
J. Cryptology (1991) 4:185-206

Journal of Cryptology
�9 1991 International Association for
Cryptologic Research

Practical Zero-Knowledge Proofs:

Giving Hints and Using Deficiencies 1

Joan Boyar, Katalin Friedl, and Carsten Lund

Computer Science Department, University of Chicago,

Chicago, IL 60637, U.S.A.

Abstract. New zero-knowledge proofs are given for some number-theoretic prob-

lems. All of the problems are in NP, but the proofs given here are much more

efficient than the previously known proofs. In addition, these proofs do not require

the prover to be superpolynomial in power. A probabilistic polynomial-time prover

with the appropriate trapdoor knowledge is sufficient. The proofs are perfect or

statistical zero-knowledge in all cases except one.

Key words. Zero-knowledge proofs, Efficiency, Number-theoretic problems.

1. Introduction

Many researchers have studied zero-knowledge proofs and the classes of problems

which have such zero-knowledge proofs. Little attention, however, has been paid

to the practicality of these proofs. It is known, for example, that, under certain

cryptographic assumptions, all problems in NP have zero-knowledge proofs [19],

[8], [10]. Although these proofs can be performed with probabilistic polynomial-

time provers who have the appropriate trapdoor information, these proofs may

involve a transformation to a circuit or to an NP-complete problem, so they are

often quite inefficient. The first zero-knowledge proofs, those for quadratic residuo-

sity and nonresiduosity [22], were practical; they were efficient and the prover could

be probabilistic polynomial-time if she 2 had the appropriate trapdoor knowledge.

Other efficient zero-knowledge proofs are given in [9], [11], [12], [15], [23], and

[30].

In this paper we present a practical zero-knowledge proof for a special case of

primitivity. This protocol, which shows that an element of the multiplicative group

modulo a prime is a generator, only requires that the prover be probabilistic

polynomial time, though she must know the complete factorization of p - 1. Note

that the protocol given in [30] is not practical because the prover must be able to

I Date received: January 7, 1989. Date revised: May 12, 1991. This research was supported in part by

NSA Grant No. MDA904-88-H-2006.

2 In this paper it will at times be convenient to think of the verifier as being named Vic, and the prover

being named Peggy. Thus, "he" will refer to the verifier and "she" will refer to the prover.

185

186 J. Boyar, K. Friedl, and C. Lund

compute discrete logarithms. In order to avoid that problem in our protocol, we

have the verifier give the prover "hints" which will help her find the discrete

logarithms in question.

Unfortunately, the portion of our protocol which shows that the element a is a

primitive element of Z* fails in some cases if p - 1 has large square factors. It fails,

though, in such a well-defined manner that we can use its failure in a zero-knowledge

proof that a number n is not square-free. This proof that a number is not square-free

is zero-knowledge only under a certain reasonable intractability assumption and is

thus only computational zero-knowledge rather than perfect or statistical zero-

knowledge. The protocol does not, however, involve any bit encryptions (blobs).

All previous "natural" zero-knowledge proofs which are neither perfect nor statisti-

cal zero-knowledge have used bit encryptions. Furthermore, this zero-knowledge

proof is efficient, assuming the Extended Riemann Hypothesis.

We also give practical zero-knowledge proofs for nonprimitivity, and for member-

ship and nonmembership in {nln and r are relatively prime}. None of these proofs

require that the prover be more than probabilistic polynomial time.

2. Definitions

This section contains definitions for interactive proofs and zero-knowledge [22].

Definition 1. An interactive proof system for a language L is a protocol for two

probabilistic interactive Turing machines, the prover and the verifier. They have a

common tape with the input string x. Both machines have private work tapes and

private auxiliary input tapes, and there are two tapes on which they can communi-

cate with each other. In polynomial time the verifier stops and either accepts or

rejects the input string. The protocol has the following properties:

Completeness: if x ~ L and both the prover and the verifier are following the

protocol, then, for every c > 0 Pr(verifier accepts x) > 1 - I xl -c, for I xl suffi-

ciently large.

Soundness: if x r L and the verifier is following the protocol, then, for every

program run by the prover and for every c > O, Pr(verifier rejects x)>
1 - Ixl -c, for Ixl sufficiently large.

