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Abstrad A widely apphcuble general metbodology for estimation of transfer Background
from fi data is p d. The p du
is based on the solution of a lmear Jeast : squares problem by the singular value of Emisldfeor'able efrfonlhas been devoted m the 19505 to the deve‘l’gem;i_t

decomposition (SVD). The condition of the problem is discussed and
approaches referred to as shifting and scaling are introduced to reduce the con-
dition number. To extend the application to practical cases with measurement
errors and/or a large number of poles, a partitioned estimation method with
Gauss-Seidel iterations is developed. Finally, an iterative improvement process
with constraints on the poles is applied to increase the accuracy and to avoid the
possibility of obtaining unstable poles. The application of the suggested method
of estimation to the representation of transformers is presented with practical
examples. Either transfer function or state equation representation can be
obtained for transformers described by their terminal fre
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INTRODUCTION
Accurate representation of physical systems by a transfer function is often
ded in various fields of engineering for purp of analysis, design, or simu-

lation. In many cases where sufficient information about the structure of the sys-
tem is not available, frequency response measurements can be used as a con-
venient data base for estimation of the transfer function parameters. System
identification by terminal characteristics may also be useful for the lumped
parameter modeling of distributed systems, reduction of model order, and
simplification of complex systems. In this paper, different methodologies for
transfer function estimation are di d. Novel p are proposed and
examined, some supetior to existing ones, developed for diverse engineering
applications.

In the power engineering area, wide fre y range deling of

tions. The frequency domain identification problem is based on the estimation
of a rational complex function, with real coefficients, to fit a given set of com-

plex data. The nonlinear nature of the problem has yielded different formula-
tions and solution methods.

Levy [1] suggested a linearization procedure and developed a complex
curve fitting method. The proposed method was based on the least squares
approach and the use of partial derivatives to minimize a quadratic error func-
tion yielded a fomulannn equvalent to the use of normal equations. In Levy’s

hod, the error function is ly weighted due to the multiplication of the
equations by the denominator and the resulting estimation is biased. Besides,
because of the normal equation type formulation, the problem was poorly condi-
tioned. Sanathanan and Koemer 2] improved Levy’s method by introducing an
iterative technique to the undesired weighting. Presented results show
clearly that reverse weighting reduces the errors in the fitting. However, Payne
(3] reported that in some cases, both the Levy and the Sanathanan-Koemer
methods may give rise to right-half-plane poles for systems known to be stable.
To avoid this disadvantage, Payne suggested to consider some time domain pro-
perties of the system, such as steady state errors, in conjunction with the frre-
quency domain data,

Lawrence and Rogers [4] developed a sequential algorithm based on
Levy's linearization procedure. The proposed algorithm allows point-by-point
determination of the transfer function parameters and, in the case of addition of
new obaervationdaxa,the, iously identified p are not reevaluated
but updated. Another major imp of this method is that a matrix inver-
sion or solution of a set of equations is not needed. However, in the case of
higher order fi a lm'ge ber of observations is needed to
obtain an accurate solution, otherwise iterations b necessary. Stah! [5]

transformers and reactors by frequency domain external measurements is some-
times required for the study of electromagnetic transients. Besides, the "black-
box" representation of such equipment is particularly important in insulation
coordination applications involving HV and EHV systems, where precise pred-
iction of possible system overvoltages is essential to achieve an economical and
reliable design.

In the study of el i i the p must be
represented in a wide frequency range This introduces numerical difficulties
with most of the available methods. The estimation process proposed in this
paper is particularly appropriate for identification of transfer functi

proposed two different proced ly matrix adaptation and direct solu-
tion methods. The Matrix adaptation method is an iterative process based on
Levy’s error function. The coefficient matrix el are functions of p

ters to be d d and are updated at each iteration. The direct solution uses
a logarithmic cost function to be minimized by the simplex method.

‘Whitfield [6] presented the previous approaches in a unified and
discussed them in terms of convergence and error considerations. Whitfield
developed the integral approach method where a time domain integral error cri-
terion is discretized by the trapezoidal rule. The final formulation is in the form
of an overdetermined set of lmear equauons which are solved in the least

ters from wide frequency band observation data, obtained by terminal
measurements of power system components such as transformers, reactors,
and ion lines. However, due to its improved accu-
racy and the achieved stability, the pmposed method can also be apphed with
advantage to a large class of esti blems in various engineering fields.
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sense by Household The non-iterative integral
approach has the tendency to give more emplmsxs to the low frequency observa-
tions particularly in the presence of measurement errors. Comparative results of
‘Whitfield show that the methods proposed by Levy, Sanathanan-Koemer, and
Stahl may yield ble transfer functions for stable systems and the iterative
methods may not converge in some cases.

In this work, the basic formulation of Levy is modified to obtain an over-
determined set of linear equations. The limitations of finite digit computation
due to the ill-conditioned nature of the equations is discussed and it is shown
that the numerical condition can be improved by appropriate scaling. Singul
Value Decomposition (SVD), rather than normal equations, is used for direct
solution of the overdetermined equations in the least squares sense. An appropri-
ate partitioning process is presented for sequential identification of poles or
groups of poles that are widely separated over the frequency range of the obser-
vations. Finally, a further iterative improvement process is introduced to reduce
the calculation errors and to avoid the possibility of obtaining unstable poles.
By these procedures, the weaknesses of the existing methods dlscussed above.
have been overcome, as demonstrated in the ples and app
presented in the paper.
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BASIC THEORY

Least Squares Formulation

The transfer function of a linear time invariant single-input, single-output
system may be written as :
agta s+agsiee - +ayst
botb s4byst4 o wbys”
For a non-integ ystem we can bo=1 without loss of geperality, If
H(s) is strictly proper (i.e. lim H(s)=0 for s—eo), then p<v , nommally,
p=v~-1. Besides, letus that m /2 complex observation values are avail-
able as by =p, + jqk for the observation frequencies o;. By substituting s = jo,
in (1) we obtain

H(s)=

(¢)]

N, (o) +jNi(ax)

T4 D, () +iDwy P @

Nty = ao-ar0fta,of — -

Ni(x)= aiay-a;0i+asw] -

D(@g) = —b,@F+b 0 —bewdf + - - @
D)= biox-biai+bsai— -

Multiplying both sides of (2) with the denominator and equating real and ima-
ginary parts, we obtain

N (@) — piD,(0%) + @1 D;(wk) = py O]

Ni(op) — gD (%) ~ paDi(ey) = qx )

Equations (4) and (5) are linear in the n =2v pamameters 4; (i=0,...,v-1) and
b; (i=1,...,v). For the m real observations we can write the resulting set of m
equations in n unknowns, as

Ax=b (6)
where
J:[aaa, © dyy by by - bv}
=[P1 q1 P2 92 " Pmn qm/z]
A=col{A;}]  (k=1,.,m/2) ™
10 -0 0 o ... aox pof G0 ot .

