
 Open access Journal Article DOI:10.1016/J.IC.2017.09.011

Practical verification of multi-agent systems against Slk specifications
— Source link

Petr Čermák, Alessio Lomuscio, Fabio Mogavero, Aniello Murano

Institutions: Imperial College London, University of Oxford, University of Naples Federico II

Published on: 01 Aug 2018 - Information & Computation (Elsevier BV)

Topics: Model checking, Formal verification, Dining cryptographers problem and Multi-agent system

Related papers:

 Reasoning About Strategies: On the Model-Checking Problem

 Alternating-time temporal logic

 Verification of broadcasting multi-agent systems against an epistemic strategy logic

 Symbolic Model Checking Multi-Agent Systems against CTL*K Specifications

 MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications

Share this paper:

View more about this paper here: https://typeset.io/papers/practical-verification-of-multi-agent-systems-against-slk-
1g2dsbu5wl

https://typeset.io/
https://www.doi.org/10.1016/J.IC.2017.09.011
https://typeset.io/papers/practical-verification-of-multi-agent-systems-against-slk-1g2dsbu5wl
https://typeset.io/authors/petr-cermak-1yb94zax65
https://typeset.io/authors/alessio-lomuscio-2pev5pamkp
https://typeset.io/authors/fabio-mogavero-3bkux49ymm
https://typeset.io/authors/aniello-murano-3ce6tsoelo
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/institutions/university-of-oxford-359i25ny
https://typeset.io/institutions/university-of-naples-federico-ii-2jgq4uwv
https://typeset.io/journals/information-computation-2yxin7po
https://typeset.io/topics/model-checking-sm4abkf0
https://typeset.io/topics/formal-verification-42wfiuvr
https://typeset.io/topics/dining-cryptographers-problem-1ud6jy2y
https://typeset.io/topics/multi-agent-system-37vxqxp8
https://typeset.io/papers/reasoning-about-strategies-on-the-model-checking-problem-46kcquhd1x
https://typeset.io/papers/alternating-time-temporal-logic-3du0km9tzh
https://typeset.io/papers/verification-of-broadcasting-multi-agent-systems-against-an-4cew806bfv
https://typeset.io/papers/symbolic-model-checking-multi-agent-systems-against-ctl-k-2aghi6kxbt
https://typeset.io/papers/mcmas-slk-a-model-checker-for-the-verification-of-strategy-55kzckrf2r
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/practical-verification-of-multi-agent-systems-against-slk-1g2dsbu5wl
https://twitter.com/intent/tweet?text=Practical%20verification%20of%20multi-agent%20systems%20against%20Slk%20specifications&url=https://typeset.io/papers/practical-verification-of-multi-agent-systems-against-slk-1g2dsbu5wl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/practical-verification-of-multi-agent-systems-against-slk-1g2dsbu5wl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/practical-verification-of-multi-agent-systems-against-slk-1g2dsbu5wl
https://typeset.io/papers/practical-verification-of-multi-agent-systems-against-slk-1g2dsbu5wl

Practical Verification of Multi-Agent Systems

against Slk Specifications

Petr Čermáka, Alessio Lomuscioa, Fabio Mogaverob, Aniello Muranoc

aImperial College London, UK
bUniversity of Oxford, UK

cUniversità degli Studi di Napoli Federico II, Italy

Abstract

We introduce Strategy Logic with Knowledge, a novel formalism to reason about
knowledge and strategic ability in memoryless multi-agent systems with incom-
plete information. We exemplify its expressive power; we define the model
checking problem for the logic and show that it is PSpace-complete. We pro-
pose a labelling algorithm for solving the verification problem that we show is
amenable to symbolic implementation. We introduce MCMASSlk, an extension
of the open-source model checker MCMAS, implementing the proposed algo-
rithm. We report the benchmarks obtained on a number of scenarios from the
literature, including the dining cryptographers protocol.

Keywords: model checking, Strategy Logic, multi-agent systems, formal
verification

1. Introduction

Multi-agent systems (MAS) are distributed systems whereby the compo-
nents, or agents, display a high degree of autonomy and interact with their
peers in a cooperative or adversarial way in order to maximise their private
or common goals [1]. Over the years several logics have been put forward to
reason about MAS, including epistemic logics [2], deontic logics [3] and formal
languages accounting for the beliefs, desires and intentions of the agents [4].
These formalisms, once combined with temporal logic, are more expressive than
logics used to reason about reactive systems, such as Ltl and Ctl [5]. This
is because when reasoning about MAS, it is often not sufficient to establish
whether a particular temporal statement is realised. Instead, there is an in-
terest in establishing whether high-level properties of the agents hold in the
system. These may involve the evolution of their beliefs, the intentions they
want to bring about, what regulations they are subjected to and the interplay
of all of these.

Knowledge and strategic ability are two particular aspects of agency that are
of importance when reasoning about MAS. By means of epistemic specifications,
we can, for example, reason about what the agents know about the world,

Preprint submitted to Elsevier February 23, 2019

its evolution, their peers, their peers’ knowledge, as well as epistemic group
notions such as common knowledge [2]. By incorporating strategic abilities in
the specifications, we can establish whether particular groups of agents have the
ability to bring about certain temporal states of affairs.

There is a relatively long tradition in the development of verification tech-
nology, notably model checking, to verify MAS against temporal-epistemic spec-
ifications. This includes methods based on bounded [6, 7] verification, logical
representation through Binary Decision Diagrams (BDDs, for short) [8, 9, 10],
symmetry reduction [11] and abstraction [12, 13]. Verification techniques for
validating systems against strategic abilities have also been put forward. For
example, jMOCHA [14] is a model checker for the verification of systems against
specifications in Alternating-time Temporal Logic (Atl). Proposals have also
been made to devise methods supporting specifications that account for both
the epistemic states of the agents as well as their strategic ability [15, 16, 17].

Also related to the present proposal is [18], where an extension of ATL
for imperfect information games, namely CSLP, was introduced. CSLP can
express sophisticated strategic and epistemic game properties of coalitions under
uncertainty, including solution concepts. However, differently from the proposal
made here, CSLP consider the agents’ strategies implicitly, which are bound
directly to the agents they refer to.

MCMAS [19, 20] is a BDD-based model checker supporting both Atl and
epistemic specifications.

An important aspect in combining epistemic and strategic specifications is
the information model the agents adhere to, namely whether they have either
complete or incomplete information about the world and what form of mem-
ory they have. Epistemic analysis of MAS normally assumes that agents have
private, incomplete information about the world. It is known that the model
checking problem for Atl with incomplete information and perfect recall is un-
decidable [21]. Given this, the most widely adopted setting is incomplete infor-
mation with memoryless local states. In turn, this implies that Atl modalities
assume memoryless strategies. This raises further issues including whether local
strategies should be uniform [22, 19, 17].

In this work we follow this tradition, but extend the strategic dimension of
the analysis to a fragment of strategy logic [23]. A limitation of Atl is that while
specifications relate to the strategies of the agents to achieve a certain state of
affairs, the strategies themselves do not feature in the syntax explicitly; instead,
they are treated implicitly through agent modalities that refer to coalitions. The
logic Sl was introduced to overcome this by introducing strategies as first-class
citizens of the syntax and by allowing explicit quantification and binding over
them.

In this paper we define a combination of Sl with the standard epistemic
modalities on a memoryless variant of interpreted systems, introduce an algo-
rithm for model checking and present its implementation. A feature of the
present work is the relatively low complexity of the model checking problem,
which is shown to be PSpace-complete. As discussed in more details below,
this is achieved by limiting the scope of the epistemic operators in the language.

2

The rest of the paper is organised as follows. In Section 2 we introduce
the specification language Slk, define its semantics on a variant of interpreted
systems, illustrate its use, define the model checking problem and investigate
its complexity. In Section 3 we present a labelling algorithm to solve the model
checking problem for Slk specifications against interpreted systems. In Sec-
tion 4 we present MCMASSlk, a symbolic model checker derived from MCMAS,
implementing the labelling algorithm, and present experimental results. We
conclude in Section 5 by discussing related work.

2. Strategy Logic with Knowledge

In this section, we introduce Strategy Logic with Knowledge [24] (Slk, for
short) as an extension of the original Strategy Logic [25, 26] (Sl, for short)
introduced in [23]. Our aim is to define a formalism combining the ability of Sl
to express game-theoretic concepts with an epistemic framework for describing
the agents’ knowledge in the context of incomplete information. In order to
avoid the well-known undecidability result of the model-checking problem of
multi-agent systems under incomplete information and perfect recall [27], we
formalise the new logic by means of imperfect-recall semantics. This implies
that agents have no memory of the past, including when planning their strategy
to achieve a desired goal. Slk is defined w.r.t. interpreted systems [28], whereas
Sl has been introduced for concurrent game structures [27], since the former is
normally used in the context of incomplete information.

In the rest of this section, we give formal definitions of Slk syntax and se-
mantics, together with accessory concepts, such as strategy, profile and play.
These provide us with a solid foundation for the development of the model-
checking algorithm, which is theoretically presented in Section 3 and then de-
veloped as a software tool and benchmarked against several scalable scenarios
in Section 4.

2.1. Syntax

Sl syntactically extends liner-time temporal logic Ltl [29] by introducing
two strategy quantifiers 〈〈x〉〉 and [[x]], and an agent binding (a, x), where x is a
variable and a an agent. Informally, these operators can be read as “there exists
a strategy x”, “for all strategies x” and “bind agent a to the strategy associated
with x”, respectively. Slk further extends Sl with epistemic modalities [28]
representing individual knowledge Ka, group knowledge EA, distributed knowl-
edge DA and common knowledge CA, where a is an agent and A a set of agents.
Therefore, this language can be seen as a unique blend of three well-established
logic formalisms that allows us to reason about the temporal, strategic and
epistemic aspects of a model in a unified way.

Slk formulas are defined as follows.

Definition 1 (Syntax). Slk formulas are built inductively from the sets of
atomic propositions AP, variables Vr and agents Ag using the following context-
free grammar, where p ∈ AP, x ∈ Vr, a ∈ Ag and A ⊆ Ag:

3

ϕ ::= ⊥ | ⊤ | p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Xϕ | (ϕUϕ) | (ϕRϕ) |
〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ | Ka ϕ | EA ϕ | DA ϕ | CA ϕ

where the epistemic operators are applied to sentences only, i.e., free(ϕ) = ∅ in
Kaϕ, EAϕ, DAϕ and CAϕ, where the function free is introduced in Definition 2.
Slk denotes the set of formulas generated by the aforementioned rules.

As for Sl, the free agents and free variables free(ϕ) of an Slk formula ϕ are
the subset of Ag ∪ Vr containing (i) all agents a for which there is no binding
(a, x) before the occurrence of a temporal operator and (ii) all variables x for
which a binding (a, x) is not in the scope of any quantification 〈〈x〉〉 or [[x]].

Definition 2 (Free Agents and free Variables). The set of free agents and free
variables of an Slk formula is given by the function free : Slk → 2Ag∪Vr defined
inductively as follows:

1. free(⊥), free(⊤) , ∅;

2. free(p) , ∅, where p ∈ AP;

3. free(¬ϕ) , free(ϕ);

4. free(ϕ1 Opϕ2) , free(ϕ1) ∪ free(ϕ2), where Op ∈ {∧,∨};

5. free(Xϕ) , Ag ∪ free(ϕ);

6. free(ϕ1 Opϕ2) , Ag ∪ free(ϕ1) ∪ free(ϕ2), where Op ∈ {U,R};

7. free(Qnϕ) , free(ϕ) \ {x}, where Qn ∈ {〈〈x〉〉, [[x]] | x ∈ Vr};

8. free((a, x)ϕ) , free(ϕ), if a 6∈ free(ϕ), where a ∈ Ag and x ∈ Vr;

9. free((a, x)ϕ) , (free(ϕ)\{a})∪{x}, if a∈ free(ϕ), where a∈Ag and x∈Vr;

10. free(Ka ϕ), free(EA ϕ), free(DA ϕ), free(CA ϕ) , ∅, where a ∈ Ag and A ⊆
Ag.

A formula ϕ without free agents (resp. variables), i.e., with free(ϕ) ∩ Ag = ∅
(resp. free(ϕ) ∩ Vr = ∅), is called agent-closed (resp. variable-closed). If ϕ is
both agent-closed and variable-closed, it is called a sentence.

Note that strategies can be shared among the agents. However, the inter-
preted systems on which we will later define the semantics allow agents to use
different, possibly disjoint, sets of actions and thus also different sets of strate-
gies. Therefore, to determine the set of strategies over which a variable can
range, we need to know which agents are bound to it. We thus introduce the
set of sharing agents that refers, intuitively, to the agents associated with the
same given variable within a formula.

Definition 3 (Sharing Agents). The set of sharing agents of an Slk formula
w.r.t. a variable is given by the function shr : Slk×Vr → 2Ag defined inductively
as follows:

1. shr(⊥, x), shr(⊤, x) , ∅;

2. shr(p, x) , ∅, where p ∈ AP;

3. shr(Opϕ, x) , shr(ϕ, x), where Op ∈ {¬,X} ∪ {〈〈y〉〉, [[y]] | y ∈ Vr} ∪
{Ka | a ∈ Ag} ∪ {EA,DA,CA | A ⊆ Ag};

4

4. shr(ϕ1 Opϕ2, x) , shr(ϕ1, x) ∪ shr(ϕ2, x), where Op ∈ {∧,∨,U,R};

5. shr((a, x)ϕ, x) , {a} ∪ shr(ϕ, x);

6. shr((a, y)ϕ, x) , shr(ϕ, x), where y ∈ Vr \ {x};

Note that, for conciseness, we assume throughout this work that every vari-
able is quantified at most once in a given formula. This can be easily ensured by
renaming variables which are not free in the formula (e.g., (a, x)〈〈x〉〉(a, x)X p ≡
(a, x)〈〈y〉〉(a, y)X p 6≡ (a, y)〈〈x〉〉(a, x)X p).

2.2. Multi-Agent Model

As mentioned before, we provide a semantics for Slk based on interpreted
systems [2]. Differently from standard interpreted systems, here we take an
agent’s local states to be composed of private, or internal, states and states
resulting from portions of the environment that are visible to the agent in ques-
tion. This is similar to variants of interpreted systems such as broadcasting
systems [30].

Definition 4 (Interpreted Systems). Let Ag , {1, . . . , n} ∪ {Env} be a set
of agents, or players, where Env is a distinguished element representing the
environment and Σ , {1, . . . , n} is the set of proper agents, and AP a finite
non-empty set of atomic propositions. An interpreted system is a tuple I ,〈
(Sta,Aca,Pa, tra)a∈Ag , I, h

〉
whose components are formally defined as follows:

• Sta is a finite, non-empty set of local states of agent a ∈ Ag. For each
proper agent i ∈ Σ, we assume that Sti , Stpi × StvisiEnv, where Stpi is

the set of internal states of agent i and StvisiEnv is an image of the set of
the environment states visible to agent i via the agent’s visibility function
visi : StEnv → StvisiEnv. For conciseness, set StpEnv , StEnv.

A tuple s = (sp1 , . . . , s
p
n, sEnv) ∈ St , Stp1 × · · · × Stpn × StEnv is called a

global state. The symbols si(s) , (spi , visi(sEnv)) and s
p
i (s) , s

p
i represent

the local and internal state of proper agent i ∈ Σ in the global state s,
respectively. Again, set sEnv(s) , s

p
Env(s) , sEnv for conciseness.

• Aca is a finite non-empty set of actions that agent a ∈ Ag can perform.
By Dc , Ac× · · · ×Acn×AcEnv we denote the set of decisions, or joint
actions, of all agents. The symbol ca(δ) ∈ Aca represents the action of
agent a ∈ Ag in the decision δ ∈ Dc. Furthermore, Ac ,

⋃
a∈Ag Aca and

AcA ,
⋂
a∈A Aca are the sets of total actions and shared actions of the

agents in A ⊆ Ag.

• Pa : Sta → 2Aca \ {∅} is the protocol of agent a ∈ Ag, i.e., a function
that associates each local state sa ∈ Sta with the non-empty set of actions
Pa(sa) available to the agent a. The global protocol P : St → 2Dc is
defined as P(s) , {δ ∈ Dc | ∀a ∈ Ag . ca(δ) ∈ Pa(sa(s))} for all global
states s ∈ St.

5

• tra : Sta × Dc → Stpa is the transition function, or evolution function,
which maps every local state sa ∈ Sta of an agent a ∈ Ag and a decision
δ ∈ Dc to a new internal state of the same agent. The resulting new
local state of an agent is determined by both her internal state and the
visible portion of the amended environment state. The evolution of the
whole system is described by a global transition function tr : St×Dc → St
defined as follows: tr(s, δ) = s′ iff, for all agents a ∈ Ag, it holds that
tra(sa(s), δ) = spa(s

′).

• I ⊆ St is a finite non-empty set of initial global states. W.l.o.g., we assume
that St only contains the global states that are reachable from those in I
by following the transitions prescribed by the global transition function tr.

• h : AP → 2St is a valuation function that maps each atomic proposition
p ∈ AP to the set of global states h(p) in which it is true.

