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Future land remote sensing satellite systems will likely
be constrained in terms of downlink communication
bandwidth. To alleviate this limitation, the data must

be compressed. Images obtained from satellite and airborne
multispectral collection platforms exhibit a high degree of
spatial and spectral correlations that must be properly ex-
ploited in any multispectral bandwidth compression scheme.
While spatial correlation is readily exploited by various im-

age compression techniques [1. 2. 3. 4, 5], relatively little
attention has been given to spectral correlation across bands.
In addition, the compression technology must provide a range
of fidelity options for the reconstructed data tailored to the
end use. This use includes quick-look and browse, which
exploits human visual perception deficiencies and offers the

opportunity for high compression ratios: machine exploita-
tion. where visuallv-lossless coding is appropriate; and pre-
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cisc radiometric calculations, which require certain bands to
be coded at near-lossless quality.

Recent work in the area of multispectral bandwidth com-
pression can be categorized into three groups: (1) Three-di-
mensional transform-based techniques [6, 7. 8, 91; (2) Vector
quantization-based schemes [10], and (3) predictive tech-
niques [11, 12]. A comparative performance evaluation of
various multispectral compression techniques is given in [3].

In general, transform based techniques outperform the
classicat predictive methods. Assessment of the effects of
compression on multispectral imagery is discussed in refer-
ences [14] and [15]. In general, evaluation of the compression
degradation should be based on a combination of statistical,
visual, and machine based descriptors. Experimental results
indicate that compression at moderate levels, e.g., 10:1 CR,
have little or no impact on the results of statistical, visual, and
machine-based exploitation.

In this article, we present a robust implementable compres-
sion algorithm for multispectral imagery with a selectable
quality level within the near-tossless to visually lossy range.
The three-dimensional terrain-adaptive transform-based al-
gorithm involves a one dimensional Karhunen-Loeve trans-
form followed by two-dimensional discrete cosine transform.
The images are spectrally decorrelated via the KLT to produce

the eigen images. The resulting spectrally-decorretated eigen

images are then compressed using the JPEG algorithm. The
key feature of this approach is that it incorporates the best
methods available to fully exploit the spectral and spatial
correlation in the data. KLT is theoretically the optimum
method to spectrally decorrelate the data. The standard DCT-
based JPEG image compression algorithm is considered to be
the most viable practical technique available today.

The novelty of this technique lies in its unique capability
to adaptively vary the characteristics of the spectral decorre-
lation transformation based upon variations in the local ter-
rain. The algorithm is conveniently parameterized to
accommodate reconstructed image fidelities. For a set of 11
spectral bands, the reconstructed image fidelity ranges from
near-losstess at about 5:1 CR to visually lossy beginning at
around 40:1 CR. The compression ratio increases with the
number of bands included in the multispectral set.

The spectral and spatial modularity of the algorithm archi-
tecture allows the replacement of the JPEG module by a
different coder (e.g., DPCM). However, the significant prac-
tical advantage of the discussed approach is that it is leveraged
on the standard and highly developed JPEG compression
technology.

The required architecture can be implemented via recently
developed multimedia ehipsets [17, t8]. The obvious advan-
tage of this system design is that it is highly leveraged on

1. Terrain-adaptive compression block diagram.
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state-of-the-art VLSI components. As such, the hardware
realization of this algorithm becomes viable, cost effective,
and tow-risk. In addition, the usc of programmable chipsets
makes the design flcxible, allowing up-to-date refinements
and modification to the algorithm to be made during and/or
after the hardware implementation stage.

