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Abstract. We propose an algorithm for minimizing the total variation of an image, and provide a proof of
convergence. We show applications to image denoising, zooming, and the computation of the mean curvature
motion of interfaces.
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1. Introduction

The total variation has been introduced in Com-
puter Vision first by Rudin, Osher and Fatemi [17],
as a regularizing criterion for solving inverse prob-
lems. It has proved to be quite efficient for regular-
izing images without smoothing the boundaries of the
objects.

In this paper we propose a algorithm for minimizing
the total variation, that we claim to be quite fast. It
is based on a dual formulation, and is related to the
works of Chan, Golub, and Mulet [6] or of Carter [3].
However, our presentation is slightly different and we
can provide a proof of convergence. We then show how
our algorithm can be applied to two standard inverse
problems in image processing, that are image denoising
and zooming. We refer to [5, 8–10, 15, 19] for other
algorithms to solve the same problem (as well as to
the other total variation—related papers quoted in this
note).

2. Notations and Preliminary Remarks

Let us fix our main notations. To simplify, our images
will be 2-dimensional matrices of size N × N (adapta-
tion to other cases or higher dimension is not difficult).
We denote by X the Euclidean space R

N×N . To define
the discrete total variation, we introduce a discrete (lin-
ear) gradient operator. If u ∈ X , The gradient ∇u is a

vector in Y = X × X given by

(∇u)i, j = (
(∇u)1

i, j , (∇u)2
i, j

)

with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N ,

0 if i = N ,

(∇u)2
i, j =

{
ui, j+1 − ui, j if j < N ,

0 if j = N ,

for i, j = 1, . . . , N . Other choices of discretization are
of course possible for the gradient, as long as it is a
linear operator. Our choice seems to offer a good com-
promise between isotropy and stability.

Then, the total variation of u is defined by

J (u) =
∑

1≤i, j≤N

|(∇u)i, j |, (1)

with |y| :=
√

y2
1 + y2

2 for every y = (y1, y2) ∈ R
2.

Let us observe here that this functional J is a dis-
cretization of the standard total variation, defined in the
continuous setting for a function u ∈ L1(�) (� open
subset of R

2) by

J (u) = sup

{ ∫
�

u(x) div ξ (x) dx :

ξ ∈ C1
c (�; R

2), |ξ (x)| ≤ 1 ∀x ∈ �

}
(2)
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(see for instance [12]). It is well known that J , de-
fined by (2), is finite if and only if the distributional
derivative Du of u is a finite Radon measure in �, in
which case we have J (u) = |Du|(�). If u has a gra-
dient ∇u ∈ L1(�; R

2), then J (u) = ∫
�

|∇u(x)| dx .
We will work mostly, in this note, in the discrete
setting. Let us however make the observation that if
some step-size (or pixel size) h ∼ 1/N is introduced
in the discrete definition of J (defining a new func-
tional Jh equal to h times the expression in (1)), one
can show that as h → 0 (and the number of pix-
els N goes to infinity), Jh “�–converges” (see for
instance [1]) to the continuous J (defined by (2) on
� = (0, 1)× (0, 1)). This means that the minimizers of
the problems we are going to consider approximate cor-
rectly, if the pixel size is very small, minimizers of sim-
ilar problems defined in the continuous setting with the
functional (2).

Being J one–homogeneous (that is, J (λu) = λJ (u)
for every u and λ > 0), it is a standard fact in convex
analysis (we refer to [11] for a quite complete introduc-
tion to convex analysis, and to [14] for a monograph
on convex optimization problems) that the Legendre–
Fenchel transform

J ∗(v) = sup
u

〈u, v〉X − J (u)

(with 〈u, v〉X = ∑
i, j ui, jvi, j )1 is the “characteristic

function” of a closed convex set K :

J ∗(v) = χK (v) =
{

0 if v ∈ K

+ ∞ otherwise.
(3)

Since J ∗∗ = J , we recover

J (u) = sup
v∈K

〈u, v〉X . (4)

In the continuous setting, one readily sees from
definition (2) that K is the closure of the set

{
div ξ : ξ ∈ C1

c (�; R
2) , |ξ (x)| ≤ 1 ∀x ∈ �

}
.