Modelling agent knowledge in multi-agent systems is a critical aspect in nu-
merous scenarios, since it allows to reason about the decision making process of
individual agents, as well as the interactions within a group of agents [28]. The
knowledge of (groups of) agents is represented using the four epistemic connec-
tives K, E, D and C already considered for the syntax of Slk. Traditionally,
the associated semantics is based on the concept of epistemic accessibility [31].
Intuitively, two states are epistemically accessible if they are indistinguishable
by an agent. This is formalised by means of a binary epistemic accessibil-
ity relation on the states of the system. In the case of an interpreted system

I =
〈
(Sta,Aca,Pa, tra)a∈Ag , I, h

〉
, the individual epistemic accessibility rela-

tion ∼a ⊆ St × St of an agent a ∈ Ag is naturally induced by her local states
in Sta: two global states s, s ∈ St are indistinguishable by agent a, in sym-
bols s ∼a s, iff sa(s) = sa(s), i.e., iff her local states in s and s are the
same. This relation provides the meaning for the modality Ka. The remaining
modalities EA, DA and CA base their semantics on suitable combinations of the
knowledge that the agents in the set A ⊆ Ag have:

• The group epistemic accessibility relation ∼E
A is defined as ∼E

A ,
⋃
a∈A ∼a,

i.e., s ∼E
A s iff the local states sa(s) and sa(s) of at least one agent

a ∈ A in the global states s, s ∈ St are the same.

• The distributed epistemic accessibility relation ∼D
A is defined as ∼D

A ,⋂
a∈A ∼a, i.e., s ∼D

A s iff the local states sa(s) and sa(s) of all agents
a ∈ A in the global states s, s ∈ St are the same.

• The common epistemic accessibility relation∼C
A is defined as∼C

A ,
(
∼E

A

)+
,

i.e., it is the transitive closure of the group accessibility relation.

As standard [28], we say that an agent knows a fact iff it is true at all the
worlds the agent considers possible, i.e., in all states that the agent cannot
distinguish from the current one.

6

We now recall the standard notions of strategy, profile and play. First observe
that an interpreted system I naturally induces a graph G(I) , 〈St,Ed〉, where
the edge relation Ed , {(s, tr(s, δ)) ∈ St × St | δ ∈ Dc} is obtained by simply
deleting all decisions on the transitions. A path π ∈ Stω in I is an infinite path
in G(I). By πi we will denote the i-th state along π. A strategy is a function
σ ∈ Str , St → Ac prescribing which action has to be performed in a certain
global state. We say that σ is coherent w.r.t. an agent a ∈ Ag (a-coherent, for
short) if, for each possible global state s ∈ St, the action that σ prescribes is
available to a, i.e., σ(s) ∈ Pa(sa(s)). The notion of coherence can be lifted to
a set of agents A ⊆ Ag (A-coherent, for short) by simply requiring that σ is
a-coherent, for every agent a ∈ A. By StrA ⊆ Str we denote the set of all A-
coherent strategies. A strategy σ is also uniform w.r.t. the agent a (a-uniform,
for short) if, for every pair of global states s, s ∈ St with s ∼a s, it holds that
σ(s) = σ(s). By UStrA ⊆ StrA we denote the set of all a-coherent uniform
strategies, for the agents a ∈ A ⊆ Ag. A strategy profile ξ ∈ Prf ⊆ Ag → Str
specifies for each agent a coherent strategy. Given a profile ξ ∈ Prf and an agent
a ∈ Ag, the action ξ(a)(s) ∈ Pa(sa(s)) determines which action a has chosen to
perform in a global state s ∈ St. To identify, instead, the whole decision in s,
we apply the flipping function ξ̂ : St → Dc defined as follows: ξ̂(s)(a) , ξ(a)(s).
A path π is a play w.r.t. a profile ξ (ξ-play, for short) iff, for all i ∈ N, there

exists a decision δ ∈ P(πi) such that δ = ξ̂(πi) and πi+1 = tr(πi, δ), i.e., πi+1 is
the successor of πi induced by the agent decision δ prescribed by the profile ξ
in the same state. Note that, given a state s, the deterministic structure of the
interpreted system ensures that there exists exactly one ξ-play π starting in s.
Such a play is called (ξ, s)-play and is denoted by play(ξ, s).

As an example, consider a generalised version of the cake-cutting prob-
lem [32], in which n agents share a cake of size d have to slice it in a fairly
way. In particular, we would like to formalise a protocol allocating the slices
fairly. The idea is a slight generalisation of the procedure proposed in [32] based
on a divide et impera approach, where the agents take turns to slice the cake,
while the environment responds by trying to ensure the cake is divided fairly.
More precisely, we assume that, at each even round, the n agents concurrently
choose the size of the piece they would each like to receive and, at each odd
round, the environment makes the cuts and assigns each piece to a subset of the
agents. The environment does this based on agent choices made in the previ-
ous turn. However, its action is not necessarily dictated by what agents want,
since their willing may represent a non-fair partitioning of the cake. Due to the
structure-by-rounds of our approach, the problem of cutting a cake of size d
among n agents is divided into several simpler problems, in which pieces of size
d′ < d have to be split among n′ < n agents. The resulting multi-player game
terminates once each agent receives a different slice. For simplicity, we assume
that we can only cut the cake into pieces of integer size. The formalisation of
the corresponding interpreted system I follows:

• The internal states of the environment have to maintain information about
the pieces of cake already sliced, their assignment to the agents, as well

7

as the associated sizes. When it is the environment’s turn to move, they
also have to record the requests for the sizes of the pieces made by the
agents in the previous turn. To distinguish between the turn of the agents
and that of the environment, we make use of a flag A that identifies those
states in which the agents need to make a choice. Formally, we have

StEnv = {((f, g), α)∈S×A | α 6= A ⇒ ∀a ∈ [1, n] . α(a) ≤ g(f(a))}.

where A = {A} ∪ [1, n] → [0, d], S = {(f, g) ∈ Z | ∃h ∈ [1, n] . rng(f) =
dom(g) = [1, h] ∧

∑
i∈dom(g) g(i) ≤ d} and Z = ([1, n]→ [1, n]) × ([1, n]⇀

[0, d]). Intuitively, the function f assigns to each proper agent a ∈ [1, n]
the f(a)-th piece of cake having size g(f(a)). Obviously, the sum of all sizes
cannot be greater than d, but it can be strictly less than this value, since
the environment can remove parts of the cake that cannot be split evenly
among the agents. In addition, if it is not the agents’ turn, i.e., α 6= A,
the function α returns, for each agent a ∈ [1, n], her own desired size α(a)
for the piece of cake to cut from the f(a)-th piece assigned to her. The
actions of the environment are all possible splittings and assignments of
the cake together with a nothing-to-do operation, i.e., AcEnv = S ∪ {⊥}.
To complete the definition of the environment, we first need to define a
partial order on the first component of a state, which allows to identify all
possible continuations of a given state. Formally, for all (f, g), (f ′, g′) ∈ S,
we write (f ′, g′) 4 (f, g) iff the following two conditions hold:

– If f ′(a) = f ′(a), then f(a) = f(a), i.e., if agents a, a ∈ [1, n]
share the same piece of cake in f ′ then they do the same in f.

–
∑
a∈f−1[{i}] g

′(f ′(a)) ≤ g(i) for all i ∈ dom(g), i.e., the agents sharing

the same piece i w.r.t. f, have pieces w.r.t. f ′ whose total size in g′

does not exceed that of i in g.

Intuitively, (f ′, g′) 4 (f, g) if f ′ is a refinement of f, i.e., f ′ is a finer
partition than f, and g′ is coherent with the size of the pieces of the
previous cut. At this point, we can formalise the protocol for Env as
follows: PEnv(((f, g), A)) = {⊥} and PEnv(((f, g), α)) = {(f ′, g′) ∈ S |
(f ′, g′) 4 (f, g)} if α 6= A. This means that, when it is the environment’s
turn, it can choose one of the possible finer continuations of a given state.
Finally, for the transition function we have tr(((f, g), A), δ) = ((f, g), α),
where α(a) = ca(δ), for all a ∈ [1, n], and tr(((f, g), α), δ) = (cEnv(δ), A)
when α 6= A. Informally, when it is the agents’ turn, the environment
just registers the agents’ choices in its internal state. When it is its turn
instead, it modifies its state by executing its own action cEnv(δ).

• All information about the cake required by an agent a ∈ [1, n] is al-
ready contained in the environment state and visible to to all agents,
i.e., visa(sEnv) = sEnv for all environment states sEnv ∈ StEnv. Hence,
the agent does not need any internal state, i.e., Stpa = {I}. The ac-
tions are simply the dimensions of the possible pieces of cake together

8

with a nothing-to-do operation, i.e., Aca = [1, d] ∪ {⊥}. In the environ-
ment’s turn, i.e., when α 6= A, the only possible executable action is ⊥,
i.e., Pa((I, ((f, g), α))) = {⊥}. Otherwise, we have Pa((I, ((f, g), α))) =
[0, g(f(a))], i.e., a can choose a size from 0 to the current dimension
of the f(a)-th piece. Because of the singleton internal state I, we have
tra((I, sEnv) , δ) = I for all environment states sEnv ∈ StEnv and decisions
δ ∈ Dc.

• The set of initial global states is the singleton I = {(I, . . . , I, ((f, g), A))},
where the entire cake is assigned to all agents, i.e., f(a) = 1 for all a ∈
[1, n], and its size is g(1) = d.

• The set of atomic propositions, which represent all possible sizes of a piece
of cake an agent can receive, is AP = [1, n] × [1, d] ∪ {#}. For example,
〈a, i〉 is true iff agent a ∈ [1, n] receives a piece of cake of size i ∈ [1, d], i.e.,
g(f(a)) = i. In addition, the symbol # is used to label the terminal states
in which each agent obtains a different piece. The labelling is defined
as follows: h(〈a, i〉) = {(I, . . . , I, ((f, g), α)) ∈ St | i = g(f(a))} for all
〈a, i〉 ∈ AP, α ∈ A and h(#) = {(I, . . . , I, ((f, g), α)) ∈ St | ∀a, a ∈
[1, n] . a 6= a ⇒ f(a) 6= f(a)} for all α ∈ A.

2.3. Semantics

We can now continue with the formalisation of Slk semantics. Similarly
to first-order logic, the interpretation of a formula makes use of an assign-
ment function which generally associates placeholders with some elements of
the quantification domain. For Slk, as in Sl, an assignment is a partial func-
tion χ ∈ Asg , (Vr ∪ Ag) ⇀ Str mapping variables and agents to strategies
such that χ(a) is a-coherent for every agent a ∈ dom(χ) ∩ Ag. By AsgP we
denote the set of assignments defined over the placeholders in P ⊆ Ag∪Vr. An
assignment χ is complete iff it is defined on all agents, i.e., Ag ⊆ dom(χ). In
this case, it directly identifies the profile χ↾Ag given by the restriction of χ to
Ag. In addition, χ[e 7→ σ], with e ∈ Vr ∪ Ag and σ ∈ Str, is the assignment
defined on dom(χ[e 7→ σ]) = dom(χ) ∪ {e} which differs from χ only in the fact
that e is associated with σ. Formally, χ[e 7→ σ](e) , σ and χ[e 7→ σ](e′) , χ(e′)
for all e′ ∈ dom(χ)\{e}. Obviously, in case e is an agent, the previous operation
is well-defined only if σ is e-coherent.

Given a complete assignment χ ∈ AsgP over a set of placeholders P ⊆ Ag∪Vr
and a state s ∈ St, we define the i-th translation of (χ, s) w.r.t. an index i ∈ N

as the pair (χ, s)i , (χ, s′) ∈ AsgP × St, where s′ = πi is the i-th state along
the corresponding play π = play(χ↾Ag, s).

We can now formally introduce the semantics of Slk.

Definition 5 (Semantics). Given an interpreted system I, for all Slk formulas
ϕ ∈ Slk, states s ∈ St and assignments χ ∈ Asg such that free(ϕ) ⊆ dom(χ)
and χ(x) is shr(ϕ, x)-coherent for all x ∈ dom(χ) ∩Vr, the satisfaction relation
I, (χ, s) |= ϕ is inductively defined as follows:

9

1. I, (χ, s) |= p if s ∈ h(p), with p ∈ AP.
2. Truth values and Boolean operators are interpreted as usual.
3. For all variables x ∈ Vr, we have that:

(a) I, (χ, s) |= 〈〈x〉〉ϕ if there exists a shr(ϕ, x)-coherent uniform strategy
σ ∈ UStrshr(ϕ,x) such that I, (χ[x 7→ σ], s) |= ϕ;

(b) I, (χ, s) |= [[x]]ϕ if, for all shr(ϕ, x)-coherent uniform strategies σ ∈
UStrshr(ϕ,x), it holds that I, (χ[x 7→ σ], s) |= ϕ.

4. For an agent a ∈ Ag and a variable x ∈ Vr, we have that: I, (χ, s) |=
(a, x)ϕ if I, (χ[a 7→ χ(x)], s) |= ϕ.

5. For an agent a ∈ Ag, we have that: I, (χ, s) |= Ka ϕ if, for all states
s′ ∈ St with s ∼a s

′, it holds that I, (∅, s′) |= ϕ.
6. For a set of agents A ⊆ Ag, we have that:

(a) I, (χ, s) |= EA ϕ if, for all states s′ ∈ St with s ∼E
A s′, it holds that

I, (∅, s′) |= ϕ;
(b) I, (χ, s) |= DA ϕ if, for all states s′ ∈ St with s ∼D

A s′, it holds that
I, (∅, s′) |= ϕ;

(c) I, (χ, s) |= CA ϕ if, for all states s′ ∈ St with s ∼C
A s′, it holds that

I, (∅, s′) |= ϕ.
7. Finally, if the assignment χ is also complete, we have that:

(a) I, (χ, s) |= Xϕ if I, (χ, s)1 |= ϕ;
(b) I, (χ, s) |= ϕ1 Uϕ2 if there is an index i ∈ N such that I, (χ, s)i |= ϕ2

and, for all indices j ∈ N with j < i, it holds that I, (χ, s)j |= ϕ1;
(c) I, (χ, s) |= ϕ1 Rϕ2 if, for all indices i ∈ N, it holds that I, (χ, s)i |=

ϕ2 or there is an index j ∈ N with j < i such that I, (χ, s)j |= ϕ1.

As the satisfaction of a sentence ϕ does not depend on the assignments, we
omit them and write I, s |= ϕ for an arbitrary state s ∈ St, and I |= ϕ when
I, s |= ϕ holds for all initial states s ∈ I in I.

Slk semantics differs from Sl’s one in the following two aspects, both of
which are consequences of using incomplete information: (i) it is defined on
uniform memoryless strategies; (ii) it supports epistemic operators. Note that,
while epistemic modalities increase the expressive power of Slk w.r.t. Sl, the
imperfect recall feature limits the agents’ behaviours.

As it is clear from the interpretation of the epistemic operators and the asso-
ciated syntactic restriction on free placeholders (i.e., all the epistemic operators
can only predicate on sentences), we assume that agents are not aware of the
current strategy assignment. In fact, in as far as the epistemic accessibility re-
lation is concerned, they are not aware of the strategy chosen at a state. This
assumption is implemented by the empty assignments in the inductive defini-
tions of the epistemic cases.

Also observe that Slk strictly subsumes all logics in the Atl* hierarchy with
incomplete information and imperfect recall imposed on all agents, including
Ctlk and Atlk. Moreover, it allows us to express properties that cannot be
formalised in any of the previous logics, including the original Sl. For example,
given an interpreted system with agents Ag = {a, b}, the Slk sentence

E{a,b} [[e]][[x]](Env, e)(a, x)(b, x) [GF p ∧ GF¬p]

10

expresses that a and b both know that if they use the same strategy, the atomic
proposition p will be infinitely often true and infinitely often false.

Lastly, note that in the formalisation above all agents in the system are
assumed to adhere to memoryless strategies. This is in contrast with memoryless
ATL formalisms whereby agents the coalition in the formula are allowed to follow
memoryfull strategies. We leave combinations of memoryless and memoryfull
strategies for further work.

We now illustrate Slk’s expressive power to express Nash equilibria by con-
tinuing our analysis of the cake cutting problem. Recall that we use atomic
propositions 〈a, i〉 ∈ [1, n] × [1, d] to indicate that agent a gets a piece of cake
of size i. In addition, the symbol # is used to denote the terminal states in
which a final division of the cake is reached. The existence of a protocol for the
cake-cutting problem can be expressed by the following Slk specification

ϕ = 〈〈x〉〉 (ϕF ∧ ϕS)

where:

• ϕF = [[y]] · · · [[yn]](ψNE → ψE) ensures that the protocol x is fair, i.e., all
possible Nash equilibria (y, . . . , yn) of the agents guarantee equality of
splitting;

• ϕS = 〈〈y〉〉 · · · 〈〈yn〉〉ψNE ensures that the protocol has a solution, i.e., there
is at least one Nash equilibrium;

• ψNE = ♭
∧n
a=1

(∧d
i=1

(
〈〈z〉〉 (a, z)pia

)
→
(∨d

j=i p
j
a

))
ensures that, if agent

a has a strategy z that allows her to obtain a piece of cake of size i once
the strategies of the other agents are fixed, she is already able to obtain
a slice of size j ≥ i by means of her original strategy ya; in other words,
(y, . . . , yn) is a Nash equilibrium;

• ψE = ♭
∧n
a=1 p

⌊d/n⌋
a ensures that agent a is able to obtain a piece of size

⌊d/n⌋;

• ♭ = (Env, x)(1, y) · · · (n, yn) and p
i
a = F(# ∧ 〈a, i〉) are auxiliary abbrevi-

ations.

