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Abstract - A widely applicable, general methodology for estimation of traosfer 
function parameters from frequency response data is presented The procedure 
is bawd on tbe solution of a linear least squares pioblem by the singular value 
decomposition (SVD). The condition of the problem is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscussed and 
approaclw refened to as shifting and scaling are introduced to reduce the con- 
dition number. To extend the application to practical caws with measurement 
emrs and/or a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlarge number of poles, a partitioned estimation method with 
Gauss-Seidel iteratiws is develcped. M y ,  an iterative improvement process 
w i t h c " i n t s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the poles is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapplied to increase the accurscy and to avoid the 
possibility of obtaining unstable poles. The application of the suggested method 
of estimation to the ~presentation of transformers is pmented with practical 
examples. Elither transfer fuodion or state equation representation can be 
obtained for mawformers described by their terminal frequency responses. 

Keyworct: System identjlication, Parameter estimation, Least squares approxi- 
mation, Frequency response, Tranafomer mdling. 

INTRODUCTION 

Accurate repmentation of physical systems by a transfer function is often 
needed in various fields of e n g k y h q  for purposes of analysis, design, or simu- 
lation. In many cases where suffimnt mformation about the strucm of the sys- 
tem is not available, frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAraspoase measurements can be used as a con- 
venient data base for estimation of the transfer fuodion parametets. System 
identification by terminal characteristics may also be useful for the lumped 
p-eter modeling of dlstributed systems, reduction of model order, and 
simplificatioa of complex systems. In this paper, different methodologies for 
transfer function estimation are discussed. Novel procedures are proposed and 
examined, some superior to existing ones, developed for diverse engineering 
applications. 

In the power engineeiiag area, wide frequency range modeling of 
transformers and mctols by frequency domain external measurements is some- 
times required for the study of electromagnetic " k n t s .  Besides, the "black- 
box" representation of such equipmot is paaicularly impoctant in imulation 
coordination applications involving HV and EHV systems, where p i s e  pred- 
iction of possible system overvoltage.q is essential to achieve an economical and 
reliable design. 

In the study of elechomagnetic transients, the components must be 
represented in a wide frequency range. This introduces numerical dif6culties 
with most of the available methods. Tbe estimation process proposed in this 
paper is particularly appropriate for ihtification of transfer fuoction parame- 
ters from wide frequency band observation data, obtained by terminal 
measurements of power system such as transformers, reactors, 
rotating machioes, and transmission lines. However, due to its improved accu- 
racy and the achieved stability, the proposed method can also be applied with 
advantage to a large class of estimation problems in various engineer@ fields. 
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Background 

Considerable effort has been devoted since the 19508 to the development 
of metbods for -fer function syn- 6um frequency mponse observa- 
tions. The fnquency domain identi6cation problem is based on the estimation 
of a rational complex W o n ,  with real coefficients, to fit a given set of can- 
plex data. The nonlinear nature of the probkm has yielded &&rent formula- 
tions a d  solution methods. 

Levy [l] suggested a linearization procedure and developed a complex 
curve fitting method. The pmposed method was based on the least squares 
upproach and the use of p d a l  derivatives to minimize a quadratic cnor fun0 
tion yielded a formulation equivalent to the use of normal equations. In Levy's 
method, the e m  function is inherently weighted due to the multiplication of the 
equations by fhe denomhtor and the resulting eslimation is biased. Besides, 
because of the normal equation type formulation. the problem was poorly d- 
tiowd. Sanathanan and Koemer [Z] improved Levy's method by introducing an 
iterative technique to remove the undesired weighting. Presented resolts show 
clearly that reverse weighting reduces the emrs in the fining. However, P a p  
[31 reported that in some cases, both the Levy and the S--Koemer 
methods may give rise. to right-half-plane poles for systems )mown to be stable. 
To avoid this disadvantage, Payne suggested to Consider some time domain pro- 
petties of the system, such as steady state e m ,  m conjunction with the fre- 
quency domain data. 

Lawmm and Rogers [4] developed a sequential algorithm based on 
Levy's linearization procedure. The proposed algorithm allows point-by-point 
determination of the transfer function parameters and, in the case of addition of 
new observation data, the previously identified parameters m not reevaluated 
but updated. Another major improvement of thi~ method is that a matrix h e r -  
sion or solution of a set of equations is m needed. However, in the case of 
higher order transfer hctions, a large number of observations is needed to 
obtain an accurate solution, otherwise iterations become neoessary. Stahl[51 
proposed two different procedures, namely matrix udaprorion and direct solu- 
tion methods. The Matrix adaptation method is an iterative process based on 
Levy's e m r  function. The coefficient matrix elements are fundim of parame- 
ters to be determined and are updated at eacb iteration. The direct solution uses 
a logarithmic cost fuoaion to be minimized by the simplex method. 

Whitfield [6] presented the previous appmches in a d e d  swcture and 
discussed them in terms of convergence and emx consideratim. Whit6eld 
developed the integral approach method where a time domain integral error ai- 
terioa is discretized by the trapezoidal d e .  The final formulation is in the form 
of an overdetennimd set of linear equations which are solved in tbe least 
squares sense by H d o l d e r  decomposition. The non-iterative integral 
approach has tbe tendency to give more emphasis to the low frequency observa- 
tions particularly in the plesence of meaSLuement emrs. Comparative results of 
Whitfield show that the methods proposed by Levy, Sanathanan-Koemer, and 
Stahl may yield unstable transfer functions for stable systems and the iterative 
methods may not converge in some cases. 

In this work, the basic formulation of Levy is modified to obtain an over- 
determined set of hear  equations. Tbe limitations of bite digit computation 
due to the ill-conditiooed nature of the equations is discussed and it is shown 
that the numerical condition can be improved by appropriate scaling. Singular 
Value Decomposition (SVD), rather than normal equations, is used for direct 
solutiw of the overdetermined equatiorrs in the least squares sense.. An appmpri- 
ate partitioning process is presented for sequential identification of poles or 
groups of poles that are widely separated over the frequency range of the obser- 
vations. Finally, a funher iterative improvement process is introduced to reduce 
the calculation errors and to avoid the pcssibility of obtaining unstable poles. 
By these procedures, the wealrnesses of the existing methods, discussed above, 
have been overcome, as demonstrated in the examples and applications 
presented in h e  paper. 
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BASIC THEORY 

Least Squares Formulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransfer function of a linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtime invariant single-inplt, single-output 

system may be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

For a non-integrating system we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan assume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbo=l without loss of generality. If 
H ( s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis strictly proper (i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlimH(s)=O for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-w), then p<v  , normally, 

