
Practical Time Bundle Adjustment

for 3D Reconstruction on the GPU

Siddharth Choudhary, Shubham Gupta, and P.J. Narayanan

Center for Visual Information Technology
International Institute of Information Technology

Hyderabad, India
{siddharth.choudhary@research.,shubham@students.,pjn@}iiit.ac.in

Abstract. Large-scale 3D reconstruction has received a lot of attention
recently. Bundle adjustment is a key component of the reconstruction
pipeline and often its slowest and most computational resource intensive.
It hasn’t been parallelized effectively so far. In this paper, we present a
hybrid implementation of sparse bundle adjustment on the GPU using
CUDA, with the CPU working in parallel. The algorithm is decomposed
into smaller steps, each of which is scheduled on the GPU or the CPU. We
develop efficient kernels for the steps and make use of existing libraries for
several steps. Our implementation outperforms the CPU implementation
significantly, achieving a speedup of 30-40 times over the standard CPU
implementation for datasets with upto 500 images on an Nvidia Tesla
C2050 GPU.

1 Introduction

Large scale sparse 3D reconstruction from community photo collections using the
structure from motion (SfM) pipeline is an active research area today. The SfM
pipeline has several steps. The joint optimization of camera positions and point
coordinates using Bundle Adjustment (BA) is the last step. Bundle adjustment
is an iterative step, typically performed using the Levenberg-Marquardt (LM)
non-linear optimization scheme. Bundle adjustment is the primary bottleneck
of the SfM, consuming about half the total computation time. For example,
reconstruction of a set of 715 images of Notre Dame data set took around two
weeks of running time [1], dominated by iterative bundle adjustment. The BA
step is still performed on a single core, though most other steps are performed
on a cluster of processors [2]. Speeding up of BA by parallelizing it can have a
significant impact on large scale SfM efforts.

The rapid increase in the performance has made the graphics processor unig
(GPU) a viable candidate for many compute intensive tasks. GPUs are being
used for many computer vision applications [3], such as Graph Cuts [4], tracking
[5] and large scale 3D reconstruction [6]. No work has been done to implement
bundle adjustment on the GPUs or other multicore or manycore architectures.

In this paper, we present a hybrid implementation of sparse bundle adjustment
with the GPU and the CPU working together. The computation requirements

K.N. Kutulakos (Ed.): ECCV 2010 Workshops, Part II, LNCS 6554, pp. 423–435, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

424 S. Choudhary, S. Gupta, and P.J. Narayanan

of BA grows rapidly with the number of images. However, the visibility aspects
of points on cameras places a natural limit on how many images need to be
processed together. The current approach is to identify clusters of images and
points to be processed together [7]. Large data sets are decomposed into mildly
overlapping sets of manageable sizes. An ability to perform bundle adjustment
on about 500 images quickly will suffice to process even data sets of arbitrarily
large number of images as a result. We focus on exactly this problem in this
paper.

Our goal is to develop a practical time implementation by exploiting the
computing resources of the CPU and the GPU. We decompose the LM algorithm
into multiple steps, each of which is performed using a kernel on the GPU or a
function on the CPU. Our implementation efficiently schedules the steps on CPU
and GPU to minimize the overall computation time. The concerted work of the
CPU and the GPU is critical to the overall performance gain. The executions of
the CPU and GPU are fully overlapped in our implementation, with no idle time
on the GPU. We achieve a speedup of 30-40 times on an Nvidia Tesla C2050
GPU on a dataset of about 500 images.

