Skuce, D. (1993b). “A Review of ''Building Large Knowledge Based Systems'' by D.
Lenat and R. Guha.” Artificial Intelligence 61: 81-94.

Skuce, D. (1993c). "A System for Managing Knowledge and Terminology for Technical
Documentation". Third International Congress on Terminology and Knowledge
Engineering, Cologne, 428-441.

Skuce, D. (1993d). "Your thing is not the same as my thing: reaching agreeement on
shared ontologies". proc. Formal Ontology in Conceptual Analysis and Knowledge
Representation, Padova.

Skuce, D. and I. Monarch (1990). "Ontological Issues in Knowledge Base Design: Some
Problems and Suggestions.". 5th Knowledge Acquisition for Knowledge Based
Systems Workshop, Banff.

Skuce, D., S. Wang and Y. Beauvillé (1989). "A Generic Knowledge Acquisition
Environment for Conceptual and Ontological Analysis.". 4th Knowledge Acquisition
for Knowledge Based Systems Workshop, Banff, 31.1-31.20.

Sommerville, I. (1992). Software Engineering, 4th Ed. Wokingham: Addison-Wesley.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine.
Reading, MA: Addison Wesley.

Spivey, J. M. (1989). “An Introduction to Z and Formal Specifications.” Software
Engineering Journal : 40-50.

173

Terveen, L. (1990) A Collaborative Interface for Editing Large Knowledge Bases,
Technical Report, MCC, ACT-HI-187-90.

Terveen, L. and D. Wroblewski (1992). “A Tool for Achieving Concensus in Knowledge
Representation.” AAAI-92 : 74-79.

Vickery, B. C. (1960). Faceted Classification. London: Aslib.

Wang, C. (1994) Towards Conceptually-Oriented Software Requirements Analysis and
Design, MSc Thesis, University of Ottawa.

Weilinga, B. J., A. T. Schreiber and J. A. Breuker (1992). “KADS: A modelling approach
to knowledge engineering.” Knowledge Acquisition 4(1).

174

Appendix A

Data About the Users

This appendix contains summaries of data concerning users who participated in the CODE4
user study. The methodology for the study is discussed in section 6.1.

The data comes primarily from questionnaires, however many of the questions are not in-
cluded in this appendix. The following are reasons for omissions:

• The answers to some questions yielded no statistically significant results because:

a) Some questions were answered by an insufficient number of respondents.
b) For some questions involving rating several attributes, the attributes were rated

too similarly to draw conclusions about any differences.

• It was discovered that some questions were misunderstood.

A.1 General questions about experiences with CODE4.

Average Max Min Std.
Dev

Number of
responses

A2 Approximately how many hours in total do you think
you have spent using CODE4?

2 7 1 1000 40 296 11

A4 Estimate what percentage of the system functionality
you use regularly when using CODE4 (think in terms
of the percentage of menu items that you use)?

3 8 65 20 17 11

B1 What percentage of your current understanding of
CODE4 was obtained from:
h Exploring the system on your own 2 5 65 0 22 10
a Studying the reference manual 1 8 50 0 17 10
c Studying scientific papers 1 5 33 0 13 10
f Being taught individually in front of the system 1 4 60 0 17 10
i Asking questions to CODE4 developers 8 20 0 6 10
g Watching others use the system 7 40 0 12 10
j Asking questions to CODE4 users 5 11 0 5 10
b Studying a beginner's tutorial 4 11 0 5 10

B5 How many days of training do you think it would take
an average university graduate with basic computer lit-
eracy, but no artificial intelligence knowledge, to be-
come an intermediate user of CODE4?

7 20 2 5 11

175

A.2 Questions about CODE4 knowledge representation features

Average Max Min Std.
Dev

Number of
responses *

D1 In this question, please rank your perceptions of various
knowledge representation features. How useful have the
features been to you in the tasks you have been per-
forming? (-5 = very harmful …0 = of no use … 5 = es-
sential)

A Inheritance, in general 4 . 9 5 4 0.3 10

B Multiple inheritance 4 . 9 5 4 0.3 10

C The property hierarchy, in general 4 . 8 5 4 0.4 9

D Multiple parents in the property hierarchy 4 . 1 5 0 1.7 8

E The ability to have formal references to other con-
cepts in any facet value (either by parsing or cut-
and-paste)

3 . 9 5 1 1.4 10

F Facets, in general 3 . 9 5 2 1.2 9

G The ability to have informal text in any facet value 3 . 6 5 -1 2.0 10

H The modality facet 3 . 6 5 0 1.7 9

I Metaconcepts 3 . 5 5 2 1.2 6

J The ability to add new facets 3 . 4 5 1 1.4 9

K The ability to have more than one term for a con-
cept (synonyms)

3 . 2 5 0 2.0 10

L The ability to use almost any character string in a
term (the name of a property or main concept)

3 . 2 5 0 1.5 10

M Treating terms, properties and statements as full-
fledged concepts (with their own properties etc.)

3 . 1 5 0 1.8 7

N Automatic combination of conflicting values in
multiple inheritance

2 . 8 5 -1 2.2 9

O Delegation 2 . 7 5 0 1.8 6

P The set of built-in facets 2 . 6 4 1 1.0 7

Q Instance concepts 1 . 9 5 0 2.4 8

R Terms as separate concepts from the concept(s)
they designate

1 . 9 5 0 2.0 7

S The maintenance of information about which con-
cepts are disjoint

1 . 5 5 0 2.0 6

T Treating facets as properties 1 . 4 5 -2 2.2 8

U The fact that you need not explicitly name a con-
cept (automatic default naming)

0 . 2 5 -3 2.2 9

* The numbers of responses to the questions differ because some people did not actually
understand the terms used in some questions. For example, only six people knew what the
term ‘metaconcept’ meant. This does not mean, however, that questions containing such

176

non-understood terms should be counted as ‘of no use’. In fact, almost all users implicitly
used metaconcepts when they specified non-inheriting properties – they were just never
exposed to the term.

The following indicates which knowledge representation features are significantly more
useful than others (calculated using t-tests). The letters on the rows and columns
correspond to the letters next to the features listed on the previous page. The lack of a check
mark in a cell indicates that no conclusion can be drawn as to whether the row feature is
more important than the column feature.

U T S R Q P O N M L K J I H G F E D C

Inheritance, in general A √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Multiple inheritance B √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Property hierarchy C √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Multiple prop. parents D √ √ √ √ √

Formal references E √ √ √ √ √ √

Facets, in general F √ √ √ √ √ √ √

Informal text in value G √ √

The modality facet H √ √ √

Metaconcepts I √ √ √

Ability to add new facets J √ √ √ √

Synonyms K √

Any character string L √ √ √

Full-fledged concepts M √

Automatic combination N √

Delegation O

The set of built-in facets P √

177

A.3 Questions about CODE4 user interface features

Average Max Min Std.
Dev

Number of
responses

C1 In this question, please rank your perceptions of various
user interface features. How useful have the features
been to you in the tasks you have been performing? (-5
= very harmful …0 = of no use … 5 = essential)

A The outline mediating representation, in general 4 . 8 5 4 0.4 10

B Dynamic updating of subwindows 4 . 7 5 4 0.5 11

C Direct typing to change a concept name in the out-
line and graphical mediating representations

4 . 6 5 3 0.8 11

D The graphical mediating representation, in general 4 . 6 5 4 0.5 11

E The ability to save various graph layouts 4 . 5 5 3 0.8 8

F The control panel, in general 4 . 5 5 3 0.9 8

G The ability to make multiple selections on the
graphical and outline mediating representations

4 . 5 5 3 0.7 11

H Relation subwindows (e.g. showing part-of or
other arbitrary relations of combinations of rela-
tions)

4 . 3 5 2 1.1 9

I The matrix mediating representation, in general 4 . 3 5 3 1.0 10

J Different mediating representations (outline,
graphical, matrix) with commands that work in a
similar manner in each

4 . 3 5 2 1.1 10

K The variety of ways of making or extending a se-
lection (dragging, marquee, shift key, control key)

4 . 2 5 2 1.1 11

L The mask, in general 4 . 2 5 2 1.1 11

M The full selection-criteria capability (The ability to
highlight concepts matching a pattern using mask-
like predicates)

4 . 2 5 2 1.1 11

N The fast goto capability (Typing the name of a
concept following a ‘>‘ sign to highlight it)

4 . 2 5 2 1.1 11

O Non-modality of most of the interface (the fact that
you are rarely prompted for anything when execut-
ing a command)