Observe that we can perform the synthesis of cake-cutting protocols satisfying
specific desired properties, by simply conjoining the corresponding Slk formal-
isation with the formulas ϕF and ϕS in ϕ.

Note, that, as above, when reasoning about Nash equlibria all agents in the
system are assumed to follow memoryless strategies.

2.4. Model Checking

We now introduce the model-checking problem for Slk. In particular, we
show that its imperfect-recall semantics allows us to obtain a decision procedure
whose complexity is, in comparison to that of Sl with complete information,

11

considerably simpler w.r.t. the length of specification, but notably harder w.r.t.
the size of the system. Indeed, the perfect-recall semantics of Sl [23] induces
the related model checking problem to be polynomial in data complexity and
non-elementary in formula complexity [26]. On the contrary, we prove that Slk
model checking is PSpace-complete w.r.t. both input dimensions.

Definition 6 (Model Checking). Given an interpreted system I, a state s ∈ St,
an assignment χ and an Slk sentence ϕ ∈ Slk, the model-checking problem
involves determining whether I, (χ, s) |= ϕ holds.

The original algorithmic procedure for Sl follows an automata-theoretic ap-
proach [33], reducing the decision problem for the logic to the emptiness problem
of a tree automaton, where the Ltl properties are verified by means of an em-
bedded word automaton obtained by a variation of the classic Vardi-Wolper
construction [34]. The non-elementariness w.r.t. the length of the Sl specifica-
tion is due to the alternation of the memoryful strategy quantifiers that requires
alternating projection operations on the automaton, each of which induces an
exponential blow-up. This construction is, however, independent of the under-
lying model, a key feature that is crucial for the exhibited data complexity.

Unfortunately, due to the undecidability result proved for Atl with mem-
oryful strategies under incomplete information [27], we cannot hope to use the
same approach of standard Sl when agents only have partial information about
the global states. In fact, Slk avoids the undecidability of the model-checking
problem by precisely exploiting its imperfect recall semantics. Effectively, we
are removing agent memory and forcing them to choose their actions purely
based on their current local states. In this way, the domain of strategies over
which the quantifications have to range is necessarily finite, due to the finiteness
of the underlying model. This fact allows us to apply a completely different ap-
proach, where one simply iterates over all possible memoryless strategies. Once
the strategies are assigned to all corresponding variables in the Slk formula, we
can then project them onto the interpreted structure obtaining a labelled graph,
where the Ltl property is verified recursively on the structure of the formula,
by mimicking the semantics definition. It is quite immediate to observe that
this procedure only requires a polynomial amount of space w.r.t. both the size
of the model and the length of the Sl specification. However, it is important
to note that this approach is not independent of the model under verification.
Even more, there is no way to avoid this unless PTime = PSpace. We indeed
prove that the Slk model-checking problem is hard for the latter complexity
class.

Since the model checking of Atl* with imperfect recall is known to be
PSpace-complete [35], one may be tempted to immediately conclude that the
same holds for Slk. However, there is an important difference between Atl*

and Slk semantics: the former assigns memoryless strategies only to the existen-
tially quantified agents, whereas the latter assigns memoryless strategies to all
agents. Informally, an Atl* expression 〈〈A〉〉ψ means that there exist memory-
less strategies for agents in A such that, no matter how the other agents behave,
the property ψ holds. The corresponding Slk formula {〈〈xa〉〉(a, xa)}a∈A {[[ya]]

12

(a, ya)}a∈Ag\Aϕ has a slightly different meaning: there exist memoryless strate-
gies for agents in A such that, for all memoryless strategies of the remaining
agents, ψ holds. Intuitively, Slk restricts the universally quantified agents more
than Atl* does1. Therefore, Slk cannot inherit the hardness result from Atl*,
which is, in its turn, inherited from that of Ltl. Instead, we show a direct re-
duction from the satisfiability problem of quantified Boolean formulas (QBF,
for short), which was proved to be complete for PSpace in [36]. This reduction
is loosely inspired by the one used to prove a similar result for Substructure
Temporal Logic over finite models [37].

Before concluding this section with a proof of the model-checking result for
Slk, we stress that although memoryless strategies are less powerful than the
memoryful ones, they are more compact and, therefore, easier to handle. These
features are desirable in several scenarios. Consider, for example, the situation
in which we want to synthesise the correct behaviour of a simple hardware
device with a fixed amount of memory. In this case, we can model each possible
memory settings of the device as a local state and allow arbitrary transitions
between them. Informally, we let the agent representing the device decide what
she wants to remember. Thus, it is appropriate to treat this agent as being
memoryless, since her real memory is already encoded in her local state space.
We then model check the property describing the desired behaviour. If we
succeed, we can extract from the procedure a memoryless strategy as a witness,
which ensures that the fixed-size memory is sufficient for the agent to achieve
the required goal.

Theorem 1 (Model Checking). The model-checking problem for Slk is PSpace-
complete w.r.t. both the size of the model and the length of the specification.

Proof. The proof is divided into two parts. In the first one we give the PSpace
decision procedure; in the second we provide the PSpace hardness proof by
means of a reduction from QBF satisfiability.

To verify that a given Slk formula ϕ is satisfied over an interpreted system
I at a state s ∈ St under a memoryless assignments χ ∈ Asg, we make use of
the PSpace computable recursive function VerifyI : Sl× Asg × St → {⊥,⊤}
defined as follows, for which it holds that I, (χ, s) |= ϕ iff VerifyI(ϕ, χ, s) = ⊤:

• VerifyI(ϕ, χ, s) , ϕ, with ϕ ∈ {⊥,⊤}.

• VerifyI(p, χ, s) , ⊤ iff s ∈ h(p), with p ∈ AP.

• VerifyI(¬ϕ, χ, s) , ⊤ iff VerifyI(ϕ, χ, s) = ⊥.

• VerifyI(ϕ1∧ϕ2, χ, s),⊤ iff VerifyI(ϕ1, χ, s)=⊤ and VerifyI(ϕ2, χ, s)=
⊤.

1Note that this subtle difference in the semantics has no effect on the relationship between
Sl and Atl* with perfect recall since enforcing memoryful strategies on agents does not
constrain their behaviour in any way.

13

• VerifyI(ϕ1∨ϕ2, χ, s),⊤ iff VerifyI(ϕ1, χ, s)=⊤ or VerifyI(ϕ2, χ, s)=
⊤.

• VerifyI(〈〈x〉〉ϕ, χ, s) , ⊤ iff there exists a memoryless shr(ϕ, x)-coherent
uniform strategy σ∈UStrshr(ϕ,x) such that VerifyI(ϕ, χ[x 7→ σ], s)=⊤.

• VerifyI([[x]]ϕ, χ, s) , ⊤ iff for all memoryless shr(ϕ, x)-coherent uniform
strategies σ ∈ UStrshr(ϕ,x) it holds that VerifyI(ϕ, χ[x 7→ σ], s) = ⊤.

• VerifyI((a, x)ϕ, χ, s) , ⊤ iff VerifyI(ϕ, χ[a 7→ χ(x)], s) = ⊤.

• VerifyI(Ka ϕ, χ, s) , ⊤ iff VerifyI(ϕ,∅, s
′) = ⊤, for all states s′ ∈ St

with s ∼a s
′.

• VerifyI(EA ϕ, χ, s) , ⊤ iff VerifyI(ϕ,∅, s
′) = ⊤, for all states s′ ∈ St

with s ∼E
A s′.

• VerifyI(DA ϕ, χ, s) , ⊤ iff VerifyI(ϕ,∅, s
′) = ⊤, for all states s′ ∈ St

with s ∼D
A s′.

• VerifyI(CA ϕ, χ, s) , ⊤ iff VerifyI(ϕ,∅, s
′) = ⊤, for all states s′ ∈ St

with s ∼C
A s′.

• VerifyI(Xϕ, χ, s) , ⊤ iff VerifyI(ϕ, χ, s
′) = ⊤, where s′ = tr(s, χ̂↾Ag(s))

is the successor of the state s following the decision χ̂↾Ag(s) obtained by
evaluating the flipping of the profile χ↾Ag on s itself.

• To compute VerifyI(ϕ1 Uϕ2, χ, s), we use the auxiliary bounded-recursive
function VerifyU

I (ϕ1 Uϕ2, χ, s,C), where C ⊆ St is the set of states al-
ready visited during the verification of the property ϕ1 Uϕ2. We set
VerifyI(ϕ1 Uϕ2, χ, s) , VerifyU

I (ϕ1 Uϕ2, χ, s, ∅) and define the latter
as follows, by exploiting the classic one-step unfolding property of the
until operator:

– if s ∈ C, then VerifyU
I (ϕ1 Uϕ2, χ, s,C) , ⊥;

– if s 6∈C and VerifyI(ϕ2, χ, s) = ⊤, then VerifyU
I (ϕ1 Uϕ2, χ, s,C) ,

⊤;

– if s 6∈ C and VerifyI(ϕ2, χ, s) = ⊥, then VerifyU
I (ϕ1 Uϕ2, χ, s,C) ,

⊤ iff VerifyI(ϕ1, χ, s) = ⊤ and VerifyU
I (ϕ1 Uϕ2, χ, s

′,C∪{s}) = ⊤,
where s′ = tr(s, χ̂↾Ag(s)) is the successor of the state s following the
decision χ̂↾Ag(s).

• Similarly to the previous case, to compute VerifyI(ϕ1 Rϕ2, χ, s), we use
the auxiliary bounded-recursive function VerifyR

I (ϕ1 Rϕ2, χ, s,C), where
C ⊆ St is the set of states already visited during the verification of the
property ϕ1 Rϕ2. We set VerifyI(ϕ1 Rϕ2, χ, s) , VerifyR

I (ϕ1 Rϕ2, χ,
s, ∅) and define the latter as follows, by exploiting the classic one-step
unfolding property of the release operator:

14

– if s ∈ C, then VerifyR
I (ϕ1 Rϕ2, χ, s,C) , ⊤;

– if s 6∈ C and VerifyI(ϕ2, χ, s) = ⊥, then VerifyR
I (ϕ1 Rϕ2, χ, s,C) ,

⊥;

– if s 6∈ C and VerifyI(ϕ2, χ, s) = ⊤, then VerifyR
I (ϕ1 Rϕ2, χ, s,C) ,

⊥ iff VerifyI(ϕ1, χ, s) = ⊥ and VerifyR
I (ϕ1 Rϕ2, χ, s

′,C∪{s}) = ⊥,
where s′ = tr(s, χ̂↾Ag(s)) is the successor of the state s following the
decision χ̂↾Ag(s).

The correctness of the construction can be shown by induction on the syn-
tactic structure of the Slk formulas, by observing that a formula ϕ1 Uϕ2 is
not satisfied on I starting at s under χ, when the same state is found twice
on the path induced by χ without proving that ϕ2 holds somewhere on it be-
fore ϕ1 is falsified. A similar reasoning can be used to establish the case for
ϕ1 Rϕ2 as well. As far as the complexity is concerned, a single VerifyI(ϕ, χ, s)
function call (excluding recursion) requires |ϕ| + |St| · ⌈log2 |Ac|⌉ · |free(ϕ)| +
⌈log2 |St|⌉ space to maintain its parameters. Similar reasoning can be done for
VerifyU

I (ϕ1 Uϕ2, χ, s,C) and VerifyR
I (ϕ1 Rϕ2, χ, s,C) function calls, which

require |ϕ| + |St| · ⌈log2 |Ac|⌉ · |free(ϕ)| + ⌈log2 |St|⌉ + |St| space. Furthermore,
in each recursive call (of any of the three checking functions), either ϕ is de-
composed or C is augmented. Hence, the recursion depth cannot be more than
O(|ϕ| · |St|) at any point in time. It follows that the model checking procedure

requires only O(|ϕ|2 · |St|2 · ⌈log2 |Ac|⌉) space.
We now turn to the PSpace lower bound, which is proved by means of

a direct reduction from QBF satisfiability. Let ϕ = ℘ψ be a QBF formula
over the Boolean variables in X = {x, . . . , xk}, where ℘ is the quantification
prefix of the form Qn 1x · · ·Qn kxk, with Qn a ∈ {∃, ∀} for a ∈ [1, k], and the
matrix ψ =

∧m
i=1 Di is a Boolean formula in conjunctive normal form over the

variables in X, where each clause Di can be seen as a subset of the literals in
AP = {x, x | x ∈ X}. We transform ϕ into a suitable Slk formula ϕ̃ over
the set of atomic propositions AP, where, for each x ∈ X, we need two atomic
propositions, one for the positive literal x and one for the negative literal ¬x. In
the formula ϕ̃, the k propositional quantifications are replaced by corresponding
strategy quantifications for k different proper agents. These quantifications are
applied to a suitable encoding ψ̃ of the matrix ψ, where the verification of the
conjunction of clauses is assigned to a distinguished agent, the k + 1-th, while
that of each clause to the agent embodying the environment. Formally, we have
ϕ̃ = Qn ′

1x · · ·Qn
′
kxk[[xk+]]〈〈xEnv〉〉(1, x) · · · (k, xk)(k + 1, xk+)(Env, xEnv)ψ̃,

where the Ltl formula ψ̃ is defined later in the proof and Qn ′
axa = 〈〈xa〉〉, if

Qn a = ∃, and Qn ′
axa = [[xa]] otherwise. The formula ϕ̃ is then checked against

the interpreted system I described in the following paragraph, which ensures
that ϕ is satisfiable iff I |= ϕ̃. The correctness of this construction can be shown
by induction on the number k of quantifications occurring in ϕ.

The idea behind the construction of I is to have a global state for each
clause Di, each variable in X and each of its two possible Boolean valuations.
Every proper agent a from 1 to k determines the valuation of her associated

15

variable xa. Agent k+1 determines which clause Di we have to focus on for the
verification task. Finally, the environment agent Env tries to satisfy the chosen
clause, by selecting the variable xa with the appropriate valuation. In Figure 1,
we exemplify the reduction for the QBF formula ϕ = ∀p∃q∃r . (p ∨ q) ∧ (¬q ∨
r)∧ (¬r∨¬p), by showing the internal graph structure of the environment. The
formal description of I follows:

• The system consists of the k + 1 proper agents in Σ = {1, . . . , k + 1}
together with the environment Env.

• The set of internal states of the environment is StEnv = {I}∪{D, . . . ,Dm}
∪ {x, . . . , xk}, where I represents the initial state. Since the task as-
signed to Env is to verify a given clause Di by selecting one of its liter-
als, we have AcEnv = {⊥} ∪ {1, . . . , k} as set of actions, where ⊥ repre-
sents the idle action. Accordingly, Env employs the following protocol:
PEnv(sEnv) = {a ∈ {1, . . . , k} | {xa, xa} ∩ Di 6= ∅}, if sEnv = Di for some
i ∈ {1, . . . ,m}, and PEnv(sEnv) = {⊥} otherwise. In this way, we are sure
that Env can only select one of the indices a of the variables occurring in
the chosen clause Di. Finally, the transition function is defined as follows:
trEnv(I, δ) = Dck+(δ), trEnv(Di, δ) = xcEnv(δ) and trEnv(xj , δ) = xj , for
j ∈ [1, k]. Intuitively, when Env is at the initial state, it transits to the
clause of index ck+(δ) chosen by the agent k+ 1. If the state is a clause,
the environment can decide to move to the variable of index cEnv(δ). Once
a state representing a variable is reached, it remains there forever.

• Agent k + 1 only needs to decide which clause will be verified. There-
fore, she has only one internal state, Stpk+1 = {I}, sees the whole en-
vironment state, visk+(sEnv) = sEnv, her transition function is trivial,
trk+(sk+, δ) = I, her actions are Ack+ = {⊥} ∪ {1, . . . ,m} and the
protocol is set as follows: Pk+(sk+) = {1, . . . ,m}, if sk+ = (I, I), and
Pk+(sk+) = {⊥} otherwise.

• Each agent a ∈ {1, . . . , k} has a set of internal states equal to Stpa =
{I, 0, 1}, where I represents the initial state, while 0 and 1 are the Boolean
valuations to be assigned to the variable xa. The agent sees the whole
environment state, i.e., visa(sEnv) = sEnv for all sEnv ∈ StEnv. The set
of actions is Aca = {⊥, 0, 1}, where the idle action ⊥ is used by a when
she does not need to set the value of the variable. The protocol and the
transition function are defined as follows: Pa(sa) = {0, 1} and tra(sa, δ) =
ca(δ), if sa = (I, xa), and Pa(sa) = {⊥} and tra(sa, δ) = sa, if sa 6= (I, xa).
Intuitively, agent a can choose the value for her own variable xa only
when she is in her initial state and the environment is in its internal state
associated with the variable xa.