Definition 2. An interactive proof system for a language L is prover-practical if the

prover runs in probabilistic polynomial time. The prover's private auxiliary input

tape is assumed to initially contain some trapdoor information about the input.

If P and V are the programs of the two interactive machines, then the interactive

proof system is denoted by (P, V).

In the definition, the completeness property means that using the protocol the

prover can convince the verifier of x ~ L with large probability. On the other hand,

because of the soundness property, if x r L, the prover cannot convince the verifier

of the contrary. The definition says that the probability that a cheating prover is

successful should be less than 1/f(lx]) for any polynomial f. However, the protocols

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 187

we present here follow the standard practice of only allowing an exponentially small

probability of successful cheating.

In our paper we are interested in the case in which the running time of P is also

polynomial in the length of the input, i.e., in prover-practical interactive proof

systems. At the beginning of the protocol P has some additional information, "secret

knowledge about the input," on her private auxiliary input tape. With this she can

convince the verifier in polynomial time, that the input belongs to the language L.

Definition 3. A transcript of a conversation between machines V* and P consists

of the input string, the random bits of V*, and the messages sent by the two parties.

In the following definitions we use Oren's notation [25]. The verifier may have

some auxiliary input y on his private auxiliary input tape. In his definitions of

zero-knowledge, Oren takes into account the effect that this auxiliary input has on

the communication between the two parties. When these definitions are used, as

opposed to the original definitions, the concatenation of two zero-knowledge proto-

cols is still a zero-knowledge protocol.

Let (P(x), V*(x, y)) denote the probability distribution of transcripts generated

by P and V* on x ~ L, when y is initially on V*'s private auxiliary input tape.

Intuitively, it is clear that if a machine Mr. , which is no more powerful than

the verifier, can produce transcripts which have a very similar distribution to

(P(x), V*(x, y)), then V* will learn very little (other than that x ~ L) which it could

not have computed on its own. In order to formalize this idea of very similar

transcripts, Goldwasser et al. [21] consider probabilistic polynomial-time distin-

guishers, which output 0 on some transcripts and 1 on others. If no distinguisher D

can effectively differentiate between two distributions, they are considered similar.

Definition 4. An interactive proof system is zero-knowledge for the language L

if, for every probabilistic polynomial-time machine V*, there exists an expected

polynomial-time algorithm Mr., such that, for every probabilistic polynomial-time

machine D,

V c > 0 , 3 N > 0 , V x e L , Vy,

1
Ixl > N ~ IPr[D((P(x), V*(x, y))) = 0] - P r [D (M v . (x , y)) = 0]1 < - -

IxF"

Note that Mv.(X, y) denotes the distribution of transcripts generated by My.,

given x and y as inputs.

My., the simulator, depends on the verifier's program V*. For example, the

simulator can use the verifier itself, run the verifier's program for a while, and

occasionally back up the verifier's program to a certain point. Thus, we can think

of the simulator as asking questions of the verifier (when it writes something on a

communication tape and runs the program for the verifier to get a response), or as

revealing information to the verifier (when it is responding to a challenge which the

verifier's program has written on a communication tape). The simulator's output is

a transcript.

188 J. Boyar, K. Friedl, and C. Lund

In this general definition, the simulator's output is only polynomially indistinguish-

able from the original transcripts. The definitions below apply to certain cases in

which it is possible to prove that the simulator's output is actually very similar to,

rather than just polynomially indistinguishable from, the original transcripts. If the

simulator's output has a distribution which is statistically very close to that of the

original transcripts, we have statistical zero-knowledge; and if the distributions are

identical, we have perfect zero-knowledge. We say that the protocol is computational

zero-knowledge if it is zero-knowledge, but is not perfect or even statistical zero-

knowledge.

Definition 5. An interactive proof system for the language L is perfect zero-

knowledge if, for every probabilistic polynomial-time machine V*, there exists an

expected polynomial-time algorithm My., such that

Vx ~ L, Vy, (P(x), V*(x, y)) = Mv.(X, y).