A= Oay 0 -} 0 ...-pty o} poi —qof .. -

If the number m of observations is larger than the number » of parameters,
(6) is an overdetermined set of linear equations. This set, wbich in general is of

full rank, has a unique solution in the least squares sense, x', that minimizes the
residual |Ax —bj| 7). Different methods are available for the solution of the

Let us define
N =flallia* (13)

The relative error in the solution can be expressed in terms of N, and the relative
deviations of parameters as

vax o (naay | psvi )
il ‘"‘[ i s

N, is the condition number of A and can be considered as a measure of
the ampltﬁcauon of perturbations on A and b throughout the computation of x,
dently of the ch procedure. The p t onthe p may
arise elther due to the round-off errors of the ﬁmte digit compmauon or the inev-
itable noise in the measurements. If the condition number is too large, the prob-
lem is said to be ill-conditioned and the results are generally unreliable.
Besides, it should be noted that in the normal equations approach (8) the condi-
:mn number is that of ATA, the square of the condition number of A proper in
6).

Although the norm definition is general in (11)-(14), it is common to use
the euclidian norm for vectors. On the other hand, the condition number may be
calculated in terms of the singular values of A

Oroax
N=—— 1
oo (1s)
where O, a0d O, denote the biggest and smallest singular values, respec-
tively [8]. Equation (15) allows the direct calculation of the condition number
without ¢ i , if SVD is used to solve (6).

A close examination of the structure of the A matrix given in (7) will
show that the condition number depends basically on the following factors:
—  Order of the transfer function
-~ Frequency range of the observations
- Observation data ( py, qr )

Condition numbers for some typical example models will be given in
Table 1. It can be verified that the condition number increases as ®},,,, where
Oppaz 1S the i angular freq yofobservauo-andvthedegmeofme
transfer function d i Asin the d bere, in many prac-
tical problems the condition number may be in ) the order of 10' or higher which
makes an accurate solution impossible even with double precision computation.
As a consequence, it is obvious that the condition of the problem must be
improved before applying any numerical method for solution.

The ill-conditioning of A i (6) comes from the nature of the problem for-
mulation. The iterative reverse weighting of Sanathanan-Koerner [2]
and matrix adaptation algorithm of Stahl [5] helped to lmprove the condmon of
the problem to some extent, but the use of the had d
increased the condition number to the square of its original value!

In order to improve the condition of the problem, (6) may be pre-
d by scaling or shifting as described below.

puting the p

least squares problem. An early method consists in solving the qi
ATAx=ATb ®)

The formulation of Levy [1], Sanathnnan Koemer 2] and Stahl [5] are
equivalent to (8). Despite its simplicity, the of the
of reduced numerical stability and small perturbations of A and b may result in
large errors in the solution. Lawson and Hanson {7] present a pumber of more
powerful methods based on orthogonal decomposition of A. Singular Value
Decomposmon (SVD), which is one of the most efficient and stable lechmques,
will be used in this paper for the direct solution of the least squares equations. It
has the further advantage that it gives directly the condition number to be dis-
cussed below.

Perturbation Analysis and the Condition of the Problem
Suppose that in (6) both A and b are subject to small perturbations AA
and Ab respectively, which result in a deviation Ax in the solution vector x.
Substitution of the perturbed values in (6) gives
(A+AAXx+Ax)=b+Ab )

1f the small deviations of second order are neglected, Ax can be expressed expli-
citly by using the pseudoinverse A* of A

Ax = A* [Ab—(AA)x] (10)
By denoting with || - || any appropriate norm, we can write
llaxi) < A+ RAAN [1xil -+ |A*] A (11)
and
1o < ey paa 1ELACH a2)

Scaling

In general terms, scaling copsists in left or right multiplication of the
matrix A with an appropriate diagonal matrix D, an approach that can be called
row or column scaling, respectively.

Van der Sluis [9],[10] investigated the stability of solutions of linear alge-
braic systems and presented methods for equilibration of rectangular matrices. It
has been proved in [9] that the condition number of a rectangular matrix can be
approxlma!ely minimized by either row or column scaling. Efficient smling
results in all rows or all columns having equal euclidian norms, ively. It
is; t , clear that despite the advantage of improving the condmon of A,
row scaling has the side effect of introducing an undesired weighting of the
equations. Besides, it turns out that row scaling is not as efficient as column
scaling. For the latter, expression (6) can be written as

ADD 'x=b (16)
With A = AD and £ = D™'x we obtain,
Ai=b an

- Similarly to (6), (l]) also has a unique solution in the least squares sense,
% , which minimizes ||AX~bj|. Note that the change of variables has not
changed the residual. After solving (17), the transfer function parameters can be
simply calculated by using x=Dx.

Shifti

In the cases where the median of the observations is far from the origin,
compamd to the bandwidth, the large values of ® may result in a considerable
increase in the condition pumber of A. Experiments have shown that a change
of variables, by shifting of the origin approxi ly to the median jo value, can




improve the condition of the problem in such cases. Let us define a new com-
plex variable 5 resulting from a shift of the origin to the point p o in the s-plane:

§=5-po (18)
Substitution of s defined in terms of the new origin into (1) gives
a.,+a|s+a2§'2+ . «m,,.r

H(s)= 19)
bo+bl.\'+b2: +o- ‘+b,,:

Here, all parameters a; and b; are complex. Once these parameters are estimated

by the least squares approach as described in the previous section, the original a;
and b; par can be calculated by solving the linear equations

Px=X 20y
where, P = diag{P,,P,}. The matrices P, and P, are upper triangular with ele-
ments similar to those in the well known Pascal triangle. X is similar to x

defined in (7). The triangular form makes it possible to obtain a simple and fast
solution.

Results

The improvement achieved by row scaling, column scaling and shifting
were checked by means of a number of examples. The numerical results have
shown that:

—  The improvement achieved by shifting is not significant in most cases.
However, when the observation interval is far from the origin, it is belpful
to shift the origin approximately to the center of the observations. In some
of the examples considered, where the ongmal condition numbers were in
the order of 10?, the improvement was in the order of 10-10%,

~  Row scaling has improved the condition number in ively d

1629
condition number is large despite pre-conditioning, as shown in the previous
section, even relatively small condition numbers may result in large errors in the
estimated parameters, which lead to unrealistic values. The approaches of parti-
tioning and iterative improvement, to be described next, can then be applied to
achieve the estimation with acceptable accuracy.