• There is only one global initial state represented by the (k+2)-tuple whose
components are all equal to I, I = {(I, . . . , I)}.

16

• Finally, the valuation function for the atomic propositions is set as follows:

h(xa) = {s ∈ St | [∃i ∈ {1, . . . ,m} . sEnv(s) = Di ∧ xa ∈ Di]∨

[sEnv(s) = xa ∧ spa(s) = 1]} for all xa ∈ AP ∩X

h(xa) = {s ∈ St | [∃i ∈ {1, . . . ,m} . sEnv(s) = Di ∧ xa ∈ Di]∨

[sEnv(s) = xa ∧ spa(s) = 0]} for all xa ∈ AP \X

Intuitively, we label with xa (resp. xa) all global states corresponding to
clauses containing this proposition. We also label those states correspond-
ing to the valuation of the variable set to 1 (resp. 0).

I

(¬q ∨ r)(p ∨ q) (¬r ∨ ¬p)

pq r

ck+(δ) = 1

ck+(δ) = 2

ck+(δ) = 3

cEnv(δ) = 1

cEnv(δ) = 2

cEnv(δ) = 2 cEnv(δ) = 3

cEnv(δ) = 3

cEnv(δ) = 1

∗ ∗ ∗

Figure 1: Structure underlying the environment.

Now note that the number of reachable global states in this interpreted
system is 1+m+3k. Indeed, at the initial global state (I, . . . , I, I), the only agent
that can execute a non-idle action is agent (k+1), choosing one of them possible
clauses Di. In the resulting global state (I, . . . , I,Di), the environment is the
only agent capable of changing its internal state, thereby reaching one of the k
variables, say xj . The global state resulting from this action is (I, . . . , I, xj). In
this situation, only agent j can change her own state, by choosing one of the two
possibles actions α ∈ {0, 1}, which represents the valuation for the variable xj .
Consequently, the system reaches the global state (I, . . . , α, . . . , I, xj), where α
is the j-th component of the tuple. The system will then remain in this state
forever. Observe that, since only one agent at a time can perform a non-idle
action, the number of possible transitions in the system, i.e., the number of
decisions declared in the global protocol, is linear in the size of the input QBF
formula as well, precisely m+

∑m
i=1 |Di|+ 2k.

To conclude the reduction, we have to define the Ltl formula ψ̃. The idea
here is to ensure that, when the environment chooses a given variable to satisfy

17

a clause Di selected by agent k + 1, the polarity of the variable in the clause
and that of its valuation agree. In other words, for each proposition xa, we
have to ensure that either the proposition itself, or its dual xa occurs along
the play identified by the strategies. Therefore, to ensure the above, we take
ψ̃ =

∧k
a=1 ¬ ((Fxa) ∧ (Fxa)).

3. Labelling Algorithm for Model Checking

In this section we describe our novel labelling algorithm for Slk which solves
the model-checking problem described in Definition 6.

3.1. Algorithm

The model checking algorithm CheckI for Slk, which calculates the set of
global states in which a given formula is true, is an extension of the existing
ones for temporal logics. It differs from those in two ways:

1. It has an extra input parameter which represents the binding of agents
to variables. When model checking a formula, we start with an empty
binding and augment it whenever an agent binding operator (a, x)ϕ is
encountered.

2. Unlike the original algorithm, which merely returns the set of states in
which a given formula holds, the present algorithm returns a set of ex-
tended states. Intuitively, an extended state is a pair of (i) a global state
and (ii) a variable assignment (mapping variables to strategies) subject
to which the formula holds in that state.

We will now define the aforementioned concepts of a binding and variable
assignment more formally. For simplicity, we will fix Vr to always be the set of
variables quantified in the Slk formula we are considering (e.g., if the formula
to be checked is ϕ = 〈〈x〉〉[[y]](a, x)(b, y)X p, then we set Vr = {x, y}). This will
allow us to define variable assignments as total functions, which will make the
theory and proofs much simpler.

Definition 7 (Bindings). Let I be an interpreted system. Then a binding is
a partial function b : Ag ⇀ Vr which maps agents in its domain to variables.
Bnd , Ag ⇀ Vr denotes the set of all bindings.

Definition 8 (Variable Assignments). Let I be an interpreted system. Then
a variable assignment is a function v : Vr → UStr which maps variables in its
domain to uniform shared memoryless strategies. VAsg , Vr → UStr denotes
the set of all variable assignments.

Note that variable assignments are also assignments, i.e., VAsg ⊆ Asg. As
an example of an extended state, consider the tuple (s1, {(x, σx) , (y, σy)}), rep-
resenting the global state s1 in which the agents bound to variables x and y act
according to the strategies σx and σy, respectively. We formalise this below.

18

Definition 9 (Extended States). Let I be an interpreted system, s ∈ St a global
state and v ∈ VAsg a variable assignment. Then an extended state is a pair
〈s, v〉 ∈ St×VAsg. Ext , St×VAsg denotes the set of all extended states.

Intuitively, an extended state 〈s, v〉 ∈ Ext guarantees a formula ϕ ∈ Slk iff
all assignments which agree with v make the formula true in the state s.

Definition 10 (Guarantees). Let I be an interpreted system, 〈s, v〉 ∈ Ext an
extended state, b ∈ Bnd a binding and ϕ ∈ Slk an Slk formula with free(ϕ) ∩
Ag ⊆ dom(b). We say that 〈s, v〉 guarantees ϕ in I under b iff for the assignment
χv = v ∪ {(a, v(b(a))) | a ∈ dom(b)} ∈ Asg, we have I, (χv, s) |=Slk ϕ.

Now that we have covered the basic structures, we can define the concepts
of negation and predecessors of extended states. These will be necessary for the
model checking algorithm presented at the end of this subsection. Let us start
with negation. Assume that we have calculated the set of extended states E
which guarantee the formula ϕ under a binding b. We want to find the set E′ of
extended states which guarantee the formula ¬ϕ. Intuitively, E′ should contain
all extended states that somehow disagree with E. E′ is calculated as follows:

E′ = Ext \ E

We will now prove that our claim is correct.

Lemma 1. Let I be an interpreted system, b ∈ Bnd a binding and ϕ ∈ Slk an
Slk formula with free(ϕ)∩Ag ⊆ dom(b). Let E ⊆ Ext be the set of all extended
states which guarantee ϕ in I under b. Then Ext \ E is the set of all extended
states which guarantee ¬ϕ in I under b.

Proof. Let E′ ⊆ Ext be the set of all extended states which guarantee ¬ϕ in I
under b. We show that E′ = Ext \ E:

⇒: Take an arbitrary extended state 〈s, v〉 ∈ E′. Since 〈s, v〉 guarantees ¬ϕ,
we have I, (χv, s) |=Slk ¬ϕ. By Slk semantics (Definition 5), we have
I, (χv, s) 6|=Slk ϕ. Thus, 〈s, v〉 /∈ E, so we have 〈s, v〉 ∈ Ext \ E.

⇐: Take an arbitrary extended state 〈s, v〉 ∈ Ext \ E. Since 〈s, v〉 does not
guarantee ϕ (otherwise, we would have 〈s, v〉 ∈ E), we have I, (χv, s) 6|=Slk

ϕ. By Slk semantics (Definition 5), I, (χv, s) |=Slk ¬ϕ. Thus, 〈s, v〉 ∈ Ext
guarantees ¬ϕ, so we have 〈s, v〉 ∈ E′.

Having covered negation, it remains to define how to calculate the set of
previous extended states, i.e., given a set of extended states E ⊆ Ext which
guarantee ϕ under a binding b, determine the set of extended states E′ ⊆ Ext
which guarantee Xϕ under the same binding.

We first define the transition relation on global states implied by a binding
and a variable assignment. Intuitively, there is a transition from state s1 ∈ St
to a state s2 ∈ St (given the binding and variable assignment) if there exists
a decision between them such that each agent acts according to the strategy
assigned to the variable she is bound to.

19

Definition 11 (Implied Transition Relation). Let I be an interpreted system,
s1, s2 ∈ St two global states, b ∈ Bnd a binding and v ∈ VAsg a variable
assignment. Then the transition relation →b

v ⊆ St × St implied by b and v is
defined by s1 →b

v s2, iff dom(b) = Ag and there exists a decision δ ∈ Dc such
that tr(s1, δ) = s2 and, for all agents a ∈ Ag, it holds that ca(δ) = v(b(a))(s1).

We are now ready to explain how the set of previous extended states is cal-
culated. Intuitively, given an extended state 〈s, v〉 ∈ Ext, the previous extended
states are pairs 〈s′, v〉 where s is the successor of s′ when all agents act according
to their strategies in v.

Definition 12 (Previous Extended States). Let I be an interpreted system,
E ⊆ Ext a set of extended states and b ∈ Bnd a binding such that dom(b) = Ag.
Then the function pre : 2Ext×Bnd → 2Ext returning the set of previous extended
states is defined as pre(E, b) ,

{
〈s, v〉 ∈ Ext

∣∣ ∃s′ ∈ St. 〈s′, v〉 ∈ E ∧ s→b
v s

′
}
.

Again, we will show that the function pre is correct.

Lemma 2. Let I be an interpreted system, b ∈ Bnd a binding with dom(b) = Ag
and ϕ ∈ Slk an Slk formula. Let E ⊆ Ext be the set of all extended states
which guarantee ϕ in I under b. Then pre(E) ⊆ Ext is the set of all extended
states which guarantee Xϕ in I under b.

Proof. Let E′ ⊆ Ext be the set of all extended states which guarantee Xϕ in I
under b. We show that pre(E) = E′:

⇒: Take an arbitrary extended state 〈s, v〉 ∈ pre(E, b). By construction, there
is a global state s′ ∈ St such that 〈s′, v〉 ∈ E and s→b

v s
′. Since 〈s′, v〉 ∈ E

guarantees ϕ, we have I, (χv, s
′) |=Slk ϕ. The implied transition relation

implies that there exists a decision δ ∈ Dc such that s′ = tr(s, δ) where
ca(δ) = v(b(a))(s) for all agents a ∈ Ag. This can be also rewritten
as s′ = tr(s, 〈χv(a)(s) : a ∈ Ag〉) because χv(a) = v(b(a)) for all agents
a ∈ dom(b) = Ag (see Definition 10).

We want to show that 〈s, v〉 guarantees Xϕ, i.e., I, (χv, s) |=Slk Xϕ.
This is the case iff I, (χv, π1) |=Slk ϕ where π = play(χv, s) (see Defi-
nition 5). From the definition of a play (see Subsection 2.1), we obtain
π1 = tr(s, 〈χv(a)(s) : a ∈ Ag〉), so π1 = s′. Since we have already shown
that I, (χv, s

′) |=Slk ϕ, we have I, (χv, s) |=Slk Xϕ, so 〈s, v〉 ∈ E′ as
required.

⇐: Take an arbitrary extended state 〈s, v〉 ∈ E′. Thus, we have I, (χv, s) |=Slk

Xϕ. By Definition 5, this means that I, (χv, π1) |=Slk ϕ where π =
play(χv, s). From the definition of a play (see Subsection 2.1, we obtain
π1 = tr(s, 〈χv(a)(s) : a ∈ Ag〉). This can be equivalently written as π1 =
tr(s, δ) for some δ ∈ Dc where ca(δ) = χv(a)(s) = v(b(a))(s) for all agents
a ∈ Ag.

As dom(b) = Ag by assumption, we have s →b
v π1. Moreover, since

I, (χv, π1) |=Slk ϕ, we have 〈π1, v〉 ∈ E (because it guarantees ϕ). There-
fore, we have 〈s, v〉 ∈ pre(E, b) as required.

20

Finally, we have all the ingredients to define the model checking algorithm
CheckI(·, ·) for Slk.

Definition 13 (Slk Model Checking Algorithm). Let I be an interpreted sys-
tem, ϕ ∈ Slk an Slk formula and b ∈ Bnd a binding, such that free(ϕ)∩Ag ⊆
dom(b). Then the model checking function CheckI : Slk × Bnd → 2Ext is in-
ductively defined as follows:

1. CheckI(⊤, b) , Ext.

2. CheckI(p, b) , {〈s, v〉 | s ∈ h(p)}, with p ∈ AP.

3. For all formulas ϕ,ϕ1, ϕ2 ∈ Slk, it is defined as:

(a) CheckI(¬ϕ, b) , Ext \ CheckI(ϕ, b);
(b) CheckI(ϕ1 ∧ ϕ2, b) , CheckI(ϕ1, b) ∩ CheckI(ϕ2, b);
(c) CheckI(ϕ1 ∨ ϕ2, b) , CheckI(ϕ1, b) ∪ CheckI(ϕ2, b).

4. For an agent a ∈ Ag, a variable x ∈ Vr and a formula ϕ ∈ Slk,
CheckI((a, x)ϕ, b) , CheckI(ϕ, b[a 7→ x]).

5. For a variable x ∈ Vr and an Slk formula ϕ ∈ Slk, it is defined as:

(a) CheckI(〈〈x〉〉ϕ, b) ,
{
〈s, v〉 ∈ Ext

∣∣ ∃f ∈ UStrshr(ϕ,x). 〈s, v[x 7→ f]〉 ∈

CheckI(ϕ, b)
}
;

(b) CheckI([[x]]ϕ, b) ,
{
〈s, v〉 ∈ Ext

∣∣ ∀f ∈ UStrshr(ϕ,x). 〈s, v[x 7→ f]〉 ∈

CheckI(ϕ, b)
}
.

6. For all formulas ϕ,ϕ1, ϕ2 ∈ Slk, it is defined as:

(a) CheckI(Xϕ, b) , pre(CheckI(ϕ, b), b);
(b) CheckI(Fϕ, b) , CheckI(⊤Uϕ, b);
(c) CheckI(Gϕ, b) , CheckI(¬F¬ϕ, b);
(d) CheckI(ϕ1 Uϕ2, b) , lfpX

[
CheckI(ϕ2, b)∪(CheckI(ϕ1, b) ∩ pre(X, b))

]

where lfpXf is the least fixed point of function f ;
(e) CheckI(ϕ1 Rϕ2, b) , CheckI(¬ ((¬ϕ1)U (¬ϕ2)) , b).

7. For an agent a ∈ Ag, a set of agents A ⊆ Ag and a formula ϕ ∈ Slk, it
is defined as:

(a) CheckI(Ka ϕ, b) , acc(ϕ,∼a);
(b) CheckI(EA ϕ, b) , acc(ϕ,∼E

A);
(c) CheckI(DA ϕ, b) , acc(ϕ,∼D

A);
(d) CheckI(CA ϕ, b) , acc(ϕ,∼C

A);

where acc(ϕ,R) , {〈s, v〉 ∈ Ext | ∀ 〈s′, v′〉 ∈ CheckI(¬ϕ, ∅).¬R(s
′, s)}.

The correctness of the algorithm is asserted in the following theorem.

Theorem 2. Let I be an interpreted system and ϕ ∈ Slk an Slk sentence.
Then the set of all states at which ϕ holds is such that:

{s ∈ St | I, s |=Slk ϕ} = {s ∈ St | ∃v ∈ VAsg. 〈s, v〉 ∈ CheckI(ϕ, ∅)} .

Proof (Sketch). We prove by induction that for an arbitrary interpreted system
I, Slk formula ϕ ∈ Slk and binding b ∈ Bnd such that free(ϕ) ⊆ dom(b),
CheckI(ϕ, b) is the set of all extended states that guarantee ϕ in I under b.

21

Lemma 1 and Lemma 2 report the proofs for negation and the temporal oper-
ators, respectively.

Since the topmost formula ϕ is a sentence, it will either hold, or not hold in
each state (regardless of the variable assignment). Therefore, we existentially
quantify over variable assignments.

Observe that all cases of the Slk model checking algorithm are well-defined
because the sets UStr, Vr, VAsg, Ag, Dc, Bnd, St and, consequently, Ext are
finite. An efficient symbolic implementation of the algorithm using BDDs is
presented in Subsection 3.3.