4 . 2 5 2 1.1 11

P Splitting and merging of knowledge bases 4 . 2 5 2 1.1 11

Q The display of statistics about knowledge bases 4 . 2 5 2 1.1 11

R The ability to easily request or add predicates for
the mask

4 . 2 5 2 1.1 11

S The selection of predicates available in the mask 4 . 2 5 2 1.1 11

178

Average Max Min Std.
Dev

Number of
responses

T The ability to open a subwindow from any selected
concept or set of concepts

4 . 2 5 2 1.1 11

U The ability to design your own browser
(containing various subwindows of different sizes)

4 . 2 5 2 1.1 11

V Tailorable hotkeys 4 . 2 5 2 1.1 11

W The ability to label isa links (dimensions) 4 . 2 5 2 1.1 11

X Multiple ways of adding links: Typing or pasting
into a facet value, using add sibling/add child
commands, etc

4 . 2 5 2 1.1 11

Y The ability to focus a hierarchy around one or sev-
eral concepts (selecting the button marked ‘honly’)

4 . 1 5 2 1.4 8

Z The format options available in the matrix
mediating representation

4 . 1 5 2 1.3 9

A’ The ability to reorder subconcepts and subproper-
ties in the outline mediating representation. (the
rotate-up and rotate down commands)

4 . 0 5 2 1.2 10

B’ The format options available in the graphical
mediating representation

3 . 9 5 0 1.7 9

C’ In general, the ‘high-bandwidth browsing’ nature
of the user interface where a large amount of
knowledge is displayed and is editable at once (as
opposed to results from individual queries)

3 . 9 5 0 1.7 9

D’ The options available in the control panel (e.g. the
format options)

3 . 4 5 0 1.9 10

E’ Unlimited chains of driving and driven subwin-
dows

3 . 4 5 0 1.6 11

F’ The ability to arrange an outline both alphabeti-
cally and hierarchically

2 . 6 5 0 2.0 10

G’ The ability to have multiple knowledge bases
loaded at once

2 . 6 5 -5 3.5 9

H’ The ability to show placeholders for hidden con-
cepts (+/-)

2 . 1 5 0 2.0 8

I’ The ability to attach a graphical icon to a node in
the graphical mediating representation

1 . 2 4 0 1.8 5

179

The following indicates which of the above features are significantly more useful than
others (calculated using t-tests). The lack of a check mark indicates that no conclusion can
be drawn as to whether the row feature is more significant than the column feature.

I’ H’ G’ F’ E’ D’ C’ B’ A’ Z Y X W V U

The outline med. rep., in general A √ √ √ √ √ √ √ √ √ √ √ √ √ √

Dynamic updating of subwindows B √ √ √ √ √ √ √ √ √ √ √ √ √ √

Direct typing to change a name C √ √ √ √ √ √ √ √ √ √ √ √ √

Graphical med. rep., in general D √ √ √ √ √ √ √ √ √ √ √ √ √ √

Saving graph layouts E √ √ √ √ √

Control panel, in general F √ √ √ √

Multiple selections G √ √ √ √ √ √

Relation subwindows H √ √ √ √

Matrix med. rep., in general I √ √ √ √

Different mediating representations J √ √ √ √

The variety of ways of selecting K √ √ √ √

Mask, in general L √ √ √ √

Selection-criteria capability M √ √ √ √

Fast goto capability N √ √ √ √

Non-modality of the interface O √ √ √ √

Splitting/merging KB’s P √ √ √ √

KB statistics display Q √ √ √ √

Ability to add mask predicates R √ √ √ √

Predicates available in the mask S √ √ √ √

Open subwindow / any concept T √ √ √ √

The ability to design browser U √ √ √ √

Tailorable hotkeys V √ √ √ √

Dimensions W √ √ √ √

Multiple ways of adding links X √ √ √ √

Ability to focus a hierarchy Y √ √ √

Matrix format options Z √ √ √

Ability to reorder subconcepts etc. A’ √ √ √

Graphical format options B’ √

High-bandwidth browsing C’ √

Options in the control panel D’

Unlimited chains subwindows E’ √

Below is the the continuation of the top four rows of the table; the other cells were blank
T S R Q P O N M L K J I H G F E D

The outline med. rep., in general A √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Dynamic updating of subwindows B √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Direct typing to change a name C √ √ √ √ √ √ √ √ √ √ √

Graphical med. rep., in general D √ √ √ √ √ √ √ √ √ √ √ √ √

180

Appendix B

Summary of Data Gathered about
Knowledge Bases

This appendix contains statistics about each of the knowledge bases whose construction
was studied as part of this research. More information can be found in chapter 6.

B.1 General data about the knowledge bases studied

Summary data for this appendix can be found in figure 6.10

KB Description * Est dev.
hours
**

Est NL
Pages

Types User
insts.

User
props.

Stmts. Terms Meta-
conc.

Computer technology
C1 Computer terms B8 10 15 45 0 71 112 145 0
C2 Operating systems B7 8 3 34 0 98 117 134 0
C3 Unix A8 60 27 156 0 71 100 285 1
C4 Computer languages B8 10 10 31 11 43 44 108 0
C5 Smalltalk in general A9 112 51 73 218 272 1
C6 Smalltalk collections A1 20 61 0 138 76 216 0
C7 Smalltalk sets and dictio-

naries
A2 200 7 66 15 365 420 541 15

C8 MVC B8 100 35 95 55 135 492 269 0
C9 ML A1 20 89 6 61 115 191 0
C10 Pascal A2 70 5 132 0 207 363 339 0
C11 C Language A7 100 123 31 141 484 264 0

Mean for group 60 14 86 15 128 231 251 2

Other technical topics
T1 Optical storage A3 400 288 0 228 1614 580 80
T2 Lasers A3 50 25 79 0 135 853 218 51
T3 Electrical devices 1 A4 25 5 55 0 83 117 175 0
T4 Electrical devices 2 **** A7 15
T5 Electrical devices 3 A5 15 15 90 3 24 179 156 0
T6 Automatic teller machine A2 300 20 148 8 324 321 519 2
T7 Telephone A4 171 2 342 508 739 25
T8 Geology - Bedrock field A5 70 100 159 0 79 691 297 0
T9 Matrices A6 50 40 124 0 69 172 247 4

Mean for group 116 34 139 2 161 557 366 20

181

KB Description * Est dev.
hours
**

Est NL
Pages

Types User
insts.

User
props.

Stmts. Terms Meta-
conc.

General purpose knowledge
G1 Top level ontology A1 500 61 0 66 98 182 30
G2 Vehicles A4 25 3 40 0 20 35 94 0
G3 Person 1 A4 15 3 53 0 41 34 129 0
G4 Person 2 B8 10 5 31 0 27 174 93 0
G5 Fruit B6 20 68 0 100 62 169 0

Mean for group 114 4 51 0 51 81 133 6

* The codes in this column indicate which user created the knowledge base.
Additional information about the users can be found in appendix A.

** This is the number of hours that the user estimated taking to create the knowledge
base.

*** This is the number of pages of natural language text that the user estimated it would
require to describe the same knowledge as is in the knowledge base.

**** The user filled out a questionnaire, but did not make this knowledge base available.

182

B.2 Measurements of the knowledge bases

For each of the knowledge bases listed in appendix B1, this section lists the twelve metrics
discussed in chapter 5. Summary data can be found in figure 6.1. T4 is missing because
the user filled out a questionnaire but did not make the knowledge base available.