Partitioning of the Frequency Scale

In many physical systems, the frequency response curves may present
several minima and maxima which correspond to related to di
poles or groups of poles (sec Figures 1-4). In particular, the wide frequency
range response of power system components such as transformers, reactors,
rotating machines, and transmission lines has in general this property. These
components are in reality distributed parameter systems, which means that
theoretically an infinite number of poles would be required for obtaining the
measured response curve. In lumped parameter modeling, a large ber of
poles is normally ded to a bl accuracy. However, higher
model order with a wide Erequency nmge results in very high condition

b ‘While the condition of the problem
significantly, the error amphﬁcauon w1ll still be too large and direct fitting will
not be successful,

Let us partition the frequency scale, as shown in Fig. 3, into r sections
limited by frequency values ding to the of the magnitude
curve. On the other hand, let us write equation (1) as a sum of r ratios of polyno-
mials, equal to the number of partitioned sections:

systems where the ill-conditioning is mainty related to the nature of 1 the
frequency response rather than the frequency range. In slightly damped
examples with wide fmquency range measurements, which is the case for
most power system equipment, the improvement of the row scaling was
not sufficient to reduce the condition number below 10'S, which can be
considered as an extreme for double precision computations.

—  Column scaling was very efficient in most of the examples, particularly
when the ill-conditioning was the result of the wide frequency range. In
many examples with excessively high condition numbers, as shown in
Table 1, significant improvements could be obtained by column scaling
which resulted in condition numbers below 107.

The above mentioned examples have shown that column scaling is the
most efficient method to improve the condition of the A matrix of equation (6).
Besides, as it is seen from (16), the column scaling does not introduce any addi-
tional weighting to the linearized equations (6).

Direct Solution by Singular Value Decomposition

Matrix decomposition methods are known to be more powerful and
efficient for the solution of linear least squares problems than the use of normal
equations [7]. In this paper, the Singular Value Dec is used for
direct solution in the least sqi sense of the overdetermined set of equations

given in (17). The rectangular m X n matrix Acanbe decomposed as
A=USV? 1)

where both U and V are orthoggnal square matrices, of dimensions m xm and
n % n respectively. If the rank of A is n, then

S= [%’] S, = diag{o;} (=1,..,n) 22

The real nonnegative entries o; are the singular values of A Recalling that the

euclidian fength of a vector remains unchanged under multiplication with an
orthogonal matrix, we can write
IIAi = bl =lUSV"% - bJf* = ISV'% ~ UTbll* (23)
Let us define
y=VZ  gUb- m @4
where y and g, are n vectors. Substituting in (23), we obtain
A% - b2 = )| S,5 - g3 + Il gall? @5)
It is clear that the residual is minimum when y has the value
y =8'g (26)

General purpose programs for SVD decomposition are available in most subrou-
tine packages. The direct solution of (17) as described above is a straightforward
process and gives satisfactory results in cases where the condition number can
be reduced to such a low level that the amplification of the input errors is negli-
gible. If measurement errors are big in the given frequency response data, or the

H(s)= Y H(s) 27
i=l
By substituting s = jw, and equating to the response measured for the angular
quency @y, we get
ZH.-(jmk)=pk +jax k=1,--,mi2) 28)

i=l
Each rational polynomial H,, can be identified over the corresponding responseb
section by using Gauss-Seidel type iterations given by

(00 =putide= TH G0 0=1.0) 29)

i
Here I denotes the nerauon step and @, the observation frequencies between the
limits for the cor ing All p can mmally be assumed

zero and at each iteration step, the H, terms are identified in tesms of the
corresponding observation data and the remaining terms with parameters
obtained at the last step. Numerical examples have shown that the iterations
converge to minimize the residual, provided that an appropriate order has been
chosen by a priori knowledge or trials.

Iterative Improvement

The results obtained with the least squares approach, either by direct solu-
tion or partitioning, may be further improved by Gauss-Newton refinement. The
need for this refinement arises for two reasons. First, the results may still have
large errors due to the finite digit y of the calculations and inevitable

errors combined with the ill-conditioning of the problem. Second,
linearization of (2) has resulted in the badly distorted linear system (6), due to
the undesired weighting produced by the multiplication with the denominator of
the original problem. Moreover, matrix A of (6) contains in half of its columns
the measured data p;, ¢., so that the probl actually bles the more
comprehensive Total Least Squares (TLS) problem analyzed in [11]. Since the
solution process does not contain any physical constraint, right-half plane poles
may be obtained for systems which are known to be stable. Although such a
solution is mathematically acceptable, it is not ingful and obviously not
applicable for engineering purposes. Let us assume that the coefficients of the
transfer function have been calculated by the solution of the least squares prob-
lem as described in the previous sections. Since the polynomial coefficients are
known, the poles can be calculated as

A =0 +jay

A =0 - jo; 30)

Here, all the poles are assumed complex conjugate for generality. A simple real
pole can be considered as a special case where the corresponding imaginary part
is zero, and the conjugate is ignored. The transfer function can be written in
terms of partial fractions as
V2| o+ P
H =
e [5 - 0; — jo

i=l

o—jp | w2
5 —0; + jo; ] _.-‘EH‘(;) e
By substituting s=jay, into (31) and using the observation data corresponding to
@, we can write the equation

ﬁ=£[ o + i

—Gi+j@~@) -0 +jlon+o;)

For m/2 different values of @, (32)

o; ~jB; X
i ]—m-nﬁo 32)

o s

P a set of o
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nonlinear equations, which may be solved by Newton’s method (Gauss-Newton,
because of the least squares nature of the problem) [12] :

Yoia(&—Eota) = —R&oia) (33)
where,
8= 0:.0,,0,0 ] ' (=1, vi2) 34
f=lf1.f200.. ,f,,,,,]’=f’+1f"

Jua=¥ +j¥” is the complex jacobian matrix of f evaluated in terms of the

parameters computed at the last iteration. Defining a new set of variables
A§ & — £,/4 and separating the real and imaginary parts, (33) can be written in
the general form of a linear least squares problem with real coefficients:

Y AE=¢
= | f
[} +=[F]
Equation (34) can be solved by SVD with the inequality constraints 6;<0, sim-
ply enforced on the SVD solution of (34), which eliminates the possibility of
obtaining right plane poles. Besides, (34) is not weighted as (6) or (17), so that
the undue emphasis on the observations ponding to the frequencies near
the zeros of the transfer function will be overcome by the iterative improvement.

