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Abstract. New zero-knowledge proofs are given for some number-theoretic prob- 

lems. All of the problems are in NP, but the proofs given here are much more 

efficient than the previously known proofs. In addition, these proofs do not require 

the prover to be superpolynomial in power. A probabilistic polynomial-time prover 

with the appropriate trapdoor knowledge is sufficient. The proofs are perfect or 

statistical zero-knowledge in all cases except one. 
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1. Introduction 

Many researchers have studied zero-knowledge proofs and the classes of problems 

which have such zero-knowledge proofs. Little attention, however, has been paid 

to the practicality of these proofs. It is known, for example, that, under certain 

cryptographic assumptions, all problems in NP have zero-knowledge proofs [19], 

[8], [10]. Although these proofs can be performed with probabilistic polynomial- 

time provers who have the appropriate trapdoor information, these proofs may 

involve a transformation to a circuit or to an NP-complete problem, so they are 

often quite inefficient. The first zero-knowledge proofs, those for quadratic residuo- 

sity and nonresiduosity [22], were practical; they were efficient and the prover could 

be probabilistic polynomial-time if she 2 had the appropriate trapdoor knowledge. 

Other efficient zero-knowledge proofs are given in [9], [11], [12], [15], [23], and 

[30]. 

In this paper we present a practical zero-knowledge proof for a special case of 

primitivity. This protocol, which shows that an element of the multiplicative group 

modulo a prime is a generator, only requires that the prover be probabilistic 

polynomial time, though she must know the complete factorization of p - 1. Note 

that the protocol given in [30] is not practical because the prover must be able to 

I Date received: January 7, 1989. Date revised: May 12, 1991. This research was supported in part by 

NSA Grant No. MDA904-88-H-2006. 

2 In this paper it will at times be convenient to think of the verifier as being named Vic, and the prover 

being named Peggy. Thus, "he" will refer to the verifier and "she" will refer to the prover. 
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compute discrete logarithms. In order to avoid that problem in our protocol, we 

have the verifier give the prover "hints" which will help her find the discrete 

logarithms in question. 

Unfortunately, the portion of our protocol which shows that the element a is a 

primitive element of Z* fails in some cases if p - 1 has large square factors. It fails, 

though, in such a well-defined manner that we can use its failure in a zero-knowledge 

proof that a number n is not square-free. This proof that a number is not square-free 

is zero-knowledge only under a certain reasonable intractability assumption and is 

thus only computational zero-knowledge rather than perfect or statistical zero- 

knowledge. The protocol does not, however, involve any bit encryptions (blobs). 

All previous "natural" zero-knowledge proofs which are neither perfect nor statisti- 

cal zero-knowledge have used bit encryptions. Furthermore, this zero-knowledge 

proof is efficient, assuming the Extended Riemann Hypothesis. 

We also give practical zero-knowledge proofs for nonprimitivity, and for member- 

ship and nonmembership in {nln and r are relatively prime}. None of these proofs 

require that the prover be more than probabilistic polynomial time. 

2. Definitions 

This section contains definitions for interactive proofs and zero-knowledge [22]. 

Definition 1. An interactive proof system for a language L is a protocol for two 

probabilistic interactive Turing machines, the prover and the verifier. They have a 

common tape with the input string x. Both machines have private work tapes and 

private auxiliary input tapes, and there are two tapes on which they can communi- 

cate with each other. In polynomial time the verifier stops and either accepts or 

rejects the input string. The protocol has the following properties: 

Completeness: if x ~ L and both the prover and the verifier are following the 

protocol, then, for every c > 0 Pr(verifier accepts x) > 1 - I xl -c, for I xl suffi- 

ciently large. 

Soundness: if x r L and the verifier is following the protocol, then, for every 

program run by the prover and for every c > O, Pr(verifier rejects x)> 
1 - Ixl -c, for Ixl sufficiently large. 

Definition 2. An interactive proof system for a language L is prover-practical if the 

prover runs in probabilistic polynomial time. The prover's private auxiliary input 

tape is assumed to initially contain some trapdoor information about the input. 

If P and V are the programs of the two interactive machines, then the interactive 

proof system is denoted by (P, V). 

In the definition, the completeness property means that using the protocol the 

prover can convince the verifier of x ~ L with large probability. On the other hand, 

because of the soundness property, if x r L, the prover cannot convince the verifier 

of the contrary. The definition says that the probability that a cheating prover is 

successful should be less than 1/f(lx]) for any polynomial f. However, the protocols 
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we present here follow the standard practice of only allowing an exponentially small 

probability of successful cheating. 

In our paper we are interested in the case in which the running time of P is also 

polynomial in the length of the input, i.e., in prover-practical interactive proof 

systems. At the beginning of the protocol P has some additional information, "secret 

knowledge about the input," on her private auxiliary input tape. With this she can 

convince the verifier in polynomial time, that the input belongs to the language L. 

Definition 3. A transcript of a conversation between machines V* and P consists 

of the input string, the random bits of V*, and the messages sent by the two parties. 

In the following definitions we use Oren's notation [25]. The verifier may have 

some auxiliary input y on his private auxiliary input tape. In his definitions of 

zero-knowledge, Oren takes into account the effect that this auxiliary input has on 

the communication between the two parties. When these definitions are used, as 

opposed to the original definitions, the concatenation of two zero-knowledge proto- 

cols is still a zero-knowledge protocol. 

Let (P(x), V*(x, y)) denote the probability distribution of transcripts generated 

by P and V* on x ~ L, when y is initially on V*'s private auxiliary input tape. 

Intuitively, it is clear that if a machine Mr. ,  which is no more powerful than 

the verifier, can produce transcripts which have a very similar distribution to 

(P(x), V*(x, y)), then V* will learn very little (other than that x ~ L) which it could 

not have computed on its own. In order to formalize this idea of very similar 

transcripts, Goldwasser et al. [21] consider probabilistic polynomial-time distin- 

guishers, which output 0 on some transcripts and 1 on others. If no distinguisher D 

can effectively differentiate between two distributions, they are considered similar. 

Definition 4. An interactive proof system is zero-knowledge for the language L 

if, for every probabilistic polynomial-time machine V*, there exists an expected 

polynomial-time algorithm Mr., such that, for every probabilistic polynomial-time 

machine D, 

V c > 0 ,  3 N > 0 ,  V x e L ,  Vy, 

1 
Ixl > N ~ IPr[D((P(x), V*(x, y))) = 0] - P r [ D ( M v . ( x , y ) ) =  0]1 < - -  

IxF" 

Note that Mv.(X, y) denotes the distribution of transcripts generated by My., 

given x and y as inputs. 