Definition 6. An interactive proof system for the language L is statistical zero-

knowledge if, for every probabilistic polynomial-time machine V*, there exists an

expected polynomial-time algorithm M v,, such that, for any subset T of transcripts,

Vc>O, 3N, Vx~L, Vy,

1
Ix[> N =~ [Pr[(P(x), V*(x, y)) ~ T] - Pr[Mv.(X, y)) ~ T][_< [x[~.

In practice, most statistical zero-knowledge proofs have also been perfect zero-

knowledge proofs. Our imprimitivity protocol is an example of an interactive proof

which is statistical, but not perfect, zero-knowledge.

It has been shown that if there exist any one-way functions, then every NP-

language has a zero-knowledge proof system [19]. On the other hand, it is unlikely

that there are perfect zero-knowledge proof systems for all problems with zero-

knowledge proofs. The results of [17] and [7] show that NP-complete languages

do not have perfect zero-knowledge proof systems unless the polynomial hierarchy

collapses to the second level, which would be a major surprising result in complexity

theory.

Zero-knowledge interactive proofs can be very useful in designing cryptographic

protocols. If the subroutines in a cryptographic protocol are zero-knowledge, then

they leak no information whatsoever, so it is easier to prove the entire protocol

correct and secure. The tools which have been most useful in cryptography have

been number theoretic, so we concentrate on proofs for number-theoretic problems.

Some of our proofs only work on a well-defined subset of the possible inputs, so

these problems can be viewed as promise problems [14], [18]. From [14] we get the

notation that a promise problem (Q, R) is deciding if the input x belongs to R given

that we know that x belongs to Q.

The definitions of zero-knowledge proofs do not require that the prover be a

probabilistic polynomial-time machine; hence zero-knowledge proofs may not be

practical. None of our protocols require more than a probabilistic polynomial-time

prover. Thus, they are prover-practical zero-knowledge proofs. In addition, none

of our proofs involve a transformation to a circuit or an NP-complete problem.

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 189

Usually such a transformation would involve a significant blowup in the size of the

problem, greatly increasing the number of bits which must be communicated. For

example, the circuit for proving that the element g is a primitive element of Z* would

presumably involve checking that a factorization ofp - 1 is complete and checking,

for each prime factor q of p - 1, that g raised to the power (p - 1)/q is not the

identity. This circuit is not at all trivial; the protocol we give involves much less

communication.

We denote the number of bits communicated on inputs of size N, to achieve an

error probability of no more than 2 -N, by CC(N).

Showing that a protocol is a prover-practical zero-knowledge proof can be

slightly more complicated than just showing that it is a zero-knowledge proof. When

proving the completeness of the protocol, it is necessary to show that the prover

can actually perform all of the required computations. This is, of course, unnecessary

when no limits are placed on the prover's computational power.

3. The Zero-Knowledge Proofs

3.1. Primitivity

If we are allowing the prover to be all-powerful, it is easy to give a zero-knowledge

proof that 9 is a generator of the multiplicative group modulo a prime p. In one

such proof, the following would be repeated k = [log2 iv] times:

Protocol 1

1. The verifier randomly and uniformly chooses r ~ Z*_~.

2. The verifier computes h = g ' (mod p) and sends it to the prover.

3. The verifier and the prover execute Protocol 3 (see below). This will convince

the prover that the verifier knows, in the sense of I-15], the discrete logarithm

of h.

4. The prover takes the discrete logarithm of h to get r.

5. The prover sends r back to the verifier who checks that it is correct.

This is slightly more complicated than the zero-knowledge proof in [30], and it

still has the problem that the prover needs to be able to take discrete logarithms.

If, instead of proving that g is a generator, we just want an interactive proof that 9

is a quasi-generator, then we do not need such a powerful prover. The verifier can

give the prover a hint which enables her to compute the discrete logarithm. As we

will see later, for many values of n, all quasi-generators will be generators.

Definition 7. Suppose p is a prime, g is a generator of Z*, and p - 1 = 2'plelp2e2 . . .

ek gr gq fl f2 Pk �9 Then any = (mod p) is called a quasi-generator if q = p~ P2 - . - Pk yk where

0 < f~ < ei for all i.

In other words, g is a quasi-generator if and only if

(1) g~p-1)/2 ~ 1 and

(2) any odd prime dividing p - 1 also divides the order of g.