2 Related Work

Brown and Lowe presented the SfM pipeline for unordered data sets [8]. Pho-
totourism is an application of 3D reconstruction for interactively browsing and
exploring large collection of unstructured photographs [1]. The problem of large
scale 3D reconstruction takes advantage of the redundancy available in the large
collection of unordered dataset of images and maximizes the parallelization avail-
able in the SFM pipeline [2,7]. Bundle Adjustment was originally conceived in
photogrammetry [9], and has been adapted for large scale reconstructions. Ni
et al. solve the problem by dividing it into several submaps which can be op-
timized in parallel [10]. In general, a sparse variant of Levenberg-Marquardt
minimization algorithm [11] is the most widely used choice for BA. A public
implementation is available [9]. Byröd and Äström solve the problem using pre-
conditioned conjugate gradients, utilizing the underlying geometric layout [12].
Cao et al. parallelize the dense LM algorithm, but their method is not suited
for sparse data [13]. Agarwal et al. design a system to maximize parallelization
at each stage in the pipeline, using a cluster of 500 cores for rest of the compu-
tations but a single core for bundle adjustment [2]. Frahm et al. uses GPUs to
reconstruct 3 million images of Rome in less than 24 hours [6]. They don’t use
the GPUs for the BA step. No prior work has been reported that parallelizes
BA or the LM algorithm.

3 Sparse Bundle Adjustment on the GPU

Bundle adjustment refers to the optimal adjustment of bundles of rays that
leave 3D feature points onto each camera centres with respect to both camera
positions and point coordinates. It produces jointly optimal 3D structure and

Practical Time Bundle Adjustment for 3D Reconstruction on the GPU 425

viewing parameters by minimizing the cost function for a model fitting error
[9,14]. The re-projection error between the observed and the predicted image
points, which is expressed for m images and n points as,

min
P,X

n∑

i=1

m∑

j=1

d(Q(Pj , Xi), xij)
2

(1)

where Q(Pj , Xi) is the predicted projection of point i on image j and d(x, y) the
Euclidean distance between the inhomogeneous image points represented by x
and y. Bundle Adjustment is carried out using the Levenberg-Marquardt algo-
rithm [11,15] because of its effective damping strategy to converge quickly from
a wide range of initial guesses. Given the parameter vector p, the functional rela-
tion f , and measured vector x, it is required to find δp to minimize the quantity
‖x− f(p+ δp)‖. Assuming the function to be linear in the neighborhood of p,
this leads to the equation

(JTJ+ μI)δp = JTε (2)

where J is the Jacobian matrix J = ∂x
∂p . LM Algorithm performs iterative min-

imization by adjusting the damping term μ[16], which assure a reduction in the
error ε.

BA can be cast as non-linear minimization problem as follows. A parameter
vector P ∈ RM is defined by the m projection matrices and the n 3D points, as

P = (aT1 , . . . , a
T
m,bT

1 , . . . ,b
T
n)

T , (3)

where aj is the jth camera parameters and bi is the ith 3D point coordinates.
A measurement vector X is the measured image coordinates in all cameras:

X = (xT
11, . . . ,x

T
1m,xT

21, . . . ,x
T
2m, . . . ,xT

n1, . . . ,x
T
nm)T . (4)

The estimated measurement vector X̂ using a functional relation X̂ = f(P) is
given by

X̂ = (x̂T
11, . . . , x̂

T
1m, x̂T

21, . . . , x̂
T
2m, . . . , x̂T

n1, . . . , x̂
T
nm)T , (5)

with x̂ij = Q(aj,bi). BA minimizes the squared Mahalanobis distance εTΣ−1
x ε,

where ε = X− X̂, over P. Using LM Algorithm, we get the normal equation as

(JTΣ−1
X J+ μI)δ = JTΣ−1

X ε. (6)

Apart from the notations above, mnp denotes the number of measurement pa-
rameters, cnp the number of camera parameters and pnp the number of point
parameters. The total number of projections onto cameras is denoted by nnz,
which is the length of vector X.

The solution to Equation 6 has a cubic time complexity in the number of
parameters and is not practical when the number of cameras and points are
high. The Jacobian matrix for BA, however has a sparse block structure. Sparse

426 S. Choudhary, S. Gupta, and P.J. Narayanan

BA uses a sparse variant of the LM Algorithm [9]. It takes as input the pa-
rameter vector P, a function Q used to compute the predicted projections x̂ij ,
the observed projections xij from ith point on the jth image and damping term
μ for LM and returns as an output the solution δ to the normal equation as
given in Equation 6. Algorithm 1 outlines the SBA and indicates the steps that
are mapped onto the GPU. All the computations are performed using double
precision arithmetic to gain accuracy.