My., the simulator, depends on the verifier's program V*. For example, the 

simulator can use the verifier itself, run the verifier's program for a while, and 

occasionally back up the verifier's program to a certain point. Thus, we can think 

of the simulator as asking questions of the verifier (when it writes something on a 

communication tape and runs the program for the verifier to get a response), or as 

revealing information to the verifier (when it is responding to a challenge which the 

verifier's program has written on a communication tape). The simulator's output is 

a transcript. 
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In this general definition, the simulator's output is only polynomially indistinguish- 

able from the original transcripts. The definitions below apply to certain cases in 

which it is possible to prove that the simulator's output is actually very similar to, 

rather than just polynomially indistinguishable from, the original transcripts. If the 

simulator's output has a distribution which is statistically very close to that of the 

original transcripts, we have statistical zero-knowledge; and if the distributions are 

identical, we have perfect zero-knowledge. We say that the protocol is computational 

zero-knowledge if it is zero-knowledge, but is not perfect or even statistical zero- 

knowledge. 

Definition 5. An interactive proof system for the language L is perfect zero- 

knowledge if, for every probabilistic polynomial-time machine V*, there exists an 

expected polynomial-time algorithm My., such that 

Vx ~ L, Vy, (P(x), V*(x, y)) = Mv.(X, y). 

Definition 6. An interactive proof system for the language L is statistical zero- 

knowledge if, for every probabilistic polynomial-time machine V*, there exists an 

expected polynomial-time algorithm M v,, such that, for any subset T of transcripts, 

Vc>O, 3N, Vx~L, Vy, 

1 
Ix[ > N =~ [Pr[(P(x), V*(x, y)) ~ T] - Pr[Mv.(X, y)) ~ T][ _< [x[~. 

In practice, most statistical zero-knowledge proofs have also been perfect zero- 

knowledge proofs. Our imprimitivity protocol is an example of an interactive proof 

which is statistical, but not perfect, zero-knowledge. 

It has been shown that if there exist any one-way functions, then every NP- 

language has a zero-knowledge proof system [19]. On the other hand, it is unlikely 

that there are perfect zero-knowledge proof systems for all problems with zero- 

knowledge proofs. The results of [17] and [7] show that NP-complete languages 

do not have perfect zero-knowledge proof systems unless the polynomial hierarchy 

collapses to the second level, which would be a major surprising result in complexity 

theory. 

Zero-knowledge interactive proofs can be very useful in designing cryptographic 

protocols. If the subroutines in a cryptographic protocol are zero-knowledge, then 

they leak no information whatsoever, so it is easier to prove the entire protocol 

correct and secure. The tools which have been most useful in cryptography have 

been number theoretic, so we concentrate on proofs for number-theoretic problems. 

Some of our proofs only work on a well-defined subset of the possible inputs, so 

these problems can be viewed as promise problems [14], [18]. From [14] we get the 

notation that a promise problem (Q, R) is deciding if the input x belongs to R given 

that we know that x belongs to Q. 

The definitions of zero-knowledge proofs do not require that the prover be a 

probabilistic polynomial-time machine; hence zero-knowledge proofs may not be 

practical. None of our protocols require more than a probabilistic polynomial-time 

prover. Thus, they are prover-practical zero-knowledge proofs. In addition, none 

of our proofs involve a transformation to a circuit or an NP-complete problem. 
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Usually such a transformation would involve a significant blowup in the size of the 

problem, greatly increasing the number of bits which must be communicated. For  

example, the circuit for proving that the element g is a primitive element of Z* would 

presumably involve checking that a factorization ofp - 1 is complete and checking, 

for each prime factor q of p - 1, that g raised to the power (p - 1)/q is not the 

identity. This circuit is not at all trivial; the protocol we give involves much less 

communication. 

We denote the number of bits communicated on inputs of size N, to achieve an 

error probability of no more than 2 -N, by CC(N). 

Showing that a protocol is a prover-practical zero-knowledge proof can be 

slightly more complicated than just showing that it is a zero-knowledge proof. When 

proving the completeness of the protocol, it is necessary to show that the prover 

can actually perform all of the required computations. This is, of course, unnecessary 

when no limits are placed on the prover's computational power. 

3. The Zero-Knowledge Proofs 

3.1. Primitivity 

If we are allowing the prover to be all-powerful, it is easy to give a zero-knowledge 

proof that 9 is a generator of the multiplicative group modulo a prime p. In one 

such proof, the following would be repeated k = [log2 iv] times: 

Protocol 1 

1. The verifier randomly and uniformly chooses r ~ Z*_~. 

2. The verifier computes h = g '  (mod p) and sends it to the prover. 

3. The verifier and the prover execute Protocol 3 (see below). This will convince 

the prover that the verifier knows, in the sense of I-15], the discrete logarithm 

of h. 

4. The prover takes the discrete logarithm of h to get r. 

5. The prover sends r back to the verifier who checks that it is correct. 

This is slightly more complicated than the zero-knowledge proof in [30], and it 

still has the problem that the prover needs to be able to take discrete logarithms. 

If, instead of proving that g is a generator, we just want an interactive proof that 9 

is a quasi-generator, then we do not need such a powerful prover. The verifier can 

give the prover a hint which enables her to compute the discrete logarithm. As we 

will see later, for many values of n, all quasi-generators will be generators. 

Definition 7. Suppose p is a prime, g is a generator of Z*, and p - 1 = 2'plelp2e2 . . .  

ek gr gq fl  f2 Pk �9 Then any = (mod p) is called a quasi-generator if q = p~ P2 - . -  Pk yk where 

0 < f~ < ei for all i. 

In other words, g is a quasi-generator if and only if 

(1) g~p-1)/2 ~ 1 and 

(2) any odd prime dividing p - 1 also divides the order of g. 
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Let us assume that the prover initially has the complete factorization of p - 1 on 

her private auxiliary input tape. In most applications, this is a reasonable assump- 

tion because it is possible in expected polynomial time to create a random prime p 

with a given length, along with the complete factorization of p - 1 [3], [1]. Now 

we modify the above zero-knowledge proof  to include the following steps, which 

should be repeated k = I-log2 p] times: 

Protocol 2 

0. The verifier rejects if g ( p - l ) / 2  = 1. 

1. The verifier randomly and uniformly chooses r ~ Z*_I. 

2. The verifier computes h - 0 r (rood p) and sends it to the prover. 

21. The verifier computes x - r 2 (mod p - 1) and sends it to the prover. 

3. The verifier and prover execute Protocol 3 (see below). This will convince the 

prover that the verifier knows, in the sense of [15], the discrete logarithm of h. 