Let us now find a similar characterization in the dis-
crete setting. In Y , we use the Euclidean scalar product,
defined in the standard way by

〈p, q〉Y =
∑

1≤i, j≤N

(
p1

i, j q
1
i, j + p2

i, j q
2
i, j

)
,

for every p = (p1, p2), q = (q1, q2) ∈ Y . Then, for
every u,

J (u) = sup
p

〈p, ∇u〉Y (5)

where the sup is taken on all p ∈ Y such that |pi, j | ≤
1 for every i, j . We introduce a discrete divergence
div : Y → X defined, by analogy with the continuous
setting, by div = −∇∗ (∇∗ is the adjoint of ∇). That is,
for every p ∈ Y and u ∈ X , 〈−div p, u〉X = 〈p, ∇u〉Y .
One checks easily that div is given by

(div p)i j =




p1
i, j − p1

i−1, j if 1 < i < N ,

p1
i, j if i = 1,

−p1
i−1, j if i = N ,

+




p2
i, j − p2

i, j−1 if 1 < j < N ,

p2
i, j if j = 1,

−p2
i, j−1 if j = N ,

for every p = (p1, p2) ∈ Y . From (5) and the definition
of the operator div, one immediately deduce (4), with
K given by

{div p : p ∈ Y , |pi, j | ≤ 1 ∀ i, j = 1, . . . , N }.

3. The Algorithm

We propose an algorithm for solving

min
u∈X

‖u − g‖
2λ

2

+ J (u), (6)

given g ∈ X and λ > 0. ‖·‖ is the Euclidean norm in
X , given by ‖u‖2 = 〈u, u〉X .

The Euler equation for (6) is

u − g + λ∂ J (u) � 0.

Here, ∂ J is the “sub-differential” of J , defined by
w ∈ ∂ J (u) ⇔ J (v) ≥ J (u) + 〈w, v − u〉X for every
v (see [11, 14]). The Euler equation may be rewrit-
ten (g − u)/λ ∈ ∂ J (u), which is equivalent to u ∈
∂ J ∗((g − u)/λ) (cf [14, Vol. I, Prop. 6.1.2]). Writing
this as

g

λ
∈ g − u

λ
+ 1

λ
∂ J ∗

(
g − u

λ

)
,
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we get that w = (g − u)/λ is the minimizer of

‖w − (g/λ)‖
2

2

+ 1

λ
J ∗(w).

Since J ∗ is given by (3), we deduce w = πK (g/λ).
Hence the solution u of problem (6) is simply given by

u = g − πλK (g). (7)

A possible algorithm for computing u is therefore to
try to compute the nonlinear projection πλK . Notice
that this analysis is valid also in the continuous setting
(with X = L2(�)).

In dimension 1, the nonlinear projection πλK is very
easy to solve numerically. The applications are how-
ever of limited interest. We now describe our method
for computing this projection in dimension 2 (and, the-
oretically, in any dimension, with little adaptation).

Computing the nonlinear projection πλK (g) amounts
to solving the following problem:

min{‖λdiv p − g‖2 : p ∈ Y,

|pi, j |2 − 1 ≤ 0 ∀ i, j = 1, . . . , N }. (8)

The Karush-Kuhn-Tucker conditions (cf [14, Vol. I,
Theorem 2.1.4] or [7, Theorem 9.2-4]) yield the exis-
tence of a Lagrange multiplier αi, j ≥ 0, associated to
each constraint in problem (8), such that we have for
each i, j

−(∇(λdiv p − g))i, j + αi, j pi, j = 0

with either αi, j > 0 and |pi, j | = 1, or |pi, j | < 1 and
αi, j = 0. In the latter case, also (∇(λdiv p−g))i, j = 0.
We see that in any case

αi, j = |(∇(λdiv p − g))i, j |.

We thus propose the following semi-implicit gradient
descent (or fixed point) algorithm.