Compression System Overview

Figure 1 depicts the block diagram of the compression sys-
tem. It consists of four modules: (I) Data partitioning; (2)
Karhunen-Loeve transformation; (31 mapping eigen planes to
8-bit eigen images; and (4) JPEG compression of the eigen
images. In the data partitioning module, the set of multispee-
tral images are partitioned into sets of non-overlapping im-
ages: sub-block sets, which are sequentially fed to the KLT
transformation module for spectral decorrelation. In the KLT
transformation module the multispectral
sub-block set is spectrally decorrelated to
produce a set of eigen planes. The basis
functions for the KLT transformation are the
eigenvectors of the cross-covariance matrix
associated with the multispectral sub-block
set, The eovariance matrix is estimated first
and then quantized to two bytes per element.

The eigen planes are formed by matrix
multiplication of the sub-block set and the
basis functions [61. The eigen planes are in
floating point format and assume both posi-
tive and negative values. In the next module,
the eigen plane set is converted into the 8-bit
eigen images set via linear/nonlinear map-
ping of each plane into the 0-255 range. The

spectrally-decorrelated eigen images are
then compressed in the next module using
the JPEG algorithm. The quantized covari-

ance matrix and mapping information
are transmitted along with the com-
pressed bit stream as overhead informa-
tion. This three-dimensional
transform-based compression algorithm
efficiently exploits the spectral and spa-
tial correlations in the data. Another sig-
nificant and practical advantage is that it
is leveraged on the highly developed
JPEG compression technology. The al-
gorithm adopts well to the local terrain
variation since the covariance matrix,
from which the transformation basis
functions are derived, is updated very
frequently over each small sub-block set
of multispectral data. The bit require-
ment for the sub-block covariance matrix
and mapping information is negligible
and, as such, there is no need to resort to
a stored covariance look-up-table to
minimize the overhead bit information.

The block diagram for the decoder is
shown in Figure 2. The mapping information and covariance
matrix are extracted from the received bit stream. The eigen
images are reconstructed from their compressed bit steam
using the JPEG decoder. The mapping information is used to
span the 8-bit dynamic range of the decoded eigen images
back to their original range. The inverse KLT transformation
basis functions are obtained from the extracted covariance
matrix via transposing its eigenvectors. An inverse KLT is
performed to produce the reconstructed multispectral sub-
block set. The sub-block sets are mosaiced together to form
the reconstruction of the multispeetral image set.

Spectral Decorrelation

Removing the inherent spectral correlation in the data results
in a significant compaction of data to be coded. This can be

Spectrauy-decorrelated
images
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done via the optimum
Karhunen-Loese (KLT)
transformation. Figure 3
illustrates the KLT or-
thogonal transforma-
tion. For the N spectral
images to be decorre-
lated. we form an N-by-
N KLT transformation
matrix composed of the
N ordered eigenvectors
of the associated cross-
covariarice matrix [6].
Each vector of the spec-
trally-correlated com-
ponents from identical
lucations in each band is
multiptied by the KLT
transformation matrix
to form an output vector
of spectrally-decorre-
lated components. The
output sectors are
placed adjacent to one an-
other, in the same order as the input vectors, to form the stack
of the spectrally decorrelated eigen planes. The decorrelation
property of the transform images. in this sense, has a diagonal
covariance matrix only.

Test Data Sets for Spectral Decorrelation
Experiments

Figure 4 shosss band 10 of two 512 x 512 test image sets
selected for spectral decorrelation experiments. The sets are
from the M7 sensor platform. The M7 sensor is a multispec-
tral scanner de\eloped by the Environmental Research Insti-
tute of Michigan (ERIM) for use on an airborne platform. It
covers the visible through infrared region in sixteen unequal
bands. The ASAS (Advanced Solid-state
Array Spectroradiometer) imagery con-
sists of six spectral bands. a 512 by 1024
image having 12 bit dynamic resolution.
The typical ground sampling distance
(GSD) is 4-6 meters.