4'. The prover takes the discrete logarithm of h to get r and checks that x has 

the correct form. If something fails, the prover terminates the protocol. 

5. The prover sends r back to the verifier who checks that it is correct. 

We now show that the above protocol is indeed a perfect zero-knowledge proof  

with a probabilistic polynomial-time prover. 

C o m p l e t e n e s s .  We show how a probabilistic polynomial-time prover can find r 

given the hint x and h. The idea is that the prover will solve the problem modulo 

every prime power dividing p - 1 and then use the Chinese Remainder Theorem 

to solve the problem modulo p - 1. 

Let q be a prime dividing p - 1, and let I be maximal such that q' divides p - 1. 

If q = 2, then x determines r modulo 2t uniquely, since r -= x 2' 2 (mod 2'). 

I fq  is an odd prime, then x does not define r modulo q' uniquely, since there are 

two square roots of any square in the ring Zq,. We show how the prover can find 

the one equal to r modulo q~. The prover finds in polynomial time the two square 

roots r I and r 2 of x modulo q' by using [-2], [-6], [26], or [27] to find the square 

roots modulo q and then lifting these solutions up to solutions modulo q'. Without 

loss of generality, suppose r~ = r (mod q~) and r 2 - - r  (mod qZ). Then there exist 

k I and k 2 such that r~ = r + k l q  t and r 2 = - r  + k2q ' .  Then 

and 

( g ~  . h-1)(p-1)/q'  = (g,+k~q' . g-~)(p-1)/q* = 1 

= g-2~tp-1/q~) v~ 1 

since r was chosen from Z*-I and g is a quasi-generator. Thus, the prover can simply 

compute ( g ' ~ ' h - 1 )  tp-~)/q' and (g '2 .h -1 ) tP-~) /q '  and choose the square root which 

produces the identity. 

The prover calculates r modulo every prime power dividing p - 1 using the above 

procedure, and then she can calculate r using the Chinese Remainder Theorem. 
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Soundness .  Let us suppose that g is not a quasi-generator. If g is a quadratic 

residue, the verifier rejects in step 0. Thus we may assume that g is a quadratic 

nonresidue. We show that in this case the prover fails to send back the correct r at 

least 50~o of the time. If g is not a quasi-generator, then g = f tq ,  for some f e Z* 

and for some odd prime factor q o fp  - 1, such that qt and (p - 1)/q' are relatively 

prime. Then there is another square root r '  ofx  modulo p - 1 with r '  = - r (mod qt), 

but r '  -= r (mod (p - 1)/qi)). This means that there exists an integer s such that 

r' = r + s ( (p  - 1)/q t) and r '  ~ r (mod p - 1). However, g"  = ftq,o.+s~j,-1)/q,)~ = 

ftq'rf ts(p-1) = g , .  Thus there are at least two distinct square roots of x which are 

discrete logarithms of h, so the prover cannot determine from x and h if the verifier 

chose r or r '  in step 1. 

Now we show that the prover learns nothing from the verifier in step 3 which 

could help her in determining which one of r and r '  the verifier has chosen. Let us 

first describe the subprotocol used in step 3. This is the parallel version of the discrete 

logarithm protocol of [11] with the roles of the prover and the verifier switched. 

We are doing it in parallel to make it clearer that the entire primitivity protocol 

can be done in parallel. 

The following is done in parallel for 1 < i < k = [log2 p]. 

Protocol 3 

3.1. The verifier randomly and uniformly chooses r i e Zp_~. 

3.2. The verifier computes h i = g"' (mod p) and sends it to the prover. 

3.3. The prover chooses ti  e {0, 1} randomly and sends i i  to the verifier. 

3.4. If l i  = 0, then the verifier sets ~i = ri; otherwise he sets fi = r~ + r. Then he 

reveals fi. 

3.5. The prover checks that hi = ge'/h p'. 

This protocol is in fact a witness hiding proof  of knowledge [15], [16] of the discrete 

logarithm of h. 

Look at the communication (h, x ,  hi  . . . . .  hk, 11 . . . . .  lk ,  ~ . . . .  ,8k) at the point just 

before the prover reveals r. Recall that r' = r + s( (p  - 1)/q'), that r 2 = r '2 (mod p - 1), 

and that h = gr = g,'. Define 

, f r  i if ii = 0, 

ri ~--- ~ .r  i - -  s (p -1) /q t  otherwise. 

The communication (h, x, h 1 . . . . .  hk, fll . . . .  , Elk, ~ . . . . .  fk) arises in two equally 

likely situations, one in which Vic chose (r, rx . . . . .  rk), and the other in which he 

chose (r', r~ . . . . .  r~) as his random choices. Observe that in both situations all of 

Vic's messages are the same, and these are the only possibilities, given that he chose 

either r or r '  in step 1. Hence, this step is of no help to the prover, so she has at best 

a 50-50 chance of guessing whether the verifier chose r or r '  in step 1. 

Z e r o - K n o w l e d g e .  We sketch some of the ideas for the construction of the simula- 

tor. The ideas follow the lines of [20]. The main idea is to use the verifier (here he can 

be any probabilistic polynomial-t ime machine), and his proof  in step 3 that he knows 

r, to find this r. 



192 J. Boyar, K. Friedl, and C. Lund 

The simulator asks a quest ion ( i l l , . . . ,  ilk) in step 3.3, and if it does not  get a 

correct  answer, meaning that, for all i, (h~, ~) satisfies that  hi = ge'/ha', it stops as the 

real prover  would. If it gets a correct  answer, it has to find the real r since this is 

what  the real prover  does. To  do this, it resets the verifier to the point  just before 

the quest ion was asked and asks another  r andom question (fl~, fl~ . . . . .  fiE). If it gets 

a correct  answer to (fl~, fl~ . . . . .  fiE) and (/~1, f12, . . . ,  ilk) ~ (fl'l, fl~ . . . . .  ~) ,  then it can 

find r, since i f f l / ~  fli, we have r = +(t[  - ~i). If it cannot  find r this way, then the 

simulator continues asking random questions until it can either find r or it has asked 

2 k questions. In the second case, it computes  r, using brute force. It can be shown 

that  this simulator runs in expected polynomial  time for all verifiers. Fur thermore ,  

we can make this a bounded  round protocol  because this simulator works even if 

the protocol  is run in parallel. In Appendix A we given the details of this simulation. 