(34)

General Algorithm for the Estimation Process

The complete method for estimation of the transfer function from fre-
quency response observation data can be ized by the following algo-
rithm :

1 ~ Read frequency response data and the tolerance level for the residual

Description of the model systems

The model systems referred to as M1 — M8 in Table 1, of different levels of
complexity, were used for numerical examples. M1, M2, and M3 are second
order systems with the same Ajp,,/A e ratio, to ensure similar responses with
respect to the normalized frequency ® = @A,,,,. The pole strengths are chosen
as a=A,,, and B=0 to have peak values close to the unity. This particular
selection results in approximately equal observation values p;, g, in the normal-
ized observation range. Bach set of response data consists of the real and ima-
ginary parts of the transfer function, observed at 100 discrete o values, equally
spaced along the logarithmic frequency scale. M4 and M5 are fourth order sys-
tems formed as combination of M1, M2 and M2, M3, respectively. M6 is a sixth
order system created by combining M1, M2, M3, with a larger observation
imerval. M7 and M8 are derived from M6 by moving the pole with the largest
y part parallel to the i y and real axes.

o

Condition numbers

The condition numbers calculated by (15) for the described models are
presented in Table 1. They increase with the model order and the maximum
observation frequency. ples have shown that the condition
number increases as m,,.x, where o,,, is the maximum observation frequency
and v is the model order. The improvements achieved by the row and column
scaling are also shown in the table. It can be tuded that the col
is significantly more effective than the row scaling. However, there are cmes
when the condition number may still be in the order of 107 or even larger. It is
therefore suggested to use double precision arithmetic to avoid excessive com-
putational errors in such cases.

The estimation procedure

2 - Partition the fi y scale by ideriag the form of the observation L, )
data (If the partitioning is not possible or necessary, take the whole range . The model M8 descnbed in Table 1 will be. used as an example fo.r the
as a single section; this is a special case where r=1) a]f:phcanon of the procedures dmmby in ‘l?als’ge“‘“llst:?mﬁgu'mr: 'l“'im:e‘::e
. . of the fre y response obtained by using is plotted in . -
3 - Estimate the order of the partial terms istic prediction of the model order is imp for the y of the results.
4 — Form the set of equations as described by expression (6) The form of the resp curve Is the exi of 3 groups of poles. This
5 — Perform column scaling, check the condition oumber ?::Véﬁ c:ul‘l bef Pamu"m“;‘] Gau.s:;Sei};lel “‘m"::ls;:‘;uz‘ﬂ used ::l"'
] e identification of three ratio lynomials. However, in ar example
6 - Iﬁl::efy the_pammew;s of. each patt.ml term by the Gal{ss-S_exdcl iterations the data is generated by computation, rather than measuremens, and the error
((ﬁm . special case of a single section, a single step will give the solution level is very low. In such cases, the error amplification due to the poor condition
y) below limits, so that estimation without
7 - 1If the residual is below the tolerance level and all the poles are in the left partitioning may be successful. As the form of the response curve shows that
half-plane, stop the process the system has at least 3 complex conjugate poles, the condition numbers (with
8 - Perform iterative imp until the residual becomes smaller than the column s@mg!) and the output errors were calculated and listed in Table 2 for
given tolerance. several, different model orders.
Examples 1
The p d hod of estin has been applied to a number of
examples, to test its effectiveness and accuracy for different pmmcal cases. For H(jo)|
simplicity, the response data were generated by using mathematical 1H (o
models with known poles, A;, A{, and pole strengths, o; + jB;. In the case of v/2
complex conjugate pairs of poles, the frequency response can be calculated from 05
o +ii | % b ]
H —_—
(jo) = E[ oA ;m—)» (35)
In this section some selected ples will be p d for the purpose of illus-
tration. o [rad/s]
T I T
1000 10000 100000
Table 1 Example models and condition numbers Figure 1 Frequency response of M8
Pole locations Observation range Condition number Table 2 Condition number and error
. M°‘.iel Model , for different model orders
identifier order Real Imag, Oimin Ormax Without Row Column
v part part scaling scaling
No.
Mi ) 100 | £1000 | 500 | 1500 | 0.62xI0 | O.5IxI 33 Order %o;gxlg’ S M
M2 2 -1000 | £10000 | 5000 | 15000 | 0.62x10° | 0.51x10 23 5 024x10° | 1638
M3 2 —2000 | £20000 | 10000 30000 | 0.25x10° | 0.21x10° 2.3 6 0.25%10" 0.013
-100 | £1000 7 0.20x10° 0.008
M4 4 16 12 8
—1000 | +10000 500 15000 0.58x10 0.12x10 376.8 3 0.25x10° 0.003
~1000 | 10000 s "
M5 4 2000 | 20000 5000 30000 0.18x10 6.22x10 25.7
100 | £1000 Table 3 Identified parameters for M8
M6 6 -1000 | +10000 500 30000 | 0.20x10%” | 0.36x10% { 0.15x10° ¥ | Numerator | Denominator
—2000 | 420000 7| 0.1168 10000
—100 | 1000 s’ | 0.2469x107° | 0.2255x10°
M7 6 —1000 | £10000 | 500 | 100000 | 0.61x10%* | 0.15x10% | 0.67x10° 5% | 0.1082x10 | 0.1005x10°
—2000 | 50000 531 0.3124x1071° | 0.2936x10°1°
—100 | %1000 s* | 0.1096x107* | 0.1035x107"
M8 6 -1000 | £10000 [ 500 [ 100000 | 0.23x10° { 0.48x10% | 0.25x10 5% | 0.8368x107° | 0.8368x10™"°
—10000 | 50000 58 0.3769x107




In the case of an under-estimated model order (4 or 5), the output error is
quite high. For model order 6, which is equal to the actual order, the error drops
10 a very low level. In the case of over-estimated model orders, the output ermr
becomes even lower. Examination of the results obtained for over.
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The frequency response of transformers is usually determined by wide
frequency range terminal impedance or admittance measurements. The equip-
ment and procedures for such measurements are described in [17]. The available

model orders shows that some of the parameters are negligible, so that the
identified polynomials reflect in fact the actual order. The results of the non-
partitioned estimation (the whole frequency range is taken as a single section)
are presented in Table 3. Note that the coefficients appear to be sma.ll only if
viewed in isolation but are significant if bined with the respective powers of
® (for instance @ = 10*).

The actual pole locations for M8 are given in Table 1. The pole strengths
are all real and equal to the real part of the corresponding pole. The pole loca-
tions and strengths calculated from the estimated rational polynomial (specified
by Table 3) are given in Table 4.

Table 4 Pole locations and strengths calculated from the estimated model

test sy with data-acquisition facility can measure, process, and store a
large number of observation data from a very low frequency range, below the
industrial frequency, to the high MHz level. These observations form a con-
venient data base for the estimation procedure p d in this paper.