Algorithm 1. SBA (P,Q, x, μ)

1: Compute the Predicted Projections x̂ij using P and Q. � Computed on GPU
2: Compute the error vectors εij ← xij − x̂ij � Computed on GPU
3: Assign J← ∂X

∂P
(Jacobian Matrix) where

Aij ← ∂x̂ij

∂aj
=

∂Q(aj ,bi)

∂aj
(
∂x̂ij

∂ak
= 0 ∀i �= k) and

Bij ← ∂x̂ij

∂bi
=

∂Q(aj ,bi)

∂bi
(
∂x̂ij

∂bk
= 0 ∀j �= k) � Computed on GPU

4: Assign JTΣ−1
X J←

(
U W

WT V

)
where U,V,W is given as

Uj ←∑
i A

T
ijΣ

−1
xij

Aij , Vi ←∑
j B

T
ijΣ

−1
xij

Bij and

Wij ← AT
ijΣ

−1
xij

Bij � Computed on GPU

5: Compute JTΣ−1
X ε as εaj ←

∑
i A

T
ijΣ

−1
xij

εij ,

εbi ←
∑

j B
T
ijΣ

−1
xij

εij � Computed on CPU

6: Augment Uj and Vi by adding μ to diagonals to yield
U∗

j and V∗
i � Computed on GPU

7: Normal Equation:

(
U∗ W

WT V∗

)(
δa
δb

)
=

(
εa
εb

)
� Using Equation (6)

8:

⎛
⎝U∗ −WV∗−1WT︸ ︷︷ ︸

S

0

WT V∗

⎞
⎠(

δa
δb

)
=

(εa −WV∗−1εb︸ ︷︷ ︸
e
εb

)
� Using Schur Complement

9: Compute Yij ←WijV
∗−1
i � Computed on GPU

10: Compute Sjk ← U∗
j −

∑
i YijW

T
ik � Computed on GPU

11: Compute ej ← εaj −
∑

i Yijεbi � Computed on CPU

12: Compute δa as (δTa1
, . . . , δTam

)T = S−1(eT1 , . . . , e
T
m)T � Computed on GPU

13: Compute δbi ← V∗−1
i (εbi −

∑
j W

T
ijδaj) � Computed on GPU

14: Form δ as (δTa , δ
T
b)

T

3.1 Data Structure for the Sparse Bundle Adjustment

Since most of the 3D points are not visible in all cameras, we need a visibility
mask to represent the visibility of points onto cameras. Visibility mask is a
boolean mask built such that the (i, j)th location is true if ith point is visible
in the jth image. We propose to divide the reconstruction consisting of cameras
and 3D points into camera tiles or sets of 3D points visible in a camera. Since

Practical Time Bundle Adjustment for 3D Reconstruction on the GPU 427

Fig. 1. An example of the compressed column storage of visibility mask having 4
cameras and 4 3D Points. Each CUDA Block processes one set of 3D points.

the number of cameras is less than number of 3D points and bundle of light
rays projecting on a camera can be processed independent of other cameras, this
division can be easily mapped into blocks and threads on fine grained parallel
machines like GPU. The visibility mask is sparse in nature since 3D points are
visible in nearby cameras only and not all. We compress the visibility mask using
Compressed Column Storage (CCS) [17]. Figure 1 shows a visibility mask for 4
cameras and 4 points and its Compressed Column Storage. We do not store the
val array as in standard CCS [17] as it is same as the array index in 3D point
indices array. The space required to store this is (nnz +m) × 4 bytes whereas
to store the whole visibility matrix is m×n bytes. Since the projections x̂ij ,xij

and the Jacobian Aij ,Bij is non zero only when the ith 3D point is visible in the
jth camera, it is also sparse in nature and thereby stored in contiguous locations
using CCS which is indexed through the visibility mask.

3.2 Computation of the Initial Projection and Error Vector

Given P and Q as input, the initial projection is calculated as X̂ = Q(P)

(Algorithm 1,line 1) where X̂ is the estimated measurement vector and x̂ij =
Q(aj,bi) is the projection of point bi on the camera aj using the function Q. The
error vector is calculated as εij = xij − x̂ij where xij and x̂ij are the measured
and estimated projections. The estimated projections and error vectors consumes
memory space of nnz × mnp each. Our implementation consists of m thread
blocks running in parallel, with each thread of block j computing a projection
to the camera j. The number of threads per block is limited by the total number
of registers available per block and a maximum limit of number of threads per
block. Since the typical number of points seen by a camera is of the order of
thousands (more than the limit on threads) we loop over all the 3D points visible
by a camera in order to compute projections. The GPU kernel to calculate the
initial projection and error vector is shown in Algorithm 2.