Hence we get a bounded  round  perfect zero-knowledge protocol.  

Since O(k log2 p) bits are communica ted  in step 3 to achieve error  probabil i ty 

not  greater than (�89 the communica t ion  cost of the entire protocol  is O(k 2 log2 p). 

This gives 

Theorem 1. Let 

L = {(g, P)lP prime and g is a quasi-generator of Z*}. 

Then there is a prover-practical perfect zero-knowledge, bounded round, interactive 

proof system for L. 

The prover's auxiliary input tape contains the complete factorization of p - 1. The 

communication cost of this protocol is CC(N) = O(N3), where N = 2[-10g2 p] is the 

size of the input. 

I fp  - 1 is square-free, then a quasi-generator  is in fact a generator.  This fact gives 

the following corollary. 

Corollary 1. Let 

and 

Q = {(g, p)lp prime and p - 1 is square-free} 

G = {(g, p)lp prime and 9 is a generator of Z*}. 

Then there is a prover-practical perfect zero-knowledge, bounded round, interactive 

proof system for the promise problem (Q, G). 
The prover's auxiliary input tape contains the complete factorization of p - 1. The 

communication cost of this protocol is CC(N) = O(N3), where N = 2[log 2 p] is the 

size of the input. 

The set of primes, for which this protocol  can be used to "prove"  that an element 

is a generator,  is of reasonable size since [29] proved that 

3c > O, {PbP < x, ppr imeandp  - I square-free} > c 

{PIP < x and p prime} 

for x sufficiently large. 
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Throughout  this section we have been looking at the multiplicative group Z* of 

the integers modulo a prime p. It is easy, however, to generalize the proof system 

given above to any other cyclic group with known order. For  the proof that an 

element is a generator it is enough to assume that the order of the group is 

square-free except for some "easy-to-find" prime divisors with exponents larger than 

1. (Known prime divisors can be handled as 2 is in step 0.) Consider, for example, 

the multiplicative group Z~' of the integers modulo q = p", where p is an odd prime 

and n > 1. Almost all that is necessary is to substitute tp(q) = p , - l ( p  _ 1) in place 

of p - 1 throughout this exposition. (When q is prime, ~o(q), Euler's phi function, 

has the value q - 1.) Of course, q~(q) is never square-free if n > 2. This is not a 

problem, however, because q is easy to factor, so the verifier and the simulator can 

find p and can check that 9 p"-2tp-x) ~ 1 (mod p"). Thus, we can assume that 9 (a htp 

(mod p") for any integer t, and we again only need to worry about square factors 

o fp  - 1 .  3 

3.2. Are  n and tp(n) Relat ively  Prime? 

In the zero-knowledge proof system for generators presented in the previous section, 

we had to assume that p - 1 was square-free. This is unfortunate, particularly since 

there is no known efficient zero-knowledge proof for square-freeness. It is possible, 

however, to give an efficient proof that a number n and tp(n), the number of elements 

in the multiplicative group modulo n, are relatively prime. This property implies 

that n is square-free. Thus, if p - 1 = 2~m, where m is odd, and if m and tp(m) are 

relatively prime, the prover could prove that this is the case and afterward she could 

prove primitivity. Unfortunately, it is possible to have m and tp(m) not relatively 

prime even if p - 1 is square-free, so this proof system will not work for quite as 

large a class as we would like. Combined with the proof system of the previous 

section, however, it gives a perfect zero-knowledge proof for 

{(p, g)[p is prime, p - 1 = 21m, where m is odd, gcd(m, q~(m)) = 1, and (g )  = Z*}. 

Suppose the prover knows ~0(n) for an odd integer n and wants to prove that n 

and q~(n) are relatively prime. The prover and verifier can repeat the following 

I-log2 n] times. 

Protocol 4 

1. The verifier randomly and uniformly chooses x ~ Z,* and sends it to the prover. 

2. The prover chooses a random r e Z* and sends the verifier y - r"x (mod n). 

3. The verifier chooses fl E {0, 1} randomly with equal probabilities and sends fl 

to the prover. 

4. If/3 = 0, the prover reveals r showing that y was formed correctly. If/3 = 1, 

the prover reveals an nth root of y, thus showing that x has an nth root modulo 
/./. 

3 Notice that this is even easier in this particular case because the problem of determining primitivity 
in the group Z~. is efficiently reducible to that of determining primitivity in Z*. This follows from the 
fact that an element O ~ Z~ is primitive if and only if #P" 2r ~ 1 (mod p") and # is primitive when 
viewed as an element of the group Z*. 
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We now show that the above is a perfect zero-knowledge interactive proof system 

for {nlgcd(n, ~o(n)) = 1}. 

Completeness. When n and cp(n) are relatively prime, x = (xk) ~ (mod n) where 

k = (n (mod q0(n))) -1 (mod ~0(n)). Hence the prover can compute nth roots ofx and y. 

Soundness. Suppose that n and ~o(n) are not relatively prime. Then the gcd(n, q~(n)) 

= q, where 1 < q < q0(n) < n. Since there is some positive integer t such that, for 

every g ~ Z*, g~ = gtq (mod n), every element which has nth roots also has qth roots. 

Exactly qo(n)/q elements in Z* have qth roots, so no more than half of the elements 

of Z* have nth roots. If the verifier chooses an x which does not have an nth root, 

there is no more than a 50-50 chance that the prover will be able to answer the 

challenge chosen by the verifier. Thus, at each step, there is at least one chance in 

four that the prover will be caught, making the probability that the prover will 

succeed [log 2 n] times exponentially small. 

Zero-Knowledge. The simulator gets x from the verifier and chooses randomly 

and uniformly 7 ~ {0, 1) and r E Z*. If 7 = 0, it lets y = rnx; otherwise y = r ". 

Observe that since x has an nth root, we have that y in both cases is drawn from 

the same distribution as that of the prover's y. So there is a 50-50 chance that the 

verifier will choose fl = 7. In this case the simulation succeeds; otherwise the simula- 

tor backs up the verifier, chooses new random ~ and r, and tries again. Thus the 

simulation is expected polynomial time, and this protocol is perfect zero-knowledge. 