We choose τ > 0, let p0 = 0 and for any n ≥ 0,

pn+1
i, j = pn

i, j + τ
(
(∇(div pn − g/λ))i, j

− |(∇(div pn − g/λ))i, j | pn+1
i, j

)
,

so that

pn+1
i, j = pn

i, j + τ (∇(div pn − g/λ))i, j

1 + τ |(∇(div pn − g/λ))i, j | . (9)

We now can show the following result.

Theorem 3.1. Let τ ≤ 1/8. Then, λdiv pn converges
to πλK (g) as n → ∞.

Proof: By induction we easily see that for every n ≥
0, |pn

i, j | ≤ 1 for all i, j . Let us fix n ≥ 0 and let η =
(pn+1 − pn)/τ . We have

‖div pn+1 − g/λ‖2 = ‖div pn − g/λ‖2

+ 2τ 〈div η, div pn − g/λ〉 + τ 2‖div η‖2

≤ ‖div pn − g/λ‖2

− τ
(
2〈η, ∇(div pn − g/λ)〉 − κ2τ‖η‖2

Y

)
.

We denoted ‖η‖2
Y = 〈η, η〉Y , and κ is the norm of the

operator div : Y → X , that we will estimate later on.
Now,

2〈η, ∇(div pn − g/λ)〉 − κ2τ‖η‖2
Y

=
N∑

i, j=1

2ηi, j · (∇(div pn − g/λ))i, j − κ2τ |ηi, j |2,

and since ηi, j is of the form ∇(div pn − g/λ))i, j − ρi, j

(with ρi, j = |∇(div pn − g/λ))i, j |pn+1
i, j ), we have for

every i, j

2ηi, j · (∇(div pn − g/λ))i, j − κ2τ |ηi, j |2
= (1 − κ2τ )|ηi, j |2

+ (|(∇(div pn − g/λ))i, j |2 − |ρi, j |2).

Since |pn+1
i, j | ≤ 1, |ρi, j | ≤ |(∇(div pn−g/λ))i, j |. Hence,

if τ ≤ 1/κ2, we see that ‖div pn − g/λ‖2 is decreasing
with n, unless η = 0, that is, pn+1 = pn . (This is clear if
τ < 1/κ2, and a careful analysis shows that it is also true
whenκ2τ = 1. Indeed, if‖div pn+1−g/λ‖ = ‖div pn−
g/λ‖ we deduce |ρi, j | = |(∇(div pn − g/λ))i, j | for
each i, j so that either |∇(div pn − g/λ))i, j | = 0 or
|pn+1

i, j | = 1. In both cases, (9) yields pn+1
i, j = pn

i, j .)
Let m = limn→∞ ‖div pn − g/λ‖ and p̄ be the limit

of a converging subsequence (pnk ) of (pn). Letting p̄′

be the limit of pnk+1, we have

p̄′
i, j = p̄i, j + τ (∇(div p̄ − g/λ))i, j

1 + τ |(∇(div p̄ − g/λ))i, j | ,

and repeating the previous calculations we see that
since clearly m = ‖div p̄ − g/λ‖ = ‖div p̄′ − g/λ‖, it
must be that η̄i, j = ( p̄′

i, j − p̄i, j )/τ = 0 for every i, j ,
that is, p̄ = p̄′. Hence

−(∇(λdiv p̄ − g))i, j + |(∇(λdiv p̄ − g))i, j | p̄i, j = 0,
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which is the Euler equation for a solution of (8).
One can deduce that p̄ solves (8) (see for instance
[7, Theorem 9.2-4]) and that λdiv p̄ is the projection
πK (g). Since this projection is unique, we deduce that
all the sequence λdiv pn converges to πK (g). The the-
orem is proved if we can show that κ2 ≤ 8.

By definition, κ = sup‖p‖Y ≤1 ‖div p‖. Now, (adopt-
ing the convention that p0, j = pN , j = pi,0 = pi,N = 0
for every i, j)

‖div p‖2 =
∑

1≤i, j≤N

(
p1

i, j − p1
i−1, j + p2

i, j − p2
i, j−1

)2

≤ 4
∑

1≤i, j≤N

(
p1

i, j

)2 + (
p1

i−1, j

)2 + (
p2

i, j

)2

+ (
p2

i, j−1

)2 ≤ 8‖p‖2
Y .

