
Practical validation of several fault attacks against the

Miller algorithm

Nadia El Mrabet1, Jacques Fournier2,
Louis Goubin3, Ronan Lashermes2,3, Marie Paindavoine4,5.

1 - LIASD, Paris 8, France. 2 - CEA Tech, DPACA/LSAS, Gardanne, France.
3 - UVSQ-PRiSM, Versailles, France. 4 - Orange Labs, Applied Crypto Group, France.

5 - LIP, Lyon, France.

FDTC 2014
September 23, 2014



1 Pairings and the Miller Algorithm
Introduction to Pairings
The Miller algorithm

2 Fault attacks against the Miller algorithm : theory and practice
Parameters
Fault models
Practical implementation

3 Analysis of countermeasures
Existing countermeasures
Security analysis

2 / 22



Pairings and the Miller Algorithm

Content

1 Pairings and the Miller Algorithm
Introduction to Pairings
The Miller algorithm

2 Fault attacks against the Miller algorithm : theory and practice

3 Analysis of countermeasures

3 / 22



Pairings and the Miller Algorithm Introduction to Pairings

A brief description of pairings

Let G1, G2, G3 be three finite groups of elements having the same prime
order r .
A pairing is a map e:

e : G1 ×G2 → G3

which is:

Bilinear - e([a]P, [b]Q) = e(P, Q)a,b,

Non degenerate -
∀P ∈ G1 (resp. ∀Q ∈ G2) , e(P, Q) = 1⇒ Q = O (resp. P = O) ,

Efficiently computable.

Very useful in cryptography: identity-based encryption, short signatures,
tripartite Diffie-Hellman.

4 / 22



Pairings and the Miller Algorithm Introduction to Pairings

Construction of pairings

e(P, Q) : maps two subgroups of E(Fp) of points of order r in µr (r -th
roots of unity).

[r ]P = [r ]Q = O

Smallest k such as µr ⊂ Fpk : embedding degree.

Two steps:
⊲ The Miller Algorithm ⊲ The Final Exponentiation

This talk focuses on the Miller algorithm: it outputs a function fr ,Q which
admits Q as a zero of order r and [r ]Q = O as a pole.

5 / 22



Pairings and the Miller Algorithm The Miller algorithm

Computation of fr ,Q

Recursive construction with a double-and-add structure.

Recurrence relations

Initialization :
f1,Q = 1.

Doubling step :

f2i ,Q = f 2
i ,Q ·h1 with h1 the equation of the tangent at the point [2i ]Q.

Addition step :

fi+1,Q = fi ,Q · h2 with h2 the line equation ([i ]Q, Q).

6 / 22



Pairings and the Miller Algorithm The Miller algorithm

Algorithm

Algorithm 1 The Miller algorithm for the Ate Pairing

Input : r =
∑t

i=0 ri2
i , P ∈ G1 and Q ∈ G2.

Output : f = fr ,Q(P) ∈ G3.
1: T ← Q

2: f ← 1
3: for i ← t − 1 to 0 do

4: f ← f 2 · h1(P) (h1 is the tangent equation at the point T )
5: T ← [2]T
6: if ri = 1 then

7: f ← f · h2(P) (h2 is the line (Q, T ) equation)
8: T ← T + Q

9: end if

10: end for

11: return f

7 / 22



Implementation

Content

1 Pairings and the Miller Algorithm

2 Fault attacks against the Miller algorithm : theory and practice
Parameters
Fault models
Practical implementation

3 Analysis of countermeasures

8 / 22



Implementation Parameters

Implementation parameters

A wide variety of pairings and curves.
We choose to attack the Ate pairing, on Barreto-Naehrig curves.

Our implementation

y2 = x3 + 5
Embedding degree: k = 12
254 bits p and r .
G1 subgroup of E(Fp) and G2 subgroup of E(Fp12)

Our goal

In most protocols, e(P, Q) takes one public argument and one secret.
We want to recover the secret point (either P or Q).

9 / 22



Implementation Parameters

Field extensions and twisted curves

Fp12 : Fp2-vector space. We have a unique decomposition:

∀R ∈ Fp12 , R =
5

∑

i=0

Riw
i , Ri ∈ Fp2 , w ∈ Fp12 \ Fp6 .

When the points are in E(Fp12): heavy representation & computation!

We use the twisted curve (degree 6) E ′: there exists a bijection from the
points of G2 to the points of E ′(Fp2).