= v- 1. Besides, let us assume that m/2 complex observation values are avail- 
able as ht =pt +jqt for the observation freguendes ok. By substituting s = j q  
in (1) we obtain 

(7) 

I 1 0 -4 0 0: . . . q k o &  Pto :  -Sz4 - P k 4  . . . 
-m; 0 . . . iD&COk qko: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApto: -qkO: . . . '&= 0 cot 0 [ 

If the number m of observations is larger than the number n of parameters, 
(6) is an overdetermined set of linear equations. This set, which in geneml is of 
~ U I I  rank, has a unique so~ution in the least squares sense, x', that minimizes the 
residual llAx - bll [7]. Different methods are available for the solution of the 
least squares problem. An early method consists in solving the normal equatiw 

ArAx = Arb (8) 

The formulation of Levy [I], Sanathanan-Koerner [21 and Stahl [5] are 
equivalent to (8). Despite its simplicity, the solution of the normal equations is 
of reduced numerical stabfity a d  small perturbations of A and b may result in 
large errom in the solution. Lawson and Hanson [7] preseot a number of more 
powerful methods based on orthogonal decomposition of A. Singular Value 
Decomposition (SVD), which is one of thc most efficient and ntable techniques, 
will be used in this paper for the direct solution of the least squares equations. It 
has the funher advantage that it gives directly the d t i o n  number to be dis- 
cussed below. 

Perturbation Andy& m d  the Condition of the Problem 

Suppose that in (6) both A and b are subject to small penurbatiom AA 
and Ab respectively, which result in a deviation Ax in the solution vector x. 
Substitution of the perturbed values in (6) gives 

(A+M)(x+Ax) = b+Ab (9) 
If the smdl deviations of second order are neglected, Ax can be expressed expli- 
citly by using the pseudoinverse A+ of A 

Ax= A+[Ab-(AA)x] (10) 

(11) 

By denoting with 11.11 any appropriate norm, we can Write 

IIWI SIIA+II I W I  MI+ w+n I I ~ ~ I I  
and 

Let us de.& 

Ne = HA11 llA+ll (13) 

The relative error in the solution can be expressed in terms of N, and the relative 
deviations of parameters as 

N ,  is the condition number of A and can be coosidered as a measure of 
the amplification of petlurbations on A and b throughout the computation of x, 
independently of the chosen procedure. The perlurbation on the parameters may 
arise either due to the round-off e m  of the finite digit computation or the inev- 
itable noise in the messuremeots. If the condition number is too large, the prob- 
lem is said to be ill-conditioned and the results are genedy unreliable. 
Besides, it should be noted that in the normal equations approach (8) the condi- 
tion number is that of ArA, the square of the condition number of A proper in 
(6). 

Although the norm definition is general in (1 1)-( 14). it is common to use 
the euclidian norm for vectors. On the other hand, the condition number may be 
calculated in terms of the singular values of A 

where U, and U,+, denote the biggest and smallest singular values, reapec- 
tively [8]. Equalion (15) allows the direct calculation of the condition number 
without computing the pseudoinverse, if SVD is used to solve (6). 

A close examination of the structure of the A matrix given in (7) will 
show that the condition number depends basically on the following factors: 
- order of the transfer function 

- Frequency range of the observations 
- Observation data ( pk. qc ) 

Condition numbers for some typical example models will be given in 
Table 1. It can be verified that the condition number increases as ovm, where 
w, is the maximum angular frequeacy of observations and v the d e w  of the 
transfer function deoominator. As in the examples presented here, in many prac- 
tical problems the condition number may be in the order of 1OI6 or higher which 
makes an accurate solution impossible even with double precision computation. 
As a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconsequence, it is obvious that the condition of the problem must be 
improved before applying any numerical method for solution. 

The ill-conditioning of A io (6) comes from tbe nature of the problem for- 
mulation. The iterative revem weighling plrocess of Sanathanan-Koemer [2] 
and maaix SdapCatiOn algorithm of Stahl[5] helped to improve the condition of 
the problem to some extent, but the use of the normal equations had already 
increased the condition number to the square of its original value! 

In order to improve the condition of the problem, (6) may be pre- 
processed by scaling or shifiiag as described below. 

In general terms, scaling consists in left or right multiplication of the 
matrix A with an appropriate diagonal matrix D, an approach that can be d e d  
row or column scaling, respectively. 

Van der Sluis [9],[10] investigated the stability of solutions of linear alge- 
braic systems and presented methods for equilibration of rectangular matrices. It 
has been proved in [9] that the condition number of a redangular matrix can be 
approximately " i i  by either row or column scaling. EBicient scaling 
results in all rows or all columns having equal euclidian noms, respectively. It 
is, however, clear that despite the advantage of improving tbe condition of A, 
row scaling has the side effea of introdvcing an undesired weighting of the 
equations. Besides, it tums out that row scaling is not as e5cient as column 
scaling. For the latter, expression (6) can be written as 

ADD-'x = b (16) 

With i= AD and$=D-'xwe obtain, 

& = b  (17) 

Similarly to (6), (17) also has a unique solution in the least s q u m  sense, 
2 ,  which minimizes IIG-a(l. Note that the change of variables has not 
changed the residual. After solving (1'0, the transfer function parameters can be 
simply calculated by using x=Dk 

Shifting 

. 

In the c m s  where the median of the observations is far from the On@. 
compared to the bandwidth, the large values of o may result in a considerable 
increase in the condition number of A. Experiments have shown that a Change 
of variables, by shifting of the origin approximately to the median jo value, can 
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improve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe condition of the problem in such cases. Let us define a new com- 
plex variable ?resulting from a shift of the origin to the pointPo in the s-plaw: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s = s - p o  (18) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

Substitution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs defined in terms of the new on@ into (1) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ao+a1S+i2S+~. ' +a$ 

H 6 ) =  - - 
bo& lS+bzS2+. . * +b,Sv 

Here, all parameters Z; and 6; are complex. Once these parameters are estimated 
by the least squares approach as described in the previous section, the original zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai 
and bi parameters can be calculated by solving the linear equations 

Px=E (20) 

where, P = diag(P,,Pb). The matrices Pa and Pb are upper triangular with ele- 
ments similar to those in the well known Pascal triangle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii is similar to x 
d e f i d  in (7). The triangular form makes it possible to obtain a simple and fast 
solution. 