KB Mallc Mmsubj Mrprop Mdet Msform Mdiv Msok Misa Mmi Macplt Mpcplx Mocplx

Computer technology

C1 409 35 0.45 0.30 0.08 0.82 0.00 0.30 0.23 0.31 0.27 9.5
C2 419 24 0.65 0.21 0.00 0.00 0.00 0.32 0.67 0.39 0.30 7.3
C3 647 146 0.11 0.03 0.04 0.74 0.01 0.54 0.00 0.05 0.05 7.0
C4 273 32 0.33 0.08 0.00 0.81 0.00 0.19 0.56 0.17 0.17 5.3
C5 761 151 0.11 0.09 0.44 0.79 0.05 0.39 0.01 0.06 0.05 7.9
C6 526 51 0.53 0.29 0.00 0.09 0.00 0.32 0.12 0.35 0.19 9.9
C7 1457 71 0.70 0.13 0.01 0.99 0.11 0.33 0.00 0.39 0.38 26.6
C8 1045 87 0.37 0.23 0.67 0.96 0.01 0.21 0.29 0.28 0.25 22.1
C9 497 85 0.17 0.13 0.00 0.87 0.04 0.44 0.06 0.10 0.09 7.8
C10 1075 120 0.40 0.12 0.07 0.93 0.02 0.48 0.08 0.22 0.22 26.4
C11 1078 134 0.26 0.46 0.20 0.88 0.01 0.42 0.18 0.22 0.22 29.0

Avg 744 85 0.37 0.19 0.14 0.72 0.02 0.36 0.20 0.23 0.20 14.4

Other technical topics

T1 2825 278 0.20 0.13 0.22 0.83 0.14 0.59 0.01 0.12 0.13 36.5
T2 1371 69 0.44 0.15 0.00 0.23 0.37 0.49 0.01 0.25 0.25 17.6
T3 465 45 0.42 0.13 0.09 0.91 0.01 0.38 0.42 0.24 0.25 11.4
T5 486 80 0.05 0.20 0.00 0.59 0.00 0.41 0.01 0.03 0.02 1.9
T6 1357 143 0.48 0.14 0.20 0.99 0.02 0.52 0.07 0.28 0.29 42.1
T7 1822 162 0.46 0.16 0.45 0.97 0.12 0.54 0.14 0.29 0.35 56.1
T8 1260 149 0.12 0.10 0.17 0.47 0.05 0.54 0.02 0.07 0.06 8.2
T9 650 114 0.14 0.08 0.32 0.79 0.02 0.39 0.19 0.08 0.07 8.3

Avg 1280 130 0.29 0.14 0.18 0.72 0.09 0.48 0.11 0.17 0.18 22.8

General purpose knowledge

G1 473 49 0.33 0.08 0.15 0.80 0.41 0.29 0.22 0.17 0.22 10.8
G2 224 30 0.16 0.11 0.03 0.60 0.00 0.30 0.87 0.09 0.10 2.9
G3 292 43 0.24 0.04 0.48 0.61 0.03 0.39 0.00 0.12 0.09 4.0
G4 361 21 0.32 0.69 0.00 0.72 0.00 0.28 0.29 0.29 0.25 5.2
G5 434 58 0.40 0.13 0.10 0.71 0.00 0.45 0.00 0.23 0.19 10.8

Avg 357 40 0.29 0.21 0.15 0.69 0.09 0.34 0.28 0.18 0.17 6.8

183

Appendix C

CODE4 Design Principles

This appendix summarizes some of the main design principles that have guided the devel-
opment of CODE4. Most of these are derived from the primary goal: to make knowledge
acquisition practical for a wide variety of people.

C.1 Assumptions about the user and environment

• The user need not be a computer specialist.

• Few users are interested in representing knowledge with mathematical precision.

• A typical desktop-scale environment should suffice.

• The end user should not require support staff to install or use the system.

C.2 General principles

• Flexibility is essential.

• The user should be able to learn a few simple principles and combine them easily to do
more complex things.

• Special cases should be minimized.

• Where a feature is available in one context, it should be available in all other analogous
contexts.

• Features should be designed recursively (e.g. concepts of concepts; subwindows of
subwindows).

• The system should be optimized for the most popular and powerful facilities.

• The system should be open to the addition of new features by developers and by users.

• The system should be easily divisible so higher level subsystems can be removed with
out impacting the core of the system.

• The system should not be biased towards applications in any particular domain.

184

C.3 User interface principles

• A well-designed user interface is essential.

• The inexperienced user should be able to easily enter knowledge.

• The user should be able to manage knowledge rapidly

• The user should be able to jump between tasks at any time.

• Look and feel should be consistent throughout the system.

• The user should be provided with informative feedback about the results of all opera-
tions.

• The interface should be tailorable wherever possible.

• It should be possible to select, edit and open subwindows about any knowledge dis-
played in the user interface.

• It should be possible to operate on multiple elements of any kind of set at once.

• There should be support for terminology choice and disambiguation.

C.4 Knowledge representation principles

• All units of knowledge should be treated in a uniform manner.

• The user should be able to represent all necessary distinctions.

• Artificial structures such as flags or tags should be avoided where possible.

• There should be a suggested restricted syntax for user entered knowledge.

• The user should be able to violate the suggested syntax in order to enter informal knowl-
edge.

• There should be an intended semantics for all elements of the knowledge representation.

• The system should behave consistently even if the user ignores the intended semantics of
the knowledge representation.

• The representation’s ontological commitment should be minimal.

185

C.5 Inferencing principles

• The system should not make inferences automatically if there is a penalty in performance
or expressiveness.

• Inference mechanisms should involve very simple rules of operation.

• Any automatic inferencing should be largely understandable to non-computer people.

• The experienced user should be able to define new kinds of inferencing.

186

Appendix D

CKB Format for a Sample Knowledge Base

The following, in CKB-format, is the knowledge base used to create the figures in chapter
4 and some of the figures in chapter 3. Details of CKB syntax, including a full BNF
grammar and descriptions of primitives, can be found in (Lethbridge 1993). However, the
following is a general guide:

• The first line (split into two in the following for compactness) identifies the knowledge
base.

• Each subsequent line contains a constructor (see section 3.13). The type of constructor is
identified by the first character of the line.

• Constructors take arguments that are either

- Concept references (base 36 numbers with modifiers such as ‘m’ or ‘s’ to indicate
dependent concepts).

- Informal strings.

• The following are the main kinds of constructor:

- z: Identifies a primitive type, and specifies its relationships to other concepts.
- y: Identifies a non-primitive type, and specifies its relationships to other concepts.
- t: Creates a term concept.
- a: Adds an additional superconcept link
- q: Identifies a primitive property and specifies its relationships to other concepts.
- p: Identifies a non-primitive property and specifies its relationships to other

concepts.
- v: Specifies the value of a statement
- u: Specifies the mapping between a term and a concept.

CKB FORMAT CODE 4.1C
(37),4,thesis2

z1>#thingConcept.
y29>1.
y2B>29.
z5>2B#selfMetaconceptConc
ept.

y2D>29.
z2>2D#selfTermConcept.

tJ>2'graph layout
position'.

t16>2'modality'.
t17>2'dimensions'.
t18>2'superproperties'.
t19>2'all changes'.
t1A>2'metaconcept'.
t1B>2'most general
subject'.

t1C>2'plural'.

t1D>2'statement'.
t1E>2'knowledge base'.
t1F>2'properties'.
t1G>2'status'.
t1H>2'last changer'.
t1I>2'value'.
t1J>2'thing'.
t1K>2'related concepts'.
t1L>2'ordinary property'.
t1M>2'disjoint concepts'.

187

t1N>2'predicate'.
t1O>2'subject'.
t1P>2'terms'.
t1Q>2'all changers'.
t1R>2'comment'.
t1S>2'source properties'.
t1T>2'meanings'.
t1U>2'part of speech'.
t1V>2'statement comment'.
t1W>2'superconcepts'.
t1X>2'sources of value'.
t1Y>2'instances'.
t1Z>2'last change
reason'.

t20>2'most general
subject of predicate'.

t21>2'knowledge
reference'.

t22>2'subconcepts'.
t23>2'last change'.
t24>2'string'.
t25>2'kinds'.
t26>2'last change time'.
t27>2'term'.
t28>2'subproperties'.
t2A>2'concept'.
t2C>2'metaconcept'.
t2E>2'term'.
t2G>2'property'.
t2I>2'statement'.
t2K>2'facets'.
t2N>2'living thing'.
t2P>2'person'.
t2R>2'dog'.
t2T>2'John'.
t2V>2'Fido'.
t2X>2'owns'.
t30>2'nonliving thing'.
t32>2'car'.
t36>2'body'.
t37>2'chassis'.
t38>2'engine'.
t3B>2'parts'.
t3F>2'Rusty'.
t3I>2'limbs'.
t3K>2'legs'.
t3O>2'arms'.
t3R>2'stance'.
t3W>2'torso'.
t3X>2'head'.
t41>2'tail'.
t47>2'furryness'.
t48>2'hairyness'.
t4E>2'fictional thing'.
t4G>2'nonfictional
thing'.

t4I>2'unicorn'.
y2F>29.
z3>2F#selfOrdinaryPropert
yConcept.

y2H>29.
z4>2H#selfStatementConcep
t.

y2M>1.

y2O>2M.
i2S>2O.
y2Q>2M.
i2U>2Q.
y4H>2M.
y2Z>1.
y31>2Z.
y3E>31.
y33>2Z.
y34>2Z.
y35>2Z.
y39>1.
y4F>1.
a2O:4F.
a2Q:4F.
a4H:39.
q6>3::1#valueProperties.
qI>3:6:5#valueLayout.
qK>3:6:5#valueDimensions.
q14>3:6:2#valuePartOfSpee
ch.