3.2. Strategy Synthesis

One of the features of Slk is that it may encode non-behavioural strategies
[38], where an agent’s action in a particular scenario may depend on actions in
counterfactual scenarios. Consequently, Slk strategies are difficult to synthe-
sise. To see why this is the case, consider the Slk sentence ϕ = [[x]][[y]]〈〈z〉〉ψ.
Assume that ϕ holds at a particular state s ∈ St in an interpreted system I,
i.e., I, s |=Slk ϕ. We would now like to synthesise a uniform shared strategy
fz : St → Acshr(ϕ,z) for the variable z depending on the uniform shared strate-
gies fx : St → Acshr(ϕ,x) and fy : St → Acshr(ϕ,y) for the variables x and y,
respectively. If Slk strategies were behavioural, there would exist a mapping
m1 (or an elementary dependence map as in [38]) from the next actions of fx
and fy in s to the next action of fz in s:

m1 : St →
(
Acshr(ϕ,x) ×Acshr(ϕ,y) → Acshr(ϕ,z)

)
︸ ︷︷ ︸

(s,fx(s),fy(s)) 7→ fz(s)

There are at most
∣∣Acshr(ϕ,x)

∣∣×
∣∣Acshr(ϕ,y)

∣∣ possible inputs to m1 to determine
fz(s) as it depends only on fx(s) and fy(s). Unfortunately, such a mapping does
not exist in general because Slk strategies are non-behavioural. Instead, a more
general mapping m2 (also referred to as dependence map [38]) from strategies
fx and fy to the strategy fz must be considered:

m2 :
(
St → Acshr(ϕ,x)

)
×
(
St → Acshr(ϕ,y)

)
→
(
St → Acshr(ϕ,z)

)
︸ ︷︷ ︸

(fx,fy,s) 7→ fz(s)

Informally, determining fz(s) requires the same amount of information as con-
structing the whole strategy fz. In order to synthesise the action fz(s) or the
strategy fz, we possibly need to know the complete strategies fx and fy. More
importantly, the maximum number of entries in the mappings m1 and m2 are:

m1 : |St| ×
∣∣Acshr(ϕ,x)

∣∣ ×
∣∣Acshr(ϕ,y)

∣∣

m2 : |St| ×
∣∣Acshr(ϕ,x)

∣∣|St| ×
∣∣Acshr(ϕ,y)

∣∣|St|

Assume that the interpreted system I is relatively small; e.g., assume |St| = 10
global states and

∣∣Acshr(ϕ,x)
∣∣ =

∣∣Acshr(ϕ,y)
∣∣ =

∣∣Acshr(ϕ,z)
∣∣ = 10 actions. While

22

the mapping m1 for behavioural strategies would require at most 1000 entries of
the form (s, fx(s), fy(s)) 7→ fz(s), the mapping m2 for non-behavioural strate-
gies might have up to 1021 entries of the form (fx, fy, s) 7→ fz(s). Furthermore,
if we encode each output of fz using only

⌈
log2

∣∣Acshr(ϕ,z)
∣∣⌉ = 4 bits and store

the whole mapping in a large array, m1 will use at most 500 bytes while m2

might need up to 434 exabytes.
While Slk strategy synthesis is infeasible in general, it can be performed

efficiently on certain types of formulas. We will now explain the concepts of
witness and counterexample strategies and describe how these can be synthesised
using the model checking algorithm discussed in Subsection 3.1. Let I be an
interpreted system, s ∈ St a global state and ϕw = 〈〈x〉〉ψw and ϕc = [[y]]ψc two
Slk sentences. Furthermore, assume that ϕw holds at s while ϕc does not, i.e.,
I, (∅, s) |=Slk ϕw and I, (∅, s) 6|=Slk ϕc. By Slk semantics (see Definition 5),
there is a memoryless uniform shared strategy fw for x which makes ψw true
at s. Conversely, there must be a memoryless shared strategy fc for y which
makes ψc false at s. fw and fc are referred to as a witness and a counterexample
strategy, respectively. Intuitively, the strategy fw is a “witness” to ϕw being true
at s while fc is a “counterexample” for ϕc at s. A slightly more general form of
the two concepts is provided in the following definition.

Definition 14 (Witness and Counterexample Strategies). Let I be an in-
terpreted system, s ∈ St a global state and ϕw = 〈〈x0〉〉 . . . 〈〈xm−1〉〉ψw and
ϕc = [[y0]] . . . [[yn−1]]ψc two Slk sentences. Then:

• Memoryless uniform shared strategies fw0, . . . , fw(m−1) are witness strate-
gies for ϕw at s iff (i) fwi ∈ UStrshr(ψw,xi) for all 0 ≤ i < m and
(ii) I, (χw, s) |=Slk ψw where χw = {(xi, fwi) | 0 ≤ i < m}.

• Memoryless uniform shared strategies fc0, . . . , fc(n−1) are counterexample
strategies for ϕc at s iff (i) fci ∈ UStrshr(ψc,yi) for all 0 ≤ i < n and
(ii) I, (χc, s) 6|=Slk ψc where χc = {(yi, fci) | 0 ≤ i < n}.

The two concepts are duals of each other in the sense that if f is a witness
strategy for 〈〈x〉〉ψ at s, then it is a counterexample strategy for [[x]]¬ψ at s (and
vice versa).

Lemma 3. Let I be an interpreted system, s ∈ St a global state, ψ an agent-
closed Slk formula with free(ψ) = {x0, . . . , xn−1} and f0, . . . , fn−1 memory-
less uniform shared strategies such that fi ∈ UStrshr(xi,ψ) for 0 ≤ i < n.
Then f0, . . . , fn−1 are witness strategies of ϕw = 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ at s iff
f0, . . . , fn−1 are counterexample strategies of ϕc = [[x0]] . . . [[xn−1]]¬ψ at s.

Proof. We prove both directions of the equivalence separately:

⇒: Assume that f0, . . . , fn−1 are witness strategies of ϕw at s. By Defini-
tion 14, we have fi ∈ UStrshr(ψ,xi) for all 0 ≤ i < n and I, (χ, s) |= ψ where
χ = {(xi, fi) | 0 ≤ i < n}. By Definition 3, we have shr(¬ϕ, x) = shr(ϕ, x)
for all Slk formulas ϕ ∈ Slk and variables x ∈ Vr so fi ∈ UStrshr(¬ψ,xi)

23

for all 0 ≤ i < n. Since I, (χ, s) |=Slk ψ, I, (χ, s) 6|=Slk ¬ψ holds by
Slk semantics (Definition 5). Hence, by Definition 14, f0, . . . , fn−1 are
counterexample strategies for ϕc at s.

⇐: Assume that f0, . . . , fn−1 are counterexample strategies of ϕc at s. By Def-
inition 14, we have fi ∈ UStrshr(¬ψ,xi) for all 0 ≤ i < n and I, (χ, s) 6|=Slk

¬ψ where χ = {(xi, fi) | 0 ≤ i < n}. Again, we have fi ∈ UStrshr(ψ,xi) for
all 0 ≤ i < n by Definition 3. Since I, (χ, s) 6|=Slk ¬ψ, I, (χ, s) |=Slk ψ
holds by Slk semantics (Definition 5). Hence, by Definition 14, f0, . . . ,
fn−1 are witness strategies of ϕw at s.

This duality will allow us to focus on witness strategies and their synthesis
only. Before describing how witness strategies can be retrieved, we need to show
that they always exist when an Slk formula holds.

Lemma 4. Let I be an interpreted system, ψ an agent-closed Slk formula
such that free(ψ) = {x0, . . . , xn−1} and ϕ = 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ an Slk sen-
tence. Then the following holds: I, (∅, s) |=Slk ϕ iff there exist witness strategies
f0, . . . , fn−1 for ϕ at s.

Proof. We prove both directions of the equivalence separately:

⇒: Assume that I, (∅, s) |=Slk ϕ. By Slk semantics (Definition 5), there ex-
ist strategies f0, . . . , fn−1 such that fi ∈ UStrshr(〈〈xi+〉〉...〈〈xn−〉〉ψ,xi) for all
0 ≤ i < n and I, (χ, s) |=Slk ψ where χ = {(xi, fi) | 0 ≤ i < n}. By Defini-
tion 3, we have shr(〈〈xi+1〉〉 . . . 〈〈xn−1〉〉ψ, xi) = shr(ψ, xi) for all 0 ≤ i < n.
Hence f0, . . . , fn−1 satisfy both conditions for being witness strategies of
ϕ at s (see Definition 14).

⇐: Assume that there exist witness strategies f0, . . . , fn−1 for ϕ at s. By Def-
inition 14, we have fi ∈ UStrshr(ψ,xi) for all 0 ≤ i < n and I, (χ, s) |=Slk ψ
where χ = {(xi, fi) | 0. ≤ i < n}. By Definition 3, we have shr(ψ, xi) =
shr(〈〈xi+1〉〉 . . . 〈〈xn−1〉〉ψ, xi). Hence, for all 0 ≤ i < n, we get fi ∈
UStrshr(〈〈xi+〉〉...〈〈xn−〉〉ψ,xi). Therefore, I, (∅, s) |=Slk ϕ by Slk semantics
(Definition 5).

It remains to explain how witness strategies can be synthesised using the
Slk model checking algorithm we introduced in Subsection 3.1. Consider an
Slk sentence ϕ = 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ that holds at a global state s ∈ St in
some interpreted system I. Since I, (∅, s) |=Slk ϕ, by Lemma 4, there must be
some witness strategies f0, . . . , fn−1 for ϕ at s, which we want to synthesise.
The corresponding assignment χ ∈ Asg on the variables x0, . . . , xn−1 satisfies
I, (χ, s) |=Slk ψ. Let E = CheckI(ψ, ∅) be the set of extended states which
guarantee ψ in I under the empty binding. E contains all possible extended
states 〈s′, v′〉 such that I, (s′, v′) |=Slk ψ. Hence, it must be the case that
〈s, v〉 ∈ E where v is some variable assignment which extends χ.

Therefore, in order to synthesise witness strategies for ϕ at s, it suffices to
pick an arbitrary extended state 〈s, v〉 ∈ CheckI(ψ, ∅). The witness strategies
for ϕ at s are then v(x0), . . . , v(xn−1).

24

Lemma 5. Let I be an interpreted system, ψ an agent-closed Slk formula
such that free(ψ) = {x0, . . . , xn−1} and ϕ = 〈〈x0〉〉 . . . 〈〈xn−1〉〉ψ an Slk sentence.
Then the following properties hold:

1. For all variable assignments 〈s, v〉 ∈ CheckI(ψ, ∅), v(x0), . . . , v(xn−1) are
witness strategies for ϕ at s.

2. If there exist witness strategies f0, . . . , fn−1 for ϕ at s, then there exists
a variable assignment v ∈ VAsg such that v(xi) = fi for 0 ≤ i < n and
〈s, v〉 ∈ CheckI(ψ, ∅).

Proof. We prove both properties separately:

1. Take an arbitrary extended state 〈s, v〉 ∈ CheckI(ψ, ∅). Observe that the
Slk model checking algorithm (see item 5 in Definition 13) ensures uni-
formity of v wrt x0, . . . , xn−1, i.e., v(xi) ∈ UStrshr(ψ,xi) for 0 ≤ i < n.
As in the proof of Theorem 2, 〈s, v〉 guarantees ψ in I under ∅. By
Definition 10, I, (v, s) |=Slk ψ. By Slk semantics (Definition 5), we
have I, (χ, s) |=Slk ψ where χ = {(xi, v(xi)) | 0 ≤ i < n} since free(ψ) ⊆
{x0, . . . , xn−1} ⊆ dom(v). Hence, v(x0), . . . , v(xm−1) satisfy both condi-
tions for being witness strategies for ϕ at s (see Definition 14).

2. Assume that f0, . . . , fn−1 are witness strategies for ϕ at s. By Defi-
nition 14, fi ∈ UStrshr(ψ,xi) for all 0 ≤ i < n and I, (χ, s) |=Slk ψ
where χ = {(xi, fi) | 0 ≤ i < n}. Since dom(χ) = free(ψ), by Slk se-
mantics (Definition 5), we have I, (v, s) |=Slk ψ for all v ∈ VAsg such that
χ ⊆ v. There must exist at least one such variable assignment v because
dom(χ) ⊆ Vr (simply set v(x) = χ(x) for x ∈ dom(χ) and assign arbitrary
strategies to variables y ∈ Vr \ dom(χ)). By Definition 10, 〈s, v〉 ∈ Ext
guarantees ψ in I under ∅. Therefore, 〈s, v〉 ∈ CheckI(ψ, ∅) (see proof of
Theorem 2).

Informally, the first property in Lemma 5 expresses soundness of the ap-
proach, i.e., that it will return only witness strategies for ϕ at s. Conversely,
the second property asserts completeness of the approach, i.e., that it will return
witness strategies for ϕ at s, if they exist.

3.3. Symbolic Implementation

In this subsection we discuss how the algorithm presented in Subsection 3.1
can be implemented symbolically using binary decision diagrams. BDDs are
an efficient representation for Boolean formulas and are used by many existing
model checkers including MCMAS for model checking temporal logic formu-
las [39]. We here present a modification of the relevant algorithms for Slk.

We start by representing the parameters of the interpreted system by means
of Boolean formulas [10]. Given an interpreted system:

I =
〈
(Sta,Aca,Pa, tra)a∈Ag , I, h

〉

we can represent global states and decisions as follows [39, 10]:

25

• For every agent a ∈ Ag, we can encode her set of internal states Stpa
with nv(a) = ⌈log2 |Sta|⌉ Boolean variables. Thus, a global state s =
(sp1 , . . . , s

p
n, sEnv) ∈ St can be encoded as a conjunction s[v] of the vari-

ables in a Boolean vector v = vp1 . . . v
p
nvEnv = (v0, . . . , vN−1), where

N =
∑
a∈Ag nv(a).

• For every agent a ∈ Ag, we can encode her set of actions Aca with na(a) =
⌈log2 |Aca|⌉ Boolean variables. Thus, a decision δ = (c1, · · · , cn, cEnv) ∈
Dc can be encoded as a conjunction δ[w] of the variables in a Boolean
vector w = w1 . . . wnwEnv = (w0, . . . , wM−1), where M =

∑
a∈Ag na(a).

3.3.1. Running Example

Consider a variant of the classical Nim game [40], where two players take
turns to remove one or two objects from a single heap which initially contains
four objects. The player who removes the last object wins the game.

We model the scenario as an interpreted system INim with agents Ag =
{A,B,Env}, where the proper agents Σ = {A,B} correspond to the two players:

• We fix the environment states StEnv =
{
sEnv
rq

∣∣ 0 ≤ r ≤ 4 ∧ q ∈ Σ
}
, where

r is the number of objects remaining on the heap and q is the active
player, whose turn it is to remove objects. Both players have a single
internal state, StpA = StpB = {I}, and see the whole environment state,
i.e.,visp(sEnv) = sEnv for all p ∈ Σ, sEnv ∈ StEnv. Hence:

Stp =
{
sprq =

(
I, sEnv

rq

) ∣∣ sEnv
rq ∈ StEnv

}
for p ∈ Σ

St =
{
srq =

(
I, I, sEnv

rq

) ∣∣ sEnv
rq ∈ StEnv

}

• A player can perform three possible actions: do nothing, remove one
object, or remove two objects, which is formally represented as AcA =
AcB = {⊥, 1, 2}. The environment always does nothing, i.e., AcEnv =
{⊥}.

• The protocols of the agents require that the active player removes one or
two objects:

Pp(s
p
rq) =

{1, 2} if p = q ∧ r > 1

{1} if p = q ∧ r > 0

{⊥} otherwise

for p ∈ Σ, sprq ∈ Stp

PEnv(s
Env
rq) = {⊥} for sEnv

rq ∈ StEnv

• The evolution functions simply reflect the active player’s action for δ ∈ Dc:

trp(s
p
rq, δ) = I for p ∈ Σ, sprq ∈ St

trEnv(s
Env
rq , δ) =

sEnv
(r−cA(δ))B

if q = A ∧ r > 0

sEnv
(r−cB(δ))A

if q = B ∧ r > 0

sEnv
rq otherwise

for sEnv
rq ∈ StEnv

26

• The set of initial states is I = {s4A} =
{(
I, I, sEnv

4A

)}
, i.e., the heap

initially contains 4 objects and player A plays first.

• Finally, we use two atomic propositions AP = {winA,winB} and reflect
the winning condition in the valuation function: h(winA) = {s0B} and
h(winB) = {s0A}.

To encode the global states St, the symbolic implementation uses a Boolean
vector v = (v0, v1, v2, v3) with nv(A)+nv(B)+nv(Env) = 0+0+4 = 4 variables.
Variables v0, v1, v2 are used to encode the number of remaining objects on the
heap as a binary number and variable v3 is true iff B is the active player. For
example, s1A[v] = ¬v0 ∧ ¬v1 ∧ v2 ∧ ¬v3.

Similarly, the decisions Dc are represented using a Boolean vector w =
(w0, w1, w2, w3) with na(A) + na(B) + na(Env) = 2 + 2 + 0 = 4 variables.
Variables w0, w1 and w2, w3 encode the actions of players A and B, respec-
tively, using binary encoding (treating ⊥ as zero). For example, (2,⊥,⊥)[w] =
w0 ∧ ¬w1 ∧ ¬w2 ∧ ¬w3.

3.3.2. Encoding of Extended States

In order to implement the Slk model checking algorithm, we need to rep-
resent sets of extended states (see Definition 9), which consist of a global state
and a variable assignment. We thus represent the variable assignment explicitly
using Boolean variables as well.

Since the number of strategy variables (and hence the domain of a variable
assignment) depends on the Slk formula we are checking, the total number
of Boolean variables also depends on the formula. Let ϕ ∈ Slk be an Slk

sentence and vars(ϕ) ⊆ Vr the set of variables quantified in ϕ. For each variable
x ∈ vars(ϕ), we represent the strategy associated with x using a number of
Boolean variables.