Furthermore, the protocol can be parallelized following the lines of I-4], as 

Protocol 5 below is parallelized in Protocol 6, giving a bounded round, perfect 

zero-knowledge proof system. The above discussion gives 

Theorem 2. There is a prover-practical perfect zero-knowledge, bounded round, 

interactive proof system for 

{nlgcd(n, q~(n)) = 1} 

with communication cost CC(N) = O(N2), where N = ['log 2 n] is the size of the input. 

The prover's auxiliary input tape contains the number q~(n). 

Corollary 2. There is a prover-practical perfect zero-knowledge, bounded round, 

interactive proof system for 

{(P, g)lP prime, p - 1 = 21m, where m is odd, gcd(m, tp(m)) = 1, and (g)  = Z* }. 

The prover's auxiliary input tape contains the complete factorization of p - 1. The 

communication cost is CC( N) = O(N3), where N = 2 Flog2 p] is the size of the input. 

If n and ~0(n) are not relatively prime, a prover who knows cp(n) can give a 

prover-practical zero-knowledge proof that they have a common factor, under 

certain assumptions. One such proof involves repeating the following [log2 n] times. 

First, the prover sends the verifier a random x ~ Z* such that x does not have an 

nth root. She can do this by choosing random x ~ Z* until x ~t~/g~d~n'~'tn~ ~: 1 (mod n). 
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Then, the verifier chooses a random r e Z* and a random bit ft. The verifier then 

sends y =- rnx # (mod n) to the prover. Next, using the technique due to Benaloh [5] 

of using cryptographic capsules, the verifier gives a zero-knowledge proof that he 

knows n and ft. Finally, the prover reveals the bit ft. The reason this is not perfect 

zero-knowledge is that the prover must originally produce an nth-nonresidue x, and 

it is not clear that the simulator can do this. If q = gcd(n, ~0(n)) is large enough 

(superpolynomial) though, the simulator could pick x e Z* at random and it is 

unlikely that x would be a qth-residue. In this case, the protocol would be statistical 

zero-knowledge. 

3.3. I m p r i m i t i v i t y  

Suppose p is a prime and g is not a generator of Z*. In this section we show how, 

if the prover knows t < p - 1 such that gt (mod p) - 1, she can give a prover- 

practical interactive proof that g is not a generator. The proof is statistical zero- 

knowledge if (p  - 1)It is large enough. The major advantage of the protocol given 

here over that in 1-30] is that we do not need to assume that a generator for Z* is 

publicly available. The set we are concerned with is 

S = {(p, g) lp  is a prime, 3t < p - 1, gt _ 1 (mod p)}. 

The values p and g are available to both the prover and the verifier; the value t 

is initially on the prover's private auxiliary input tape; and the prover is attempting 

to convince the verifier that g is not a generator modulo p. Let s = (p  - 1)It. Our 

proof is based on the fact that for every integer r, l, g~ - g,+a (mod p), so the prover 

can find many discrete logarithms for an element as long as she knows one discrete 

logarithm. If g was a generator, however, each element would have only one discrete 

logarithm in the range [-1, p - 1]. The protocol consists of [-log 2 p] independent 

repetitions of the following: 

Protocol 5 

1. The prover chooses a random r uniformly from the range [1, t]. 

2. The prover sends the verifier h -= gr (mod p). 

3. The verifier chooses fl e {0, 1 } randomly with equal probabilities and sends fl 

to the prover. 

4. Iffl = 0, the prover chooses a random z uniformly from [0, Ls/2J - 1]. Iffl = 1, 

the prover chooses a random z uniformly from [[s/2], s - 1]. 

5. The prover sends the verifier r'  = r + z t  who checks that h = gr' (mod p) and 

that r '  E [1, (p - 1)/2] iffl = 0, or that r '  e [(p - 1)/2 + 1, p - 1] otherwise. 

C o m p l e t e n e s s .  Notice that in step 5 the prover is revealing a discrete logarithm of 

h which is less than (p - 1)/2 if the verifier's a challenge was fl = 0, or greater than 

(p - 1)/2 iffl = 1. Ifg is not a generator, for all h ~ (g) ,  two such discrete logarithms 

will exist, and the method described for computing them is efficient. 

Soundness .  If g was a generator, only one discrete logarithm would exist, so for 

each of the verifier's challenges, the prover would have at most a 50-50 chance of 

being able to give a correct response. 
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Zero-Knowledge. Let us look at a simulator for this protocol. The simulator would 

choose a random r uniformly from [1, p - 1]. The simulator would then run the 

program for the verifier with the value g'  being sent from the prover. The simulator 

has a 50-50 chance of answering the verifier's question each time simply by revealing 

r. If it canot answer, it will backtrack the verifier to the point of choosing r and try 

another one. The simulation is obviously expected polynomial time. Both the prover 

and the simulator choose h to be a random element of the subgroup generated by 

g. If s is even the simulator generates r"s with the same distribution as the prover. 

The interesting case is when s is odd (because otherwise g is a quadratic residue) 

and then the distributions of r"s in step 5 are somewhat different depending on 

whether you have the true prover or the simulator. 

The true prover never gives r' in the interval 

I P }  2 + 1  , + 

if s is odd, but the simulator might. But since s is large, these distributions are 

statistically close. Let us look at one of the independent repetitions of the above 

protocol. Let P(x) denote the probability that the true prover reveals x in step 5, 

and let S(x) denote the probability that the simulator produces x in step 5. For  any 

subset X of {1 . . . . .  p -  1}, ] ~ x ~ x P ( x ) -  ~xExS(x)[ < 1Is. Hence for the whole 

protocol the distributions differ by at most (log2 p)/s. Thus this protocol is statistical 

zero-knowledge for the languages which are subsets of S of the form 

Sz = {(p, g)lp prime, ~t < p - l, gt =- l (mod p) and P - l > f( log p)} 
t 

where f is any superpolynomial function (i.e., which grows faster than any poly- 

nomial). 

The communication cost of this protocol is CC(N)= O(N2), where N = 

2 [log2 p] is size of the input. The above discussion gives 

Theorem 3. 

{(P, g)lP is a prime, 3t < p -- 1, g' = 1 (mod p)} 

and it is statistical zero-knowledge on 

SI = ~(p, g)lp is a prime, 3t < p - 1, gt ~ 1 (mod p) and 
1 P 

( t 

There is a prover-practical interactive proof system for 

_> f(log2 p)}, 

where f is superpolynomial. This protocol has communication cost CC(N) = O(N2), 

where N = 2 I-log 2 p] is the size of  the input. The prover's auxiliary input tape 
contains t. 