q15>3:6:2#valuePlural.
p2J>3:6:2H.
qQ>3:2J:4#value.
qR>3:2J:4#valueModality.
qS>3:2J:4#valueStatus.
qT>3:2J:4#valueStatementC
omment.

qU>3:2J:4#valueKnowledgeR
eference.

qV>3:2J:4#valuePredicate.
qW>3:2J:4#valueSubject.
qX>3:2J:4#valueMostGenera
lSubjectOfPredicate.

qY>3:2J:4#valueSourcesOfV
alue.

q12>3:6:2#valueString.
q13>3:6:2#valueMeanings.
q7>3:6:5#valueRelatedConc
epts.

q8>3:7:5#valueSubconcepts
.

q9>3:8:5#valueInstances.
qA>3:8:5#valueKinds.
qB>3:7:5#valueSuperconcep
ts.

qC>3:7:5#valueDisjointCon
cepts.

qD>3:7:5#valueSourcePrope
rties.

qE>3:7:5#valueTerms.
qP>3:6:5#valueComment.
qG>3:6:5#valueAllChangers
.

qH>3:6:5#valueLastChanger
.

qL>3:6:5#valueAllChanges.
qM>3:L:5#valueLastChange.
qN>3:M:5#valueLastChangeR
eason.

qO>3:M:5#valueLastChangeT
ime.

qF>3:6:5#valueKnowledgeBa
se.

qZ>3:6:3#valueMostGeneral
Subject.

q10>3:6:3#valueSuperprope
rties.

q11>3:6:3#valueSubpropert
ies.

p2W>3:6:2M.
p3A>3:6:1.
p3H>3:3A:2M.
p3J>3:3H:2M.
p3N>3:3H:2O.
p3U>3:3A:2M.
p3V>3:3A:2M.
p40>3:3A:2Q.
p3Q>3:6:2M.
p44>3:6:2M.
u1:1J.
v1:6{'a set of thing '}.
vm1:I{'ih(77@-
6:figure42)(-
58@108:dimensions)'}.

u29:2A.
u2B:2C.
u5:1A.
u2D:2E.
u2:27.
u2F:2G.
u3:1L.
u2H:2I.
u4:1D.
u2M:2N.
v2M:2W{1}.
v2M:3V{'a head'}.
v2M:3U{'a torso'}.
vm2M:I{'ih(21@33:figure42
)(56@103:dimensions)'}.

vm2M:K{'by aliveness'}.
u2O:2P.
v2O:44{'low'}.
v2O:3J{'2'}.
v2O:3Q{'upright'}.
vs3N/2O:S{'typical'}.
vs3N/2O:U{'common
knowledge'}.

v2O:3N{'2'}.
vm2O:I{'ih(5@66:figure42)
(162@56:dimensions)'}.

u2S:2T.
v2S:3N{'1'}.
v2S:2W{2U,3E}.
vm2S:I{'ih(10@99:figure42
)'}.

u2Q:2R.
v2Q:2W{'nothing'}.
v2Q:44{'high'}.
v2Q:3J{'4'}.
v2Q:3Q{'horizontal'}.
v2Q:40{'a tail'}.
vm2Q:I{'ih(62@66:figure42
)(166@124:dimensions)'}.

u2U:2V.
v2U:44{'very high'}.
v2U:2W{'a bone'}.

188

vm2U:I{'ih(74@100:figure4
2)'}.

u4H:4I.
vm4H:I{'ih(166@186:dimens
ions)'}.

u2Z:30.
vm2Z:I{'ih(114@34:figure4
2)(54@46:dimensions)'}.

vm2Z:K{'by aliveness'}.
u31:32.
v31:3A{35,34,33}.
vm31:I{'ih(123@100:figure
42)'}.

u3E:3F.
vm3E:I{'ih(97@133:figure4
2)'}.

u33:38.
vm33:I{'ih(189@142:figure
42)'}.

u34:37.
vm34:I{'ih(211@106:figure
42)'}.

u35:36.
vm35:I{'ih(219@68:figure4
2)'}.

u39:4E.

vm39:I{'ih(56@222:dimensi
ons)'}.

vm39:K{'by truth'}.
u4F:4G.
vm4F:I{'ih(41@152:dimensi
ons)'}.

vm4F:K{'by truth'}.
u6:1F.
uI:J.
uK:17.
u14:1U.
u15:1C.
u2J:2K.
uQ:1I.
uR:16.
uS:1G.
uT:1V.
uU:21.
uV:1N.
uW:1O.
uX:20.
uY:1X.
u12:24.
u13:1T.
u7:1K.
u8:22.
u9:1Y.

uA:25.
uB:1W.
uC:1M.
uD:1S.
uE:1P.
uP:1R.
uG:1Q.
uH:1H.
uL:19.
uM:23.
uN:1Z.
uO:26.
uF:1E.
uZ:1B.
u10:18.
u11:28.
u2W:2X.
u3A:3B.
u3H:3I.
u3J:3K.
u3N:3O.
u3U:3W.
u3V:3X.
u40:41.
u3Q:3R.
u44:47.
u44:48.

189

Glossary

The following is a list of all the important terms used in this thesis. For more details about
these terms the reader is referred to the following places: 1) The index (so as to find the rel-
evant section in the main body of the thesis); 2) The ‘thesis.ckb’ CODE4 knowledge base
developed to describe the main ideas in the thesis, and 3) Figure 3.5 which shows the
inheritance hierarchy of the main categories of concept.

Where wording in this glossary differs from that in the main body of the thesis, both
wordings are intended to convey the same meaning. Where a definition is preceded by two
terms, separated by a comma, the terms are synonyms. Small capitals within definitions are
used to indicate terms defined elsewhere in the glossary.

It is important to note that most users of CODE4 need only know a small fraction of these
terms. Terms that should be understood by beginners are double-underlined . Terms that

should be understood by intermediate users are single-underlined . Terms that are not un-
derlined at all are only for sophisticated experts.

Unless a term is specified to be a verb (v) or adjective (a), it is a noun.

Terms are also categorized according to the degree to which their use in this thesis is novel,
specific or unusual.

• Three asterisks (***) indicate that the term has been invented during this research and has
a non-obvious meaning (any other usage in the literature is largely coincidental).

• Two asterisks (**) mean the term has a meaning that differs substantially from conven-
tional usage in artificial intelligence or other fields of computer science. Two asterisks is
also used for invented terms whose meaning could probably be closely guessed by an ar-
tificial intelligence expert.

• One asterisk (*) means that the term has been used in a slightly specialized way, or that
there is significant disagreement in the literature about the meaning of the term.

• No asterisks indicates that the term is not being used in a special way, but is included in
the glossary for completeness or to help the reader whose background may not be in arti-
ficial intelligence.

Abstract representation schema, abstract schema: (*) An idealized KNOWLEDGE

REPRESENTATION SCHEMA describing representation principles, but containing simplify-
ing assumptions or constructs that may not be finitely realizable. An abstract schema

190

neither describes how knowledge is presented nor how it is stored. (Specializations are
PHYSICAL REPRESENTATION SCHEMA and MEDIATING REPRESENTATION SCHEMA).

Application program interface, API: A protocol composed of the interfaces to
callable procedures, whereby an application program can obtain services (in the form of
functions performed or data stored or retrieved) from a low-level layer of software such
as a knowledge engine.

 Browser : (*) A MEDIATING REPRESENTATION that presents a set of CONCEPTS described

by a KNOWLEDGE MAP and allows sets of concepts to be selected and to have operations
performed on them.

Browser hierarchy: (**) A set of BROWSERS arranged in a hierarchy, such that the se-
lection of a CONCEPT or set of concepts in an ancestor browser changes the KNOWLEDGE

MAP of a descendant browser, and results in the display of a new network of concepts in
the descendant browser.

 CKB : (***, proper noun) The language used by CODE4 for representing a CODE4-KR
KNOWLEDGE BASE (or some of the CONCEPTS in a knowledge base) when operating as a
KNOWLEDGE SERVER or working with ASCII files. CKB represents knowledge in the
form of MODIFIERS and NAVIGATORS.

CKB-format: (***, a) Describes a file containing an entire CODE4 KNOWLEDGE BASE

represented in CKB syntax as a minimal sequence of CONSTRUCTORS sufficient to re-
construct the knowledge base.