Let us now consider an arbitrary variable x ∈ vars(ϕ). In the Slk model
checking algorithm (Definition 13), the variable quantifies over strategies f ∈
UStrshr(ϕ,x). The domain and the range of a strategy f ∈ UStrA are St and
AcA, respectively (see Subsection 2.3). Hence, we could represent it using
|St| × ⌈log2 |AcA|⌉ Boolean variables by encoding the action associated with
each global state. By considering the protocols2 of all agents in A, we can
reduce the number of Boolean variables to

∑
s∈St

⌈
log2

∣∣⋂
a∈A Pa(sa(s))

∣∣⌉.
Furthermore, we can exploit the fact that the strategies are uniform. In-

tuitively, if we have a strategy f ∈ UStr{a} for an agent a ∈ Ag, then for all
states s1, s2 ∈ St, s1 ∼a s2 implies f(s1) = f(s2). Hence, there is no point in
storing both actions f(s1) and f(s2). More generally, the epistemic accessibil-
ity relations ∼a with a ∈ A induce regions of the global state space, to which
the uniform strategies f ∈ UStrA must assign the same action. It turns out
that these regions are equivalence classes with respect to the common epistemic
accessibility relation ∼C

A.

2|∩a∈APa(sa(s))| ≤ |AcA| for each global state s ∈ St.

27

Lemma 6. Let I be an interpreted system and A ⊆ Ag a set of agents. Then
a memoryless strategy f : St → AcA is uniform iff for each set of global states
in the quotient set S ∈ St/∼C

A, we have f(s1) = f(s2) for all s1, s2 ∈ S.

Proof. We will prove both directions of the equivalence separately:

⇒: Assume that f is uniform and take an arbitrary set S ∈ St/∼C
A. Further-

more, take arbitrary global states s1, s2 ∈ S. By the definition of quotient
set, we have s1 ∼C

A s2. There are two cases:

– s1 = s2. Trivially, f(s1) = f(s2).

– By the definition of common epistemic accessibility relation (see Sub-
section 2.3), there is a chain of global states s′1, s

′
2, . . . , s

′
n ∈ St and

agents i1, i2, . . . , in+1 ∈ A with n ≥ 0 such that s1 ∼i1 s′1 ∼i2
s′2 . . . s

′
n ∼in+1

s2. By uniformity of f , we get f(s1) = f(s′1) =
· · · = f(s′n) = f(s2).

⇐: Assume that for each S ∈ St/∼C
A, we have f(s1) = f(s2) for all s1, s2 ∈ S.

Take an arbitrary agent a ∈ A and global states s1, s2 ∈ St such that s1 ∼a
s2. To prove uniformity of f , we need to show that f(s1) = f(s2). Since
s1 ∼a s2, we also have s1 ∼C

A s2. Hence, s2 belongs to the equivalence
class [s1]∼C

A
. By definition of an equivalence class, it must be the case

that s1 ∈ [s1]∼C
A
and [s1]∼C

A
∈ St/ ∼C

A. Since s1, s2 ∈ [s1]∼C
A
and [s1]∼C

A
∈

St/∼C
A, we get f(s1) = f(s2) by the initial assumption as required.

This allows us to present an even more compact representation of a strategy
f ∈ UStrA with A ⊆ Ag in an interpreted system I. We only need to store one
action for each shared local state S ∈ St/∼C

A. Thus, we can represent f using∑
S∈St/∼C

A

⌈
log2

∣∣⋂
s∈S

⋂
a∈A Pa(sa(s))

∣∣⌉ Boolean variables. Finally, a variable

assignment v ∈ VAsg for a formula ϕ ∈ Slk can be represented using a Boolean
vector u = (u0, . . . , uK−1) such that3:

K =
∑

x∈vars(ϕ)

∑

S∈St/∼C
shr(ϕ,x)

log2

∣∣∣∣∣∣

⋂

s∈S

⋂

a∈shr(ϕ,x)

Pa(sa(s))

∣∣∣∣∣∣

as follows:
v[u] :=

∧

x∈vars(ϕ)

∧

S∈St/∼C
shr(ϕ,x)

v(x)(S)[uS,x]

3Assuming that each strategy and action is stored separately in u, the provided represen-
tation is optimal. If we relaxed this assumption, the number of Boolean variables could be

reduced to

⌈

log2

∣

∣

∣

∣

∏

x∈vars(ϕ)

∏

S∈St/∼C
shr(ϕ,x)

⋂

s∈S

⋂

a∈shr(ϕ,x) Pa(sa(s))

∣

∣

∣

∣

⌉

. However, we do

not pursue this approach any further because it would complicate the symbolic implementa-
tion of the labelling algorithm.

28

where v(x)(S)[uS,x] is the Boolean formula representing that the single action
assigned by the uniform strategy mapped to variable x in all states s ∈ S is
v(x)(s) for any s ∈ S.

Note that despite both optimisations, the worst case still remains K =
|vars(ϕ)|×|St|×⌈log2 (maxa∈Ag |Aca|)⌉, i.e., we need polynomially many Boolean
variables with respect to both the size of the model |I| and the number of strat-
egy variables in the formula |vars(ϕ)|.

An extended state 〈s, v〉 ∈ Ext can be represented by the conjunction
〈s, v〉[v, u] := s[v] ∧ v[u] over the vectors v and u. A set of extended states
E ⊆ Ext can in turn be expressed as the disjunction E[v, u] :=

∨
〈s,v〉∈E s[v]∧v[u].

Consider the Slk sentence ϕwinA = 〈〈x〉〉 [[y]] [[e]] (A, x)(B, y)(Env, e)FwinA,
which specifies that there is a strategy for player A to win regardless of the
strategies followed by the other player and the environment. Our Boolean en-
coding represents variable assignments for ϕwinA

in INim using a Boolean vector
u with K = 6 variables:

K =
⌈

log2

∣

∣

∣
PEnv(s

Env
0A)

∣

∣

∣

⌉

+ · · · +
⌈

log2

∣

∣

∣
PEnv(s

Env
4A)

∣

∣

∣

⌉

+

⌈

log2

∣

∣

∣
PEnv(s

Env
0B)

∣

∣

∣

⌉

+ · · · +
⌈

log2

∣

∣

∣
PEnv(s

Env
4B)

∣

∣

∣

⌉

+

⌈

log2

∣

∣

∣
PA(s

A
0A)

∣

∣

∣

⌉

+ · · · +
⌈

log2

∣

∣

∣
PA(s

A
4A)

∣

∣

∣

⌉

+

⌈

log2

∣

∣

∣
PA(s

A
1B)

∣

∣

∣

⌉

+ · · · +
⌈

log2

∣

∣

∣
PA(s

A
4B)

∣

∣

∣

⌉

+

⌈

log2

∣

∣

∣
PB(s

B
0A)

∣

∣

∣

⌉

+ · · · +
⌈

log2

∣

∣

∣
PB(s

B
4A)

∣

∣

∣

⌉

+

⌈

log2

∣

∣

∣
PB(s

B
0B)

∣

∣

∣

⌉

+ · · · +
⌈

log2

∣

∣

∣
PB(s

B
4B)

∣

∣

∣

⌉

= ⌈log2 |{⊥}|⌉ + · · · + ⌈log2 |{⊥}|⌉+

⌈log2 |{⊥}|⌉ + · · · + ⌈log2 |{⊥}|⌉+

⌈log2 |{⊥}|⌉ + ⌈log2 |{1}|⌉ + ⌈log2 |{1, 2}|⌉ + ⌈log2 |{1, 2}|⌉ + ⌈log2 |{1, 2}|⌉+

⌈log2 |{⊥}|⌉ + · · · + ⌈log2 |{⊥}|⌉+

⌈log2 |{⊥}|⌉ + · · · + ⌈log2 |{⊥}|⌉+

⌈log2 |{⊥}|⌉ + ⌈log2 |{1}|⌉ + ⌈log2 |{1, 2}|⌉ + ⌈log2 |{1, 2}|⌉ + ⌈log2 |{1, 2}|⌉

= 6

Intuitively, this is because there are only 6 states in which some strategy has two
actions to choose from: strategy fx = v(x) in states s2A, s3A, s4A and strategy
fy = v(y) in states s2B, s3B, s4B. Each Boolean variable corresponds to one of
these situations (u0 (x, s2A), u1 (x, s3A), u2 (x, s4A), u3 (y, s2B),
u4 (y, s3B), u5 (y, s4B)). If a variable is true, then the relevant strategy
prescribes removing two items from the heap in the relevant state. For example,
if u0 is false, then fx(s2A) = 1. Conversely, if u4 is true, then fy(s3B) = 2.
Furthermore, a sample extended state e = (s0A, {x 7→ fx, y 7→ fy, e 7→ fe}) with
strategies:

fx(s0∗) = ⊥ fy(s0∗) = ⊥ fe(s∗∗) = ⊥

fx(s1A) = 1 fy(s1B) = 1

fx(s2A) = 2 [u0] fy(s2B) = 1 [¬u3]

fx(s3A) = 1 [¬u1] fy(s3B) = 2 [u4]

fx(s4A) = 1 [¬u2] fy(s4B) = 2 [u6]

fx(s∗B) = ⊥ fy(s∗A) = ⊥

is symbolically encoded as e[v, u] = ¬v0 ∧ ¬v1 ∧ ¬v2 ∧ ¬v3 ∧ u0 ∧ ¬u1 ∧ ¬u2 ∧
¬u3 ∧ u4 ∧ u6.

29

3.3.3. Encoding of the Algorithm

Given a binding b ∈ Bnd such that dom(b) = Ag, we define a formula
Sb(e, a), where e ∈ Ext and δ ∈ Dc, representing the strategy restrictions of
the implied transition relation (see Definition 11). The formula asserts that all
agents act according to their strategies:

Sb(〈s, v〉 , δ) , ∀a ∈ Ag. v(b(a))(s) = ca(δ)

Let v, w and u be the Boolean vectors for representing current global states,
decisions and variable assignments, respectively. We can encode the strategy
restrictions as a Boolean formula Sb[v, w, u]:

Sb[v, w, u] :=
∧

a∈Ag

∨

sa∈Sta

sa[va] ∧

∨

c∈Pa(sa)

c[wa] ∧ c[usa,b(a)]

where:

• sa[va] is the Boolean formula representing that the local state4 of agent
a ∈ Ag is sa ∈ Sta;

• c[wa] is the Boolean formula representing that the action of agent a ∈ Ag
is c ∈ Aca;

• c[usa,b(a)] is the Boolean formula representing that the action in local
state5 sa assigned by the strategy mapped to variable b(a) is c ∈ Aca.

Given the binding b = (A 7→ x,B 7→ y,Env 7→ e) in ϕwinA , the strategy re-

4 Note that for a proper agent a ∈ Σ, the local state is a combination of a private state and
an image of the environment state, i.e., sa =

(

spa, visa(sEnv)
)

for some spa ∈ Stpa, sEnv ∈ StEnv.

This is reflected in the encoding: sa[va] =
(

spa, visa(sEnv)
)

[va] := spa[v
p
a] ∧ visa(sEnv)[vEnv].

Typically, visa is encoded as a filter over vEnv, e.g., Obsvars and Lobsvars sections of the
ISPL file format used by MCMAS [20]. Intuitively, only some Boolean variables encoding the
environment state are visible to agent a.

5Strictly speaking, the strategy maps global states to actions. However, as explained earlier,
there exists a set S ⊆ St/ ∼C

shr(ϕ,b(a))
such that, for all global states s ∈ St, if sa(s) = sa then

s ∈ S. Due to uniformity, the strategy mapped to b(a) must assign the same action to all
global states in S. Thus, we can also interpret the strategy as a mapping from local states to
actions.

30

strictions for our running example are encoded as follows:

S
b
[v, w, u] = (v0000 ∧ w00-- ∧ u------ ∨ v0001 ∧ w00-- ∧ u------∨

v0010 ∧ w01-- ∧ u------ ∨ v0011 ∧ w00-- ∧ u------∨

v0100 ∧ (w01-- ∧ u0----- ∨ w10-- ∧ u1-----) ∨ v0101 ∧ w00-- ∧ u------∨

v0110 ∧ (w01-- ∧ u-0---- ∨ w10-- ∧ u-1----) ∨ v0111 ∧ w00-- ∧ u------∨

v1000 ∧ (w01-- ∧ u--0--- ∨ w10-- ∧ u--1---) ∨ v1001 ∧ w00-- ∧ u------)∧

(v0000 ∧ w--00 ∧ u------ ∨ v0001 ∧ w--00 ∧ u------∨

v0010 ∧ w--00 ∧ u------ ∨ v0011 ∧ w--01 ∧ u------∨

v0100 ∧ w--00 ∧ u------ ∨ v0101 ∧ (w--01 ∧ u---0-- ∨ w--10 ∧ u---1--)∨

v0110 ∧ w--00 ∧ u------ ∨ v0111 ∧ (w--01 ∧ u----0- ∨ w--10 ∧ u----1-)∨

v1000 ∧ w--00 ∧ u------ ∨ v1001 ∧ (w--01 ∧ u-----0 ∨ w--10 ∧ u-----1))∧

(v0000 ∧ w---- ∧ u------ ∨ v0001 ∧ w---- ∧ u------∨

v0010 ∧ w---- ∧ u------ ∨ v0011 ∧ w---- ∧ u------∨

v0100 ∧ w---- ∧ u------ ∨ v0101 ∧ w---- ∧ u------∨

v0110 ∧ w---- ∧ u------ ∨ v0111 ∧ w---- ∧ u------∨

v1000 ∧ w---- ∧ u------ ∨ v1001 ∧ w---- ∧ u------)

Above we replaced conjunctions of variables within a Boolean vector with a
sequential representation of their sign or absence. For example w--01 is a
shorthand for ¬w2 ∧ w3.

Furthermore, let v′ be the Boolean vector representing successor (global)
states. We can then represent the global protocol and the evolution function as
Boolean formulas P[v, w] and tr[v, w, v′] by taking the conjunctions of Boolean
formulas representing the individual agents’ protocols Pa and the evolution func-
tions tra for a ∈ Ag:

P[v, w] :=
∧

a∈Ag

∨

sa∈Sta

sa[va] ∧

∨

c∈Pa(sa)

c[wa]

tr[v, w, v′] :=
∧

a∈Ag

∨

sa∈Sta

(
sa[va] ∧

∨

δ∈Dc

δ[w] ∧ tra(sa, δ)[v′
p

a]

)

The evolution function for our running example is encoded as follows:

tr[v, w, v′] = (v0000 ∧ w0000 ∧ v′0000 ∨ v0001 ∧ w0000 ∧ v′0001∨

v0010 ∧ w0100 ∧ v′0001 ∨ v0011 ∧ w0100 ∧ v′0000∨

v0100 ∧ (w0100 ∧ v′0011 ∨ w1000 ∧ v′0001)∨

v0101 ∧ (w0001 ∧ v′0010 ∨ w0010 ∧ v′0000)∨

v0110 ∧ (w0100 ∧ v′0101 ∨ w1000 ∧ v′0011)∨

v0111 ∧ (w0001 ∧ v′0100 ∨ w0010 ∧ v′0010)∨

v1000 ∧ (w0100 ∧ v′0111 ∨ w1000 ∧ v′0101)∨

v1001 ∧ (w0001 ∧ v′0110 ∨ w0010 ∧ v′0100))

The Boolean formula Rbt [v, w, v
′] for the implied transition relation →b

v⊆
St × St (see Definition 11) is then constructed from the conjunction of the
Boolean formulas representing the global protocol, the global evolution function

31

and the strategy restrictions6:

Rbt [v, v
′, u] := ∃w.P[v, w] ∧ tr[v, w, v′] ∧ Sb[v, w, u]

Note that we quantify over actions, encoded as w, but we keep the variable
assignment in the extra parameter u.7 Quantification over the variable assign-
ment is performed when a strategy quantifier (〈〈x〉〉, [[x]]) is encountered. Also
note that the strategy restrictions Sb depend on the binding b and thus have to
be recomputed when the binding is updated, i.e., when the agent binding oper-
ator (a, x) is encountered. This is not the case for the other Boolean formulas
(P[v, w] and tr[v, w, v′]), which are constant for a given interpreted system.

The implied transition relation for our running example is encoded as follows:

R
b
t [v, v

′, u] = (v0000 ∧ v′0000 ∨ v0001 ∧ v′0001∨

v0010 ∧ v′0001 ∨ v0011 ∧ v′0000∨

v0100 ∧ (v
′
0011 ∧ u0----- ∨ v′0001 ∧ u1-----)∨

v0101 ∧ (v
′
0010 ∧ u---0-- ∨ v′0000 ∧ u---1--)∨

v0110 ∧ (v
′
0101 ∧ u-0---- ∨ v′0011 ∧ u-1----)∨

v0111 ∧ (v
′
0100 ∧ u----0- ∨ v′0010 ∧ u----1-)∨

v1000 ∧ (v
′
0111 ∧ u--0--- ∨ v′0101 ∧ u--1---)∨

v1001 ∧ (v
′
0110 ∧ u-----0 ∨ v′0100 ∧ u-----1))

The epistemic accessibility relations RK
a , R

E
A, R

D
A, R

C
A for an agent a ∈ Ag

and a set of agents A ⊆ Ag are also constant for a given interpreted system and
are encoded in a similar fashion [39]:

RK
a [v, v

′] :=
∨

(s,s′)∈∼a

s[v] ∧ s′[v′]

RE
A[v, v

′] :=
∨

a∈A

RK
a [v, v

′]

RD
A[v, v

′] :=
∧

a∈A

RK
a [v, v

′]

RC
A[v, v

′] := lfpρ
(
RE

A[v, v
′] ∨

(
∃v◦. ρ[v, v◦] ∧ ρ[v◦, v′]

))

Finally, the algorithm CheckI : Slk× Bnd → 2Ext can be translated into oper-
ations on BDDs representing sets of extended states.