428 S. Choudhary, S. Gupta, and P.J. Narayanan

Algorithm 2. CUDA INITPROJ KERNEL (P,Q,X)

1: CameraID ← BlockID
2: Load the camera parameters into shared memory
3: repeat
4: Load the 3D point parameters (given ThreadID and CameraID)
5: Calculate the Projection x̂ij given 3D Point i and Camera j
6: Calculate the Error Vector using εij = xij − x̂ij

7: Store the Projections and Error Vector back into global memory
8: until all the projections are calculated

3.3 Computation of the Jacobian Matrix (J)

The Jacobian matrix is calculated as J = ∂X
∂P (Algorithm 1, line 3). For X̂ =

(x̂T
11, . . . , x̂

T
n1, x̂

T
12, . . . , x̂

T
n2, . . . , x̂

T
1m, . . . , x̂T

nm)T , the Jacobian would be

(∂x̂11

∂P

T
, . . . , ∂x̂n1

∂P

T
, ∂x̂12

∂P

T
, . . . , ∂x̂n2

∂P

T
, . . . , ∂x̂1m

∂P

T
, . . . , ∂x̂nm

∂P

T
). Since

∂x̂ij

∂ak
= 0

∀i �= k and
∂x̂ij

∂bk
= 0 ∀j �= k, the matrix is sparse in nature.

For the example, shown in Figure 1, the Jacobian matrix would be

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A10 0 0 0 0 B10 0 0
A20 0 0 0 0 0 B20 0
0 A01 0 0 B01 0 0 0
0 A31 0 0 0 0 0 B31

0 0 A12 0 0 B12 0 0
0 0 A32 0 0 0 0 B32

0 0 0 A03 B03 0 0 0
0 0 0 A13 0 B13 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where, Aij =
∂x̂ij

∂aj
=

∂Q(aj ,bi)
∂aj

and Bij =
∂x̂ij

∂bi
=

∂Q(aj ,bi)
∂bi

. The matrix when

stored in compressed format would be J = (A10, B10, A20, B20, A01, B01, A31, B31,
A12, B12, A32, B32, A03, B03, A13, B13) The memory required is (cnp + pnp) ×
mnp× nnz × 4 bytes. The CUDA grid structure used in Jacobian computation
is similar to initial projection computation. Block j processes the Aij and Bij ,
corresponding to the jth camera. The kernel to calculate the Jacobian Matrix is
shown in Algorithm 3.

Algorithm 3. CUDA JACOBIAN KERNEL (P,Q)

1: CameraID ← BlockID
2: repeat
3: Load the 3D point parameters and Camera parameters (given ThreadID and

CameraID) into thread memory.
4: Calculate Bij followed by Aij using scalable finite differentiation
5: Store the Aij and Bij into global memory at contiguous locations.
6: until all the projections are calculated

Practical Time Bundle Adjustment for 3D Reconstruction on the GPU 429

3.4 Computation of JTΣ−1
X J

JTΣ−1
X J is given as

(
U W
WT V

)
where Uj =

∑
iA

T
ijΣ

−1
xij

Aij , Vi =
∑

j B
T
ijΣ

−1
xij

Bij and Wij = AT
ijΣ

−1
xij

Bij . For the example in Figure 1, JTΣ−1
X J is given as:

JTΣ−1
X J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0 0 0 0 W10 W20 0
0 U1 0 0 W01 0 0 W31

0 0 U2 0 0 W12 0 W32

0 0 0 U3 W03 W13 0 0
0 WT

01 0 WT
03 V0 0 0 0

WT
10 0 WT

12 WT
13 0 V1 0 0

WT
20 0 0 0 0 0 V2 0
0 WT

31 WT
32 0 0 0 0 V3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Computation of U: The CUDA grid structure consists m blocks, such that
each block processes Uj where j is the BlockID. Thread i in block j processes
AT

ijΣ
−1
xij

Aij , which is stored in the appropriate segment. The summation is faster
when using a segmented scan[18] on Tesla S1070 whereas a shared memory
reduction is faster on the Fermi GPU. The memory space required to store U
is cnp × cnp × m × 4 bytes. The computation of U is done as described in
Algorithm 4.