Results 

The improvement achieved by row scaling, column scaling and shifting 
were checked by meam of a number of examples. The numerical results have 
shown that: 
- The improvement achieved by shifting is not significant in most cases. 

However, when the observation interval is far from the origin, it is helpful 
to shift the origin approximately to the center of the observations. In some 
of the examples comidered, where the original condition numbers weR in 
the order of loao, the improvement was in the order of 10-io3. 
Row scaling has improved the condition number in excessively damped 
systems where the ill-conditioning is mainly related to the nature of the 
frequency response rather than the frequency range. In slightly damped 
examples with wide frequency range measurements, which is the case for 
most power system equipment, the improvement of the row scaling was 
not sufficient to reduce the condition number below 10l6, which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be 
considered as an extreme for double precision computations. 
Column scaling was very efficient in most of the examples, particularly 
when the ill-cooditioning was the result of the wide frequency range. In 
many examples with excessively high condition numbers, as shown in 
Table 1, significant improvements could be obtained by column scaling 
which resulted in condition numbers below IO'. 

The above mentioned examples have shown that column scaling is the 
most efficient method to improve the condition of the A matrix of equation (6). 
Besides, as it is seen from (16), the column scaling does not introduce any addi- 
tional weighting to the linearized equations (6). 

- 

- 

Direct Solution by Singular Value Decomposition 
Matrix decomposition methods are known to be m m  powerful zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 

efficient for the solution of linear least squares problems than the use of normal 
equatiom [7]. In this paper, the Singular Value Decomposition is used for 
direct solution in the least squares sense of the overdetermined set of equations 

given in (17). The rectangular m x n matrix A can be decomposed as 

i=USVT (21) 

where both U and V are orthogpal square matrices, of dimensions m xm and 
n x n respectively. If the rank of A is n, then - -  

The real nonnegative entries bi are the singular values of A. Recalling that the 
euclidian length of a vector remains unchanged under multiplication with an 
orthogonal matrix, we can write 

Ilk - b1I2 = IlUSV'i - bl12 = llSVri - UTb(12 (23) 

Let us define 
r i  

where y and g, are n vectors. Substituting in (23), we obtain 

I& - b1I2 = II SlY - g,lP + II 921i2 ( 2 3  

9' = Si'gl (26) 

General purpose programs for S M  decomposition are available in most subrou- 
tine packages. The direct solution of (17) as described above is a straightforward 
process and gives satisfactory results in cases where the condition number can 
be Muced to such a low level that the amplification of the input emrs is negli- 
gible. If measurement errors are big in the given frequency response data, or the 

It is clear that the residual is minimum when y has the value 

condition number is large despite pre-conditioning, as shown in tk previous 
section, even relatively small condition numbers may result in large errors in the 
estimated parameters, whicb lead to unrealistic values. The approaches of parti- 
tioning and iterative improvement, to be described next, can then be applied to 
achieve the estimation with acceptable accuracy. 

Partitioning of the Fhq~~ency Scale 
In many physical systems, the frequency response curves may present 

several minima and maxima which compond to resooances related to discrete 
poles or groups of poles (see Flgures 1-4). In particular, the wide. fnquency 
range response of power system components such as transformers, reactors, 
rotating machines, and traasmission Lines has in geoeral this propty. 'Ihese 
components are in reality distributed parameter systems, which means that 
theoretically an infinite number of poles would be required for obtaining the 
measured response curve. In lumped parameter modeling, a large number of 
poles is normally needed to achieve acceptable accuracy. However, higher 
model onkr with a wide 6quency range results in very high condition 
numbers. W e  column scaling improves tk condition of the problem 
significantly, the error amplification will still be too large and direct fitthg will 
not be successful. 

Let us partition the fresuency scale, as shown in Fig. 3, into r sections 
limited by frequency values corresponding to the minima of the magnitude 
curve. On the other hand, let us write equation (I) as a sum of r ratios of polyno- 
mials, equal to the number of partitioned sections: 

H ( s ) =  =;O) (27) 
i= l  

By substituting s = jw, and equating to the response measured for the angular 
frequency w,, we get 

wi( jok)=pk+jqk (k=l, ' * ' ,m/2 )  (28) 

Each rational polynomial H ,  can be identilied over the corresponding response 
section by using Gauss-Seidel type iterations given by 

1 4  

$(jwK) =pK+jqK-?f '( j%) 131  (p = 1, . . .A  (29) 

Here 1 denotes the iteration step and q, the observation frequencies between the 
limits for the corresponding section. All parameters can initially be assumed 
zero and at each iteration step, the H ,  tems are identified in terms of the 
corresponding observation data and the remaining terms with parameters 
obtained at the last step. Numerical examples have shown that the iterations 
converge to minimize the residual, provided that an appropriate order has been 
chosen by a priori knowledge or trials. 

i q  

Iterative Improvement 

The results obtained with the least squares approach, either by direct solu- 
tion or partitioning, may be firther improved by Gauss-Newton refinement. The 
need for this refinement arises for two reasoos. First, the results may sti l l  have 
large errors due to the M t e  digit accuracy of the calculations and inevitable 
measurement errors combined with the ill-conditioning of the problem. Second, 
linearization of (2) has resulted in the badly distorted linear system (a), due to 
the undesired weighting produced by the multiplication with the denominator of 
the original problem. Moreover, matrix A of (6) contains in half of its columns 
the measured data pk, q,, so that the problem actually resembles the more 
comprehensive Total kasr  Squares (TLS) problem analyzed in [Ill. Since the 
solution process does not contain any physical constraint, right-half plane poles 
may be obtained for systems which are known to be stable. Although such a 
solution is mathematically acceptable, it is not meaningful and obviously not 
applicable for engineering prposes. Let us assume that the coefficients of the 
transfer function have been calculated by the solution of the least squares prob- 
lem as described in the previous sections. Since the polynomial coefficients are 
known, the poles can be calculated as 

"0,  +jwi h: =a, - jw, (30) 

Here, all the poles are assumed complex conjugate for generality. A simple real 
pole can be considered as a special case where the corresponding iniaginary p a  
is zero, and the conjugate is ignored. The transfer function can be written in 
terms of partial fractions as 

By substituting s-jw, into (31) and using the observation data corresponding to 
w, we can write the equation 

For m12 different values of w, (32) represents a set of overdetermined 
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Description zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The model systems referred to as MI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- M8 in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, of difkrent levels of 
complexity, were used fa numerical examples. M1, M2, and M3 are s e d  
order systems with the same X,,,,,,#& ratio, to emme similar m p o n ~  with 
respect to the normalized fresuemy Z~I = dh8. The pole smm a~ chosen 
as a=& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand p=O to have peak values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAclose to the unity. %a particular 
selection results in approximately equal observation values pk. qk in the normal- 
ized observation range. Bach set of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArespoape data oonsists of the repl and ima- 

spaced along the logarithmic fresueocy scale. M4 aod M5 are f d  order sys- 
tems formed as combination of M1, M2 and M2, M3, respectively. M6 is a sixth 
order system created by combining MI, M2, M3. with a larger observation 
interval. M7 and M8 are derived fiwn M6 by moving the pole with the largest 
imaginary part paraUel to the imaginary and real axes. 