To check the Slk sentence ϕwinA
in INim, we perform the following steps

(see Definition 13):

1. We calculate the set of extended states which guarantee winA:

CheckINim
(winA, b)[v, u] = h(winA)[v] = v0001

6Observe that, for all bindings b and Boolean vectors u, v, w, if Sb[v, w, u] is true, then so
is P[v, w]. In other words, the protocol is already included in the strategy restrictions. Hence,
the encoding of Rb

t [v, v
′, u] could be simplified to ∃w. tr[v, w, v′] ∧ Sb[v, w, u].

7Observe that we do not need to allocate BDD variables u′ for any successor states as these
are not affected by a temporal transition (see Definition 12).

32

2. We evaluate the least fixed point of F [v, u] = CheckINim(winA, b)[v, u] ∨
∃v′. Rbt [v, u, v

′]∧F [v′, u] to find the set of extended states from which winA
can be eventually guaranteed:

F
0
[v, u] = v0001

F
1
[v, u] = F

0
[v, u] ∨ v0010 ∨ v0100 ∧ u1-----

F
2
[v, u] = F

1
[v, u] ∨ v0101 ∧ u---0-- ∨ v0111 ∧ u----1-∨

v0111 ∧ u1---0- ∨ v1001 ∧ u1----1

F
3
[v, u] = F

2
[v, u] ∨ v0110 ∧ u-0-0-- ∨ v1000 ∧ u--10--∨

v1000 ∧ u--0-1- ∨ v1000 ∧ u1-0-0-

F
4
[v, u] = F

3
[v, u] ∨ v1001 ∧ u-0-0-0 = F

5
[v, u]

CheckINim
(FwinA, b)[v, u] = v0001 ∨ v0010 ∨ v0100 ∧ u1----- ∨ v0101 ∧ u---0--∨

v0111 ∧ (u----1- ∨ u1---0-) ∨ v0110 ∧ u-0-0--∨

v1000 ∧ (u--10-- ∨ u--0-1- ∨ u1-0-0-)∨

v1001 ∧ (u1----1 ∨ u-0-0-0)

3. We universally quantify over the Boolean variables associated with strat-
egy variables y and e to find the set of extended states which guarantee
ψwinA

= [[y]] [[e]] (A, x)(B, y)(Env, e)FwinA:

CheckINim
(ψwinA

, ∅)[v, u] = ∀u3u4u5. CheckINim
(FwinA, b)[v, u]

= v0001 ∨ v0010 ∨ v0100 ∧ u1-----∨

v0111 ∧ u1----- ∨ v1000 ∧ u1-0---

4. We existentially quantify over the Boolean variables associated with the
strategy variable x to find the set of extended states which guarantee
ϕwinA

= 〈〈x〉〉ψwinA
:

CheckINim
(ϕwinA

, ∅)[v, u] = ∃u0u1u2. CheckINim
(ψwinA

, ∅)[v, u]

= v0001 ∨ v0010 ∨ v0100 ∨ v0111 ∨ v1000

5. Finally, to determine whether ϕwinA
holds in all initial states of INim, we

check if I is a subset of CheckINim
(ϕwinA

, ∅) symbolically:

(I ∩ CheckINim
(ϕwinA

, ∅))[v, u] = I[v] ∧ CheckINim
(ϕwinA

, ∅)[v, u]

= v0001 ∧ (v0001 ∨ v0010 ∨ v0100 ∨ v0111 ∨ v1000)

= v0001

= I[v]

We conclude that ϕwinA
holds in INim, i.e., INim |=Slk ϕwinA

.

3.3.4. Strategy Synthesis

Synthesising witness and counterexample strategies (see Definition 14) using
the symbolic implementation is straightforward because our representation of
variable assignments ensures that all strategies are uniform (see Subsection 2.3).

To synthesise the witness strategies for an Slk sentence ϕ = 〈〈x0〉〉 . . . 〈〈xn−1〉〉
ψ at a global state s ∈ St, we proceed as follows. Since I, (∅, s) |=Slk ϕ, there
exist witness strategies for ϕ at s (see Lemma 4). We calculate E = CheckI(ψ, ∅)
and pick an arbitrary extended state 〈s, v〉 ∈ E. Note that all strategies in v
are uniform due to our representation. By Lemma 5, there exists at least one

33

such extended state 〈s, v〉 (because there exist witness strategies for ϕ at s) and
for all such extended states, v(x0), . . . , v(xn−1) are witness strategies for ϕ at
s. These steps can be implemented symbolically as follows:

1. Calculate E = CheckI(ψ, ∅). This is performed using the symbolic imple-
mentation presented earlier in this subsection.

2. Remove from the set E all the extended states with a different underlying
global state E′ = {(s′, v′) ∈ E | s′ = s}. The symbolic representation of
this operation is E′[v, u] := E[v, u] ∧ s[v].

3. Pick an arbitrary extended state 〈s, v〉 ∈ E′. This is equivalent to selecting
one conjunct (also referred to as minterm) C[v, u] from E′[v, u]. BDD
packages usually provide a built-in function for this operation8.

4. The conjunct C[v, u] encodes the extended state 〈s, v〉, where v contains
the witness strategies. To get the next action fi(s

′) of a strategy fi =
v(xi) for 0 ≤ i < n at a global state s′ ∈ St, we find a possible action
c ∈

⋂
a∈shr(ψ,xi)

Pa(sa(s
′)) such that C[v, u] ∧ c[us′,xi

] is not equivalent to

false, where c[us′,xi
] is the Boolean formula representing the fact that the

next action of the strategy mapped to variable xi at the global state s′ is
c.

To finish our running example, we show how to synthesise a witness strategy
fx : St → AcA for x at the initial state s4A in ϕwinA = 〈〈x〉〉ψwinA :

1. E[v, u] = CheckINim(ψwinA , ∅)[v, u] = v0001 ∨ v0010 ∨ v0100 ∧ u1----- ∨
v0111 ∧ u1----- ∨ v1000 ∧ u1-0--- (we have already done this).

2. E′[v, u] = E[v, u] ∧ s4A[v] = v1000 ∧ u1-0---.

3. C[v, u] = v1000 ∧ u1-0--- (there is only one conjunct in E′[v, u]).
4. The variable assignment in C[v, u] = v1000∧u0∧¬u2 encodes the witness

strategy fx:

fx(s∗B) = ⊥ fx(s2A) = 2 [u0]

fx(s0∗) = ⊥ fx(s3A) = 1 or 2 [u1 ∨ ¬u1]

fx(s1A) = 1 fx(s4A) = 1 [¬u2]

3.3.5. Complexity

As we have just shown, the symbolic encoding of the labelling algorithm has
polynomial size and requires polynomially many Boolean variables. Therefore,
the algorithm runs in exponential time with respect to both the size of the model
|I| and the number of quantified variables |vars(ϕ)|.

Theorem 3. Let I be an arbitrary interpreted and ϕ ∈ Slk be an Slk sentence.
The worst case time complexity of the symbolic implementation of the model
checking algorithm CheckI(ϕ, ∅) is:

O(|ϕ| × |Ag|)× 2O(|St|×|vars(ϕ)|×log2|Ac|)

8If no such function is available, we can skip step 3 (C[v, u] := E′[v, u]) and refine the
conjunct upon each lookup in step 4 (C[v, u] := C[v, u] ∧ c[us′,xi

]).

34

where Ag, St and Ac are the sets of agents, reachable global states and total
actions of I, respectively.

Proof (Sketch). The symbolic implementation uses:

• O(log2 |St|) Boolean variables to represent the current global state;

• O(log2 |St|) Boolean variables to represent the next global state;

• O(log2 |Ac|) Boolean variables to represent the decisions;

• O(|St| × |vars(ϕ)| × log2 |Ac|) Boolean variables to represent the variable
assignment.

The total number of Boolean variables is thus O(|St| × |vars(ϕ)| × log2 |Ac|).
Consequently, any BDDs built on top of these variables will have at most
2O(|St|×|vars(ϕ)|×log2|Ac|) nodes. Since individual BDD operations take polyno-
mial time with respect to the size of the relevant BDDs [41], the worst case time
complexity of each BDD operation is 2O(|St|×|vars(ϕ)|×log2|Ac|). As the recursive
algorithm presented in Definition 13 will perform at most

O(|ϕ| × |St|)︸ ︷︷ ︸
CheckI calls

×O(|St| × |Ag| × |Ac|)︸ ︷︷ ︸
size of Rb

t and RK
a defs

×O(|St| × |vars(ϕ)| × log2 |Ac|)︸ ︷︷ ︸
Boolean variables

BDD operations, our claim follows.

The proof shows that the complexity of the algorithm is dominated by the
encoding of the variable assignments.

Observe that the symbolic implementation of the algorithm CheckI can use
more than a polynomial amount of space because it performs operations on sets
of extended states. While the procedure described in the proof of Theorem 1
uses only a polynomial amount of space (as it operates on individual states
and assignments), we believe it is unlikely that such an explicit approach would
outperform the symbolic algorithm in practice [42].

4. Implementation and Experimental Results

The model checker MCMASSlk [43], first introduced in [24], implements the
state labelling algorithm presented in Section 3. The tool is based on the ex-
isting open-source model checker MCMAS [20], which supports the verification
of Ctl and Atl formulas with fairness constraints and epistemic and deontic
modalities. Both checkers are written in C++ and based on the CUDD BDD
package [44].

MCMASSlk takes as input an ISPL file [45] containing a description of an
interpreted system (see Definition 4) and a list of Slk specifications. For each
specification, the tool calculates the associated set of reachable extended states,
encoded as BDDs, and verifies the specification using the symbolic implemen-
tation of the state labelling algorithm presented in Section 3. If requested, the

35

checker also generates witnesses, counterexamples and strategies for each spec-
ification (see Definition 14). The latter is an enhancement of MCMAS as it
provides the means to automatically synthesise agents’ behaviour satisfying an
Slk specification.

The usage of the Slk extension is the same as that of the original tool. Given
an ISPL file system.ispl, the following command checks the Slk specifications
against the interpreted system:

$./mcmas system.ispl

A witness/counterexample execution with strategies can be requested (where
possible):

$./mcmas -c 1 system.ispl

We present here the experimental results obtained using MCMASSlk on
several scalable real-life scenarios. The experiments were run on an Intel Core
i7-3770 CPU 3.40GHz machine with 16GB RAM running Linux kernel version
3.8.0-35-generic. We measure the amount of time and memory used by the
tool and compare it with the performance of the original tool, MCMAS, on Ctl

and Atl (where possible). The examples in this section also demonstrate the
expressiveness of Slk.

4.1. Dining Cryptographers

The dining cryptographers protocol [46, 45] is a commonly studied anonymity
protocol. It is suited as a case study as anonymity can naturally be expressed
as lack of knowledge [47]. We model the protocol with n ≥ 3 cryptographers
as an interpreted system (see Definition 4) with agents Ag = {Env, c1, . . . , cn}.
Table 1 reports the results obtained when verifying the dining cryptographers
protocol against the following Ctlk, Atlk and Slk specifications:

ϕCtlk = AGψ (1)

ϕAtlk = 〈〈∅〉〉Gψ (2)

ϕSlk = [[xe]][[x1]] · · · [[xn]](Env, xe)(c1, x1) · · · (cn, xn)Gψ

where:

ψ = (odd ∧ ¬paid1) →

[
Kc1

n∨

i=2

paid i

]

︸ ︷︷ ︸
cryptographer c1

knows that another
cryptographer paid

∧

[
n∧

i=2

¬Kc1 paid i

]

︸ ︷︷ ︸
cryptographer c1

does not know which
cryptographer paid

ϕCtlk and ϕAtlk are the usual epistemic specifications for the protocol [48,
45] and ϕSlk is its natural extension where strategies are quantified. The results
indicate that the checker can verify reasonably large state spaces. The perfor-
mance depends on the number of Boolean variables required to represent the

36

extended states. In the case of Slk specifications, the number of Boolean vari-
ables is proportional to the number of states. The last six columns of Table 1
show that the tool’s performance drops considerably faster when verifying Slk

formulas compared to Ctlk and Atlk ones. This is because neither Ctlk nor
Atlk verification requires assignments; hence extended states collapse to plain
states. In contrast, both Ctlk and Atlk performance is dominated by the
reachable state space computation. We found that splitting the extended state
space generation across multiple threads has almost negligible impact on perfor-
mance; this is due to the fact that the CUDD BDD package used by MCMAS
does not support concurrency.

4.2. Cake Cutting

The cake-cutting problem, a well-known mathematical puzzle in which n
agents take turns to slice a cake of size d and the environment responds by
trying to ensure the cake is divided fairly, was already described in Section 2
together with the Slk specification ϕ = 〈〈x〉〉 (ϕF ∧ ϕS) asserting the existence
of a solution. This example demonstrates not only the ability of Slk to express
Nash equilibria, but also the fact that the checker can synthesise protocols which
achieve them.

We were able to verify the formula ϕ defined above on a system with n = 2
agents and a cake of size d = 2. Moreover, the checker automatically synthe-
sised a witness strategy fx for the environment as well as the Nash equilibrium
(fy1 , fy2) for the agents. For more details, see [49, Subsection 6.4.2].

We were unable to verify larger examples due to out of memory errors. For
example, with n = 2 agents and d = 3 slices, there are 29 reachable states and
the encoding requires 105 Boolean variables, 54 of which represent the strategy
fx we wish to synthesise. The intermediate BDDs represent 8.09×1020 possible
extended states using in the order of 109 nodes. A single intermediate BDD
thus requires approximately 32GB of memory and the whole algorithm would
need to use over 1011 bytes to complete the calculation. This is to be expected
given the theoretical difficulty of the problem.

4.3. Scheduler

Lastly, we consider a preemptive scheduler system [49, Subsection 6.4.3] com-
posed of n ∈ N processes and an arbiter which ensures mutual exclusion of a
shared resource while preventing starvation, to compare the performance of
Ctl, Atl and Slk model checking on safety and fairness properties.

The desired properties of the system can be expressed using the following
Slk specifications:

1. Mutual exclusion. The following specification asserts that at most one
process owns the resource at any given point in time:

ϕME = [[x]][[y1]] · · · [[yn]](Env, x)(1, y1) · · · (n, yn)G¬
n∨

i=1

n∨

j=i+1

〈rs, i〉∧ 〈rs, j〉

37

crypts

n
possible

states

reachable

states

reachability

time (s)

Ctlk Atlk
Slk

1 thread 2 threads 4 threads
time

(s)
mem

(MB)
time

(s)
mem

(MB)
time

(s)
mem

(MB)
time

(s)
mem

(MB)
time

(s)
mem

(MB)

3 82944 128 0.00 0.00 2.69 0.00 2.69 0.00 2.79 0.01 4.91 0.02 9.23
4 1.99× 106 320 0.02 0.00 2.71 0.00 2.70 0.00 2.91 0.02 4.97 0.04 9.24
5 4.78× 107 768 0.04 0.00 2.75 0.00 2.75 0.01 3.07 0.03 5.10 0.05 9.67
6 1.15× 109 1792 0.08 0.00 2.79 0.00 2.77 0.02 3.41 0.04 5.37 0.07 9.94
7 2.75× 1010 4096 0.21 0.00 3.03 0.00 2.97 0.05 4.47 0.08 5.88 0.12 10.71
8 6.60× 1011 9216 0.40 0.00 3.19 0.00 3.27 0.18 6.37 0.21 7.42 0.24 12.56
9 1.58× 1013 20480 0.43 0.00 3.38 0.00 3.42 0.38 9.59 0.38 9.82 0.46 15.96
10 3.80× 1014 45056 4.19 0.28 13.02 0.16 12.75 2.29 18.62 2.23 22.33 2.43 28.21
11 9.13× 1015 98304 1.69 0.04 5.49 0.01 4.75 5.01 23.55 4.37 27.51 4.77 39.59
12 2.19× 1017 212992 2.32 0.01 4.40 0.01 4.20 11.61 39.25 9.61 40.36 10.32 60.82
13 5.26× 1018 458752 2.05 0.10 6.50 0.03 5.62 32.63 81.95 26.30 79.75 28.39 118.27
14 1.26× 1020 983040 1.96 0.08 6.87 0.03 5.00 89.46 169.95 67.99 169.68 73.57 243.80
15 3.03× 1021 2.10× 106 21.35 0.35 12.73 0.08 9.29 163.77 363.66 139.42 354.18 156.57 500.96
16 7.27× 1022 4.46× 106 6.66 0.09 6.65 0.04 4.83 422.03 758.43 345.83 736.02 377.50 977.79
17 1.74× 1024 9.44× 106 9.10 0.13 6.67 0.08 6.04 734.44 1360.59 643.03 1270.93 705.44 1359.73
18 4.19× 1025 1.99× 107 65.94 0.50 12.66 0.14 12.67 2654.46 3550.66 2129.54 3680.89 process killed

Table 1: Experimental model checking results for the dining cryptographers protocol.