In this experiment, sixteen bands in the
spectral range of 0.36 to 12,11 micron are
included in each set. These lest images are
selected because they contain a diverse
range of natural and urban terrain and as
such are very challenging for spectral
decorrelation and subsequent coding ex-
periments. The correlation coefficient is a
convenient and useful method to measure
the inherent spectral correlation. The cor-
relation coefficient matrix is defined as the
normalized covariarsce matrix. That is. the
coefficient for each pair of bands is equal

to their covariance value divided by the sqnare root of the
product of their indisidual sariances. Figure 5 shows the
correlation coefficient matrix (only the non-redundant half
shown) and its three dimensional surface rendition for the
Airfield test image.

Spectral Decorrelation Efficiency

As discussed earlier, the KLT is theoretically the optimum
method to spectrally decorrelate a set of multispectral images.
Figure 6 shows the first nine spectrally-decorretated eigen
planes associated with the 16-band Airfield test image set. For
display purposes. the images has e been linearly mapped from
their original dynamic range to the 0-255 (8 bits) range. The
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KLT performed in this experiment is non-adaptive. That is,
the parameters of the transformation, the KLT basis func-
dons, are fixed for the entire image set. The compaction of
the data as the result of KLT operation is clearly evident as
more than 80 percent of the energy, or information content of
the data set resides in the first two or three eigen planes. The
remaining eigen planes have very little information content
and as such require substantially fewer bits to be coded. A
convenient approach to measure the amount of data compac-
tion is obtained via the assessment of the eigens alues of the
cross covariance matrix. The eigenvalues of the covariance
matrix correspond to the variances of the eigen planes. The
variance of an image reflect its busyness or, exeloding noise,
information content.

Figure 7 shows the ordered variances of the eigen planes
of the Airfield test image set. The variance drops almost
exponentially with the order of the elgen planes. The steeper
the drop in the variance in going from low to high order eigen
planes is, the more efficient compaction, spectral decorrela-
tion. is achieved.

KLT vs. DOT for Spectral Decorrelation

Asan alternative, the one-dimensional DCT can substitute for
the optimum KLT for spectral decorrelation. The advantage

of using DCT is that the basis functions are fixed regardless of
the characteristics of the data. Unlike the KLT. the DCT does
not require covanance and eigenvectors calculations and, as
such, is much simpler to implement. The drawback is that the
spectral decorrelation efficiency will be significantly lower.
Figure 8 shoss s the comparison of the spectral decorrelation
efficiency of the DCT and KLT for the Airfield test image. The
vanance of each of the 16 DCT coefficients is larger than the
variance of its corresponding eigen image by several orders of
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magnitude. Since the bit rate required to code an image
increases ssith the value of its variance, the KLT approach
will result in a substantially tower bit rate requirement.

Decorrelation Efficiency vs. Number of Bands

The spectral decorrelation efficiency (compactness) increases
with the number of bands in the data set. A greater compaction
of data results in a lower bit rate requirement. Figure 9 shows
the plots of the variances of the eigen images associated with
Airfield test image sets consisting of 16, 12, 8, and 4 bands,
respectivety. The area under the variance curve reflects the
amount of information to be coded. This area is substantially
greater for the 4-band set than the 16-band set.

As the number of bands in the set decreases, the perform-
ance of the algorithm tends to be more influenced by the
power of the standard DCT-based JPEG algorithm.

Quantization of the Spectrally-Decorrelated
Eigen Planes

The spectrally decorrelated eigen planes are
represented in floating point real numbers.
They must be quantized to 8-bit, 10-bit, or
12-bit, to be subsequently coded by the
DCT-based JPEG compression algorithm.

Linear Guantization for 8-bit
Multispectral Imagery

For 8-bit multispectral imagery. all eigen
planes are linearly quantized into 8-bit im-

ages: they are the eigen images. Alterna-
tively, the high-dynamic range. low-order.
eigen planes may be quantized into 10 or
12-bit images. However, the experimental
results do not indicate any appreciable im-
provement in results using the dual quan-
tizer. For the 10/8-bit quantizer, only the
first two eigen planes whose dynamic ranges
are greater than 256 are quantized with a
10-bit quantizer. In order to isolate the quan-

Elgen Images

tization round-off error, the resulting quantized eigen images
were losslessly coded. For the 10/8-bit quantization scheme,
the average mean squared error (MSE) decreases from 0.36
to 0.28. However, the maximum induced error remains at one
count in 256 for either of the two quantization schemes.
Compared to the nominal 8-bit quantizarion of the cigen
images. the dual 10/8-bit quantizer results in approximately
5 percent increase in bit rate.