190 J. Boyar, K. Friedl, and C. Lund

Let us assume that the prover initially has the complete factorization of p - 1 on

her private auxiliary input tape. In most applications, this is a reasonable assump-

tion because it is possible in expected polynomial time to create a random prime p

with a given length, along with the complete factorization of p - 1 [3], [1]. Now

we modify the above zero-knowledge proof to include the following steps, which

should be repeated k = I-log2 p] times:

Protocol 2

0. The verifier rejects if g (p - l) / 2 = 1.

1. The verifier randomly and uniformly chooses r ~ Z*_I.

2. The verifier computes h - 0 r (rood p) and sends it to the prover.

21. The verifier computes x - r 2 (mod p - 1) and sends it to the prover.

3. The verifier and prover execute Protocol 3 (see below). This will convince the

prover that the verifier knows, in the sense of [15], the discrete logarithm of h.

4'. The prover takes the discrete logarithm of h to get r and checks that x has

the correct form. If something fails, the prover terminates the protocol.

5. The prover sends r back to the verifier who checks that it is correct.

We now show that the above protocol is indeed a perfect zero-knowledge proof

with a probabilistic polynomial-time prover.

C o m p l e t e n e s s . We show how a probabilistic polynomial-time prover can find r

given the hint x and h. The idea is that the prover will solve the problem modulo

every prime power dividing p - 1 and then use the Chinese Remainder Theorem

to solve the problem modulo p - 1.

Let q be a prime dividing p - 1, and let I be maximal such that q' divides p - 1.

If q = 2, then x determines r modulo 2t uniquely, since r -= x 2' 2 (mod 2').

I fq is an odd prime, then x does not define r modulo q' uniquely, since there are

two square roots of any square in the ring Zq,. We show how the prover can find

the one equal to r modulo q~. The prover finds in polynomial time the two square

roots r I and r 2 of x modulo q' by using [-2], [-6], [26], or [27] to find the square

roots modulo q and then lifting these solutions up to solutions modulo q'. Without

loss of generality, suppose r~ = r (mod q~) and r 2 - - r (mod qZ). Then there exist

k I and k 2 such that r~ = r + k l q t and r 2 = - r + k2q ' . Then

and

(g ~ . h-1)(p-1)/q' = (g,+k~q' . g-~)(p-1)/q* = 1

= g-2~tp-1/q~) v~ 1

since r was chosen from Z*-I and g is a quasi-generator. Thus, the prover can simply

compute (g ' ~ ' h - 1) tp-~)/q' and (g '2 .h -1) tP-~) /q ' and choose the square root which

produces the identity.

The prover calculates r modulo every prime power dividing p - 1 using the above

procedure, and then she can calculate r using the Chinese Remainder Theorem.

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 191

Soundness . Let us suppose that g is not a quasi-generator. If g is a quadratic

residue, the verifier rejects in step 0. Thus we may assume that g is a quadratic

nonresidue. We show that in this case the prover fails to send back the correct r at

least 50~o of the time. If g is not a quasi-generator, then g = f tq , for some f e Z*

and for some odd prime factor q o fp - 1, such that qt and (p - 1)/q' are relatively

prime. Then there is another square root r ' ofx modulo p - 1 with r ' = - r (mod qt),

but r ' -= r (mod (p - 1)/qi)). This means that there exists an integer s such that

r' = r + s ((p - 1)/q t) and r ' ~ r (mod p - 1). However, g" = ftq,o.+s~j,-1)/q,)~ =

ftq'rf ts(p-1) = g , . Thus there are at least two distinct square roots of x which are

discrete logarithms of h, so the prover cannot determine from x and h if the verifier

chose r or r ' in step 1.

Now we show that the prover learns nothing from the verifier in step 3 which

could help her in determining which one of r and r ' the verifier has chosen. Let us

first describe the subprotocol used in step 3. This is the parallel version of the discrete

logarithm protocol of [11] with the roles of the prover and the verifier switched.

We are doing it in parallel to make it clearer that the entire primitivity protocol

can be done in parallel.

The following is done in parallel for 1 < i < k = [log2 p].

Protocol 3

3.1. The verifier randomly and uniformly chooses r i e Zp_~.

3.2. The verifier computes h i = g"' (mod p) and sends it to the prover.

3.3. The prover chooses ti e {0, 1} randomly and sends i i to the verifier.

3.4. If l i = 0, then the verifier sets ~i = ri; otherwise he sets fi = r~ + r. Then he

reveals fi.

