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Abstract
Ensuring the integrity of executable binaries is of vital impor-
tance to systems that run and depend on them. Additionally,
supply-chain attacks and security related bugs demonstrate
that binaries, once deployed, may need to be revoked and
replaced with updated versions.

Recently, blockchain ecosystems have garnered broad at-
tention asmiddlewares for decentralised solutions to existing
problems. Stengele et al. [4] presented a concept how the
Ethereum blockchain and peer-to-peer network can be used
to ensure the integrity of binaries with timely, accurate, and
machine-readable revocations. In this work, we show this
concept in practice with a user client implementation in Go
and demonstrate how revocations and updates can reliably
reach a user client within minutes. We show the client’s
ability to ensure the integrity of multiple binaries and con-
tinuously monitor the Ethereum blockchain for updates and
revocations via an unmodified Ethereum client. We also ex-
amine the trust relations and trade-offs through our use case.
Since the user client fully relies on an Ethereum client as a
gateway, the latter’s resilience against malicious actors is
crucial to consider in a practical deployment.

CCS Concepts: • Security and privacy → Software and
application security; • Networks → Network services;
• Computer systems organization→ Reliability.
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1 Introduction
Conventional solutions for ensuring the integrity of bina-
ries generally revolve around hash fingerprints or digital
signatures. The latter can be attached to and distributed with
binaries but revocation can be cumbersome, unreliable [2],
and imprecise as a single key can be used to sign multiple
binaries. By contrast, hash fingerprints can individually be
revoked but they require a reliable and secure infrastructure
to be distributed independently of binaries. With blockchains
as a middleware, such an infrastructure not only becomes
available to anyone but their use can also obviate the need
to trust a single hosting provider. In this work, we examine
the trade-offs we encountered while realising a concept for
publishing and revoking integrity protecting information for
binaries via Ethereum that we since named “Palinodia”.

Two prominent blockchain-based solutions for binary in-
tegrity protection are Contour [1] and Chainiac [3]. Contour
is a lightweight construction based on Merkle trees that
uses the Bitcoin blockchain as a tamper-resistant and highly
available storage and distribution middleware. Chainiac is a
comprehensive software creation and publication logging so-
lution that ensures source-to-binary correspondence through
independently performed reproducible builds in addition to
integrity. Neither Contour nor Chainiac focus on the ability
to revoke integrity protecting information for binaries.

2 Palinodia
In previous work [4], a concept was proposed on how the
Ethereum blockchain can serve as a middleware to facili-
tate the publication and revocation of integrity protecting
information for software binaries and how the underlying
peer-to-peer network can be viewed as a reliable broadcast
medium. Smart contracts are used to establish unique and
persistent identities for software that can be managed by and
transferred between software developers and maintainers.
These contracts also store integrity protecting information
and verifiably link it to the respective software identity.
While the previous work showed how to publish and re-

voke integrity protecting information for binaries on the
Ethereum blockchain in principle, we now provide a work-
ing user client and explore the practical consequences and
trade-offs that come with obtaining and using blockchain-
based information in this demonstration. We show the “bur-
den” a user bears in such a decentralised architecture. Rather
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Figure 1. Interactions of Palinodia client (PC), Ethereum client
(EC), peer-to-peer nodes (N), and a software maintainer (M). (1) M
publishes integrity protecting information to a smart contract. (2)
After obtaining a binary and extracting metadata, PC instructs EC
to obtain relevant chain data. (3) EC interacts with Ns to obtain
and verify chain data. (4) EC returns verified chain data to PC.
PC determines integrity of the binary. (5)M issues revocation via
transaction. (6) EC obtains revocation from Ns. (7) EC forwards
revocation to PC. Steps (3) and (6) depend on sync mode of EC.

than implementing the functionality to interact with the
Ethereum network, we opted to use a preexisting client with
Go Ethereum (Geth) as a gateway as depicted in Figure 1.
This choice already opens up various deployment scenarios
as the Palinodia and Ethereum clients do not necessarily
have to run on the same device and one Ethereum client can
serve multiple applications and devices.
Ethereum clients like Geth have several methods for ob-

taining and maintaining the current state of the blockchain,
ranging from fast and lightweight methods to a full synchro-
nisation that can take several days and consume gigabytes
of persistent storage. Table 1 shows the resource consump-
tion and performance of the Palinodia client and Geth while
publishing and revoking integrity protecting information via
the Ropsten test net. Generally, we find the Palinodia client
to be even more lightweight than Geth in light mode and
it is not surprising to see that, once Geth has obtained and
verified the necessary blockchain data, the Palinodia client
can perform its function quickly and efficiently.

Each synchronisation mode presents a trade-off between
effort and trust. The more effort the client exerts in verify-
ing the data obtained from the Ethereum network, the less
chances malicious nodes have to feed it false information,
and vice versa. With the full synchronisation mode, Geth
obtains and validates all blockchain state data and must
therefore not query any other nodes for data pertaining to
validation or revocation of binaries. However, with the sig-
nificant requirements regarding hardware and bandwidth,
operating such a full Geth node is quite challenging for an
average user. Running Geth in light mode is far more feasi-
ble, but since it relies on multiple full nodes to obtain and
partially verify state data on demand, it leaks to them some
information regarding the software a user has installed. Ad-
ditionally, light clients can be tricked into accepting invalid
informationwith substantial effort by amalicious actor while
a full node is immune to such an attack. Users of Palinodia

Table 1. Performance of the Palinodia client and Geth (v1.9.22,
default settings) in light and fast/full operating mode on the same
device connected to the Ropsten test network (as of Oct 2020).
Rows: incoming network traffic for validating a binary (NT-V) and
maintaining synchronisation with the blockchain (NT-M); time
spent by respective client during validation (TTV) and revocation
(TTR) of a binary. Timing of revocation begins with issuance and
includes time for the transaction to be included in a block and
propagated to Geth. NT-V, TTV, TTR averaged over 100 binaries.

Client Palinodia Geth light Geth fast/full

RAM 40 MB 275 MB 1.4 GB
Disk 70 MB 500 MB 90 GB
NT-V 0 B 1.5 MB 0 B
NT-M 0 B 12 MB/day 450 MB/day
TTV 4 ms 400 ms 13 ms
TTR 1 ms 20 s 20 s

must strike a balance between their hardware capabilities
and their need to defend themselves against malicious actors.
We evaluated these multi-faceted options empirically and
present the results interactively.

In summary, blockchains as a publicmiddleware for record-
ing and disseminating information present a new paradigm
with unique goals and challenges in practical applications in
order to preserve and benefit from their decentralised struc-
ture. This demonstration presents quantitative results that
a) show that the Palinodia client is relatively lightweight
compared to the Ethereum client, and b) make the trade-offs
between trust and performance explicit and, thus, enable
some form of risk management.
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