Algorithm 4. CUDA U KERNEL (A)

1: CameraID ← BlockID
2: repeat
3: Load Aij where j = CameraID (for a given thread)
4: Calculate Aij × AT

ij and store into appropriate global memory segment
5: until all the Aij are calculated for the jth camera
6: Perform a shared memory reduction to get final sum on Fermi. Write to global

memory and perform a segmented scan on Tesla S1070.

Computation of V: The CUDA grid structure and computation of V is similar
to the computation of U. The basic difference between the two is thatBT

ijΣ
−1
xij

Bij

is stored in the segment for point i for reduction using segmented scan on Tesla
S1070 where as a shared memory reduction is done on Fermi. The memory space
required to store V is pnp× pnp× n× 4 bytes.

Computation of W: The computation of each Wij is independent of all other
Wij as there is no summation involved as in U and V. Therefore the computa-
tion load is equally divided among all blocks in GPU.

⌈
nnz
10

⌉
thread blocks are

launched with each block processing 10 W matrices. This block configuration
gave us the maximum CUDA occupancy. The memory space required to store
W is pnp× cnp× nnz× 4 bytes. The computation of W is done as described in
Algorithm 5.

430 S. Choudhary, S. Gupta, and P.J. Narayanan

Algorithm 5. CUDA W KERNEL (A,B)

1: Load Aij and Bij for each warp of threads.
2: Calculate Aij ×BT

ij

3: Store Wij back into global memory at appropriate location.

3.5 Computation of S = U∗ − WV∗−1WT

The computation of S is the most demanding step of all the modules (Algorithm
1, line 10). Table 1 shows the split up of computation time among all components.
After calculating U,V and W, augmentation of U,V is done by calling a simple
kernel, with m,n blocks with each block adding μ to the respective diagonal
elements. Since V ∗ is a block diagonal matrix, it’s inverse can be easily calculated
through a kernel with n blocks, with each block calculating the inverse of V ∗

submatrix (of size pnp× pnp).

Computation of Y = WV∗−1: Computation of Y is similar to the compu-
tation of W.

⌈
nnz
10

⌉
thread blocks are launched with each block processing 10 Y

matrices and each warp of thread computing Wij × V ∗−1
i .

Computation of U∗ − YWT: S is a symmetric matrix, so we calculate only
the upper diagonal. The memory space required to store S is m × m × 81 × 4
bytes. The CUDA grid structure consists of m×m blocks. Each block is assigned
to a 9 × 9 submatrix in the upper diagonal, where each block calculates one
Sij = Uij − ∑

k YkiW
T
kj . Limited by the amount of shared memory available

and number of registers available per block, only 320 threads are launched. The
algorithm used for computation is given in Algorithm 6.

Algorithm 6. CUDA S KERNEL (U∗,Y,WT)

1: repeat (for Sij)
2: Load 320 3D Point indices (given camera set i) into shared memory
3: Search for loaded indices in camera set j and load them into shared memory.
4: for all 320 points loaded in shared memory do
5: Load 10 indices of the camera set i and j from the shared memory.
6: For each warp, compute YkiW

T
kj and add to the partial sum for each warp

in shared memory
7: end for
8: Synchronize Threads
9: until all the common 3D points are loaded.
10: Sum up the partial summations in the shared memory to get the final sum.
11: if i == j then
12: Compute YiiW

T
ii ← U∗

ii − YiiW
T
ii

13: end if
14: Store YijW

T
ij into global memory.