We may conclude that it suffices to use an 8-bit quantizer
for eigen images of 8-bit data. The dual 10/8-bit quantizer
does not offer better performance. The reasons are (t) the
maximum induced error is only 1 count in 256; (2) the
maximum induced error still remains at 1 count in 256 using
the dual 10/8-bit quantizer; (3) the quantization round-off
error is far smaller than the error that is incurred in the
subsequent JPEG coding of the eigen images: (4) the advan-
tage of the lower induced MSE for the dual 10/8-bit quantizer
is offset by the 5 percent increase in the bit rate requirement
and the additional implementation complexity.

Nonlinear/Linear Quantization for High
Dynamic Range

For high dynamic range (12-bit) imagery, an optimized non-
linear 8-bit or 12-bit quantizer may be used to quantize the
first one or two high-dynamic range eigen planes to 8-bit
eigen images. The remaining lower-dynamic range eigen
images may be quantized using a linear 8-bit quantizer. The
high-dynamic range of the first few eigen planes typically
have an uneven (unequalized) histogram with long narrow
tails. A nonlinear quantizer achieves a substantially lower
overall quantization error by allocating finer quantizer steps
to the large central portion of the dynamic range. Figure 10
shows band I of a 12-bit ASAS multispectral test data set. and
the histogram of its first eigen plane.

A parametric nonlinear 8-bit quantizer that attempts to
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images. respectively. The remaining eigen planes
were linearly quantized as before. The maximum
and the mean square quantization errors were
measured to be 6. and 1.4 counts, in 4096. The
relatively small quantization error indicates that
an optimized nonlinear/linear 8-bit quantizer suf-
fices to quantize the eigen planes associated with
high-dynamic range data. The advantage of a 10
or 12-bit quantizer. in terms of achieving a lower
quantization error, is offset by the higher bit rate
requirement to code the resulting 10, or 12-bit
eigen images

Coding the Eigen Images

tao issues are related to coding the eigen im-
ages: (1) modifying the JPEG parameters to suit
the characteristics of the eigen images; and (2)
arriving at an optimum coding bit allocation
among the eigen images.

Modifying JPEG for Coding Eigen
Images

The standard JPEG compression algorithm includes
various parameters which may be modified to suit
the specific characteristics of the image. Two such
parameters are the quantization scale table for the
DCT coefficients (Q table). and the internal Huff-
man table used to entropy code the quantized DCT
coefficients. In this phase of the stud), the Q table
has been modified to match the spatial charac-
teristics of the eigen images.

Bit Rate Assignment For Eigen Images

achieve the optimum mapping of the dynamic range to the
0-255 raoge was selected. This nonlinear quantizer is defined
as,

Y= 255 /(MAXP)Xt'nII

vs here: X is the eigen plane value (floating point ). Y is the
eigen image value (an integer from 0 to 255), exp is the
nonlinearity index (0-1 range): and MAX is the maximum
value of the eigen plane.

Figure 11 shows the plot of this nonlinear quantizer for
different values of the nonlinearity index, e.vp. This process
results in a varying (nonuniform) quantization step width that
is optimized, for minimum mcan-square-quantization error.
for each segment of the input image's dynamic range.