38

This property can be equivalently expressed in Ctl and Atl using the
AG and 〈〈∅〉〉G operators, respectively (see Equations 1 and 2). The results
in Table 2 show that the equivalent Ctl and Atl formulas are checked
almost instantaneously. Similarly to the dining cryptographers scenario
(see Subsection 4.1), the Slk model checking performance drops quickly
for n ≥ 8 processes.

2. Absence of starvation. The following specification asserts the exis-
tence of an arbiter strategy which ensures that every request is eventually
satisfied:

ϕAS = 〈〈x〉〉[[y1]] . . . [[yn]](Env, x)(1, y1) · · · (n, yn)G
n∧

i=1

(〈wt, i〉 → F¬〈wt, i〉)

This property cannot be expressed in Ctl because it refers to the capa-
bility of an agent to enforce a property. Moreover, it cannot be expressed
in Atl either, because it contains nested temporal operators (G and F)
which depend on the same strategies. The model checking results for the
formulas with 2 ≤ n ≤ 3 processes are shown in Table 2. In this case
MCMASSlk ran out of physical memory for n > 3 processes.

4.4. Analysis

In general, MCMASSlk has significantly lower performance than the original
tool on Ctl and Atl. We expected this outcome given the high model checking
complexity of Slk. However, the checker can verify specifications which can-
not be checked by the original tool. We have discussed two examples of such
properties: (i) Nash equilibria (see Subsection 4.2) and (ii) fairness conditions
(see Subsection 4.3). Moreover, the checker supports witness strategy synthesis,
which can be used to automatically generate agents’ behaviour. In other words,
the aim of MCMASSlk is not to replace MCMAS, but to add support for com-
pletely new features. Therefore, the results presented in this section should be
regarded as an illustration of the new functionality.

The experimental results presented in this section confirm that the main
performance bottleneck of MCMASSlk is the BDD encoding of the extended
states, which allocates separate BDD variables for each shared local state of a
strategy (see Subsection 3.3). Nevertheless, the checker can handle reasonably
large state spaces for certain specifications as we have seen in the dining cryp-
tographers scenario (see Subsection 4.1). We were able to slightly improve the
tool’s performance by using multiple threads (see Table 1) despite the fact that
the CUDD BDD package used by MCMAS has no built-in support for concur-
rency. This suggests that further speedup could be achieved by using a different
BDD package with a higher degree of parallelism.

5. Conclusions and Related Work

As argued in the introduction, considerable progress has been made over
the past 15 years in the development of methodologies for the verification of

39

procs

n
possible

states

reach.

states

reach.

time (s)

Mutual exclusion ϕME
Absence of

starvation ϕAS

Ctl Atl Slk Slk

time

(s)
mem

(MB)
time

(s)
mem

(MB)
time

(s)
mem

(MB)
time

(s)
mem

(MB)

2 72 9 0.00 0.00 2.64 0.00 2.64 0.00 2.67 0.00 2.67
3 432 21 0.00 0.00 2.72 0.00 2.72 0.00 2.81 116.78 124.90
4 2592 49 0.01 0.00 2.81 0.00 2.81 0.00 3.11 out of memory

5 15552 113 0.02 0.00 3.02 0.00 3.03 0.02 4.20 out of memory

6 93312 257 0.02 0.00 3.40 0.00 3.40 0.11 8.98 out of memory

7 559872 577 0.08 0.00 4.47 0.00 4.48 0.86 23.18 out of memory

8 3.36× 106 1281 0.17 0.00 6.73 0.00 6.72 4.88 91.26 out of memory

9 2.02× 107 2817 0.20 0.00 11.62 0.00 11.62 36.71 561.69 out of memory

10 1.21× 108 6145 0.10 0.00 22.23 0.00 22.23 222.36 2769.64 out of memory

Table 2: Experimental model checking results for the preemptive scheduler system.

40

MAS against agent-based specifications, with particular emphasis on epistemic
specifications. Statements capturing the strategic interplay between agents in
a system have also been supported, but they have traditionally been limited to
Atl specifications.

It has been argued that the intrinsic limitations of Atl with respect to
direct naming and binding of strategies severely restrict the expressiveness of
the specifications [50, 23, 51]. These limitations are particularly severe when
reasoning about game theoretic concepts. In response to this criticism, Strategy
logic (Sl), among others, was put forward [23]. Sophisticated concepts such as
Nash equilibria, which cannot be expressed by Atl, can naturally be encoded
in Sl.

Given this, the question that arises is whether automatic and efficient ver-
ification methodologies for MAS against Sl specifications can be devised. To
answer this question, we have introduced and studied Slk, a variant of epistemic
logic incorporating some Sl concepts defined on a memoryless variant of inter-
preted systems. We have shown that Slk admits an efficient labelling algorithm
solving the associated model checking problem and introduced MCMASSlk, an
extension of the model checker MCMAS [20], for the verification of MAS against
Slk specifications.

A notable feature of MCMASSlk is that it allows for automatic verification
of game concepts such as various forms of equilibria, including Nash equilibria
and subgame perfect Nash equilibria. Since Slk also supports a limited form
of epistemic modalities, the proposed approach further enables us to express
specifications concerning individual and group knowledge of cooperation prop-
erties. Furthermore, since Slk subsumes Atlk*, MCMASSlk is also the first
tool enabling the verification of multi-agent systems against specifications given
in Atlk*.

Related Work. The present work builds on [19, 20] where a symbolic ap-
proach for the verification of a variant of Atl was put forward and implemented
in MCMAS. While the present work reuses parts of the labelling algorithm and
its implementation, it supports Sl modalities which were not covered in [20].

A number of investigations have explored the complexity of the model check-
ing problem for combinations of plain Atl and epistemic operators under a
number of assumptions [15, 16, 17]. These identify lower and upper bounds for
the verification problem; but no implementation is reported.

In [52, 53] a combination of epistemic logic and a logic supporting strategic
concepts was introduced together with a BDD-based toolkit. Similarly to the
present approach, [52] assumes incomplete information and memoryless strate-
gies. This work, however, shares Atl’s implicit notion of strategies. In contrast,
here we follow Sl closely and adopt an explicit notion of strategies which can
be bound to and shared by different agents.

In [54] a verification methodology for a subset of Sl, namely its one-goal
fragment, was introduced. However the underlying assumptions are quite dif-
ferent as perfect recall and complete information is assumed. Furthermore, the
logic does not support epistemic operators.

Future Work. The experiments that we reported show that the perfor-

41

mance of MCMASSlk on Slk is comparable to that of MCMAS on equivalent
Atl and Ctlk formulas. This is because we adopted an approach in which the
colouring with strategies is specification-dependent and is only performed after
the set of reachable states is computed. We found that the main impediment to
better performance of the tool is the size of the BDDs required to encode sets
of extended states. Future efforts will be devoted to mitigate this problem as
well as to support logics stronger than Slk, including relaxing the assumption
on epistemic sentences.

Acknowledgements. This research was partly funded by the EPSRC
(grant EP/I00520X), the Regione Campania (Embedded System Cup project
B25B09090 100007), the EU (FP7 project 600958-SHERPA), and the MIUR
(ORCHESTRA project).

Bibliography

[1] M. Wooldridge, An introduction to MultiAgent systems, second edition
Edition, Wiley, 2009.

[2] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about Knowl-
edge, MIT Press, Cambridge, 1995.

[3] A. Lomuscio, M. Sergot, Deontic interpreted systems, Studia Logica 75 (1)
(2003) 63–92.

[4] A. S. Rao, Decision procedures for propositional linear-time Belief-Desire-
Intention logics, in: M. Wooldridge, J. P. Müller, M. Tambe (Eds.), Intelli-
gent Agents II (LNAI 1037), Springer-Verlag: Heidelberg, Germany, 1996,
pp. 33–48.

[5] A. Pnueli, Applications of temporal logic to the specification and verifica-
tion of reactive systems: A survey of current trends., in: J. W. de Bakker,
W. P. de Roever, G. Rozenberg (Eds.), Current Trends in Concurrency,
Overviews and Tutorials, LNCS 224, Springer, 1986, pp. 510–584.

[6] W. Penczek, A. Lomuscio, Verifying epistemic properties of multi-agent sys-
tems via bounded model checking, Fundamenta Informaticae 55 (2) (2003)
167–185.

[7] M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola,
M. Szreter, B. Wozna, A. Zbrzezny, Verics 2007 - a model checker for
knowledge and real-time, Fundamenta Informaticae 85 (1-4) (2008) 313–
328.

[8] R. Bryant, Graph-Based Algorithms for Boolean Function Manipulation.,
Transactions on Computers 35 (8) (1986) 677–691.

[9] P. Gammie, R. van der Meyden, MCK: Model checking the logic of knowl-
edge, in: Proceedings of 16th International Conference on Computer Aided
Verification (CAV’04), LNCS 3114, Springer, 2004, pp. 479–483.

42

[10] F. Raimondi, A. Lomuscio, Automatic verification of multi-agent systems
by model checking via OBDDs, Journal of Applied Logic 5 (2) (2005) 235–
251.

[11] M. Cohen, M. Dam, A. Lomuscio, H. Qu, A symmetry reduction tech-
nique for model checking temporal-epistemic logic, in: Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI’09),
Pasadena, USA, 2009, pp. 721–726.

[12] M. Cohen, M. Dam, A. Lomuscio, F. Russo, Abstraction in model checking
multi-agent systems, in: Proceedings of the 8th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS’09), IFAAMAS
Press, Budapest, Hungary, 2009, pp. 945–952.

[13] A. Lomuscio, J. Michaliszyn, Verification of multi-agent systems via pred-
icate abstraction against ATLK specifications, in: Proc. of the 15th Int.
Conference on Autonomous Agents and Multiagent Systems (AAMAS’16),
2016, pp. 662–670.

[14] R. Alur, L. de Alfaro, R. Grosu, T. Henzinger, A. Thomas, M. Kang,
C. Kirsch, R. Majumdar, F. Mang, B.-Y. Wang, jMocha: A model checking
tool that exploits design structure, in: Proceedings of the 23rd International
Conference on Software Engineering (ICSE’01), IEEE, 2001, pp. 835–836.

[15] W. Hoek, M. Wooldridge, Cooperation, knowledge, and time: Alternating-
time temporal epistemic logic and its applications, Studia Logica 75 (1)
(2003) 125–157.

[16] W. Jamroga, Some remarks on alternating temporal epistemic logic, in:
B. Dunin-Kȩplicz, R. Verbrugge (Eds.), Proceedings of the International
Workshop on Formal Approaches to Multi-Agent Systems (FAMAS’03),
2004, pp. 133–140.

[17] T. Ågotnes, V. Goranko, W. Jamroga, M. Wooldridge, Knowledge and abil-
ity, in: Handbook of Logics for Knowledge and Belief, College Publications,
2015.

[18] N. Bulling, W. Jamroga, Rational play and rational beliefs under uncer-
tainty, in: Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS’16), IFAAMAS, 2009, pp. 257–
264.

[19] A. Lomuscio, F. Raimondi, Model checking knowledge, strategies, and
games in multi-agent systems, in: Proceedings of the 5th International
Joint Conference on Autonomous agents and Multi-Agent Systems (AA-
MAS’06), ACM Press, 2006, pp. 161–168.

[20] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: A model checker for the ver-
ification of multi-agent systems, Software Tools for Technology Transfer.

43

[21] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic,
Journal of the ACM 49 (5) (2002) 672–713.

[22] G. Jonker, Feasible strategies in alternating-time temporal epistemic logic,
Master’s thesis, University of Utrech, The Netherlands (2003).

[23] F. Mogavero, A. Murano, M. Vardi, Reasoning About Strategies., in:
Foundations of Software Technology and Theoretical Computer Science’10,
LIPIcs 8, Leibniz-Zentrum fuer Informatik, 2010, pp. 133–144.

[24] P. Čermák, A. Lomuscio, F. Mogavero, A. Murano, MCMAS-SLK: A model
checker for the verification of strategy logic specifications, in: Proceed-
ings of the 26th International Conference n Computer Aided Verification
(CAV’14), LNCS 8559, Springer, 2014, pp. 525–532.

[25] K. Chatterjee, T. Henzinger, N. Piterman, Strategy Logic., Information
and Computation 208 (6) (2010) 677–693.

[26] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning About Strategies:
On the Model-Checking Problem., Transactions On Computational Logic
15 (4) (2014) 34:1–42.

[27] R. Alur, T. Henzinger, O. Kupferman, Alternating-Time Temporal Logic.,
Journal of the ACM 49 (5) (2002) 672–713.

[28] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge.,
MIT Press, 1995.

[29] A. Pnueli, The Temporal Logic of Programs., in: Foundation of Computer
Science’77, IEEE Computer Society, 1977, pp. 46–57.

[30] A. Lomuscio, R. Meyden, M. Ryan, Knowledge in multi-agent systems:
Initial configurations and broadcast, ACM Transactions of Computational
Logic 1 (2) (2000) 246–282.

[31] A. Lomuscio, Knowledge sharing among ideal agents, Ph.D. thesis, School
of Computer Science, University of Birmingham, Birmingham, UK (Jun.
1999).

[32] S. Even, A. Paz, A Note on Cake Cutting., Discrete Applied Mathematics
7 (1984) 285–296.

[33] O. Kupferman, M. Vardi, P. Wolper, An Automata Theoretic Approach
to Branching-Time Model Checking., Journal of the ACM 47 (2) (2000)
312–360.

[34] M. Vardi, P. Wolper, An Automata-Theoretic Approach to Automatic Pro-
gram Verification., in: Logic in Computer Science’86, IEEE Computer So-
ciety, 1986, pp. 332–344.

44

[35] N. Bulling, J. Dix, W. Jamroga, Model Checking Logics of Strategic Ability:
Complexity., in: Specification and Verification of Multi-Agent Systems’10,
Springer, 2010, pp. 125–159.

[36] L. Stockmeyer, A. Meyer, Word Problems Requiring Exponential Time
(Preliminary Report)., in: Symposium on Theory of Computing’73, Asso-
ciation for Computing Machinery, 1973, pp. 1–9.

[37] M. Benerecetti, F. Mogavero, A. Murano, Reasoning About Substructures
and Games., Transactions On Computational Logic 16 (3) (2015) 25:1–46.

[38] F. Mogavero, A. Murano, L. Sauro, On the boundary of behavioral strate-
gies, in: Proceedings of the 28th Annual IEEE/ACM Symposium on Logic
in Computer Science (LICS’13), IEEE, 2013, pp. 263–272.

[39] A. Lomuscio, F. Raimondi, Model checking knowledge, strategies, and
games in multi-agent systems, in: Proceedings of the 5th international joint
conference on Autonomous agents and multiagent systems (AAMAS’06),
ACM Press, 2006, pp. 161–168.

[40] A. Morgenstern, Symbolic controller synthesis for LTL specifications, Ph.D.
thesis (2010).

[41] M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning
about Systems, Cambridge University Press, New York, NY, USA, 2004.

[42] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Sym-
bolic model checking: 1020 states and beyond, Information and Computa-
tion 98 (2) (1992) 142–170.

[43] MCMAS-SLK - A Model Checker for the Verification of Strategy Logic
Specifications., http://vas.doc.ic.ac.uk/software/tools/.

[44] F. Somenzi, CUDD: CU decision diagram package, http://vlsi.

colorado.edu/~fabio/CUDD/.

[45] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: A model checker for the
verification of multi-agent systems, in: Proceedings of the 21th Interna-
tional Conference on Computer Aided Verification (CAV’09), LNCS 5643,
Springer, 2009, pp. 682–688.

[46] D. Chaum, The dining cryptographers problem: Unconditional sender and
recipient untraceability, Journal of Cryptology 1 (1) (1988) 65–75.

[47] W. van der Hoek, A. Lomuscio, A logic for ignorance, Electronic Notes in
Theoretical Computer Science 85 (2) (2004) 117–133.

[48] R. van der Meyden, K. Su, Symbolic model checking the knowledge of the
dining cryptographers, in: Proceedings of the 17th IEEE Computer Secu-
rity Foundations Workshop (CSFW’04), IEEE Computer Society, Wash-
ington, DC, USA, 2004, pp. 280–291.

45

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

[49] P. Čermák, A model checker for strategy logic, Master’s thesis, Department
of Computing, Imperial College London, UK (2014).

[50] K. Chatterjee, T. A. Henzinger, N. Piterman, Strategy logic, Inf. Comput.
208 (6) (2010) 677–693.

[51] A. D. C. Lopes, F. Laroussinie, N. Markey, ATL with strategy contexts:
Expressiveness and model checking, in: Proceedings of the 30th Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’10), LIPIcs 8, 2010, pp. 120–132.

[52] X. Huang, R. v. Meyden, Symbolic model checking epistemic strategy logic,
in: Proceedings of the 28th Conference on Artificial Intelligence (AAAI’14),
AAAI, 2014, pp. 1426–1432.

[53] X. Huang, R. v. Meyden, A temporal logic of strategic knowledge, in: Pro-
ceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning (KR’14), AAAI, 2014, pp. 418–427.

[54] P. Čermák, A. Lomuscio, A. Murano, Verifying and synthesising multi-
agent systems against one-goal strategy logic specifications, in: Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), AAAI
Press, 2015, pp. 2038–2044.

46