The general features of the high frequency behavior of transformers are
presented and discussed in [18). The test results have shown that the frequency
response depends significantly on the terminal (loading) conditions. In general,
the frequency response curve of a transformer may have several peaks, resulting
from resonance phenomena. At the lower frequency range the imped value
is very small compared to the peak values, due to the small winding resistance.
At the high frequency range, the capacitances shunting the winding sections are
more dominant, so that the impedance approaches to zero as the frequency
reaches very high values, that may practically be considered as infinity. A

Pole location Pole strength

former can th be idered as a strictly proper system, and

—0.99999988x10°  j0.50000000<10° | 0.99999986x107 + j0.10313583x10~
—0.99998537x10° % j0.10000001x10° | 0.99995927x10° +j0.17150874x10™"
—0.10003031x10° £ j0.10001574x10* | 0.10004375x10° T j0.13023601

d by an imped transfer fu asin(1).

The application of the suggested estimation procedure to the representa-
tion of transformers is demonstrated by using sets of frequency response data

P

The results presented above show that both the frequency response and
the poles calculated from the estimated transfer function are in a good match
with the actual system. However, it should be noted that the input data, gen-
erated by computation were to eight digits. Due to this hxgh accuracy of
the input data, the error in the output, obtained by double precision computation,
is small despite the high condition number (in the order of 107). In the cases
where measurement errors exist in the input, partitioning is needed to increase
the accuracy of the estimation, since the condition number corresponding to
each partial term will then be much smaller. Examples for such cases are given
in the section related to the representation of transformers.

State Equation Representation of Estimated Transfer Function

Once the transfer function is identified as explained above, the state equa-
tions can easily be written in temms of the obtained parameters. Suppose that the
transfer function has been identified as a sum of r partial fractional terms,

He) 2’) agi+ays+ - +ags® 26
5)=

jat| L+bys+ - +bys" 36)
It is assumed that the systems considered are strictly proper, and |1 =v—1. The
transfer function (36) can be directly represented by state equations, using the

companion form for each rational polynomial [13] :

z=Fz+gu
r (37
y=cz
where,
F=diag{F;} g=col{g;}] c=col{c;}
api
0 1 o . 0 0
0 0 1 . 0 0 ay;
Fi=| 0 0 o . . 8= ¢ = 68
. . . 1
_ by by by e o
byi by by ’ byi byi .

The state equations (37) contain only the parameters resulting from the
function estimation, and no additional computation is needed to obtain
the state space representation for the given system. This form of the state equa-
tions is general and applicable to the dlffemnt procedutes presented in this
paper. The non-partitioned (single section) cor ds to the special
case where r = 1. In the case when iterative improvement is applied, the transfer
function is obtained as a sum of quadratic terms, yielding 2x2 blocks in F.

£

APPLICATION TO REPRESENTATION OF TRANSFORMERS

The need and importance of wide frequency range representation of
power transformers have been discussed in a number of papers [14]-[17). In
practice, this type of representation may basically be of interest for the study of
electromagnetic transients in power transmission networks. An accurate
representation of transformers is unponant for correct prediction of possible
system overvoltages that may occur in transient conditions such as switching
tion of lightning surges or some types of faults The esuma-

the

Y

tion method presenmed in this paper can be applied for ob g

function or stale equation rep ion of a f inding described
only by P At this stage, the single-
input, single-output case is considered. E ion of the hod to multiple

input and output applications will be covered in future work.

d for different type of transformers. A brief description of the physical
properties of these transformers is given below.

Transformer-1

This example is a laboratory size single phase model transformer, of
approximately 0.5 kVA. The windings are dry insulated and, due to the small
dimensions, the inductances of winding sections are more predominant than the
shunt and ground capacitances. The magnitude of the terminal impedance meas-
ured with the secondary winding open is shown in Figure 2 by a dashed line.

Transformer-2

Transformer-2 is a 3 phase, A/Y connected, 75 kVA, 4160/208 V oil filled
distribution transformer. The impedance characteristic is measured from the
HV side, the terminals H1 and H2 connected together, and H3 grounded. The
measurement is made between the common terminal H1-H2 and H3 (ground)

while the low voltage side is shorted. The magnitude of the impedance is shown
by a dashed line in Figure 4.
Applied Estimation Methods

The frequency resp data obtained for the transformers described
above are used for estimation of the fer functi In the case of
Transformer-1, the non-partitioned (single section) estimation is not ful

The response from a 6th order estimated transfer function is shown in Figure 2
by a solid line. The error amplification is so high that the resonant behavior of
the actual winding is not reflected by the estimated model.
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1Z} h
Q] 't ---= Measured
11— Calculated
Iy
5000 ]
I
1o\
/
/ \\
// \,
— k
P

] T T T T T
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Figure 2 Frequency response of Transformer-1 and the result of the non-

partitioned estimation.
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'
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0
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Frequency [Hz]
Figure 3 Result of the partitioned estimation for Transformer-1
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To increase the accuracy, the frequency scale was partitioned as shown in
Figure 3. The partitioned estimation followed by iterative improvement yielded
an RMS error of 2.65% in the magnitude. The frequency response calculated
from the estimated transfer function is drawn as a solid line in Figure 3.

The numerical results of the estimation for Transformer-1 are given in
Table 5.

Table 5 Identified parameters for Transformer-1

Sequence | s¥ | Numerator Denominator
7 | 05588x102 | 1.0000
st [ 04300x107 | 0.9678x10°°
1 s2 | 0.1578x107° | 0.1397x107
52| 0.1483x10712 | 0.5957x1071%
s ] 02013x107% | 0.3554x10°2!
55 0.6974x10°2"
S5 0.1981x10 7 | 1.0000
s' | 0.1671x102 | 0.5867x10°
2 52 | —0.8032x107'° | 0.1102x107"!
s3 1 02246x107'¢ | 0.2707x107'
st 0.8963x10°2%
sU | 0.2219x10° | 1.0000
3 st 0.4336x107° | 0.1528x10°°
s2 1 0.1049x107% | 0.3043x10°"°
53 0.1260x10°22
The fi curve d for Transformer-2 is shown in

FlgureAbyadashedlme With this data, the estimation has been successful
without partitioning. However, the unconstrained least squares estimation
yielded right half-plane poles, as shown in Table 6. These unstable poles were
then eliminated by iterative improvement. The new pole locations and strengths
are given in Table 7. The RMS error on the magnitude, drawn with a solid line
in Figure 4, is 1.08%, which is acceptable for most applications.