 CODE4 : (***, proper noun): The KNOWLEDGE MANAGEMENT system developed at the

University of Ottawa by the author and other collaborators.

CODE4-KR: (***, proper noun) The ABSTRACT KNOWLEDGE REPRESENTATION

SCHEMA implemented in CODE4.

Combination: (**) A process that automatically resolves conflicts which arise from the
MULTIPLE INHERITANCE of different VALUES by a given STATEMENT, by creating a
value consistent with the inherited values. Combination results in a value that is more
specific than any of the multiply inherited values. Combination can result in a formal or
informal value; if any of the inherited values is informal, then the combined value is in-
formal.

 Concept : (*) A representation of a THING or set of things. A discrete unit of knowledge

representation to which it is possible to explicitly refer. Something that acts as the locus
or possessor of a set of facts about a thing or set of things. (IMMEDIATE SUBCONCEPTS:
TYPE, INSTANCE CONCEPT, PRIMITIVE CONCEPT, NON-PRIMITIVE CONCEPT. A more
restrictive meaning is often intended in other literature. The words ‘unit’ or ‘frame’ are
used for ‘concept’ in other literature).

Constructor: (***) A MODIFIER that is one of a minimal subset of all modifiers that is
sufficient to build any KNOWLEDGE BASE.

191

Defining concept: (***) A CONCEPT on whose existence a DEPENDENT CONCEPT de-
pends. A concept used in the definition of a dependent concept. A dependent concept ex-
ists by definition, even if not physically created, if its defining concept(s) exist. (Role
term applicable to any concept when discussing a dependent concept).

Delegation: (*) The process whereby the VALUE of a STATEMENT is automatically com-
puted by using a DELEGATION FORMULA. A more generalized mechanism than inheri-
tance, but one which requires individual specification of each case rather than being au-
tomatically present.

Delegation formula: (**) An optional component of a VALUE that specifies that the
value is to be computed as a function of the values of other STATEMENTS. A delegation
formula INHERITS and can refer to values that have further delegation formulae.

Dependent concept: (**) A CONCEPT which is considered to exist by virtue of its rela-
tion to certain other concepts (its DEFINING CONCEPTS) and which implicitly comes into
existence upon the creation of its defining concepts and is destroyed upon the destruction
of its defining concepts (specialization of SYSTEM-MANIPULATED CONCEPT; DISJOINT

with TERM).

Dependent instance: (***) A DEPENDENT CONCEPT, one or more of which comes into
existence when any CONCEPT is created (specialization of DEPENDENT CONCEPT and
INSTANCE CONCEPT).

Dependent type: (***) A DEPENDENT concept whose DEFINING CONCEPT is a particular
STATEMENT. A dependent type has the value of its defining statement as its supercon-
cept. (specialization of DEPENDENT CONCEPT and TYPE CONCEPT).

 Dimension : (***) An identifier that indicates the criterion used to distinguish two or more
SUBCONCEPTS from their common SUPERCONCEPT. A dimension is commonly the name
of a PROPERTY the VALUES of whose STATEMENTS distinguish among the subconcepts.
(See also KNOWLEDGE ORGANIZING TECHNIQUE for a distinct use of this term).

Discontinuity: See REPRESENTATIONAL DISCONTINUITY.

Disjoint: (a, *) Applies to set of CONCEPTS for which a declaration has been made that no
two or more of them may have a common SUBCONCEPT.

Extension: The potential set of all the THINGS represented by a CONCEPT.

 Facet : (*) A STATEMENT whose SUBJECT is a STATEMENT.

Facet hierarchy: (***) A hierarchy of STATEMENTS where the root of the hierarchy is a
STATEMENT whose SUBJECT is not a statement, and where successive descendants
(FACETS) each have their immediate ancestor as subject. A facet hierarchy specifies layers
of recursive detail about the root statement. (Specialization of KNOWLEDGE ORGA-
NIZATION).

Facet property: (**) A PROPERTY possessed by one or more STATEMENTS.

192

Focus: (v, **) To apply a VISIBILITY MASK that restricts the display of CONCEPTS in a
BROWSER to those that are the descendants (according to the relation specified in the
browser’s KNOWLEDGE MAP) of a particular set of concepts.

 Formal : (a, *) applies to aspects of a KNOWLEDGE BASE where CONCEPTS have explicit
relationships to other concepts. Especially applies to VALUES that are composed of
VALUE ITEMS, forming explicit relationships between concepts. (Contrasts with IN-
FORMAL).

Hierarchy: see PROPERTY HIERARCHY, STATEMENT HIERARCHY, INHERITANCE

HIERARCHY and FACET HIERARCHY.

Highlighting mask: (***) A MASK which results in the highlighting or selection of any
CONCEPT for which it evaluates true, and the normal display or deselecting of any con-
cept for which it evaluates false.

Immediate: (a) When applied to SUPERCONCEPT, SUBCONCEPT, SUPERPROPERTY,
SUBPROPERTY etc. indicates the next higher or lower in the hierarchy.

 Informal : (a, *) applies to aspects of a KNOWLEDGE BASE involving text strings or pic-
tures which cannot be interpreted by a KNOWLEDGE MANAGEMENT system. Especially
applies to VALUES composed of text strings. (Contrasts with FORMAL).

 Inherit , sense 1 applicable to properties: (v) The possessing of a PROPERTY by a

CONCEPT, because the concept is a SUBCONCEPT of the MOST GENERAL SUBJECT of the
property.

 Inherit , sense 2 applicable to values: (v) The possessing of a VALUE by a STATEMENT,
because the statement’s PREDICATE is inherited (sense 1) by the statement’s SUBJECT,
and because the statement does not have a LOCALLY SPECIFIED VALUE. Also applies to
FACETS other than the VALUE FACET if those facets are declared to inherit using
DELEGATION.

 Inheritance : The process or mechanism whereby PROPERTIES (and hence VALUES) are
caused to be INHERITED. A specialized and automatic mechanism more general in scope
than DELEGATION and which cannot be overridden or altered.

 Inheritance hierarchy : A partial order, arranged by the user, of all the CONCEPTS

within a KNOWLEDGE BASE, rooted at a single PRIMITIVE TYPE that represents all
THINGS. A concept is an ancestor of another if and only if its EXTENSION is a superset of
the extension of the other; or equivalently if its INTENSION is a subset of the intension of
the other. (Specialization of KNOWLEDGE ORGANIZATION).

Inherited value: (*) A VALUE that is INHERITED (sense 2). (DISJOINT with LOCALLY

SPECIFIED VALUE).

 Instance concept : (*) A CONCEPT representing an individual THING, i.e. having a single
thing as its EXTENSION. A concept which can not have SUBCONCEPTS. (Specialization of
CONCEPT; DISJOINT with TYPE).

193

Intension: The potential set of all the PROPERTIES possessed by a particular CONCEPT.
The union of the LOCAL INTENSION of the concept, and the intension of all the concept’s
SUPERCONCEPTS. The intension is an uncountable set whose existence is posited solely
for the purpose of making various formal definitions.

Introduce, sense 1 applicable to values: (v, **) To specify a VALUE of a particular FACET

of a STATEMENT that differs from the value that would have been INHERITED, and so that
the value can be inherited by the SUBCONCEPTS of the statement’s SUBJECT. (The value
is introduced at the statement).

Introduce, sense 2 applicable to properties: (v, **) To specify a PROPERTY such that a
particular CONCEPT is its MOST GENERAL SUBJECT. (The property is introduced at the
concept).

Knowledge acquisition: The process of gathering knowledge and entering it into a
computer so the computer, and humans using it, can put that knowledge to use.

 Knowledge base : A collection of interrelated CONCEPTS.

Knowledge management: (**) The processes of creating and maintaining KNOWLEDGE

BASES, and making them available for use. The manipulation of those aspects of
knowledge involving the categorization, definition and characterization of THINGS and
their relationships.

Knowledge map: (**) A software abstraction that specifies a network of interrelated
CONCEPTS within a KNOWLEDGE BASE, and provides operations for their manipulation.
The network is defined in terms of a set of starting concepts and a relation that is repeat-
edly applied beginning with the starting concepts.

Knowledge organization: A structure within a knowledge base formed by performing
the actions of a particular KNOWLEDGE ORGANIZING TECHNIQUE.

Knowledge organizing technique: (**) A distinct aspect of the process of represent-
ing knowledge involving the making of certain types of decisions and the performing of
certain types of actions, both of which are distinct from those required by other knowl-
edge organizing techniques.