This restriction to subsets S I of S is unfortunate. If the prover only proves things 

from these smaller sets, she gives away some information, i.e., that s > f(log2 p). 

This does not appear to be much information since if s is small the verifier could 

himself have found s. But since there is a grey area between superpolynomially large 

and any fixed polynomial, we cannot find a uniform simulator that works for all 
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possible magnitudes for s. One solution to this problem is to consider an alternative 

definition of zero-knowledge. In the GMR-definition we have a simulator which 

can fool every probabilistic polynomial-time distinguisher with probability greater 

than 1 - 1/N ~ for every c for N sufficiently large, where N is the input size. In our 

definition we give c to the simulator, which then runs in an expected time which is 

polynomial in Nfi Hence the simulator is expected polynomial time for fixed c. Other 

than allowing the simulator's running time to vary depending on c, this definition 

is identical to Oren's [25], and we are using similar notation. 

D e f i n i t i o n  8. Let (P, V) be a interactive proof system for L. Then (P, V) is weak 

zero-knowledge if, for every probabilistic polynomial-time machine V*, there exists 

an algorithm Mv.(c, x, y) which runs in expected polynomial time for fixed c, such 

that, for every probabilistic polynomial-time machine D, 

Vc, 3N, Vx �9 L, Vy, 

Ixl > N =~ IPr[D(<P(x), V*(x, y)>) = 03 - Pr[D(Mv.(c, x, y)) = fill -< ixl-~. 

It is weak statistical zero-knowledge if, for every probabilistic polynomial-time 

machine V*, there exists an algorithm Mr.(c, x, y) which runs in expected polyno- 

mial time for fixed c, such that, for any subset T of transcripts, 

Vc, 3N, V x � 9  Vy, 

Ixl > a =~ IPr[D((P(x), V*(x,y))  �9 T] - Pr [ Mv . ( c , x , y ) ) � 9  T]I < - -  
1 

Ixl c" 

We believe that this definition captures the intuition of zero-knowledge. 

With this definition we can easily construct a simulator for the nongenerator 

protocol. It behaves exactly as the old one after testing that s > log c+2 p. If it finds 

s and hence t, it proceeds as the real prover would; otherwise it proceeds as the old 

simulator would. Using our new definition we get: 

T h e o r e m  4. There is a prover-practical weak statistical zero-knowledge interactive 

proof system for 

{(P, g)lP is a prime, 3t < p - 1, gt _= 1 (mod p)} 

with communication cost CC(N) = O(N2), where N = 2 Flog 2 p] is the size of the 

input, The prover's auxiliary input tape contains t. 

With this new definition of zero-knowledge we can also remove the assumption, 

in the protocol in [30] for the same problem, that one generator is publicly known. 

We can let the prover give the verifier a random generator. This is prover-practical 

weak zero-knowledge because the simulator can find a generator with probability 

1 - log -c n in time polynomial in log c n, as shown in Appendix B. 

The proof system presented above can be extended to work for many other cyclic 

groups with known order. In particular, when working with the multiplicative group 

modulo q, a power of an odd prime p, all that is necessary is to substitute ~p(q) = 

pn-l(p _ 1) in place o fp  - 1 throughout this exposition. 
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Fur thermore ,  the pro tocol  can be parallelized using techniques similar to those 

of  [4]. Let  k = [log p]. 

Protocol 6 

1. The  prover  chooses r andomly  and  uniformly x ~ Z*_I, computes  f = 

g x (mod p), and sends f to the verifier. 

2. The  verifier chooses r andomly  and  uniformly all his challenges (ill . . . . .  ilk) and 

commits  to them by choosing a r a n d o m  s i e Z*_~ for each t i .  If fli = 0, he lets 

t i - g s' (mod p); otherwise ti - f ~ '  (mod p). He  sends (tt, t 2 . . . .  , tk) to the 

prover.  

3. Fo r  1 < i < k, the prover  chooses a r a n d o m  ri uniformly f rom the range [1, t]. 

4. The  prover  sends the verifier (h 1 . . . . .  hk), where h i = g"  (mod p). 

5. The  verifier reveals his challenges by sending (ill . . . . .  ilk) and (s 1, s2, . . . ,  sk). 

6. The  prover  checks that  (g~"')', = q for 1 < i < k. 

7. If  ili = 0, the p rover  chooses a r a n d o m  zi uniformly f rom [0, ls/2J - 1]. If  

ill = 1, the prover  chooses a r a n d o m  zi uniformly f rom [I-s/2], s - 1]. 

8. The  prover  sends (r~ . . . . .  r~), where r[ = rl + z i t .  

9. The  verifier checks that  h i = g r~ (mod p) and that  r i ~ [1, (p - 1)/2] if i l i=  0, 

or  that  r" ~ [(p - 1)/2 + 1, p - 1] otherwise. Fur thermore ,  he checks that  

f = g ~ .  

C o m p l e t e n e s s .  The completeness  is obvious  f rom the completeness  of  the non-  

parallel version of the protocol .  

S o u n d n e s s .  To see that  this soundness  is preserved, observe that  the two different 

commi tmen t s  come f rom the same distr ibution since x ~ Z*_ 1 . Thus  receiving these 

commi tmen t s  earlier is of  no help to Peggy. 

Z e r o - K n o w l e d g e .  The s imula tor  is constructed as follows. It does the same as 

Peggy until Vic reveals all his challenges. Then  it back t racks  to the point  where Vic 

has just  made  his commitments .  N o w  the s imula tor  forms new hi's so that  it can 

answer  Vic's questions. (This is the set of  his that  it will ou tput  as par t  of  the 

transcript.) If  Vic reveals the same old questions, then the s imulator  can answer  

them. Otherwise the s imulator  learns s, s '  such that  g s = fs ' .  This gives 

92 = gxs" ~ gS-X~, = 1. 

I t  is easy to see that, since the s imulator  chooses x randomly,  s - x s '  (rood p - 1) 

is a r a n d o m  mult iple a t  of t, the order  of  g. N o w  the s imulator  will repeat  the above  

procedure  until it succeeds in getting ano ther  r a n d o m  mult iple a ' t  or until it has 

run the procedure  2 k times, in which case it will find t by brute  force. We know from 

[24] that  Pr [gcd(a t ,  a ' t )  = t] = 6/n 2. Hence,  it can be shown, by techniques similar 

to those in Appendix  A, that  this s imulator  runs in expected polynomia l  time. 