100000 -
1Z]
Q] -——~ Measured
—— Calculated
50000
A
A\
0
T T T T T T
100 1000 10000 100000 le+06  le+07
Frequency [Hz]
Figure 4 Result of the estimation with iterative imp for Transfi 2.
Table 6 Pole locations and gths for Transf 2
without iterative improvement.
Pole location Pole gth
—0.3839x107 £ j0.3083x10° | 0.4801x10™ £;0.3867x10""
~0.9423x10° + j0.8498x107 0.1057x10'2 +j0.1804x10'"
0.9737x10° £j0.3998x10° | -~0.5284x10'° £ j0.3799x10'
0.1680x10” +j0.5637x10° | -0.9080x10' 4 j0.2436x10'
0.8774x10° —0.7319x10"*
‘Table 7 Pole locations and gths for Transfi 2,
after iterative improvement.
Pole location Pole strength
—0.3588x107 £ j0.3054x10° 0.4036x10"" £j0.3923x10™
~0.9424%10° + j0.8445%107 0.1048x10'% +0.2342x10"!
—0.1453x107 £j0.3992x10° | —-0.7765x10' ¥ j0.5574x10'°
—0.2409x107 £ j0.5668x10° | —0.1289x10"' j0.2803x10'®
—0.2446x10° 0.1151x10"

CONCLUSIONS

A “‘wforthe“ ion of a fer function from freq
response measurements is presented and discussed. The transfer function pamm
eters can be identified by the solution of an overdetermined set of equations in
the least-squares sense. The fotmulmon by its natum ieads to a poorly condi-
tioned probiem. The it in of problems that often could
not be solved due to their poor numerical condition. The methodologies
described in this paper will in general overcome the difficulties that have previ-
ously been reported.

The following are the main results of the paper.

. The condition number increases mainly with the order of the transfer
and the i obsuvauou frequency. In many cases, the

condition ber can be ively large and the solution of the equa-

tions becomes impossible even with the double precision computation.
Three approaches, termed shifting, row, and column scaling have been
introduced to improve the condition of the problem. Though all of these
methods reduced the condition number, the column scaling provided the

only truly significant improvement.
. Singular Value Decomposition has been used for the solution of the over—
determined set of linear pre d by col

‘When the error level in the mpul data is n-,lanvely small, for example,
the case of data generated by computation, it is possible to perform the
estimation with very low output error, for a large ‘number of poles. How-
ever, in practical cases where measurement errors exist in the input data,
or the response is obtained from a distributed parameter system, as in the
case of transformers, the direct estimation may not be successful with the

quired degree of y. This difficulty can be overcome by partition-
ing the frequency scale and applying Gauss-Seidef iterations.

. In some cases, the arbitrariness of the least squares solution may lead to
right balf-plane poles for systems which are known to be stable. An itera-
tive improvement method with constraints on the real part of the poles can
be applied both to avoid the posslblluy of having unstable poles and to

the y of the esti

The application of the proposed procedures has been illustrated by dif-
ferent examples. In the case of computer generated input data, non-partitioned
estimation can often be expected to be successful with an output error of less
than 0.01%. Two examples are given for representation of transformers. In one
of these examples, an acceptable estimate could not be obtained without parti-

tioning. After partitioning, the ion has been ful, with an output
emor below 3%. The last ple ill the ity of the iterative
improvement. The direct solution of the least sq problem yielded bl

poles which have Iy been eliminated by the iterative improvement.

‘While the chosen examples for applications were from the group of distri-
bution transformers, because of the availability of measurement data, the esti-
mation methodologies described in the paper could readily be applied to large
power transformers. In fact their applicability extends beyond the general field
of transformers used here for the purpose of demonstration.

All procedures described apply to scalar transfer functions. The extension
of these methods to multi-input and output probl will be p d in a
sequel to this paper.
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Discussion

H. Tsai and A. Keyhani (The Ohio State University, Electrical Engr.,
Columbus, OH 43210): We would like to commend the authors for a
well-written paper and for their efforts to develop practical methodol-
ogy for high frequency modeling of electrical power apparatus, partic-
ularly the transformers.

As shown by the authors, the formulation of the transfer function
estimation in the sense of linear least squares can significantly reduce
the complexity of the estimation problem. Due to the ill conditioning
of the problem, scaling of the estimated parameters and partitioning
of the transfer function models are necessary for the estimation. Using
these two remedies, a nonlinear least squares estimation (NLSE)
method can also be used to establish the transfer function models for
high frequency modeling of transformer windings [1]. When using the
NLSE technigue, the transfer function model is represented by real
and complex poles and zeros. Therefore, the anti-resonant and reso-
nant frequencies of the frequency responses can be directly repre-
sented in the structure of the transfer function model. For nonlinear
estimation, iterative procedure is required where the unknown param-
eters need to be initialized. This can be done by directly checking the
frequency response measurement for the critical points.

Another important aspect of any system identification procedure
from the experimental data is the noise effect on the measured
responses. For noisy data, linear least squares estimation may not
produce unbiased estimation results with minimal error covariance.
Therefore, it is our opinion that certain measure should be considered
in the estimation process for taking care of the noise in the data [1].

As shown in Eq. (7) of the paper, the matrix 4”4 is not a sparse
matrix. As more resonant conditions exist in the frequency spectrum,
the order of the transfer function as well as the size of the matrix
increase. From Table 1 of the paper, the highest order model used in
the study was six. Furthermore, from Fig. 1 of the paper, the assumed
transfer function model seems to have no complex zeros, or the
terminal resonant conditions. Was it done in order to reduce the
complexity of the problem at hand? The technique introduced in this
paper is computationally simpler compared to other nonlinear meth-
ods. Then is it possible to use this technique to identify a much higher
order transfer function model than the sixth order model considered
in this paper?

From Fig. 2 and Fig. 3, the phase comparison of the measured and
the simulated responses is not provided. We believe that the phase
information is important because it is used in the estimation process
and can be easily provided in the comparison study.

The authors have provided the power industry with a valuable and
practical technique for estimating the parameters of transformer wind-
ing high frequency transfer functions. We would appreciate the au-
thor’s comments concerning the questions and issues raised in this
discussion.

Reference

[11 A. Keyhani, H. Tsai, and A. Abur, “Maximum likelihood estima-
tion of high frequency machine and transformer winding parame-
ters,” IEEE Trans. on Power Delivery, Vol. 5, No. 1, Jan. 1990,
pp. 212-219.

A. S. Morched and L. Marti (Ontario Hydro, Toronto, Canada): The
authors should be congratulated for presenting a thorough and de-
tailed analysis of problems related to transfer function estimation
from frequency domain data. The authors have also presented a
procedure to improve the solution of a fairly ill-conditioned problem.

In earlier work, we also encountered similar difficulties in the fitting
of rational functions to measured or computed transfer functions. The
implementation of techniques similar those described in the paper
resulted in major improvements in the accuracy of the calculations.
However, these techniques, by themselves, were not enough to resolve
system singularities in several instances:

& High-order systems.

o Systems with closely packed and/or highly damped poles.

o Transfer functions with high noise content and/or background
poles.