Knowledge representation schema, representation schema: (*) A description of a
syntax and semantics for the representation of knowledge.

Knowledge server: A running program containing one or more KNOWLEDGE BASES, to
which a remote program can connect via a telecommunications line, and exchange knowl-
edge.

 Label : (*) Text or other symbols displayed to identify a CONCEPT in a MEDIATING

REPRESENTATION. May be generated or be derived from one of the concept’s TERMS.

Local intension: (**) The potential set of all the PROPERTIES whose MOST GENERAL

SUBJECT is a particular CONCEPT. The local intension is an uncountable set whose exis-

194

tence is posited solely for the purpose of making various formal definitions. (See also
INTENSION).

Locally specified statement, local statement: (***) A STATEMENT having one or
more FACETS with LOCALLY SPECIFIED VALUES. (Role term applicable to any statement
when discussing its subject).

Locally specified value, local value: (**) A VALUE that is explicitly specified
(DISJOINT with INHERITED VALUE).

Main subject: (***) A USER CONCEPT that is the SUBJECT of at least one STATEMENT.

Map: see KNOWLEDGE MAP.

 Mask : (**) A logical expression evaluated for each CONCEPT in a KNOWLEDGE MAP as the
concept is being prepared for display in a MEDIATING REPRESENTATION. A mask is
composed of a set of MASK PREDICATES related by logical operators, and the result of its
evaluation is either true or false.

Mask predicate: (***) A software function that takes a CONCEPT as its argument and
performs a calculation whose result is true or false.

Mediating representation: A representation of CONCEPTS in a particular KNOWLEDGE

BASE that conveys their meaning to a user through a user interface. A particular case of a
MEDIATING REPRESENTATION SCHEMA.

Mediating representation schema: (**) A KNOWLEDGE REPRESENTATION SCHEMA

that describes the syntax and semantics of a MEDIATING REPRESENTATION. A description
of how a portion of an ABSTRACT REPRESENTATION SCHEMA can be mapped onto user
interface constructs.

 Metaconcept : (**) A CONCEPT representing another concept, which is the metaconcept’s
DEFINING CONCEPT. A concept possessing facts about another concept. (Specialization
of DEPENDENT INSTANCE; DISJOINT with STATEMENT).

Modality facet, modality: (*) A FACET whose VALUE specifies the degree to which the
facet’s STATEMENT is considered true (e.g. necessarily, typically or optionally). The
PREDICATE of every modality facet is a particular PRIMITIVE PROPERTY.

Modifier: (***) A command applied to a KNOWLEDGE BASE that adds or deletes a
CONCEPT or VALUE.

 Most general subject : (***) A CONCEPT that is the highest concept in the INHERITANCE

HIERARCHY to possess a particular PROPERTY. All the subconcepts INHERIT the prop-
erty. (Role term applicable to any concept when discussing its role with respect to a prop-
erty).

Multiple inheritance: INHERITANCE of a PROPERTY where the inheriting CONCEPT has
more than one SUPERCONCEPT possessing the property. Also applies to the resulting in-
heritance of VALUES, which results in COMBINATION of values.

195

Navigator: (***) A command applied to a KNOWLEDGE BASE in order to traverse a net-
work of CONCEPTS.

Non-disjoint: (a, *) Applies to a set of CONCEPTS that share a common SUBCONCEPT

and thus have EXTENSIONS with a non-empty intersection.

Non-primitive concept: (**) A CONCEPT that can be deleted from a KNOWLEDGE BASE

without preventing any computational processes in a KNOWLEDGE MANAGEMENT system
from being able to be run. (Specialization of CONCEPT; DISJOINT with PRIMITIVE

CONCEPT).

Ontology: (*) A KNOWLEDGE BASE lacking USER INSTANCES. An ontology describes all
those TYPES and PROPERTIES significant to particular agent for its thought or computa-
tional processes.

Physical representation: A representation of CONCEPTS in a particular KNOWLEDGE

BASE as stored in data structures in the memory of a computer or on mass-storage media.
An instantiation of a PHYSICAL REPRESENTATION SCHEMA.

Physical representation schema: (*) A KNOWLEDGE REPRESENTATION SCHEMA that
describes the syntax and semantics of a PHYSICAL REPRESENTATION. A description of
how an ABSTRACT REPRESENTATION SCHEMA can be mapped into computer data struc-
tures.

Potentially non-disjoint: (a, **) Applies to a set of CONCEPTS for which no declara-
tion has been made that any pair is DISJOINT, but for which no pair has a common
SUBCONCEPT.

 Predicate : (*) A PROPERTY used by a STATEMENT in the description of the statement’s
SUBJECT. (Role term applicable to any property when discussing its role in a statement).

Primitive concept: (**) A CONCEPT on whose existence in a KNOWLEDGE BASE certain
computational processes in a KNOWLEDGE MANAGEMENT system depend. (Specialization
of CONCEPT; DISJOINT with NON-PRIMITIVE CONCEPT; IMMEDIATE SUBCONCEPTS:
PRIMITIVE TYPE and PRIMITIVE PROPERTY; in some literature ‘primitive concept’ has a
totally different meaning – a concept that is not a defined concept).

Primitive property: (***) A PROPERTY that is also a PRIMITIVE CONCEPT; DISJOINT

with PRIMITIVE TYPE and USER PROPERTY.

Primitive type: (***) A TYPE that is also a PRIMITIVE CONCEPT; DISJOINT with
PRIMITIVE PROPERTY and USER TYPE.

 Property : (*) A CONCEPT representing a relation between concepts (Specialization of

INSTANCE CONCEPT; DISJOINT with SYSTEM-MANIPULATED CONCEPT and USER

INSTANCE).

 Property hierarchy : (**) A partial order, arranged by the user, of all the PROPERTIES

within a KNOWLEDGE BASE, rooted at a single PRIMITIVE PROPERTY. A property should

196

be made an ancestor of another if and only if, for any given SUBJECT, STATEMENTS us-
ing the two properties as PREDICATE have VALUES where the EXTENSION of the first is a
superset of the EXTENSION of the second. (Specialization of KNOWLEDGE ORGANI-
ZATION).

Representation schema: see KNOWLEDGE REPRESENTATION SCHEMA.

Representational discontinuity: (***) An error of knowledge representation whereby
a thing is conflated with a representation or type of that thing.

Schema: See KNOWLEDGE REPRESENTATION SCHEMA.

 Statement : (***) A CONCEPT representing an assertion of fact about a concept, known as
the statement’s SUBJECT. The representation of the possession by the subject of a particu-
lar PROPERTY called the statement’s PREDICATE. The subject and predicate are a state-
ment’s DEFINING CONCEPTS. (Specialization of DEPENDENT INSTANCE; DISJOINT with
METACONCEPT).

Statement hierarchy: (***) A partial order of all the STATEMENTS whose SUBJECT is a
particular CONCEPT. A statement is an ancestor of another if and only if the predicate of
the former is a superproperty of the predicate of the latter. (Specialization of KNOWLEDGE

ORGANIZATION).

 Subconcept : A CONCEPT that is a descendant of another concept in the INHERITANCE

HIERARCHY. (Role term applicable to any concept when discussing its ancestors in the
inheritance hierarchy).

Subfacet: (***) A FACET whose SUBJECT is another facet. (Role term applicable to any
facet when discussing its role in a FACET HIERARCHY).

Subject, sense 1: (*) A CONCEPT that a STATEMENT describes or is about. The SUBJECT

and predicate together are the DEFINING CONCEPTS of a statement. (Role term applicable
to any concept when discussing its role in a statement).

 Subject , sense 2: (*) A CONCEPT that is the subject (in sense 1) of one or more locally
specified STATEMENTS. A concept that has something said about it. (Specialization of
CONCEPT).

 Subproperty : (***) A PROPERTY that is a descendant of another property in the
PROPERTY HIERARCHY. (Role term applicable to any property when discussing its
ancestors in the property hierarchy).

Substatement: (***) A STATEMENT with the same SUBJECT as another statement, and
whose PREDICATE is a SUBPROPERTY of the predicate of the other statement. (Role term
applicable to any statement when discussing its ancestors in a STATEMENT HIERARCHY).

 Superconcept : A CONCEPT that is an ancestor of another concept in the INHERITANCE

HIERARCHY. (Role term applicable to any concept when discussing its descendants in the
inheritance hierarchy).

197

Superfacet: (***) A FACET which is the SUBJECT of another facet. (Role term applicable
to any facet when discussing its role in a FACET HIERARCHY).