The above nonlinear quantizer was applied to the first two
eigen planes of the 12-bit ASAS test image set. The selected
values for the nonlinearity index. exp, were determined ex-
perimentally: 0.7 and 0.8 for the first and second eigen

Compression performance is strongly influenced
by the selected bit assignment scheme for the spectrally-
decorrelated eigen images. Since the variances of the ordered

eigen planes decrease almost exponentially, it may be sag-
(1) gested to code the eigen images at rates proportional to the

logarithm or square roots of their variances. Although this bit
assignment strategy may result in the lowest MSE, it is not
suitable for multispectral images. tn multispectral imagery.
the subtle variations in the spectral signatures of certain
terrains manifest themselves in the lower eigen images.
Therefore, in order to preserve the spectral fidelity of the data,
it is imperative to code the lower eigen images with the same
level of accuracy as the others, irrespective of their variances
or the resulting overall mean square coding error. In general,
the criterion for bit assignment should be to induce a uniform
overall coding error on all the reconstructed eigen planes.

The overall coding error on the reconstructed eigen planes
originate from two sources: (1) the quantization eiTor incurred
in linear mapping of the eigen planes into 8-bit eigen images;
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and (2) the error induced by the JPEG
compression of the 8-bit eigen images.
Thus, the bit rates should be adjusted so
that the resulting mean square error in
the reconstructed cigen planes are ap-
proximately the same. The selected ap-
proach should be a compromisc betsveen
performance and implementation com-
plexity. Again, these results are dervied
from an extensive set of experimenta-
tion. and cannot be derived from theo-
retical principles.

To implement the optimum bit assign-
ment scheme, an arbitrary MSE for the first
eigen image is selected. The effective
MSE for the remaining eigen images are
calculated as:

MSE(o) = L(l) x B(n)/B(l) (2)

where n (2, 3. ...) is the order of the eigen

image, L(n) = MSE for eigen image a, B(n)
is the bin width to quantize eigen plane n.

The JPEG coding bit rate is changed
via the parameter Q, the quality factor,
shich affects the quantization of the
DCT coefficients, and where Q ranges
from 1 to 100. Foreach eigen image. we
select the lowest JPEG quality factor that
results in an effective MSE less that or
equal to that found from the equation
aba', e. Because the dynamic range of the first fe eigen JPEG Q factor to compensate for the higher quantization error
planes typically exceeds 28 = 256, the approprate quantization they incurred. The drawback v ith this bit assignment scheme
steps are less than 1. As such, according to the above scheme. is the comptexity of implementation. Since it is not known in
the first few eigen images are coded at a relatively higher advance what MSE results for a particular eigen image at

a given JPEG Q factor, it is necessary to con-
struct a look-up-table of MSE versus Q foreach
eigen image. Thus, all eigen images must be
coded at all possible Q factors. This approach
is prohibitive for practical implementation.

Other possibilities can be utilized for eigen
image bit allocation. A second method is simi-
lar to that described above in the "optimum
scheme" except that some of the low-variance
eigen images are replaced by their mean value.
The advantages of this technique are (1) good
performance in terms of MSE; and (2) consid-
erable savings in computation and power re-
quirements. since fewer number of eigen
images need to be coded.

A third method uses the same JPEG quality
factor Q to code all eigen images. This scheme

1 2 3 4 does not adjust the coding bit rate to compen-

Elgen Image sate for the error induced by the initial quanti-
zation. The ads antage of this technique is that

I___________________________________________________________________ it is simple to implement. However, perform-
13. Comparing the spectral decorrelatton efficiency of the terrain-oclaprive icr- ance is sacrificed in terms of MSE and maxi-
sus the non-terrain adaptive approaches. mum error.

Non-Terrain-adaptive Terrain-adaptive
Sub-block Size d4 z 64

The displayed alndoas are orSy 256 n 256

12. Eigen images of the terrain-adaptive and non-rerrain.adaptive schemes.
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A fourth method is a simplified and practical version of
the optimum scheme. It is an empirical technique which is a
compromise between complexity and performance. Here the
JPEG Q factor is varied for each eigen image based upon its
variance and the initial quantization error it incurred.