Hence κ2 ≤ 8.

Remark. Choosing p1
i, j = p2

i, j = (−1)i+ j shows that
κ2 ≥ 8 − O(1/N ).

Remark. In practice, it appears that the optimal con-
stant for the stability and convergence of the algorithm
is not 1/8 but 1/4. We do not know the reason for this.
If τ < 1/4, then it is easy to check that both applica-
tions pn �→ p̃n and p̃n �→ pn+1 defined respectively
by

p̃n
i, j = pn

i, j + τ (∇(div pn − g/λ))i, j and

pn+1
i, j = p̃n

i, j

1 + τ |(∇(div pn − g/λ))i, j |

are contractions, but each in a different norm (the first
one for the semi-norm ‖div p‖, the second one for the
norm supi, j |pi, j |).

Remark. To our knowledge there exist two other im-
portant contributions addressing the same issue, that
is the minimization of total variation through a dual
approach. One is the paper of Chan, Golub and Mulet
[6], the other is the thesis of Carter [3]. In both works,
the proposed algorithms are quite different. They share
the advantage that they are supposed to work also for
“deconvolution” problems, that is, when instead of (6),
the problem to solve is

min
u∈X

‖Au − g‖
2λ

2

+ J (u), (10)

with A a linear operator (corresponding in general to a
low-pass filtering, that is, a blurring of the image). It is
not clear how to adapt our approach to this case, and it
is the subject of future studies. We show in Section 5
how to treat the particular case where A is an orthogo-
nal projection (zooming). On the other hand, the advan-
tage of our approach is the existence of the convergence
Theorem 3.1, that ensures its efficiency and stability.
It also provides a framework for understanding the be-
havior of the algorithms proposed in [6] and [3], at
least in the case A = Id.

4. Image Denoising

The idea of minimizing total variation for image de-
noising, suggested in [17], assumes that the observed
image g = (gi, j )1≤i, j≤N is the addition of an a pri-
ori piecewise smooth (or with little oscillation) image
u = (ui, j )1≤i, j≤N and a random Gaussian noise, of es-
timated variance σ 2. It is hence suggested to recover
the original image u by trying to solve the problem

min{J (u) : ‖u − g‖2 = N 2σ 2} (11)

(N 2 being the total number of pixels). It can be shown
(see for instance [5]) that there exists (both in the con-
tinuous and discrete settings, in fact) a Lagrange mul-
tiplier λ > 0 such that, provided ‖g − 〈g〉‖2 ≥ N 2σ 2

(with 〈g〉 the average value of the pixels gi, j ), this
problem has a unique solution that is given by the
equivalent problem (6). We have just shown how to
numerically solve problem (6), however, since σ is
in general less difficult to estimate than λ, we pro-
pose another algorithm that tackles directly the res-
olution of (11). The task is to find λ > 0 such that
‖πλK g‖2 = N 2σ 2. For s > 0, let us set f (s) = ‖πsK g‖.
The following lemma states the main properties
of f .

Lemma 4.1. The function f (s) maps [0, +∞)
onto [0, ‖g − 〈g〉‖]. It is non-decreasing, while the
function s �→ f (s)/s is non-increasing. Moreover,
f ∈ W 1,∞([0, +∞)) and satisfies, for a.e. s ≥ 0,

0 ≤ f ′(s) ≤ f (s)

s
≤ 2

√
2N .

Proof: Fix s, s ′, v = πsK g, v′ = πs ′ K g. By definition
of the projection, we have

〈g − v, w − v〉 ≤ 0
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for every w ∈ sK , and, as well,

〈g − v′, w − v′〉 ≤ 0

for every w ∈ s ′K . Letting θ = s ′/s, and choosing
w = v′/θ in the first inequality and w = θv in the
second, we find

〈g − v, v′ − θv〉 ≤ 0 and 〈g − v′, θv − v′〉 ≤ 0.