Condition numbers 

The condition numbers calculated by (15) for the described models are 
presented in Table 1. They iocreaSe with the model order and the m a x i "  
observation fnquency. Numerous examples have shown that the condition 
number increases as COL, when is the m a x i "  observation fnxpency 
and v is the model order. The improvements achieved by the row and column 
scaling are also shown in the table. It can be concluded that the column scaling 
is signilicantly more efktive than the row scaling. However, there are cases 
wkn the condition number may still be in the order of 10' or even larger. It is 
therefore suggested to use double precision arithmetic to avoid excessive can- 
putational errors in such cases. 

The estimation procedure 

The model M8 described in Table 1 will be used as an example for the 
application of the pmcedures dimmed in the previous section. The magnitude 
of the frequency response obtained by using (35) is plotted in Rgwe 1. A real- 
istic prediction of the model order is important for the accuracy of the results. 
'Ibe form of the response clwe reveals the existcm of 3 p u p s  of poles. 'Ibis 
curve can be partitioned and Gauss-Seidel iterations can be used for 
identification of three rational polynomials. However, in this particular example 
the data is generated by unnptatioa, rather than " m e n [ r ,  and the error 
level is very low. In such cases, the enur ampliscatioo due to tht! poor condition 
number remaim below reasonable tolerance limits, 90 that estimation without 
panitioning may be successN. As the form of the resporrse curve shows that 
the system has at least 3 canplex conjugate poles, the condition numbers (with 
column scaling!) and the output erpozs were caldated and listed in Table 2 for 
several, different model orders. 

ginary pans of the trans* fnnction, observed at 100 diaclete 0)  values, cquauy 

I 

nonlinear equations, which may be solved by Newton's method (Gauss-Newton, 
because of the least quam nature of the problem) [I21 : 

Where, 

Jdd = J' + jJ" is the complex jacobian matrix of f evaluated in terms of the 
parameters computed at the last iteration. Defining a new set of variables 
Ae=€,-J& and separating the red andim- paaS, (33) =be Atten in 
the general form of a linear least squans @em with real coefficients: 

(34) 

Equation (34) can be solved by SVD with the inequality constraints ais, sim- 
ply enforced on the SVD solution of (34), which eliminates the possibility of 
obtaining right plane poles. Besides, (34) is not weighted as (6) or (17). so that 
the undue emphasis on the observations corresponding to the frequencies near 
the zeros of the transfer ftmclion will be overcome by tbe iterative improvement. 

General Algorithm for the Estinution Proass 

The complete method for estimation of the transfer function from fre- 
quency response observation data can be summarized by the following also- 
r i th : 

1 - Read frequency respotrse data and the tolerance level for the residual 
2 - Partition the fresuency scale by comideriag the form of the observation 

data (If the partitioning is not possible (x necessary, take the whole range 
as a single section; this is aspecial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase where P I )  

3 - astimate the order of the partial terms 
4 - Form the set of equations as described by expression (6) 

5 - Perform column scaling, check the condition number 
6 - Identify the parameten of each partial term by the Gauss-Seidel iterations 

(In the special case of a single section, a single step will give the solution 
&dY) 

7 - If the residual is below the tolerance level and all the poles a~ in the left 
half-plane, s t q  the process 

8 - Perform iterative improvement until the residual becomes smaller than the 
given tolerance. 

Examples 

The presented method of estimation has been applied to a number of 
examples, to test its effediveaess and accuracy for different practical cases. For 
simplicity, the frequency respwse data were generated by using mathematical 
models with known poles, xi, a:, and pole strengths, a, f jpi.  h the case of vL? 
complex conjugate paits of poles, the frequency response can be caldated fiwn 

(35) 

In this section some selected examples will be presented f a  the p of illus- 
tration 

Table 1 Example models and condition numbers 

I 
I I 

Pole locations Observation range Condition number 
Model Model 

identifier order Real I hag .  q,,4 I w, Without I Row I Column 

loo0 loo00 
~igure 1 ~requeo~y  response of M8 

Table 2 Condition number and error 
f a  different model orders 

Table 3 Identiiied parameters for M8 
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Pole location 
-0.99999988~10~ f j0.5-1@ 
-0.99998537xld zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj0. IOOOOOOlxld 
-0.10003031~10~ fj0.10001574~10' 

In the case of an under-estimated model order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4 or 5), the output error is 
quite high. For model order 6, which is equal to the actual order, the error drops 
to a very low level. In the case of over-estimated model orders, the output e m r  
becomes even lower. Examination of the results obtained for overestimated 
model orders shows that some of the parameters are negligible, so that the 
identified polynomials reflect in fact the actual order. The results of the non- 
partitioned estimation (the whole frequency range is taken as a single section) 
are presented in Table 3. Note that the coefficients appear to be snid only if 
viewed in isolation but are signi6cant if combined with the respective powers of 
o (for instance o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= IO'). 

The actual pole locations for M8 are given in Table 1. The pole strengths 
are all =al and equal to the real paa of the corresponding pole. The pole l e -  
tions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand strengths calculated from the estimated rational polynomial (specified 
by Table 3) are given in Table 4. 

Table 4 pole locations and strengths calculated from the estimated model 

Pole strength 
0.99999986~1@ fj0.10313583~10-~ 
0.99995927xld fj0. 17150874x10-' 
0.10004375xld Tj0.13023601 

0- 

It is assumed that the systems considered are strictly proper, and p = v - 1. The 
transfer function (36) can be directly represented by state equations. using the 
companion form for each rational polynomial [13] : 

____--/' L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 = Fz + gu 

y =crz 

Where, 

F = diag( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFi ] g = col( &' c = col( ci ] 

(37) 

The state equations (37) contain only the parameters resulting from the 
transfer function estimation, and no additional computation is needed to obtain 
the state space representation for the given system. This form of the state equa- 
tions is general and applicable to the different procedures presented in this 
paper. The non-partitioned (singk section) estimation corresponds to the special 
case where r = 1. In the case when iterative improvement is applied, the aansfer 
function is obtained as a sum of quadratic terms, yielding 2x2 blodrs in F. 