Practical Time Bundle Adjustment for 3D Reconstruction on the GPU 431

3.6 Computation of the Inverse of S

As the S Matrix is symmetric and positive definite, Cholesky decomposition is
used to perform the inverse operation (Algorithm 1, line 12). Cholesky decom-
position is done using the MAGMA library [19], which is highly optimized using
the fine and coarse grained parallelism on GPUs as well benefits from hybrids
computations by using both CPUs and GPUs. It achieves a peak performance
of 282 GFlops for double precision. Since GPU’s single precision performance
is much higher than it’s double precision performance, it used the mixed preci-
sion iterative refinement technique, in order to find inverse, which results in a
speedup of more than 10 over the CPU.

3.7 Scheduling of Steps on CPU and GPU

Figure 2 shows the way CPU and GPU work together, in order to maximize
the overall throughput. While the computationally intense left hand side of the
equations are calculated on GPU, the relatively lighter right hand side are com-
puted on CPU. The blocks connected by the same vertical line are calculated
in parallel on CPU and GPU. The computations on the CPU and the GPU
overlap. The communications are also performed asynchronously, to ensure that
the GPU doesn’t lie idle from the start to the finish of an iteration.

Fig. 2. Scheduling of steps on CPU and GPU. Arrows indicate data dependency be-
tween modules. Modules connected through a vertical line are computed in parallel on
CPU and GPU.

4 Experimental Results

In this section, we analyze the performance of our approach and compare with
the CPU implementation of Bundle Adjustment [9]. We use an Intel Core i7,
2.66GHz CPU. For the GPU, we use a quarter of an Nvidia Tesla S1070 [20]
with CUDA 2.2 and an Nvidia Tesla C2050 (Fermi) with CUDA 3.2. All com-
putations were performed in double precision, as single precision computations
had correctness issues for this problem.

432 S. Choudhary, S. Gupta, and P.J. Narayanan

We used the Notre Dame 715 dataset [21] for our experiments. We ran the
3D reconstruction process on the data set and the input and output parameters
(P,Q, x, μ, δ) were extracted and stored for bundle adjustment. We focussed on
getting good performance for a dataset of around 500 images as explained before.
The redundancy is being exploited for larger data sets using a minimal skeletal
subset of similar size by other researchers [2,7]. We used a 488 image subset to
analyze the performance and to compare it with the popular implementation of
bundle adjustment [9].

Table 1 shows the time taken for a single iteration for each major step. The
S computation takes most of the time, followed by the S inverse computation.
The Schur complement takes about 70% of the computation time for S, as it
involves O(m2 × mnp × pnp × cnp × mnvis) operations, where mnvis is the
maximum number of 3D points visible by a single camera. On the GPU, each
of the m2 blocks performs O(mnp × pnp × cnp × mnvis) computations. 60%
of S computation is to find the partial sums, 30% for the reduction, and 10%
for the search operation. It is also limited by the amount of shared memory.
The Jacobian computation is highly data parallel and maps nicely to the GPU
architecture. Rest of the kernels (U, V, W and initial projection) are light.

As shown in Figure 3, the total running time on the GPU is t = t1 + t2+ t3+
t4+C4+ t5 and on CPU is T = T1+C1+T2+C2+T3+C3 where ti is the time
taken by GPU modules, Ti time taken by CPU modules and Ci communication
time. The total time taken is max(t, T). CPU-GPU parallel operations take
place only when max(t, T) < (t + T). For the case of 488 cameras, the time
taken by GPU completely overlaps the CPU computations and communication,
so that there is no idle time for the GPU. Figure 4 compares the time taken
by our hybrid algorithm for each iteration of Bundle Adjustment with the CPU

Table 1. Time in seconds for each step in one iteration of Bundle Adjustment for
different number of cameras on the Notre Dame data set. Total time is the time taken
by hybrid implementation of BA using CPU and GPU in parallel. GPU1 is a quarter
of Tesla S1070 and GPU2 is Tesla C2050.