Terrain Adaptive Approach

A typical multispectral image set obtained from either satel-
lite or airborne collection platforms exhibits a number of
different terrains, such as water, forest, cloud, ice, and desert.
Each terrain has a unique spectral signature. Thus, to achieve
the highest compactness of spectral information, the spectral
transformation parameters must adopt to the local terrain
characteristics. tn the terrain-adaptive approach, the covari-
ance matrix, from which the spectral transformatinn basis
functions are derived, is updated frequently. The smaller the
block-size over which the eovariance is updated is, the more
efficient is the spectral decorrelation process. The drawback
with the selection of a small sub-block size is the resulting
increase in the overhead bit rate due to an increase in the
number of sub-blocks. Let's discuss the tradeoff between this
"window" size and overhead bit rate.

Figure 12 shows the first and the second eigen images of
the test image corresponding with the nonterrain-adaptive and
the terrain-adaptive approaches for covariance update win-
dow sizes of 64 x 64 and 32 x 32. respectively. For the
terrain-adaptive approach, the eigen images appear to be have
diseontinuities over the edges of the selected covariance
update window. This blocking effect clearly indicates the
adaptation of the spectral transformation process to the char-
acteristics of the terrain within the selected window. Notice
the absence of blocking in the wooded section of the image
where the texture is uniform. Figure 13 shows the relative
sizes of the variance of each eigen image for the non-terrain-
adaptive and the two terrain-adaptive approaches. The signifi-
cant decrease in the variance as a result of terrain adaptation
indicates a much greater compaction of the data and substan-

tially lower performance.

To reduce the computation burden for the terrain-adaptive
approach, the calculation of the covariance matrix is not based
on all the data points within the selected window size. Experi-
mental results indicate that it suffices to use one data point
per 8 x 8 section of the selected covariance update window to
estimate the covariance matrix. A minor gain in performance

14. Overheod bit rote versus the number of bonds ond updote win-
dow size.
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Overhead Information

The terrain-adaptive approach entails transmission and proc-
essing some overhead information. The overhead information
includes the approximated covarianee matrix and the eigen

plane quantization parameters for each non-overlapping sub-
block of data over which the covariance matrix is updated.
The covariance matrix is used to generate the KLT spectral
transformation basis functions, the eigenveetors. Since the
covariance matrix is diagonally symmetric, only the non-re-
dundant half is transmitted. For each sub-block, the eigen
plane quantization parameters are the scale factor (propor-
tional to the inverse of the quantization step) and the mini-
mum eigen plane value. The drawback with the selection of
a small sub-block size, the covariance update window, is the
resulting increase in the overhead bit rate due to an increase
in the number of sub-blocks.

results from the exact calculation of the covariance matrix
based on all data points in the window. Further, to reduce the
overhead bit rate, the floating-point covarianee matrix is
quantized to two bytes per element. The minimum eigen plane
value and the scale factor used are quantized to 16 bits (2
bytes) and 8 bits (one byte). respectively.

Assume that a total of N bands are selected for simultane-
ous spectral decorrelation. Further, assume that the selected
window size for covariance update is B x B. The size of the
covariance matrix is N x N and the number of non-redundant
elements is [(N2/2 ) + N12]. The total bit requirement is
8 (N2 + N), where the number of minimum eigen plane values
is N. There are 16 bits (two bytes) per minimum value. There
are approximately two scale factors less than 1. Allocating 8
bits (one byte) per scale factor, the total bit requirement for
eigen plane quantization adds up to t6(N + 1). Note that the
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of bands and sub-block sizes. The optimum block size for the
terrain-adaptive approach is 64 x 64. For this choice of
window size, the overhead bit rate is a negligible amount less
than 0.04 bpp regardless of the number of bands in the set.
Selection of a smaller window size results in a substantial
increase in the overhead bit rate.