If the modu lus  has more  than  one pr ime factor  or is a large power  ( >  3) of  two, 

no elements would be generators.  We could, however,  still ask the question: Does  
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the subgroup generated by the element g have fewer than m elements (for a prime 

modulus m can be p - 1)? Then if the prover knows t such that gt = 1 (mod n), and 

s = [m/tJ is sufficiently large, we could give a zero-knowledge proof  that g only 

generates a small subgroup. 

3.4. Does n H a v e  a Square  Factor? 

Recall that in Section 3.1 (Corollary 1) we constructed a protocol for proving that 

an element is a generator for Z*, where p is a prime and p - 1 is square-free. When 

p - 1 is not square-free, that protocol shows that an element is a quasi-generator, 

though it may not be a generator. It  is possible, however, to use this deficiency in 

the proof system for primitivity to show that p - 1 is not square-free. 

First, if 4[p - 1, p - 1 clearly has a square factor and this is easily seen by the 

verifier, so we can assume that 4)fp - 1. Therefore if p - 1 is not square-free, then 

the prover can find an element h that is a quasi-generator but not a generator. Now 

she can prove to the verifier that h is a quasi-generator using Protocol 2 and that 

h is not a generator using Protocol 5. At this point the verifier is convinced that 

p - 1 has a square factor. 

This idea can be extended to give a general protocol for integers which have a 

square factor. To show that an integer n has a square factor, the prover first finds 

a prime p such that nip - 1. Then the prover shows that p - 1 has a square factor, 

which is also a square factor of n. 

The set we are concerned with is 

S = {n[n = q2m, q prime}. 

The integer n is available to both the prover and the verifier; the complete 

factorization of n is initially on the prover's private auxiliary input tape; and the 

prover is attempting to convince the verifier that n has a nontrivial square factor, 

q2, where q is prime. 

Protocol 7 

1. The verifier accepts if 4In. 

2. The prover finds a prime p < n 3 such that p = an + 1. She sends p and the 

complete factorization of a to the verifier. 

3. The verifier accepts if s21 n for some prime factor s of a. 

4. The prover finds a generator g in Z* and sends h = g q to the verifier. 

5. The prover proves that h is a quasi-generator, using Protocol 2. 

6. The prover proves that h is not a generator, using Protocol 5. 

7. The verifier checks that h ~p-l)/s # 1 for all prime factors s of a. 

Completeness .  Assuming the Extended Riemann Hypothesis, we can try random 

a's which are less than n 2 and expect to find p in O(log n) attempts. To see this, 

consider the following (from pp. 129 and 136 of [13]). Assuming the Extended 

Riemann Hypothesis, 

li x 
I{plp prime, p < x, p = 1 (mod n)}l = ~ )  + O ( x  I/z log x), 
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where 

= + o ( 1 ) .  li x = ~ dt log x log 2 + dt > ~g x 

Hence the probability that a random m, chosen so that m = 1 (mod n) and m < x, 

is prime is 

x/(q~(n) log x) + O(1)/q~(n) + O(x m log x) 

L ( x -  1)/nJ 

We have from [28] that ~0(n) > C(n/log log n); hence if x = n 3 the above is greater 

than 

log C' log n 
- -  q -  O(n -1/2 log n). 

log n 

Note that x = n T M  is sufficient ife > 0. 

To find p, we can use Bach's method [3] to produce an appropriate a randomly, 

along with the complete factorization of a. 

Another way to find an appropriate p is by trying n + 1, 2n + 1, 3n + 1 . . . .  until 

we find a prime. Wagstaff [31] has given a heuristic argument which says that we 

would usually only have to try up to O(log 2 n) numbers. Observe that we can factor 

a since it is so small. 

Because of step 3, we can assume that q(a, so the prover will succeed in showing 

both that h is a quasi-generator and that it is not a generator. 

Soundness. Assume that n is square-free. As observed before, ifp - 1 is square-free 

there will be no quasi-generators which are not generators. So it is very unlikely 

that the verifier will accept the prover 's  proofs in step 5 and step 6 unless p - 1 has 

a factor s such that s21(p - 1) and h (p-~)/s = 1. This factor must be a factor of a, so 

the verifier will reject in step 7. 

Zero-Knowledge. This protocol is obviously zero-knowledge if factoring is easy. 

In that case the simulator could factor n and then follow the prover's algorithm. 

Hence we assume that factoring is intractable. In this case the protocol is obviously 

not perfect zero-knowledge, or even statistical zero-knowledge unless there is some 

way for the simulator to produce an h of the required form. Since the simulator does 

not know q, it seems unlikely that it could produce such an h. We make the intrac- 

tability assumption that finding the factor q of n is random polynomial-time equiva- 

lent to distinguishing between random generators and random quasi-generators 

corresponding to q. This seems reasonable because the known algorithms for testing 

for primitivity involve factoring p - 1. 

We will be using the definition of weak zero-knowledge given in Definition 8, and 

the constant c in the following comes from that definition. In place of a quasi- 

generator, the simulator will produce a random element of Z* which it cannot 

tell is not a generator (i.e., if r is a factor of a or a small factor of n, where small 

means less than 1og~ +2 p, then neither h" nor h (v-l)/" is the identity). With prob- 
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ability 1 - log2 c p, this element is a generator of Z* (see Appendix B). Thus, under 

the above intractability assumption, this protocol is computational weak zero- 

knowledge if finding q is infeasible. Assuming that factoring is hard in general, there 

exists an infinite subset K of S on which the protocol will be computational weak 

zero-knowledge. A candidate for a subset of this K is 

M~ = {n e SlYprimes pin 3primes q~lP - 1, q21P -Jr 1, ql, q2 > n~} 

since no known factorization algorithm can factor numbers from M~ in expected 

polynomial time. 

The above discussion gives 

Theorem 5. Assuming the Extended Riemann Hypothesis, then there is a prover- 

practical, bounded round, interactive proof system for 

S = {nln = q2m, q prime}, 

with CC(N) = O(N3),  where N = [log2 n] is the size of the input. The prover's 

auxiliary input tape contains the complete factorization of n. 

Let K be a subset of S. For each n E K, we define the distributions G n and Q~ as 

follows. We choose p randomly and uniformly such that IPl < Inl 3, p is a prime and 

nbp - 1. Then choose g at random and uniformly from the set of generators of Z*. 

Now look at the two distributions 

G~ = {(g,p)} and Q~ = {(gq, p)}. 

If, for any probabilistic polynomial-time machine D, 

Vc, 3N, Vn ~ K, 

1 
m ,  n > N  =*- I P r [ D ( G n ) = l q - P r [ D ( Q n ) = l ] l ~ l o g  r 

then the protocol is weak zero-knowledge on K. 