Time Taken (in seconds)
Computation GPU1 GPU2 GPU1 GPU2 GPU1 GPU2 GPU1 GPU2 GPU1 GPU2

Step 38 104 210 356 488
Cameras Cameras Cameras Cameras Cameras

Initial Proj 0.02 0.01 0.02 0.03 0.05 0.04 0.06 0.04 0.06 0.05

Jacobian 0.1 0.04 0.2 0.07 0.32 0.12 0.39 0.16 0.45 0.17

U, V, W Mats 0.14 0.04 0.23 0.09 0.39 0.15 0.5 0.18 0.56 0.2

S Matrix 0.25 0.09 0.97 0.27 2.5 0.56 4.63 1.01 6.55 1.3

S Inverse 0.01 0 0.09 0.02 0.28 0.08 0.87 0.19 1.74 0.39

L2 Err (CPU) 0 0.01 0.01 0.01 0.02

εa, εb (CPU) 0.05 0.12 0.17 0.21 0.24

e (CPU) 0.03 0.05 0.08 0.1 0.11

Total Time 0.52 0.19 1.51 0.51 3.54 0.97 6.44 1.61 9.36 2.15

Practical Time Bundle Adjustment for 3D Reconstruction on the GPU 433

Fig. 3. Starting and ending times for each step including memory transfer for one
iteration using 488 cameras. Times in paranthesis are for the use of the S1070 and
others for the C2050.

only implementation on the Notre Dame dataset. The hybrid version with Tesla
C2050 gets a speedup of 30-40 times over the CPU implementation.

Memory Requirements: The total memory used can be a limiting factor in
the scalability of bundle adjustment for large scale 3D reconstruction. As we
can see in Figure 5, the total memory requirement is high due to temporary
requirements in the segmented scan [18] operation on the earlier GPU. The
extra memory required is of the size 3×nnz×81×4 bytes which is used to store
the data, flag and the final output arrays for the segmented scan operation. The
permanent memory used to store the permanent arrays such as J, U, V, W,
and S is only a moderate fraction of the total memory required. The Fermi has

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

Cameras

T
im

e
ta

ke
n

 (
L

o
g

ar
it

h
m

ic
 S

ca
le

, i
n

 s
ec

o
n

d
s)

0 100 200 300 400 500
6

6.5

7

7.5

8

8.5

9

9.5

S
p

ee
d

u
p

CPU Only
Hybrid Algorithm
Speedup

(a) Using Tesla S1070

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

Cameras

T
im

e
ta

ke
n

 (
L

o
g

ar
it

h
m

ic
 S

ca
le

, i
n

 s
ec

o
n

d
s)

0 100 200 300 400 500
5

10

15

20

25

30

35

S
p

ee
d

u
p

CPU Only
Hybrid Algorithm
Speedup

(b) Using Tesla C2050

Fig. 4. Time and speedup for one iteration of Bundle Adjustment on the CPU using
Tesla S1070 and Tesla S2050.

434 S. Choudhary, S. Gupta, and P.J. Narayanan

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

Cameras

M
em

o
ry

 R
eq

u
ir

ed
 (

in
 M

B
)

Permanent Memory Requirements
Total Memory Requirement

Fig. 5. Memory required (in MB) on the GPU for different number of cameras.

a larger shared memory and the reduction is performed in the shared memory
itself. Thus, the total memory requirement is the same as the permanent memory
requirement when using Tesla C2050.

5 Conclusions and Future Work

In this paper, we introduced a hybrid algorithm using the GPU and the CPU
to perform practical time bundle adjustment. The time taken for each iteration
for 488 cameras on using our approach is around 2 seconds on Tesla C2050
and 9 seconds on Tesla S1070, compared to 81 seconds on the CPU. This can
reduce the computation time of a week on CPU to less than 10 hours. This can
make processing larger datasets practical. Most of the computations in our case
is limited by the amount of available shared memory, registers and the limit
on number of threads. The double precision performance is critical to the GPU
computation; the better performance using Fermi GPUs may also be due to this.

Faster bundle adjustment will enable processing of much larger data sets in the
future. One option is to explore better utilization of the CPU. Even the single-
core CPU is not used fully in our implementation currently. The 4-core and 8-core
CPUs that are freely available can do more work, and will need a relook at the
distribution of the tasks between the CPU and the GPU. The use of multiple
GPUs to increase the available parallelism is another option. Expensive steps
like the computation of S matrix can be split among multiple GPUs without
adding enormous communication overheas. This will further change the balance
between what can be done on the CPU and on the GPU.