Look-up Table Approach to Reduce Overhead Bit Rate

For a smaller sub-block size, the overhead btt rate increases
significantly. To alleviate this problem, we have to resort to
a look-up-table approach. Here, a stored table of pre-calcu-
lated covariance matrices is searched to find the one that
approximates the estimated covariance matrix of the current
sub-block. This approach yields a substantial savings in the
overhead bit rate since only the pointer to the table, instead of
the entire covariance matrix itself, will be transmitted to the
receiver.

The covariance LUT approach was not implemented in
this study because the overhead bit rate was insignificant, less
than 0.04 bpp, for block sizes of 64 x 64 or greater. The
improvement in the spectral decorrelation efficiency as the
result of smaller blocks was not significant enough to pursue
implementation of the covariance LUT approach. The covari-
ance LUT approach may, however, be useful for hardware
implementation due to a potentially lighter computation re-
quirement.

scales of unity. i.e.. "1" are not transmitted. The overhead
bit rate B0s in bpp is thus approximately equal to:

B0i, 8[(N.t-l)(N+2) /(NB2)] (3)

in bits per pixel. This equation suggests that the overhead bit
rate increases approximately linearly with the number of
spectral bands. The overhead hit rate is, however, inversely
proportional to the square of the covariance update window
size. Figure 14 shows the overhead bit rate for various number

100

Experimental Results

The terrain-adaptive compression algorithm has been pro-
grammed for both, SUN and PC platforms. The algorithm is
conveniently parameterized to accommodate various parame-
ters including s)ze of data, dynamic range, number of bands,
desired bit rate and window size for terrain adaptation (co-
variance update window). The discussion in this section is
mostly limited to the rate versus distortion results only. The
complete experimental results including machine-based ex-
ploitation are discussed elsewhere [14, 15].

Rate vs. Distortion Results

Figure 15 shows the rate versus mean square and maximum
error curves for the Military 1. Scene 1 test image. These
results are representative of the performance of the compres-
sion system for a set of eleven multispectral images. This test
image contains sharp edges which are difficult to compress
with high fidelity at low rates. Thus, the rate versus distortion
curve shown here is a conservative estimate of the algorithm
performance. These results demonstrate, that on the average,
each pixel value is off by I count in 256 at 0.8 bpp (10:1
compression ratio). Visual evaluation of the reconstructed
imagery reveals that visually lossless performance is achieved
in the 0.2 - 1.6 bpp range. (5:1 to 40:1 compression ratios).
Above 1 .6 bpp. the subtle difference between the original and
the reconstructed images can only be observed using ad-
vanced machine based exploitation measures.
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16. The original ond difference imoges ot 0,8 hpp jbr terrain-
adaptive and non-terroin-odoptire schemes. Note: ss'hile the differ-
ence imoges indicote thot theresiduol error i.v untformlv

distributed (bright colues represent error), the terroin-odoptice
scheme welds o dorker difference image, suggesting less degrodo-
tion.
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Figure 16 shows the difference images at 0.8 bpp for the
Coast 2, Scene 2. and the Military 1, Scene I test images. The
images show the difference between the original and the
reconstructed images using the terrain-adaptive and the non-
terrain-adaptive approaches. The difference images shown
here have been linearly sealed up to the 0-255 range. The
difference images for both approaches reflect a relatively
uniform spatial distribution of the error. A homogeneous
difference image is one of the important properties of any
robust compression technique. The presence of any structure
in the difference image reflects the loss of inforrriation in the

compression process.

Classification

Figure I 7 shows illustrative results from the unsupervised and
supervised classification metrics [15]. The unsupervised clas-
sification yielded better than 95 percent correct classification,
at 1.0 bpp and over 98 percent at 1.5 bpp. Supervised classi-
fication was more impacted by the compression, with over 87
percent of correct classification at 1.0 bpp and 90 percent at
1.5 bpp. The classification results for the DPCM-based ap-
proach [11] were between 5 to 20 percent worse, depending
on the bit rate. Further details on statistical and machine-
based metrics appear in [14] and [15]. Note that the terms
supervised and unsupervised used therein refers to whether
the number categories to be classified are known in advance.