3.5. The prover checks that hi = ge'/h p'.

This protocol is in fact a witness hiding proof of knowledge [15], [16] of the discrete

logarithm of h.

Look at the communication (h, x , hi hk, 11 lk , ~ ,8k) at the point just

before the prover reveals r. Recall that r' = r + s((p - 1)/q'), that r 2 = r '2 (mod p - 1),

and that h = gr = g,'. Define

, f r i if ii = 0,

ri ~--- ~ .r i - - s (p -1) /q t otherwise.

The communication (h, x, h 1 hk, fll , Elk, ~ fk) arises in two equally

likely situations, one in which Vic chose (r, rx rk), and the other in which he

chose (r', r~ r~) as his random choices. Observe that in both situations all of

Vic's messages are the same, and these are the only possibilities, given that he chose

either r or r ' in step 1. Hence, this step is of no help to the prover, so she has at best

a 50-50 chance of guessing whether the verifier chose r or r ' in step 1.

Z e r o - K n o w l e d g e . We sketch some of the ideas for the construction of the simula-

tor. The ideas follow the lines of [20]. The main idea is to use the verifier (here he can

be any probabilistic polynomial-t ime machine), and his proof in step 3 that he knows

r, to find this r.

192 J. Boyar, K. Friedl, and C. Lund

The simulator asks a quest ion (i l l , . . . , ilk) in step 3.3, and if it does not get a

correct answer, meaning that, for all i, (h~, ~) satisfies that hi = ge'/ha', it stops as the

real prover would. If it gets a correct answer, it has to find the real r since this is

what the real prover does. To do this, it resets the verifier to the point just before

the quest ion was asked and asks another r andom question (fl~, fl~ fiE). If it gets

a correct answer to (fl~, fl~ fiE) and (/~1, f12, . . . , ilk) ~ (fl'l, fl~ ~) , then it can

find r, since i f f l / ~ fli, we have r = +(t[- ~i). If it cannot find r this way, then the

simulator continues asking random questions until it can either find r or it has asked

2 k questions. In the second case, it computes r, using brute force. It can be shown

that this simulator runs in expected polynomial time for all verifiers. Fur thermore ,

we can make this a bounded round protocol because this simulator works even if

the protocol is run in parallel. In Appendix A we given the details of this simulation.

Hence we get a bounded round perfect zero-knowledge protocol.

Since O(k log2 p) bits are communica ted in step 3 to achieve error probabil i ty

not greater than (�89 the communica t ion cost of the entire protocol is O(k 2 log2 p).

This gives

Theorem 1. Let

L = {(g, P)lP prime and g is a quasi-generator of Z*}.

Then there is a prover-practical perfect zero-knowledge, bounded round, interactive

proof system for L.

The prover's auxiliary input tape contains the complete factorization of p - 1. The

communication cost of this protocol is CC(N) = O(N3), where N = 2[-10g2 p] is the

size of the input.

I fp - 1 is square-free, then a quasi-generator is in fact a generator. This fact gives

the following corollary.

Corollary 1. Let

and

Q = {(g, p)lp prime and p - 1 is square-free}

G = {(g, p)lp prime and 9 is a generator of Z*}.

Then there is a prover-practical perfect zero-knowledge, bounded round, interactive

proof system for the promise problem (Q, G).
The prover's auxiliary input tape contains the complete factorization of p - 1. The

communication cost of this protocol is CC(N) = O(N3), where N = 2[log 2 p] is the

size of the input.

The set of primes, for which this protocol can be used to "prove" that an element

is a generator, is of reasonable size since [29] proved that

3c > O, {PbP < x, ppr imeandp - I square-free} > c

{PIP < x and p prime}

for x sufficiently large.