One way to alleviate these problems was to use Chebyshev polynomi-
als, rather than a power series, for the fitting of rational functions [Al.
Power series have very large dynamic range when w is not normalized
(in the order of "), and their shapes (as a function of n) are very
similar when @ is normalized, as shown in Figure 1. This behavior
contributes to ill-conditioning in least-square fitting calculations.

In contrast, Chebyshev polynomials always have a small dynamic
range (between 1 and —1) and each polynomial has a distinctive shape
when o is normalized, as shown in Figure 2. This makes Chebyshev
polynomials particularly well suited to least squares fitting.

After solving for the coefficients of the numerator and denominator
of the transfer function expressed with Chebyshev polynomials, the
equivalent coefficients of the power series can be formed. Have the
authors considered using Chebyshev polynomials (or other orthogonal
polynomials) to improve the accuracy of the fitting process?

One important feature of the least squares process is the- yse
frequency dependent weighting functions. Have the authors consid-
ered using weighting functions linked to the location of the poles and
zeroes of the transfer function?

Lastly, it is not immediately obvious from the paper how the authors
determine the order of the system. Is this done by inspection? Have
the authors developed an automatic/systematic procedure to assess
the order of the approximation?

The comments of the authors on these points will be much appreci-
ated.

Reference

[A] James L. Adcock, “Curve Fitter for Pole-Zero Analysis,” Hewlett
Packard Journal, Jan. 1987. pp. 33-36.

Manuscript received August 10, 1992.
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R. Malewski (Westmount, Quebec, Canada): The authors should be
congratulated for their study on circuit synthesis from experimental
data. Among several potential users the transmission system planners
are interested in a high frequency model of transformer. Such model
is required to predict, for instance, the transfer of transient overvolt-
ages from one voltage level to another. From the utility point of view
the simulation of large HV power transformers is of main interest. An
application of the presented method to say 800 kV class, 500 MVA
unit would attract attention of the planning department of large
utilities.

Obviously, measurements of the transformer transfer function can
not be taken on such a large unit at the University facilities, but the
actual measured characteristics can be obtained from an industrial
laboratory performing the acceptance test of new transformers. At
present, many laboratories use a digital recorder for monitoring the
impulse test. The obtained records are processed in order to enhance
the efficiency of fault detection. The processing often includes calcula-
tion of the frequency spectrum of the output and input impulses, and
finding the transformer transfer function as quotient of these two
spectra. An analysis of the transfer function required for the dielectric
fault detection, is not pertinent to the study presented by the Authors.
However, a large pool of experimental data accumulated on large HV
power transformers can be used for the transformer circuit synthesis
and development of the computer model.

The routine test procedure calls for measurement of the applied
test impulse, and of the output current at the winding neutral termi-
nal. These records yield the winding transadmittance, whereas the
transfer function between two winding may be more important for the
circuit synthesis. However, at a reduced level, additional records can
be taken during the impulse test, if requested by the utility purchasing
the transformer. Such additional measurements can be included in
the test program, on demand of the utility system planning depart-
ment. An incremental cost of the additional measurement is negligi-
ble, since the impulse generator and recording system are anyhow
prepared for the acceptance test.

Manuscript received August 17, 1992.

W.-G. Huang (Department of Electrical Engineering, Tsing-hua, Uni-
versity, Beijing, P. R. China): The discusser would like to compliment
the authors for presenting a methodology for the estimation of the
transfer function parameters from terminal frequency response mea-
surements, and for overcoming the difficulties encountered in the
parameter identification due to the poor numerical condition. Column
scaling has been efficiently used to improve the condition of the
problem. In most of the cases when the model order is high, though
pre-processed by column scaling, the error amplification is still too
large. This difficulty has been overcome by partitioning the frequency
scale and applying Gauss-Seidel iterations. In some cases unstable
right-half plane poles have been eliminated by solving the least squares
equations with inequality constrains and the accuracy of estimation
has been increased by an iterative improvement method. These novel
procedures proposed in the paper are superior to existing ones and are
very instructive.

The ill condition problem in the paper reminds the discusser of the
pathological phenomenon of the model transformation matrix [T] of
the cable/GIS bus propagation transfer function matrix [P] at high
frequency. When three phase cables are unsymmetrically buried under
the ground (6 by 6 parameter matrices) or the cores of the three phase
GIS bus are unsymmetrically arranged inside the sheath (4 by 4
parameter matrices) and the frequency is high, three eigenvalues of
the propagation transfer function matrix [P] are very close to each
other. Small pertubation on the cable/GIS parameters will cause
significant change of the eigenvectors related to these three eigenval-
ues, and the model transformation matrix [T] will be changed signifi-
cantly. The problem has been solved as follows [1].

Matrix [ D] is introduced to transfer the equation [PIT] = [T]A],
where [A] is a diagonal matrix, the elements of which are eigenvalues
of [P].

The equation can be written as [DI7[PIDID]I'T]= (D]’
[TXA] with [P'] = [D]7'[PYD}, and [T'] =[DT [T}, then [P']T'] =
[T']A)

(1] (1] )
= or cable,
(o) ([11 [0] for cable
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Fig. 1. A typical record taken during the impulse test of a large HV power
transformer. Records of the test impulse applied at the full (100%) and
reduced (62%) basic insulation level are superimposed in upper graph.
Their difference is shown below, magnified by factor 8.

The neutral terminal current records corresponding to the full and reduced
level applied impulse (100% and 62% respectively) are shown in middle
graph, together with their eightfold magnified difference.

The winding transadmittance (frequency spectrum of the neutral current
divided by the applied voltage spectrum) is plotted in lower graph. A number
of resonant frequencies can be seen on this “transfer function.” This is a
typical behavior of a layer type winding.

Ill II

0 & f, 04

[D] = for GIS bus,

1
1
1
000 1

where [I] is an identity matrix.
After such transformation, [7'], thus [T], can be solved reasonably.

[T] = gi} [[TOl]]) for cable,
1

(T] = i [12] for GIS bus.
1 000

If the arrangement of cables or the cores of GIS bus is symmetrical,
Clarke or Karenbauer transformation matrix can be used as submatrix
[T2].
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Any comment concerned with curing the pathological problem
related to the model transformation matrix [7'] of the unsymmetrically
arranged cable /GIS bus from the authors’ experience is very appreci-
ated.

Wide frequency range modeling of major station equipment, such as
transformers transmission lines, reactors etc., is sometimes needed for
the radio frequency electromagnetic noise and the overvoltage calcula-
tions.