Hence

〈θv − v′, v − v′〉 ≤ 0, that is,

θ f (s)2 − (1 + θ )〈v, v′〉 + f (s ′)2 ≤ 0.

Since 〈v, v′〉 ≤ f (s) f (s ′), we find

( f (s ′) − θ f (s))( f (s ′) − f (s)) ≤ 0,

that is, f (s ′) is between f (s) and θ f (s).
We deduce that s �→ f (s) is non-decreasing, while

s �→ f (s)/s is non-increasing. Notice that for any s >

0, f (s)/s ≤ supv∈K ‖v‖ ≤ c = κ N , where κ ≤ 2
√

2
is the norm of the operator div : Y → X , introduced
in Section 3. The previous study shows that if s ′ ≥ s,
we have

0 ≤ f (s ′) − f (s) ≤ θ f (s) − f (s)

= (s ′ − s)
f (s)

s
≤ c(s ′ − s),

so that f is c-Lipschitz continuous, and satisfies

0 ≤ f ′(s) ≤ f (s)

s
≤ c

for a.e. s ≥ 0. Eventually, we can easily show that any
u ∈ X with 〈u〉 = 0 can be written div p for some p ∈
Y , so that there exists s∗ ≥ 0 such that g − 〈g〉 ∈ s∗K ,
hence f (s) = ‖g − 〈g〉‖ for every s ≥ s∗. This ends
the proof of the lemma.

We thus propose the following algorithm, in order to
solve (11). We assume Nσ is between 0 and ‖g −〈g〉‖.
We need to find a value λ̄ for which f (λ̄) = Nσ .
We first choose an arbitrary starting value λ0 > 0, and
compute v0 = πλ0 K (g) with the algorithm described in
Section 3, as well as f0 = f (λ0) = ‖v0‖. Then, given
λn , fn , we let λn+1 = (Nσ/ fn)λn , and compute vn+1 =
πλn+1 K (g) and fn+1 = ‖vn+1‖. We easily deduce from
Lemma 4.1 the following theorem.

Theorem 4.2. As n → ∞, fn → Nσ while g − vn

converges to the unique solution of (11).

Proof: Assume for instance that f0 ≤ Nσ . By in-
duction, we easily show that λn ≤ λn+1 and that fn ≤
fn+1 ≤ Nσ for any n ≥ 0. Indeed, if fn ≤ Nσ , then
λn+1 = (Nσ/ fn)λn ≥ λn , and Lemma 4.1 yields

f (λn) ≤ f (λn+1) ≤ (λn+1/λn) f (λn),

that is, fn ≤ fn+1 ≤ Nσ . If λn ≥ s∗ (the same s∗

introduced in the end of the proof of Lemma 4.1), then
fn = ‖g − 〈g〉‖ ≥ Nσ , hence fn = Nσ and λn+1 =
λn . Hence (λn)n≥0 and ( fn)n≥0 are non-decreasing and
bounded. Let f̄ = limn→∞ fn and λ̄ = limn→∞ λn . It
is clear that (being f continuous) f̄ = f (λ̄) = Nσ .
Letting v̄ = πλ̄K (g), we deduce that g − v̄ is the unique
solution of (11). Now, it is straightforward to show
that vn must converge to v̄. This proves the theorem. If
f0 ≥ Nσ the proof is identical.

We show some examples of images processed with
this algorithm. In practice, we have observed that we
can replace λ with the new value Nσ/‖div pn‖ after
each iteration (9) of the main algorithm of Section 3,
and get a very quick convergence to the limit u
solving (11).

In the examples of Figs. 2 and 3, the original im-
age is the image of Fig. 1 to which a noise of standard

Figure 1. An image.
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Figure 2. The image of Fig. 1 and its reconstruction (σ = 12).

Figure 3. Same as Fig. 2 with now σ = 25.

deviation respectively 12 and 25 has been added. The
original is a 256 × 256 square image with values
ranging from 0 to 255. The CPU time for comput-
ing the reconstructed images is in both case approx-
imately 1.9 seconds, on a 900 MHz Pentium III pro-
cessor with 2 Mb of cache. The criterion for stopping
the iteration just consists in checking that the max-
imum variation between pn

i, j and pn+1
i, j is less than

1/100. Notice that this algorithm can very easily be
parallelized.