 Superproperty : (***) A PROPERTY that is an ancestor of another property in the
PROPERTY HIERARCHY. (Role term applicable to any property when discussing its de-
scendants in the property hierarchy).

Superstatement: (***) A STATEMENT with the same SUBJECT as another statement, and
whose PREDICATE is a SUPERPROPERTY of the predicate of the other statement. (Role
term applicable to any statement when discussing its descendants in a STATEMENT

HIERARCHY).

 System-manipulated concept : (**) A CONCEPT created and manipulated by a
KNOWLEDGE MANAGEMENT system as a side-effect of the manipulation by a user of cer-
tain other concepts. (Specialization of NON-PRIMITIVE CONCEPT; DISJOINT with USER

CONCEPT and PROPERTY).

 Term : (**) A CONCEPT representing a textual or graphical symbol. (Specialization of
SYSTEM-MANIPULATED CONCEPT and INSTANCE CONCEPT; DISJOINT with DEPENDENT

CONCEPT).

 Thing : Anything real or imagined, concrete or abstract. Actions, states, conditions, enti-

ties, facts and relations and concepts are all things. Anything that can be thought of or
about is a thing.

 Type, type concept : (*) A CONCEPT representing a set of similar THINGS, and which
may have SUBCONCEPTS. The EXTENSION of a type is a set of things, which may be un-
countable. (Specialization of CONCEPT; DISJOINT with INSTANCE CONCEPT; IMMEDIATE

SUBCONCEPTS: USER TYPE and PRIMITIVE TYPE. The word ‘concept’ in some literature
has this meaning of ‘type’).

 User concept : (**) A CONCEPT whose existence in a KNOWLEDGE BASE is not depen-
dent on the existence of any other concept in that knowledge base, and which is explicitly
created in the knowledge base by a user. (Specialization of NON-PRIMITIVE CONCEPT;
DISJOINT with SYSTEM-MANIPULATED CONCEPT).

User instance: (***) An INSTANCE CONCEPT that is also a USER CONCEPT. An instance
concept explicitly added by a user as a subconcept of one or more USER TYPES.

User type: (***) A TYPE that is also a USER CONCEPT. A type explicitly added by a user
in an INHERITANCE HIERARCHY.

 Value : (*) A component of a STATEMENT, composed of either a text string or one or more
CONCEPTS. A value indicates what the statement’s SUBJECT is related to by way of its
PREDICATE. (Role term applicable to any text string or set of concepts when discussing
its role in a statement).

Value facet: (***) A FACET whose VALUE is the value of its SUBJECT (a STATEMENT).
The sole purpose of a value facet is to allow the attachment of other facets to a value (as

198

statements whose SUBJECT is the value facet). The PREDICATE of every value facet is a
particular PRIMITIVE PROPERTY.

Value item: (***) One of the CONCEPTS composing a VALUE.

Value-dependent subproperty: (***) A PROPERTY whose existence depends on a
particular VALUE ITEM and on the STATEMENT to which that value item is attached. The
value-dependent subproperty’s SUPERPROPERTY is the PREDICATE of the value item’s
statement; the MOST GENERAL SUBJECT is the SUBJECT of the statement where the value
item is INTRODUCED; the VALUE is the particular value item. (Specialization of
PROPERTY and DEPENDENT CONCEPT).

Value-dependent substatement: (***) A STATEMENT whose SUBJECT is a VALUE-
DEPENDENT SUBPROPERTY. (Specialization of STATEMENT).

Visibility mask: (***) A MASK which results in the display of any CONCEPT for which
it evaluates true, and the suppression from display of any concept for which it evaluates
false.

199

Index
abstract representation schema 7,

81
glossary 189

abstraction
knowledge map 90
ontology 4
schema 7

acquisition
knowledge 1, 2, 14, 22

defintion 2
glossary 193

algorithm
layout 98, 162

alphabetical 97
ambiguity 9

problem handling 12
annotation 29
application program interface 83

glossary 190
arc 87
arguments

mask predicate 102
sources of 95

artificial intelligence 17
association 29
balance

assessing 114
definition 114
metric 120

base
knowledge 4

glossary 193
BNR

experiences in 15
Botany Knowledge Base 20
browser

glossary 190
opening 94

browser hierarchy 92
glossary 190

browser window 94
browsing 91
canvas 98
categorizing 13

problem with 11
CD-view 18
cell 25, 98
characterizing 13
chronology

of the research 14
CKB 83, 186

glossary 190
class 4

in object orientation 28
of concept 33, 152
of knowledge map 89
of mediating representation

91
of user 8

Classic 21, 71
classification 11, 15, 21, 23

facetted 71
ClearTalk 18, 62, 163
closed-ended metric 108
COCOMO 110
CODE2 17

concepts in 38
development of 14
in Cogniterm 135
properties in 55

CODE3 17
development of 15

CODE4 1
comparison to hypertext 151
development of 15
enhancement of 135
evaluation of 16, 141
general benefits 150
glossary 190
use of 134
user interface of 86

CODE4-KR 33, 156
glossary 190

coefficient of correlation 138
Cogniterm 15, 135
combination 59

glossary 190
command

constructor
glossary 190

in knowledge map 90
in mediating representation

95
issuing 95
modifier

glossary 194
navigator

glossary 195
selecting arguments for 92

commands
type 95

communication
inter-process 84

completeness
assessing 112
metric 126

complexity
assessing 113
compound metrics for 125

isa 123
overall 129
pure 128

compound browser 94
concept

CODE2 38
comparison of classes 35
consensus 4
defining 56, 66

glossary 191
definition 3, 33
dependent

glossary 191
disjoint 42
facet 57
glossary 190
in description logic language

21
instance 34

glossary 192
measurements of 152
metaconcept 36, 66

glossary 194
non-primitive

glossary 195
primitive 36, 71

glossary 195
property 35, 50

glossary 195
specifying relation 87
starting 87
statement 35, 56

glossary 196
system-manipulated

glossary 197
term 36, 63

glossary 197
top 35
type 34

glossary 197
type and instance 41
user 37

glossary 197
conceptual graphs 22, 151
configuration 162
constructor 83

glossary 190
contributions 155
control panel 104

opening browsers 94
controlled experiment 139, 164
correlation

coefficient of 138
customers

industrial 134
Cyc 19, 35, 48
database 9, 47, 102, 151

200

schema 47
defining concept 56, 66

glossary 191
delegation 75

glossary 191
delegation formula 75

glossary 191
dependent concept

glossary 191
dependent instance

glossary 191
dependent type

glossary 191
designing an artifact 9
detail

metric 119
development technique

comparing 116
differences

understanding 100
dimension 68, 98

glossary 191
directed graph 87
discontinuity

representational 48
glossary 196

discriminator 29
disjoint

declaring concepts 42
glossary 191

disjointness 42
distinction

making 100
problem making 11

diversity
metric 120

documentation
CODE2 used for 15
developing 8

domain 150
comparing 116
for knowledge management 8

drawing program 151
driving knowledge map 92
educational material

developing 8
evaluation 134

of CODE4 141
of metrics 140

experiment 139
expert system 2

developing 9
expertise

requirement for 12
user setting 104

extension 44
glossary 191

extracting knowledge
problem with 11

facet 57
glossary 191
independent inheritance 76
introduction 35
value

glossary 197
facet hierarchy 59

glossary 191
facet property 57

glossary 191
feedback panel 105, 162
finite state machine 89
flag 18
focus

glossary 192
of display 102

formal
definition 5
glossary 192

formality 5
evaluation of 147
metric 120

format
CKB 83

glossary 190
formula

delegation 75
glossary 191

frame 22, 35
function points 109, 128
go to

mask facility 103
goal of the research 1
graph

directed 87
saving layout 98

graphical mediating
representation 97

group knowledge base
development 13

hierarchy
browser 92

glossary 190
facet 59

glossary 191
inheritance 13, 35, 88, 89

glossary 192
knowledge map for 89
property 51, 89

glossary 195
statement 57, 89

glossary 196
type 44

high-bandwidth 13, 166
highlighting 92, 102
highlighting mask

glossary 192
hypermedia 27
hypertext 10, 13, 27

comparison to CODE4 151

immediate
glossary 192

inconsistency
problem handling 12

incorrectness
problem handling 12

informal
glossary 192

informality 5
evaluation of 147

information content
assessing 114

inherit
glossary 192

inheritance 76
glossary 192
multiple 125

glossary 194
rule 59

inheritance hierarchy 13, 35, 88
glossary 192
knowledge map for 89

inherited value
glossary 192

instance 4, 41
definition 34
dependent

glossary 191
in object orientation 29
user

glossary 197
instance concept 35

glossary 192
intelligent entity

knowledge base in 4
modelling as if 3

intension 53
glossary 193
local 53

glossary 193
international function points user

group 109
introduce 50

glossary 193
item

value 59
glossary 198

KADS 22
KARL 22
KEATS 22
KIF 22
kinds 70
KL-ONE 21
KM 20, 35
knowledge

conveying 142
definition 2
second order 122
server 83

201

knowledge acquisition 1, 14, 22
definition 2
glossary 193

knowledge base
definition 4
displaying current state 94
glossary 193
partitioning 13
small 12
uses 8