A transformer sometimes is represented by a series of four terminal
networks built up by self inductances (L), mutual inductances (M),
transversal capacitances (C) and longitudinal capacitances (K) of the
winding (LMCK model for short), voltages in the winding and voltage
gradients between sections or turns can easily be calculated. If the
lightning overvoltage on the terminal of a transformer is of interest,
usually a transformer is represented by its input equivalent capaci-
tance. The wide frequency range model is a more accurate “black
box” model, the parameters of the transfer function of which can be
estimated by external frequency response measurement. According to
our experience, when the operating voltage is neglected (zero initial
condition), no matter whether the transformer is represented by a
LMCK equivalent or by an equivalent capacitance the lightning over-
voltages on the transformer terminal and on other apparatus in the
substation protected by current-limiting gap arresters are approxi-
mately unchanged. With either of the equivalent the difference of the
overvoltages on the transformer terminal is less than 3%. If the
operating voltage is taken into account (non-zero initial condition) the
difference will be ranged over 13% to 18% [2]. The computer program
of the LMCK equivalent of a transformer winding has been completed
by eliminating mutual inductances (M) and by using inductance as
basic element of the discretized equivalént circuit, and the program
interfaces with EMTP, surges in transformer winding and on other
apparatus under operating condition can be studied simultaneously [2].
The discusser is curious to know whether the wide frequency range
model is easy to be implemented in or to be interfaced with EMTP,
and to see what would be the results compared with other two models
in the overvoltage calculation under operating condition in substa-
tions.

References

[11 Wang Hong-Li, A study of Cable/GIS Transient Parameter
Calculation. doctorate dissertation, Tsing-ha University, Beijing,
China, 1992.

[2] Huang Wei-Gang and Bai Jin-Xia, “Surges in Substation and
Tranformer Windings under Operating Conditions.” High Voltage
Engineering, No. 3, 1990, pp. 9-14.

Manuscript received October 5, 1992.

A. Oguz Soysal and Adam Semlyen: We wish to thank the discussers
for their interest in our paper and for their remarks and suggestions.
The following are our answers.

To Prof. Huang: The discusser has brought up the interesting and
important problem of modal transformations in situations when two or
more eigenvalues of the transfer function matrix are nearly equal. The
fact that, in the case of exact equality of eigenvalues, the associated
eigenvectors are not uniquely defined (so that the particular
transformations mentioned by Professor Huang, and many others, are
applicable), and only the subspace they span is well determined, results
in the strong variation of the transformation matrices in the proximity
of such condition. The diagonalization of the original transfer function
matrix is therefore not very sensitive on using an exact, frequency
dependent transformation matrix and a constant one that is satisfactory
over a wider range of frequencies is, we believe, likely to be found.

The discusser's remarks concerning the significance of different
degrees of sophistication in modeling are interesting. The estimation
procedure described in the paper will ultimately end up in a state
equation realization representing the transformer behavior in the time
domain. For EMTP applications, the state equations have to be
discretized by, say, trapezoidal integration and then the resulting
Norton equivalent can be directly used as for any other terminal
component.

To Mr. Tsai and Dr, Keyhani: We appreciate the discussers' remarks
concerning the possibility of focusing both on the poles and the zeros
of the transfer function by using nonlinear least squares estimation, as
opposed to the linear least squares approach of the paper. The
motivation for using the latter is, of course, its simplicity and
robustness (no convergence problems, no initial values needed for the
parameters to be estimated). We have also tested cases with noisy data:
for a noise level below 3%, the estimation was satisfactory, or else, the
order of the approximation had to be increased. By using singular
value decomposition, rather than normal equations, we did not have to
use.the matrix 474 having the square of the condition number of A
itself.

The models given in Table 1 were selected to illustrate the numerical
condition of the problem. Transfer functions up to order 20 have also
been successfully identified, and one could go. higher. Partitioning is
particularly appropriate in the case of complex poles close to the
imaginary axis. As long as this condition is satisfied, any number of
poles can be included in the estimation process. For any segment of
partitioning along the frequency axis, the accuracy can be improved by
using more poles. Since a complex error criterion is used, the phase
error is reduced simultaneously with the error in magnitude. In Figures
2 to 4 we have used only the latter for the purpose of illustration.

To Dr. Morched and Dr. Marti: The suggestion of using orthogonal
(Chebyshev) polynomials is, in our opinion, an excellent idea. Clearly,
an orthogonal polynomial P,(s), used instead of the powers s* in the
transfer function (1) of the paper, leads to a much better conditioned
problem (6). The reason why orthogonal polynomials have not
generally been used for solving the problem of rational approximation
is that their fundamental, original role is that of polynomial
approximation, i.e., approximation by a power series. This yields

ZakPk(s) = H(s) (@)

The approximation of H(sj by orthogonal polynomials, shown in (a), is
always optimal for a given number of terms, and an additional term
will further reduce the error.

Our second remark to this problem is that the use of orthogonal
functions for approximation has the advantage that the coefficients g, in
(a) can be determined without solving a set of equations, as Ax=b of
(6). Based on the orthogonality of the polynomials P,(5), we obtain a;
directly by caiculating the integral of H(s)P,(s), much like in the case
of a decomposition in a Fourier series.

Since there is no decomposition into orthogonal functions for the
rational function approximation

NGs)
D(s)
orthogonal polynomials cannot be used in a direct way for the rational

polynomial approximation of H(s). However, one may still formulate
(starting with an approximate, low order solution) the iterative problem

H(s)

3. ax,B.(s)= N(s)= D(s)H(s) ®)

Y. ay B.(5)= D(s) = N(s) | H(s) o)

where D(s) and N(s) at the right side are assumed to be known from the
previous iteration. With this assumption, problem (b) is similar to (a)
and can be solved directly for the coefficients of the orthogonal
polynomials in N(s) and D(s). It is interesting to note that equations (b)
appear to be weighted by D(s) and N(s), respectively, so that when the
calculation focuses on coefficients in the numerator, then the inputs
near the poles of H(s) are de-emphasized, and vice versa (regarding the
denominator and the inputs near the zeros of H(s)).

The weighting that emerges from the procedure outlined above
increases the emphasis on the object of fitting in the respective iteration
steps in (b). In the algorithm used in the paper we did, however, not



apply any additional weighting other than the normal row scaling. The
ill-conditioning of the problem has been reduced mainly by column
scaling.

The order of the approximation has resulted by starting with a lower
order fitting and then gradually increasing the order until the error was
sufficiently reduced.

To Dr. Malewski: We thank the discusser for pointing to an important
application where terminal measurements on transformers are of
interest to utilities, namely, the case of acceptance tests. The time
domain measurements, as shown in his plots, are performed at full and
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reduced voltage levels for the purpose of detecting any dielectric fault.
While a transfer function can be identified based on impulse tests, the
methodology of the paper does not provide a synthesis of a physical
equivalent which could possibly be used for a more detailed diagnosis
regarding the internal stresses in the transformer. The state equations
that are obtained permit, however, to compute with an Electro-
Magnetic Transients Program the voltage at the transformer terminals
due to switching or lightning surges.
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