 The coordinates of Q now lie in Fp2

10 / 22



Implementation Parameters

Recovering the secret point

From the tangent equation

h1(P) =
(

3X 3
T − 2Y 2

T

)

· w6 +
(

2YT Z 3
T yP

)

· w3 −
(

3X 2
T Z 2

T xP

)

· w4,

we obtain the following system in Fp2 :















R0 =
(

3X 3
T − 2Y 2

T

)

· u (1)

R3 = 2YT Z 3
T yP (2)

R4 = −3X 2
T Z 2

T xP (3)

Curve equation: X 3
T = Y 2 + 5

Equation 2 : YT as ZT polynomial.

By substition, we obtain an univariate polynomial in ZT : we recover the
coordinates of T = [j]Q, j known, then Q.

11 / 22



Implementation Fault models

Fault models

Loop skip [PV06,EM09]

We target the loop counter

Obtain two algorithm
executions with successive
iterations numbers

If the second iteration is
double only

The quotient of results is
h1(P)

Controlled add [WS07]

Targets the last iteration

Fault a modular addition
while computing h1(P)

If we know the fault value

The correct/faulty result
ratio allows us to recover
h1(P)

12 / 22



Implementation Practical implementation

Experimental validation

Are we able to experimentally achieve these fault models?

Experimentations

Targeting a Cortex-M3 microcontroller computing an (home-made) Ate
pairing with an Electromagnetic fault injection bench.

13 / 22



Implementation Practical implementation

Experimental results

It is possible to induce an instruction skip in the microcontroller

The two fault models were implemented

When removing the final exponentiation to get the output of the Miller
loop...

...we recovered the secret point!

14 / 22



Analysis of countermeasures

Content

1 Pairings and the Miller Algorithm

2 Fault attacks against the Miller algorithm : theory and practice

3 Analysis of countermeasures
Existing countermeasures
Security analysis

15 / 22



Analysis of countermeasures Existing countermeasures

Countermeasures

Blinding countermeasures :

1 Coordinates blinding: Replace the jacobian coordinates
Q = (XQ : YQ : ZQ) by (λ2XQ : λ3YQ : λZQ)(λ 6= 0, 1) with a
random λ ∈ Fp2 before computation.

2 Miller variable blinding: At each iteration, multiply f by a random
element of Fpd , d < k, d |k. The final exponentiation maps the masks
onto one.

3 Additive Blinding: For a random M ∈ G2, one computes
e(P, Q) = e(P, Q + M) · e(P,−M). It does not affect the result as
pairings are bilinear.

4 Multiplicative blinding: We have e(αP, βQ) = e(P, Q)αβ . One
chooses α, β with α · β = 1 (mod r).

16 / 22



Analysis of countermeasures Security analysis

Efficiency of the countermeasures

First two originally designed against side-channel analysis. Also proposed
against fault attacks.

Last two designed specifically for fault attacks. But their overhead is more
important.

Can we use the first two in order to circumvent fault attacks?

17 / 22



Analysis of countermeasures Security analysis

A relation between the blinded execution and the correct

one

Q = (λ2XQ : λ3YQ : λZQ) ∈ E(Fp).

For the doubling step we have the following relation:
{

T = (λ2iXT , λ3iYT , λiZT )

h
(λ)
1 = λ24ih1.

And for the addition step:














P = (λ2XP , λ3YP , λZP)

T = (λ2iXT , λ3iYT , λiZT )

h
(λ)
2 = λ9i+12h2.

Hence, for some integer a:

f
(λ)

r ,P = λa · fr ,P

18 / 22



Analysis of countermeasures Security analysis

Loop counter fault model

Two executions, hence two masks, but adds only one more unknown:

h1(P)(λ) =
λa

1

λb
2

· h1(P).

We denote L =
λa

1

λb
2

the new unknown:

h1(P)(λ) = L · (R0 · w
6 + R3 · w

3 + R4 · w
4),

By identification we have:















R
(λ)
0 = LR0

R
(λ)
3 = L · R3

R
(λ)
4 = L · R4.

19 / 22



Analysis of countermeasures Security analysis

Solving the polynomial system

The system can be solved with a Gröbner basis computation.

We first recover the coordinates of T = [j]Q, j known.

It allows us to recover the coordinates of Q.

We are able to bypass the Miller variable blinding with the same method.

20 / 22



Analysis of countermeasures Security analysis

Conclusion

It is not (yet) an attack on a whole pairing computation

But realistic fault models that we can realize in implementations

The efficient countermeasures imply important overhead.

21 / 22



Thank you!

Any questions?

22 / 22


	Pairings and the Miller Algorithm
	Introduction to Pairings
	The Miller algorithm

	Fault attacks against the Miller algorithm : theory and practice
	Parameters
	Fault models
	Practical implementation

	Analysis of countermeasures
	Existing countermeasures
	Security analysis