knowledge management
comparison of technology 17
glossary 193
tasks 8

knowledge management system
definition 3
users 9

knowledge map 87
classes 89
degenerate 91
driving 92
glossary 193
primary 94

knowledge organization 193
knowledge organizing technique

definition 5
glossary 193

knowledge representation
contributions to 156

knowledge representation schema
glossary 193

knowledge server 83
glossary 193

knowledge sharing effort 22
KSSn 22
layered architecture 15
layout

saving 98
lines of code 109
local intension 53

glossary 193
locally specified statement

glossary 194
locally specified value 120

glossary 194
logical expression 194
LOOM 21
MACPLT 126
main subject

definition 37
glossary 194
measuring 117

MALLC 117
management

knowledge 2
glossary 193

manual
user 135

map

knowledge 87
mask 102

glossary 194
highlighting 102

glossary 192
in CODE2 18
predicate 102

glossary 194
visibility 102

glossary 198
mathematics

problem expressing 11
matrix 98
MDET 119

use in compound metric 126
MDIV 120
measure

definition 108
measurement

definition 108
measuring

introduction 14
mediating representation 7, 91

command 95
evaluation of 146
glossary 194
graphical 97
in CODE2 18
matrix 98
opening 94
outline 96
selecting in 92
user language 91

mediating representation schema
glossary 194

metaconcept 66
glossary 194
introduction 36

metaknowledge 36
methodology

of the research 14
metrics

closed-ended 118
completeness 126
complexity 118
compound 125
definition 108
evaluation of 140
independence of 141
independent 118
introduction 14
procedure for designing 125
pure complexity 128
size 117
understandability of 130
usefulness of 129

mind
concepts in 3

MISA 123
MMI 125
MMSUBJ 117

MOCPLX 129
modality 60

glossary 194
modifier 83

glossary 194
most general subject 50

glossary 194
MPCPLX 128
MRPROP 118

use in compound metric 126
MSFORM 120

use in compound metric 127
MSOK 122
multiple inheritance 97, 125

glossary 194
naming

problem with 11, 24, 150
navigator 83

glossary 195
network 87
node 87
non-disjoint 43

glossary 195
potentially

glossary 195
non-modality 96, 105, 146
non-primitive concept

glossary 195
object-oriented 14, 28, 47, 90,

111
ObjecTime™ 15
OMT 28
OMTool 28
Ontolingua 22
ontology

definition 4
developing 9
glossary 195

open-ended metric 108
organizing

knowledge technique 5
organizing technique 76

knowledge
glossary 193

outline mediating representation
96

outline processor 25, 151
persistent storage 83
personal productivity software 25
philosophy

CODE2 in 15
physical representation 7

glossary 195
physical representation schema

glossary 195
polymorphism 90
potentially non-disjoint 43

glossary 195

202

predicate 4, 35, 56
glossary 195
in matrix 98
mask 102

glossary 194
primary browser 94
primary relation 88
primitive concept 71

glossary 195
in description logic language

21
introduction 37

primitive facet property 58
primitive property 72

glossary 195
primitive type 72

glossary 195
problem

accidental 12
in knowledge management 10
intrinsic 11

productivity 109
software 25

Prolog 15, 18, 151
property 4, 50

facet 57
glossary 191

glossary 195
in CODE2 18
introduction 35
metric 118
non-inheriting 36
primitive 72

glossary 195
relative 118
specifying relation 87

property hierarchy 13, 51
glossary 195
knowledge map for 89

property history matrix 100
property occurrence 18
proposition 4
questionnaire 136

evaluation using 142
relation 4, 87
reference material

developing 8
relation interpretation 60
relative properties 118
reparenting 90
representation

mediating 7
glossary 194

physical
glossary 195

representation schema
abstract 7

glossary 189
glossary 193
mediating 7

glossary 194
physical 7

glossary 195
representational discontinuity 48

glossary 196
reverse engineering 9
rule 4
schema

abstract representation 7, 81
glossary 189

database 47
knowledge representation

glossary 193
mediating representation 7

glossary 194
physical representation 7

glossary 195
second order knowledge 66, 122
selecting 92
semantics 5
set

multiple value items as 62
of concepts 5
of nodes 90

Shelley 22
slot 35
Smalltalk 14, 15, 83, 92
software engineering

metrics in 109
object-oriented 28

sorting 97
special purpose tool

problem with 12
spreadsheet 1, 9, 25, 75, 151
statement 4, 56

facet
glossary 191

glossary 196
in user language mediating

representation 91
introduction 35
locally specified

glossary 194
metric 119
specifying relation 88

statement hierarchy 57, 89
glossary 196

statistical tests 137
subabstraction 19
subconcept 35

glossary 196
types vs instances 42

subfacet 59
glossary 196

subject 35, 56
glossary 196
in matrix 98
main 37

glossary 194
measuring 117

most general
glossary 194

subproperty 51
glossary 196
value-dependent

glossary 198
substatement 57

glossary 196
value-dependent 59

glossary 198
superconcept 39

glossary 196
superfacet

glossary 197
superproperty 51

glossary 197
superstatement

glossary 197
synonym 11, 64
syntax 5

requirement for 12
system-manipulated concept 56,

66
glossary 197

t-test 137
task

comparison 116
knowledge management 8
measuring 112
predicting 115

technique
knowledge organizing 5

glossary 193
template

browser 94
term 4, 11, 63

glossary 197
introduction 36

tests
statistical 137

thing
contrast to concept 33
glossary 197

top concept 35
training 135
traversal depth 87
triple 35
type 4, 41

definition 34
dependent

glossary 191
glossary 197
primitive

glossary 195
user

glossary 197
type hierarchy 44
unit 35
user

comparing 116

203

user concept
definition 37
glossary 197

user instance
glossary 197

user interface 19, 86
contributions to 157

user type
glossary 197

value
glossary 197
inherited

glossary 192
introduction 35
locally specified 120

glossary 194
value consistency maintenance

61
value dependent substatement 59
value facet 58

glossary 197
value item 59

glossary 198
value-dependent subproperty

glossary 198
value-dependent substatement

glossary 198
visibility mask 102

glossary 198
window

browser 94
word processor 9
Z language 62

	Practical Techniques
	Abstract
	Acknowledgements
	Contents
	Figures
	1. Introduction
	1.1 Overview
	1. 2 Definitions
	1. 3 The Task:
	1. 4 The Problems:
	1. 5 Preview of techniques
	1. 6 Research history

	2. Other Technologies
	2.1 AI Technology
	2.2 Personal productivity
	2.3 Hypertext systems
	2.4 OO SW eng
	2.5 Summary

	3. Knowledge Representation
	3.1 Introduction
	3.2 An overview
	3.3 Practicality vs. semantics
	3.4 Types vs. instances
	3.5 Properties
	3.6 Statements and facets
	3.7 Terms
	3.8 Metaconcepts
	3. 9 Primitive concepts
	3.10 Further details
	3.11 Knowledge organizing techniques
	3.12 Comparison of CODE4-KR
	3.13 CODE4-KR as an abstract schema

	4. User Interface Techniques
	4.1 Knowledge maps
	4.2 Mediating representations
	4.3 Masks
	4.4 Other interface features

	5. KB Measurement
	5.1 Introduction
	5.2 Important definitions
	5.3 General tasks
	5.4 Proposals for metrics
	5.5 Desirable qualities
	5.6 Summary

	6. Evaluation
	6.1 Basic evaluation
	6.2 Evaluation of metrics
	6.3 Evaluation of CODE4
	6.4 Summary

	7. Contributions and Future
	7.1 General summary
	7.2 Contributions
	7.3 Future Research
	7.4 Conclusions

	Bibliography
	A. Data About the Users
	B. Summary of Data about KBs
	C. CODE4 Design Principles
	D. CKB Format for sample KB
	Glossary
	Index