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 193

Throughout this section we have been looking at the multiplicative group Z* of

the integers modulo a prime p. It is easy, however, to generalize the proof system

given above to any other cyclic group with known order. For the proof that an

element is a generator it is enough to assume that the order of the group is

square-free except for some "easy-to-find" prime divisors with exponents larger than

1. (Known prime divisors can be handled as 2 is in step 0.) Consider, for example,

the multiplicative group Z~' of the integers modulo q = p", where p is an odd prime

and n > 1. Almost all that is necessary is to substitute tp(q) = p , - l (p _ 1) in place

of p - 1 throughout this exposition. (When q is prime, ~o(q), Euler's phi function,

has the value q - 1.) Of course, q~(q) is never square-free if n > 2. This is not a

problem, however, because q is easy to factor, so the verifier and the simulator can

find p and can check that 9 p"-2tp-x) ~ 1 (mod p"). Thus, we can assume that 9 (a htp

(mod p") for any integer t, and we again only need to worry about square factors

o fp - 1 . 3

3.2. Are n and tp(n) Relat ively Prime?

In the zero-knowledge proof system for generators presented in the previous section,

we had to assume that p - 1 was square-free. This is unfortunate, particularly since

there is no known efficient zero-knowledge proof for square-freeness. It is possible,

however, to give an efficient proof that a number n and tp(n), the number of elements

in the multiplicative group modulo n, are relatively prime. This property implies

that n is square-free. Thus, if p - 1 = 2~m, where m is odd, and if m and tp(m) are

relatively prime, the prover could prove that this is the case and afterward she could

prove primitivity. Unfortunately, it is possible to have m and tp(m) not relatively

prime even if p - 1 is square-free, so this proof system will not work for quite as

large a class as we would like. Combined with the proof system of the previous

section, however, it gives a perfect zero-knowledge proof for

{(p, g)[p is prime, p - 1 = 21m, where m is odd, gcd(m, q~(m)) = 1, and (g) = Z*}.

Suppose the prover knows ~0(n) for an odd integer n and wants to prove that n

and q~(n) are relatively prime. The prover and verifier can repeat the following

I-log2 n] times.

Protocol 4

1. The verifier randomly and uniformly chooses x ~ Z,* and sends it to the prover.

2. The prover chooses a random r e Z* and sends the verifier y - r"x (mod n).

3. The verifier chooses fl E {0, 1} randomly with equal probabilities and sends fl

to the prover.

4. If/3 = 0, the prover reveals r showing that y was formed correctly. If/3 = 1,

the prover reveals an nth root of y, thus showing that x has an nth root modulo
/./.

3 Notice that this is even easier in this particular case because the problem of determining primitivity
in the group Z~. is efficiently reducible to that of determining primitivity in Z*. This follows from the
fact that an element O ~ Z~ is primitive if and only if #P" 2r ~ 1 (mod p") and # is primitive when
viewed as an element of the group Z*.

194 J. Boyar, K. Friedl, and C. Lund

We now show that the above is a perfect zero-knowledge interactive proof system

for {nlgcd(n, ~o(n)) = 1}.

Completeness. When n and cp(n) are relatively prime, x = (xk) ~ (mod n) where

k = (n (mod q0(n))) -1 (mod ~0(n)). Hence the prover can compute nth roots ofx and y.

Soundness. Suppose that n and ~o(n) are not relatively prime. Then the gcd(n, q~(n))

= q, where 1 < q < q0(n) < n. Since there is some positive integer t such that, for

every g ~ Z*, g~ = gtq (mod n), every element which has nth roots also has qth roots.

Exactly qo(n)/q elements in Z* have qth roots, so no more than half of the elements

of Z* have nth roots. If the verifier chooses an x which does not have an nth root,

there is no more than a 50-50 chance that the prover will be able to answer the

challenge chosen by the verifier. Thus, at each step, there is at least one chance in

four that the prover will be caught, making the probability that the prover will

succeed [log 2 n] times exponentially small.

Zero-Knowledge. The simulator gets x from the verifier and chooses randomly

and uniformly 7 ~ {0, 1) and r E Z*. If 7 = 0, it lets y = rnx; otherwise y = r ".

Observe that since x has an nth root, we have that y in both cases is drawn from

the same distribution as that of the prover's y. So there is a 50-50 chance that the

verifier will choose fl = 7. In this case the simulation succeeds; otherwise the simula-

tor backs up the verifier, chooses new random ~ and r, and tries again. Thus the

simulation is expected polynomial time, and this protocol is perfect zero-knowledge.