References

1. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in
3d. ACM Trans. Graph 25, 835–846 (2006)

2. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a
day. In: International Conference on Computer Vision, ICCV (2009)

Practical Time Bundle Adjustment for 3D Reconstruction on the GPU 435

3. Fung, J., Mann, S.: Openvidia: parallel gpu computer vision. In: MULTIMEDIA
2005: Proceedings of the 13th Annual ACM International Conference on Multime-
dia, pp. 849–852 (2005)

4. Vineet, V., Narayanan, P.J.: Cuda cuts: Fast graph cuts on the gpu. In: Computer
Vision and Pattern Recognition Workshop (2008)

5. Sinha, S.N., Michael Frahm, J., Pollefeys, M., Genc, Y.: Gpu-based video feature
tracking and matching. Technical report. In: Workshop on Edge Computing Using
New Commodity Architectures (2006)

6. Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C.,
Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on
a Cloudless Day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010,
Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)

7. Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal graphs for efficient structure from
motion. In: CVPR (2008)

8. Brown, M., Lowe, D.G.: Unsupervised 3d object recognition and reconstruction in
unordered datasets. In: 3DIM 2005: Proceedings of the Fifth International Confer-
ence on 3-D Digital Imaging and Modeling, pp. 56–63 (2005)

9. Lourakis, M.A., Argyros, A.: SBA: A Software Package for Generic Sparse Bundle
Adjustment. ACM Trans. Math. Software 36, 1–30 (2009)

10. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3d
reconstruction. In: International Conference on Computer Vision, ICCV (2007)

11. Lourakis, M.: levmar: Levenberg-marquardt nonlinear least squares algorithms in
C/C++ (July 2004), http://www.ics.forth.gr/~lourakis/levmar/

12. Byröd, M., Äström, K.: Bundle adjustment using conjugate gradients with multi-
scale preconditioning. In: BMVC (2009)

13. Cao, J., Novstrup, K.A., Goyal, A., Midkiff, S.P., Caruthers, J.M.: A parallel
levenberg-marquardt algorithm. In: ICS 2009: Proceedings of the 23rd Interna-
tional Conference on Supercomputing, pp. 450–459 (2009)

14. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment
- a modern synthesis. In: Proceedings of the International Workshop on Vision
Algorithms: Theory and Practice, ICCV 1999 (2000)

15. Ranganathan, A.: The levenberg-marquardt algorithm. Technical Report Honda
Research Institute (2004), http://www.ananth.in/docs/lmtut.pdf

16. Nielsen, H.: Damping parameter in marquardt’s method. Technical Report hbn,
Technical University of Denmark (1999), http://www.imm.dtu.dk/~hbn

17. Dongarra, J.: Compressed column storage (1995),
http://netlib2.cs.utk.edu/linalg/html_templates/node92.html

18. Sengupta, S., Harris, M., Garland, M.: Efficient parallel scan algorithms for gpus.
Technical report, NVIDIA Technical Report (2008)

19. Ltaief, H., Tomov, S., Nath, R., Dongarra, J.: Hybrid multicore cholesky factor-
ization with multiple gpu accelerators. Technical report, University of Tennessee
(2010)

20. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia tesla: A unified graph-
ics and computing architecture. IEEE Micro 28, 39–55 (2008)

21. Snavely, N.: Notre dame dataset (2009),
http://phototour.cs.washington.edu/datasets/

http://www.ics.forth.gr/~lourakis/levmar/
http://www.ananth.in/docs/lmtut.pdf
http://www.imm.dtu.dk/~hbn
http://netlib2.cs.utk.edu/linalg/html_templates/node92.html
http://phototour.cs.washington.edu/datasets/

	Practical Time Bundle Adjustment for 3D Reconstruction on the GPU
	Introduction
	Related Work
	Sparse Bundle Adjustment on the GPU
	Data Structure for the Sparse Bundle Adjustment
	Computation of the Initial Projection and Error Vector
	Computation of the Jacobian Matrix (J)
	Computation of JTX-1J
	Computation of S = U* - WV*-1WT
	Computation of the Inverse of S
	Scheduling of Steps on CPU and GPU

	Experimental Results
	Conclusions and Future Work
	References