5. Zooming

In the case of zooming, the inverse problem that has
to be solved is now (in its most simple formulation, as
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Figure 4. Left: original 512 × 512 Lena and a 128 × 128 reduction. Middle, the small image expanded by a factor 4. Right, the small image
expanded by 4 using the algorithm of Section 5.

proposed by Guichard and Malgouyres, see [13, 16]
for a general presentation)

min
u∈X

‖Au − g‖
2λ

2

+ J (u), (12)

where g ∈ X is a coarse image, that is, belonging to
a “coarse” subspace Z ⊂ X , and A is the orthogonal
projection onto Z . For instance, Z might be the set of
vectors gi, j such that g2k,2l = g2k+1,2l = g2k,2l+1 =
g2k+1,2l+1 for every k, l ≤ N/2, in which case we ex-
pect u to be a zooming of factor 2 of g. We have Ag = g,
and it is clear that

‖Au − g‖ = ‖A(u − g)‖ = min
w∈Z⊥

‖u − g − w‖.

Hence (12) may be reformulated as

min
u∈X,w∈Z⊥

‖u − (g + w)‖
2λ

2

+ J (u).

This provides an obvious algorithm for solving the
problem, by alternate minimizations of the energy with
respect to w and u. We let w0 = 0 and set for every
n ≥ 0

un = (g + wn) − πλK (g + wn)

which is computed using the algorithm (9), and

wn+1 = πZ⊥ (un − g)

which is a straightforward calculation. It is very easy to
establish the convergence of this algorithm, as n → ∞,

to a minimizer (u, w) of the convex energy (u, w) �→
‖u − (g + w)‖2/(2λ) + J (u) (as long as the vectors in
Z⊥ have zero average, which is usually the case). We
leave it to the reader.

We illustrate the output of this algorithm on Fig. 4.
As expected (see [16]), the result is very good. How-
ever, we found out that our method is quite slow, and
does not seem to be a great improvement with re-
spect to standard methods. Still some work has to been
done in order to understand better how the energy is
decreased at each iteration, and to try to find faster
strategies.

6. Mean Curvature Motion

We mention here quickly another possible application
of our algorithm. We do not intend to give to many
details in this section (which has a priori little applica-
tions to imaging and vision). This will be the subject of
a forthcoming paper [4]. We present the isotropic case,
although the method is very general and also works for
anisotropic curvature motion.

Consider a set E ⊂ � ⊂ R
2, such that the convex

envelope of E is strictly inside �. Let dE be the signed
distance to ∂ E , such that dE ≥ 0 in E and dE ≤ 0
in �\E . This distance can be computed in a quite ef-
ficient way, using a fast-marching algorithm [18]. We
choose h > 0 and solve then, using our algorithm, a
discretization of the problem

min
w

1

2h

∫
�

|w(x) − dE (x)|2 dx + J (w) (13)



96 Chambolle

Figure 5. An original curve (left), and its evolution for times t = 1, 30, 70, 100, 140 (right).

with J defined by (2). We define the operator Th

by letting Th E = {w > 0}, with w the solution
of (13).

Given an initial set E0, we let for h > 0 small and
every t > 0

Eh(t) = (Th)n E0

with n = [t/h] = the integer part of t/h. Then, if ∂ E0

is smooth, we have the following result.

Theorem 6.1. There exists t0 > 0 such that, as h → 0,

the boundaries ∂ Eh(t) converge to �(t) in the Haus-
dorff sense for 0 ≤ t ≤ t0, where �(t) is the Mean Cur-
vature evolution starting from ∂ E0.

For the definition the Mean Curvature Motion, we refer
to [2] and the huge literature that has followed. This
result holds in fact in any dimension. The proof will be
given in [4]. Figure 5 shows the evolution of a curve
computed with this algorithm.

Note

1. We will sometimes drop the subscript “X”, when not ambiguous.
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