APPLICATION TO REPRESENTATION OF TRANSFORMERS 

The need and importance of wide frequency range representation of 
power transformers have been discussed in a number of papers [14]-[IT]. In 
practice, this type of representation may basically be of interest for the study of 
electromagnetic transients in power ".mission networks. An accurate 
representation of transformers is impomnt for correct prediction of possible 
system overvoltages that may occur in transient conditions such as switching 
operations, propagation of lightning surges or some types of faults. The estima- 
tion method presented in this paper can be applied for obtaining the transfer 
function or state equation representation of a transformer winding described 
only by extemal frequency response measurements. At this stage, the single- 
input, singie-output case is considered. Extension of the method to multiple 
input and output applicatiom will be covered in future work. 

The frequency respome of transformers is usually determined by wide 
frequency range terminal impedance or admittance measurements. The equip 
ment and procedures for such measurements are desuibed in [17]. The available 
test systems with data-acquisition facility can measure, process, a d  store a 
large number of observation data from a very low frequency range, below the 
industrial frequency, to the high MHz level. Thme observatiom form a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcon- 
venient data base for the estimation procedure presented in this paper. 

The general features of the high frequency behavior of transformers are 
presented and discwsed in [18]. The test results have shown that the frequeocy 
response depends significantly on the terminal (loading) conditions. In general, 
the frequency response auve of a tiamformer may have several peaks, resulting 
from resonance phenomena. At the lower frequency range the impedaoce value 
is very snid compared to the peak values, due to the small winding resistance. 
At the high frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArange, the capacitances shunting the winding sections ate 
more dominant, so that the impedance approaches to zero as the frequency 
reaches very high values, that may practicaUy be considered as infinihr. A 
transformer can therefore be wnsidexed as a sm'crry proper system, and 
represented by an impedance transfer function as in (1). 

The application of the suggested estimation procedure to the ~presenta- 
tion of transformers is demonstrated by wing sets of frequency respoape data 
measured for different type of transformers. A brief description of the physical 
properties of these transformers is given below. 

Transformer-I 

This example is a laboratory size single phase model transformer, of 
approximately 0.5 kVA. The windings are dry insulated and, due to the small 
dimensions, the indudance~ of winding sections are more predominant than the 
shunt and ground capacitances. The magnitude of the terminal impedance was- 
ured with the secondary winding openis shown in Figure 2 by adashed he. 

Transformer-2 

Transformer-2 is a 3 phase, MY connected, 75 kVA, 4160/208 V oil filled 
distribution transformer. The impedance characteristic is measured from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H V  side, the terminals H1 and I32 connected together, and H3 grounded. The 
measurement is made between the common terminal H1-H2 and H3 (gtuund) 
while the low voltage side is shorted. The magnitude of the impedance is shown 
by a dashed line in Figure 4. 

Applied Estimation Methods 

The frequency response data obtained for the transformers described 
above are used for estimation of the transfer functions. In the case of 
Transformer-1, the non-partitioned (single section) estimation is not successful. 
The response from a 6th order estimated -fer function is shown in Rpre 2 
by a solid iioe. The e m r  amplification is so high that the resonant behavior of 
the actual winding is not rekted by the estimated model. 

loo00 
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I \  
I 

I ', 

I 

IZ I 
[QI 

5000 - 

I I 
I 

I 
0- I 

I I I I I I 
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Figure 3 Result of the partitioned estimation for Transformer-1 
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To increase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe accuracy, the frenuency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscale. was partitioned as shown in 

Figure 3. The partitioned estimation followed by iterative improvement yielded 
an RMS e m  of 2.65% in the magDitude. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWuency respoose calculated 
from the estimated transfer fuoction is drawn as a solid liw in Figure 3. 

The numerical results of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAestimation for Transformer-1 are given in 
Table 5. 

Table 5 Identified parameters for Transformer-1 

s4 
S' 

so 

0.2013x10-" 0.3554x1@' 
0.6974~10-*~ 

- 0 . 1 9 8 1 ~ 1 0 ~  Loo00 

The frequency respoose curve obtained for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATran&ormer-2 is shown in 
Wgure 4 by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdashed line. With this data, the estimation has been successful 
without partitioning. However, the u n c m a d d  least squares estimation 
yielded right half-plane poles, as shown in Table 6. These unstable poles were 
then eliminated by iterative improvement. The new pole locations and strengths 
are given in Table 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe RMS error 011 the magoibde, drawn with a solid line 
in Rgum 4, is 1.08%. whic41 is acceptable for most applications. 

Pole location 

Figure 4 Result of the estimation with iterative improvement for Transformer-2. 

Table 6 Pole locations and strengths for Tramformer-2 
without iterative improvement. 

Pole swngth 

-0.9423~10~ fjO.849&lO7 0.1057~10'~ fj0.1804~10" 
-0.5284~10'~ f j0.3799X10'0 
-0.9080x10'0 f j0.2436~10'~ 

0.8774xlod 4 . 7 3 1 9 ~ 1 0 ' ~  

0.9737~106 f j0.3998~10~ 
0.1680x107 f j0.5637~10' 

L 

Pole location 

Table 7 Pole locations and strengths for Trrcnafomer-2, 

after iterative improvement. 

Pole strength 

-0.9424xId *~O.8445x1O7 
-0 .1453~10~ f j0.3992~10~ 
-0.2409XlO' f j0.5668xId 

-0.2446XlO* 

0.1048~10'~ fj0.2342x10" 
-0 .7765~10'~ T j0.5574~10'~ 
-0.1289~10" F j0.2803~10'~ 

0.1 151~10 '~  

CONCLUSIONS 

A methodology for the estimation of a transfer function from frequency 
respoose measurements is presented aad d i s d .  IBe transfer function panun- 
etem can be ideodfied by the solution of an overdetermined set of equadoos in 
the least-squares sense. The formulation, by its nature, leads to a poorly c d -  
tioned problem. IBe litexattux abounds in examples of problems that often could 
not be solved due to their poor numerical condition. The memodologies 
described in miS paper wi l l  io general overcome the dif6dties that have p v i -  
ously been repoaed. 