Notice that the above protocol does not involve any encryption. All previous 

"natural" zero-knowledge proofs which are neither perfect nor statistical zero- 

knowledge, such as the zero-knowledge proof in [19] that a graph is 3-colorable, 

have used some encryption. 

4. Open Problems 

We would like to find efficient prover-practical zero-knowledge proofs for other 

problems. In particular, we began working on these problems after David Chaum 

mentioned the problem of finding an efficient prover-practical zero-knowledge 

proof that an element g generates a large subgroup modulo a composite number n. 

That problem is still open. We would also like to eliminate the assumption that 

p - 1 is square-free in the primitivity protocol. 
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The protocol given here to show that a number is not square-free is zero- 

knowledge under a reasonable assumption, but not statistical zero-knowledge. A 

practical statistical or perfect zero-knowledge proof system for this problem would 

be interesting. 

We would also like to find an efficient prover-practical zero-knowledge proof that 

a number n is square-free. 
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Appendix A 

In this appendix we give the details of the simulation of the primitivity protocol. 

This simulation uses ideas from [20]. We describe the situation in which the whole 

protocol is done in parallel. The last subscript on each variable indicates which of 

the [log 2 p] =/1 repetitions of the sequential protocol it comes from. The simulator 

excutes the following algorithm when simulating the interaction between the true 

prover and a fixed verifier V*. 

Run V* until it has sent 2n +/12 numbers (h t, h 2 . . . . .  h,, Xl, x2, . . . ,  X,n, 

hi,x, h2,1 . . . . .  hn, 1, h i , 2 ,  . . . ,  hn,,). 
Copy the configuration C of V* at this point. 

Choose randomly and uniformly (ill,l, fl2,1,-.., fin, l, fl1,2, .-., fin,.) 
{0, 1} n. 

Run V* from configuration C with input fl1,1, fl2,1 . . . . .  fin, l, ill,2 . . . . .  fin,. 

until he has sent/12 numbers (81,1, 82,1 . . . . .  8.,1, 81,2 . . . . .  8n,n). 

if 3i, j: hl,j v ~ O~i'i/h] ''J then 

Make a transcript of the communication up to this point and stop. 

else (* the simulator has to find the discrete logarithms (rl, r 2 . . . . .  rn) of 

h i ,  hE . . . . .  hn.* ) 
for j := 1 to/1 do 

m ; =  1 

while rj is undefined do 

Choose randomly and uniformly (71,1, ~2,1 . . . . .  7., 1, ~1,2 . . . . .  7n,n) 
n2 

Run V* from configuration C with input ~1,1, ~2,1, -.-, ~'n, 1, ~1,2, 

. . . .  ~n,. until he has sent/12 numbers (rl. 1, r2.1 . . . . .  r.. 1, r1,2 . . . . .  rn.n)" 
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i f  3i: hi, j = 9~',J/h] ''J and fli, j # ?;,j t h e n  rj := ( -  1)v'a(#i,~ - ri,j) 

i f  m > 2" then find rj by brute force from hi. 

m : = m +  1 

Make a transcript of the hi's, xj's, h~.j s, fl~,j s, #~,j s, and the rj's. 

Obviously the transcripts produced have the same distribution as would occur 

with the true prover. The only question is the running time. 

L e m m a  1. The above simulator runs in expected polynomial time. 

Proof. It is clear that if the expected number of iterations for the while loop is 

polynomial, then the running time is expected polynomial time. Note that the 

brute-force step is only undertaken if the algorithm has already used exponential 

time. First define 

p = Pr Vi, j: hi, j = h],,~j. 

With probability p we get to the while loop. Then we fix fl1.1, ~2,1, ..-, ~,,., 

define qj to be the probability of finding rj in the only one iteration of the while 

loop 

I - O~"-J 1 qj = Pr 3i: hi, j - hi ''j and fli,~ # Yi,j �9 

We observe that p cannot be much bigger than qj: 

qi_> Pr rVi, j: hi.~ = 9r and 3i: f l i , j#  ?i,jl 
L h~ i,j d 

0r J ] 
= p - Pr Vi, j: hi, ~ - hi ''J and u fli,j 7i,j 

_> p -- Pr[Vi: fli,j = )'i,j] 

= p -  2-". 

If Xj is the number of iterations of the while loop in the j th  iteration of the for loop, 

we get 

E(xj) -- p i(1 - @'-% + 2"(1 - @2. 

1 - -  (1 - -  qj)2" 
- p  

~b 

< p < q j - 2 - "  2-" 
- - < 1 + - - _ < 2  if qj_>2-". 

qj qj qj 
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If qj < 2 -~, then by using that Xj < 2" we get that 

e(X~) <_ p2 ~ <__ (r  + 2-~)2 ~ <_ 2. 

Hence the expected number of iterations of the while loop is < 2n. [] 

Appendix B 

Let Cn be a cyclic group of order n. Let c > 1 be a constant. Consider the following 

procedure d :  

Construct the set S = {PIP prime, p < log c+2 n and pin} 

repeat 

Choose g randomly and uniformly from C~. 

until Vp ~ S: gn/p :/: 1 

output g 

Lemma 2. ~r runs in expected polynomial time in logCn and d outputs a non- 

generator o f  C~ with probability O(I/log ~ n). 

Proof. Let G := {g ~ Cnlg is a generator}. Now [GI = ~o(n) > t~(n/(log log n)) [28]. 

So the expected number of g's picked is O(log log n) since every generator passes 

the test. The construction of S and the test clearly take only polynomial time. 

Suppose n = PiP2 "'" Pt, where, for some k, we have that if i < k, then Pi < 

log ~§ n, and i f / >  k, then Pi > log ~+2 n. Now let T : =  {gi r l  can output g} = 

{gtg "/p' v ~ 1, i ~ [1, k]}. 

We know that g is a generator if and only if, for all i ~ [1, l], g"/P' # 1. This shows 

that 
l 

T -  G c U {xl x"/' ' = l } .  
i = k + l  

Now the cardinality of each term is estimated by 

n n 
I{xlx  n/~' = 1}1 p i - l o f f  § n 

So we get 

i n )<__ r T - - G I < I  og ~ 2 n  - log c+l n" 

Now the probability that d outputs a nongenerator is 

I T - G [  I T - G I  

[TI [GI 

which is O(1/log c n). This proves the lemma. [] 
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