Spectral Fidelity

In the bandwidth compression of multispeetral imagery. pres-
ervation of the spectral resolution across bands is as essential
as preserving the spatial resolution within each band. Based
on the correlation coefficient matrix a useful tool for measur-
ing the spectral fidelity of multispeetral data was devised. The
spectral fidelity is depicted by a convenient and very reveal-
ing 3-dimensional color surfaces plot of the correlation coef-
ficient matrix. Any deviation from the original correlation
coefficient matrix indicates the loss in spectral fidelity due to
the compression process. The 3-D surface plot of the devia-
tion from the original correlation matrix highlights the loss in
spectral fidelity as the result of compression.

Experimental results indicate that the loss of spectral
fidelity, as measured by the deviation from the original
correlation coefficient matrix, is very insignificant, regard-
less of the image and the coding bit rate. Figure 18 shows the
original scene and the loss of spectral fidelity for the Military
I, Scene 1 test image at compression ratios of 4:1, 8:1. and
16:1. Note that the maximum of the color bar scale is at
0.003, or 0.3 of one percent. At 4:1 CR. no loss of the spectral
fidelity is observed. At 8:1 CR. a small loss of the spectral
fidelity between bands 7 and bands 10 and 11. At 16:1 CR
additional loss of the spectral fidelity is noticed between
band4 and bands 10 and 11.

Handling the Sharpening Band

Typically. a panehromatic sharpening band of twice the reso-
lution in both horizontal and vertical directions accompanies
the multispectral imagery. We have developed a simple
scheme to jointly compress the sharpening band along with
the multispectral bands. The sharpening band is "fanned out"
into four non-overiapping sub-sampled images equal in size
to the multispectral images. That is, each of the four pixels in
a 2 by 2 block of the original sharpening band forms one pixel
in a subsampled image. The fanned out images are then
regarded as additional bands in the compression process. This
process ensures exploitation of the inherent correlation be-
tween the sharpening band and the multispeetral bands. At the
receiver, the reconstructed sub-sampled sharpening bands are
"fanned in" into the reconstructed sharpening band.

Sensitivity Issues

Since the characteristics of future multispectral systems are
yet to be determined, a simulation study was performed to
assess the sensitivity of the compression system to various
system parameters. The sensitivity issues considered were (I)
impact of band misalignment: (2) dynamic range of data; (3)
impact of calibration and pre-processing of the data, and (4)
impact of dead/saturated pixels. Results of the experiments
indicated that except for band misalignment, the performance

of the compression system is not significantly impacted by
the above parameters at moderate compression ratios (10:1).
Band misalignment can be minimized prior to the spectral
decorrelation process via some simple pre-processing. The
brute-force technique is to reposition individual hands in
order to maximize the inter-band correlation, This correlation
maximization process need not to be carried out based on the
entire image set. The correction magnitude for band positions
may be derived from a small subset of the data (64 x 64
section.

Conclusions

We presented an implementable three dimensional terrain-
adaptive transform based bandwidth compression technique
for multispectral imagery. The algorithm exploits the inherent
spectral and spatial correlations in the data. The compression
technique is based on Karhunen-Loeve transformation for
spectral decorrelation followed by the standard JPEG algo-
rithm for coding the resulting spectrally deeorrclated eigen
images. The algorithm is conveniently parameterized to ac-
commodate reconstructed image fidelities ranging from near-
lossless at about 5:1 CR to visually lossy beginning at about
40:1 CR. The novelty of this technique lies in its unique
capability to adaptively vary the characteristics of the spectral
decorrelation transformation as a function of the variation of
the local terrain. The spectral and spatial modularity of the
algorithm architecture allows the JPEG to be replaced by
alternate spatial coding procedure. The significant practical
advantage of this proposed approach is that it is leveraged on
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the standard and highly developed JPEG compression tech-

nology.
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