The following are the main results of the paper. 
The condition number increases mainly with the order of the transfer 
function, and the maximum observation frequency. In many cases, the 
condition number cm be excessively large and the solution of the equa- 
tioos becomes impossible even with the double precision computation. 
Three appmachs, termed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs h . . n g ,  row, and column scaling have been 
innoduced to improve the condition of the problem. Though all of these 
methods d u c e d  the condition number, the cofmn scaling provided the 
only truly signi6amt improvement. 

Singular Value Decomposition has been used for the solution of the over- 
determined set of linear equations, pre-processed by column scaling. 
When the error level in the input data is relatively small, for example, in 
the case of data generated by computation, it is possible to perform the 
estimation with very low output error, for a large number of poles. How- 
ever, in practical cases where measuremeat errors exist in the input && 
or the response is obtained from a distributed parameter system, as in the 
case of transformers, the direct estimation may not be successful with the 
required degree of a c m c y .  This dif6culty can be overcome by partition- 
ing the fi-equency scale and applying Gauss-Seidel iterations. 
In some cases, the ditrariness of the least squares solution may lead to 
right half-plane poles for systems which are known to be stable. A0 itera- 
tive improvement method with constraiots on the real part of the poles can 
be applied both to avoid the possibility of having unstable poles and to 
increase the acauacy of the estimation. 

The application of the proposed procedures has been illustrated by dif- 
ferent examples. In the case of computer generated input data, non-partitioned 
estimation can often be expected to be successful with an output error of less 
than 0.01%. Two examples are given for representation of transformers. In one 
of these examples, an acceptable estimate could not be obtained without p d -  
tioning. Mer partitioning, tfie estimation has been successful, with an output 
error below 3%. The last example illustrates the necessity of the iterative 
improvement. The direa solution of the least squares problem yielded unstable 
poles which have subsequently been eliminated by tbe iterative improvement. 

While the chosen examples for applications were from the group of disai- 
bution uansformers, because of the availability of measurement data, the esti- 
mation methodologies described in the paper could readily be applied to large 
power transformers. In fact their applicability extends beyond the general field 
of transformers used here for the purpose of demonstration. 

All procedures described apply to scalar transfer functions. The extension 
of these methods to multi-input and output problems will be presented in a 
sequel to this paper. 
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Discussion 

H. Tsai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand A. Keyhani (The Ohio State University, Electrical Engr., 
Columbus, OH 43210): We would like to commend the authors for a 
well-written paper and for their efforts to develop practical methodol- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ogy for high frequency modeling of electrical power apparatus, partic- 
ularly the transformers. 

As shown by the authors, the formulation of the transfer function 
estimation in the sense of linear least squares can significantly reduce 
the complexity of the estimation problem. Due to the ill conditioning 
of the problem, scaling of the estimated parameters and partitioning 
of the transfer function models are necessary for the estimation. Using 
these two remedies, a nonlinear least squares estimation (NLSE) 
method can also be used to establish the transfer function models for 
high frequency modeling of transformer windings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11. When using the 
NLSE technique, the transfer function model is represented by real 
and complex poles and zeros. Therefore, the anti-resonant and reso- 
nant frequencies of the frequency responses can be directly repre- 
sented in the structure of the transfer function model. For nonlinear 
estimation, iterative procedure is required where the unknown param- 
eters need to be initialized. This can be done by directly checking the 
frequency response measurement for the critical points. 

Another important aspect of any system identification procedure 
from the experimental data is the noise effect on the measured 
responses. For noisy data, linear least squares estimation may not 
produce unbiased estimation results with minimal error covariance. 
Therefore, it is our opinion that certain measure should be considered 
in the estimation process for taking care of the noise in the data [l]. 

As shown in Eq. (7) of the paper, the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA% is not a sparse 
matrix. As more resonant conditions exist in the frequency spectrum, 
the order of the transfer function as well as the size of the matrix 
increase. From Table 1 of the paper, the highest order model used in 
the study was six. Furthermore, from Fig. 1 of the paper, the assumed 
transfer function model seems to have no complex zeros, or the 
terminal resonant conditions. Was it done in order to reduce the 
complexity of the problem at hand? The technique introduced in this 
paper is computationally simpler compared to other nonlinear meth- 
ods. Then is it possible to use this technique to identify a much higher 
order transfer function model than the sixth order model considered 
in this paper? 

From Fig. 2 and Fig. 3, the phase comparison of the measured and 
the simulated responses is not provided. We believe that the phase 
information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis important because it is used in the estimation process 
and can be easily provided in the comparison study. 

The authors have provided the power industry with a valuable and 
practical technique for estimating the parameters of transformer wind- 
ing high frequency transfer functions. We would appreciate the au- 
thor’s comments concerning the questions and issues raised in this 
discussion. 

Reference 

[I] A. Keyhani, H. Tsai, and A. Abur, “Maximum likelihood estima- 
tion of high frequency machine and transformer winding parame- 
ters,” IEEE Trans. on Power Delivery, Vol. 5 ,  No. 1, Jan. 1990, 
pp. 212-219. 

A. S. Morched and L. Marti (Ontario Hydro, Toronto, Canada): The 
authors should be congratulated for presenting a thorough and de- 
tailed analysis of problems related to transfer function estimation 
from frequency domain data. The authors have also presented a 
procedure to improve the solution of a fairly ill-conditioned problem. 

In earlier work, we also encountered similar difficulties in the fitting 
of rational functions to measured or computed transfer functions. The 
implementation of techniques similar those described in the paper 
resulted in major improvements in the accuracy of the calculations. 
However, these techniques, by themselves, were not enough to resolve 
system singularities in several instances: 

High-order systems. 
Systems with closely packed and/or highly damped poles. 
Transfer functions with high noise content and/or background 
poles. 

One way to alleviate these problems was to use Chebyshev polynomi- 
als, rather than a power series, for the fitting of rational functions [Al. 
Power series have very large dynamic range when w is not normalized 
(in the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa“), and their shapes (as a function of n) are very 
similar when w is normalized, as shown in Figure 1. This behavior 
contributes to ill-conditioning in least-square fitting calculations. 

In contrast, Chebyshev polynomials always have a small dynamic 
range (between 1 and - 1) and each polynomial has a distinctive shape 
when w is normalized, as shown in Figure 2. This makes Chebyshev 
polynomials particularly well suited to least squares fitting. 

After solving for the coefficients of the numerator and denominator 
of the transfer function expressed with Chebyshev polynomials, the 
equivalent coefficients of the power series can be formed. Have the 
authors considered using Chebyshev polynomials (or other orthogonal 
polynomials) to improve the accuracy of the fitting process? 

One important feature of the least squares process is the. qse 
frequency dependent weighting functions. Have the authors consid- 
ered using weighting functions linked to the location of the poles and 
zeroes of the transfer function? 

Lastly, it is not immediately obvious from the paper how the authors 
determine the order of the system. Is this done by inspection? Have 
the authors developed an automatic/systematic procedure to assess 
the order of the approximation? 

The comments of the authors on these points will be much appreci- 
ated. 

Reference 

[A] James L. Adcock, “Curve Fitter for Pole-Zero Analysis,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHewlett 
Packard Journal, Jan. 1987. pp. 33-36. 

Manuscript received August 10, 1992. 
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R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMalewski zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Westmount, Quebec, Canada): The authors should be 
congratulated for their study on circuit synthesis from experimental 
data. Among several potential users the transmission system planners 
are interested in a high frequency model of transformer. Such model 
is required to predict, for instance, the transfer of transient overvolt- 
ages from one voltage level to another. From the utility point of view 
the simulation of large HV power transformers is of main interest. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn 
application of the presented method to say 800 kV class, 500 MVA 
unit would attract attention of the planning department of large 
utilities. 

Obviously, measurements of the transformer transfer function can 
not be taken on such a large unit at the University facilities, but the 
actual measured characteristics can be obtained from an industrial 
laboratory performing the acceptance test of new transformers. At 
present, many laboratories use a digital recorder for monitoring the 
impulse test. The obtained records are processed in order to enhance 
the efficiency of fault detection. The processing often includes calcula- 
tion of the frequency spectrum of the output and input impulses, and 
finding the transformer transfer function as quotient of these two 
spectra. An analysis of the transfer function required for the dielectric 
fault detection, is not pertinent to the study presented by the Authors. 
However, a large pool of experimental data accumulated on large HV 
power transformers can be used for the transformer circuit synthesis 
and development of the computer model. 

The routine test procedure calls for measurement of the applied 
test impulse, and of the output current at the winding neutral termi- 
nal. These records yield the winding transadmittance, whereas the 
transfer function between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo winding may be more important for the 
circuit synthesis. However, at a reduced level, additional records can 
be taken during the impulse test, if requested by the utility purchasing 
the transformer. Such additional measurements can be included in 
the test program, on demand of the utility system planning depart- 
ment. An incremental cost of the additional measurement is negligi- 
ble, since the impulse generator and recording system are anyhow 
prepared for the acceptance test. 

Manuscript received August 17, 1992. 

W.-G. Huang (Department of Electrical Engineering, Tsing-hua, Uni- 
versity, Beijing, P. R. China): The discusser would like to compliment 
the authors for presenting a methodology for the estimation of the 
transfer function parameters from terminal frequency response mea- 
surements, and for overcoming the difficulties encountered in the 
parameter identification due to the poor numerical condition. Column 
scaling has been efficiently used to improve the condition of the 
problem. In most of the cases when the model order is high, though 
pre-processed by column scaling, the error amplification is still too 
large. This difficulty has been overcome by partitioning the frequency 
scale and applying Gauss-Seidel iterations. In some cases unstable 
right-half plane poles have been eliminated by solving the least squares 
equations with inequality constrains and the accuracy of estimation 
has been increased by an iterative improvement method. These novel 
procedures proposed in the paper are superior to existing ones and are 
very instructive. 

The ill condition problem in the paper reminds the discusser of the 
pathological phenomenon of the model transformation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ T ]  of 
the cable/GIS bus propagation transfer function matrix [PI at high 
frequency. When three phase cables are unsymmetrically buried under 
the ground (6 by 6 parameter matrices) or the cores of the three phase 
GIS bus are unsymmetrically arranged inside the sheath (4 by 4 
parameter matrices) and the frequency is high, three eigenvalues of 
the propagation transfer function matrix [PI are very close to each 
other. Small pertubation on the cable/GIS parameters will cause 
significant change of the eigenvectors related to these three eigenval- 
ues, and the model transformation matrix [TI will be changed signifi- 
cantly. The problem has been solved as follows [l]. 

Matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[D] is introduced to transfer the equation [ P I T ]  = [TIAI, 
where [ A ]  is a diagonal matrix, the elements of which are eigenvalues 
of [PI. 

The equation can be written as [Dl- ' [PI [DI[Dl- ' [T]  = [DI-' 
[ T ] [ h ]  with [E" ]  = [ D ] - ' [ P ] [ D ] ,  and [ T ' ]  =PT ' [T I ,  then [P'l[T'l = 

[T'l[Al. 
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Fig. 1. A typical record taken during the impulse test of a large HV power 
transformer. Records of the test impulse applied at the full (100%) and 
reduced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(62%) basic insulation level are superimposed in upper graph. 
Their difference is shown below, magnified by factor 8. 
The neutral terminal current records corresponding to the full and reduced 

level applied impulse (100% and 62% respectively) are shown in middle 
graph, together with their eightfold magnified difference. 

The winding transadmittance (frequency spectrum of the neutral current 
divided by the applied voltage spectrum) is plotted in lower graph. A number 
of resonant frequencies can be seen on this "transfer function." This is a 
typical behavior of a layer type winding. 

[D l  = for GIS bus, 

where [ I ]  is an identity matrix. 
After such transformation, [ T ' ] ,  thus [TI, can be solved reasonably. 

[T21 [T1l forcable, 
= [ IT21 [O] ] 

for GIS bus. 

\ 1  o o o l  
If the arrangement of cables or the cores of GIS bus is symmetrical, 

Clarke or Karenbauer transformation matrix can be used as submatrix 
[T21. 

. 
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Any comment concerned with curing the pathological problem 

related to the model transformation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[TI of the unsymmetrically 
arranged cable/GIS bus from the authors’ experience is very appreci- 
ated. 

Wide frequency range modeling of major station equipment, such as 
transformers transmission lines, reactors etc., is sometimes needed for 
the radio frequency electromagnetic noise and the overvoltage calcula- 
tions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A transformer sometimes is represented by a series of four terminal 
networks built up by self inductances (L), mutual inductances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(M), 
transversal capacitances (C) and longitudinal capacitances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(K) of the 
winding (LMCK model for short), voltages in the winding and voltage 
gradients between sections or turns can easily be calculated. If the 
lightning overvoltage on the terminal of a transformer is of interest, 
usually a transformer is represented by its input equivalent capaci- 
tance. The wide frequency range model is a more accurate “black 
box” model, the parameters of the transfer function of which can be 
estimated by external frequency response measurement. According to 
our experience, when the operating voltage is neglected (zero initial 
condition), no matter whether the transformer is represented by a 
LMCK equivalent or by an equivalent capacitance the lightning over- 
voltages on the transformer terminal and on other apparatus in the 
substation protected by current-limiting gap arresters are approxi- 
mately unchanged. With either of the equivalent the difference of the 
overvoltages on the transformer terminal is less than 3%. If the 
operating voltage is taken into account (non-zero initial condition) the 
difference will be ranged over 13% to 18% [2]. The computer program 
of the LMCK equivalent of a transformer winding has been completed 
by eliminating mutual inductances (M) and by using inductance as 
basic element of the discretized equivalht circuit, and the program 
interfaces with EMTP, surges in transformer winding and on other 
apparatus under operating condition can be studied simultaneously [2]. 
The discusser is curious to know whether the wide frequency range 
model is easy to be implemented in or to be interfaced with EMTP, 
and to see what would be the results compared with other two models 
in the overvoltage calculation under operating condition in substa- 
tions. 
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A. Oguz Soysal and Adam Semlyen: We wish to thank the discussers 
for their interest in our paper and for their remarks and suggestions. 
The following are our answers. 

To Prof Huang: The discusser has brought up the interesting and 
important problem of modal transformations in situations when two or 
more eigenvalues of the transfer function matrix are nearly equal. The 
fact that, in the case of exact equality of eigenvalues, the associated 
eigenvectors are not uniquely defined (so that the particular 
transformations mentioned by Professor Huang, and many others, are 
applicable), and only the subspace they span is well determined, results 
in the strong variation of the transformation matrices in the proximity 
of such condition. The diagonalization of the originl transfer function 
matrix is therefore not very sensitive on using an exact, frequency 
dependent transformation matrix and a constant one that is satisfactory 
over a wider range of frequencies is, we believe, likely to be found. 

The discusser’s remarks concerning the significance of different 
degrees of sophistication in modeling are interesting. The estimation 
procedure described in the paper will ultimately end up in a state 
equation realization representing the transformer behavior in the time 
domain. For EMTP applications, the state equations have to be 
discretized by, say, trapezoidal integration and then the resulting 
Norton equivalent can be directly used as for any other terminal 
component. 

To Mi .  Tsai and Dr. Kevhatu ’: We appreciate the discussers’ remarks 
concerning the possibility of focusing both on the poles and the zeros 
of the transfer function by using nonlinear least squares estimation, as 
opposed to the linear least squares approach of the paper. The 
motivation for using the latter is, of course, its simplicity and 
robustness (no convergence problems, no initial values needed for the 
parameters to be estimated). We have also tested cases with noisy data: 
for a noise level below 3%, the estimation was satisfactory, or else, the 
order of the approximation had to be increased. By using singular 
value decomposition, rather than normal equations, we did not have to 
use the matrix ATA having the square of the condition number of A 
itself. 

The models given in Table 1 were selected to illustrate the numerical 
condition of the problem. Transfer functions up to order 20 have also 
been successfully identified, and one could go higher. Partitioning is 
particularly appropriate in the case of complex poles close to the 
imaginary axis. As long as this condition is satisfied, any number of 
poles can be included in the estimation process. For any segment of 
partitioning along the frequency axis, the accuracy can be improved by 
using more poles. Since a complex error criterion is used, the phase 
error is reduced simultaneously with the error in magnitude. In Figures 
2 to 4 we have used only the latter for the purpose of illustration. 

To Dr. Morched and Dr. Ma&: The suggestion of using orthogonal 
(Chebyshev) polynomials is, in our opinion, an excellent idea. Clearly, 
an orthogonal polynomial P,(s), used instead of the powers sk in the 
transfer function (1) of the paper, leads to a much better conditioned 
problem (6). The reason why orthogonal polynomials have not 
generally been used for solving the problem of rational approximation 
is that their fundamental, original role is that of polynomial 
approximation, i.e., approximation by a power series. This yields 

The approximation of H(s) by orthogonal polynomials, shown in (a), is 
always optimal for a given number of terms, and an additional term 
will further reduce the error. 

Our second remark to this problem is that the use of orthogonal 
functions for approximation has the advantage that the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, in 
(a) can be determined without solving a set of equations, as Ax=b of 
(6). Based on the orthogonality of the polynomials Pk(s), we obtain a, 
directly by calculating the integral of H(s)Pk(s), much like in the case 
of a decomposition in a Fourier series. 

Since there is no decomposition into orthogonal functions for the 
rational function approximation 

orthogonal polynomials cannot be used in a direct way for the rational 
polynomial approximation of H(s). However, one may still formulate 
(starting with an approximate, low order solution) the iterative problem 

x a N b P , ( s )  P N ( s )  = D ( s ) H ( s )  

~ a D , P , ( s ) z D ( s ) = N ( s ) /  H ( s )  

(bl) 

(bd 
where D(s) and N(s) at, the right side are assumed to be known from the 
previous iteration. With this assumption, problem (b) is similar to (a) 
and can be solved directly for the coefficients of the orthogonal 
polynomials in N(s) and D(s). It is interesting to note that equations (b) 
appear to be weighted by D(s) and N(s), respectively, so that when the 
calculation focuses on coefficients in the numerator, then the inputs 
near the poles of H(s) are de-emphasized, and vice versa (regarding the 
denominator and the inputs near the zeros of H(s)). 

The weighting that emerges from the procedure outlined above 
increases the emphasis on the object of fitting in the respective iteration 
steps in (b). In the algorithm used in the paper we did, however, not 
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apply any additional weighting other than the normal row scaling. The 
ill-conditioning of the problem has been reduced mainly by column 
scaling. 

The order of the approximation has resulted by starting with a lower 
order fitting and then gradually increasing the order until the error was 
sufficiently reduced. 

To Dr. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMulews&: We thank the discusser for pointing to an important 
application where terminal measurements on transformers are of 
interest to utilities, namely, the case of acceptance tests. The time 
domain measurements, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas shown in his plots, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare performed at full and 

reduced voltage levels for the purpose of detecting any dielectric fault. 
While a transfer function can be identified based on impulse tests, the 
methodology of the paper does not provide a synthesis of a physical 
equivalent which could possibly be used for a more detailed diagnosis 
regarding the internal stresses in the transformer. The state equations 
that are obtained permit, however, to compute with an Electro- 
Magnetic Transients Program the voltage at the transformer terminals 
due to switching or lightning surges. 

Manuscript received August 31, 1992. 