Furthermore, the protocol can be parallelized following the lines of I-4], as

Protocol 5 below is parallelized in Protocol 6, giving a bounded round, perfect

zero-knowledge proof system. The above discussion gives

Theorem 2. There is a prover-practical perfect zero-knowledge, bounded round,

interactive proof system for

{nlgcd(n, q~(n)) = 1}

with communication cost CC(N) = O(N2), where N = ['log 2 n] is the size of the input.

The prover's auxiliary input tape contains the number q~(n).

Corollary 2. There is a prover-practical perfect zero-knowledge, bounded round,

interactive proof system for

{(P, g)lP prime, p - 1 = 21m, where m is odd, gcd(m, tp(m)) = 1, and (g) = Z* }.

The prover's auxiliary input tape contains the complete factorization of p - 1. The

communication cost is CC(N) = O(N3), where N = 2 Flog2 p] is the size of the input.

If n and ~0(n) are not relatively prime, a prover who knows cp(n) can give a

prover-practical zero-knowledge proof that they have a common factor, under

certain assumptions. One such proof involves repeating the following [log2 n] times.

First, the prover sends the verifier a random x ~ Z* such that x does not have an

nth root. She can do this by choosing random x ~ Z* until x ~t~/g~d~n'~'tn~ ~: 1 (mod n).

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 195

Then, the verifier chooses a random r e Z* and a random bit ft. The verifier then

sends y =- rnx # (mod n) to the prover. Next, using the technique due to Benaloh [5]

of using cryptographic capsules, the verifier gives a zero-knowledge proof that he

knows n and ft. Finally, the prover reveals the bit ft. The reason this is not perfect

zero-knowledge is that the prover must originally produce an nth-nonresidue x, and

it is not clear that the simulator can do this. If q = gcd(n, ~0(n)) is large enough

(superpolynomial) though, the simulator could pick x e Z* at random and it is

unlikely that x would be a qth-residue. In this case, the protocol would be statistical

zero-knowledge.

3.3. I m p r i m i t i v i t y

Suppose p is a prime and g is not a generator of Z*. In this section we show how,

if the prover knows t < p - 1 such that gt (mod p) - 1, she can give a prover-

practical interactive proof that g is not a generator. The proof is statistical zero-

knowledge if (p - 1)It is large enough. The major advantage of the protocol given

here over that in 1-30] is that we do not need to assume that a generator for Z* is

publicly available. The set we are concerned with is

S = {(p, g) lp is a prime, 3t < p - 1, gt _ 1 (mod p)}.

The values p and g are available to both the prover and the verifier; the value t

is initially on the prover's private auxiliary input tape; and the prover is attempting

to convince the verifier that g is not a generator modulo p. Let s = (p - 1)It. Our

proof is based on the fact that for every integer r, l, g~ - g,+a (mod p), so the prover

can find many discrete logarithms for an element as long as she knows one discrete

logarithm. If g was a generator, however, each element would have only one discrete

logarithm in the range [-1, p - 1]. The protocol consists of [-log 2 p] independent

repetitions of the following:

Protocol 5

1. The prover chooses a random r uniformly from the range [1, t].

2. The prover sends the verifier h -= gr (mod p).

3. The verifier chooses fl e {0, 1 } randomly with equal probabilities and sends fl

to the prover.

4. Iffl = 0, the prover chooses a random z uniformly from [0, Ls/2J - 1]. Iffl = 1,

the prover chooses a random z uniformly from [[s/2], s - 1].

5. The prover sends the verifier r' = r + z t who checks that h = gr' (mod p) and

that r ' E [1, (p - 1)/2] iffl = 0, or that r ' e [(p - 1)/2 + 1, p - 1] otherwise.

C o m p l e t e n e s s . Notice that in step 5 the prover is revealing a discrete logarithm of

h which is less than (p - 1)/2 if the verifier's a challenge was fl = 0, or greater than

(p - 1)/2 iffl = 1. Ifg is not a generator, for all h ~ (g) , two such discrete logarithms

will exist, and the method described for computing them is efficient.

Soundness . If g was a generator, only one discrete logarithm would exist, so for

each of the verifier's challenges, the prover would have at most a 50-50 chance of

being able to give a correct response.

196 J. Boyar, K. Friedl, and C. Lund

Zero-Knowledge. Let us look at a simulator for this protocol. The simulator would

choose a random r uniformly from [1, p - 1]. The simulator would then run the

program for the verifier with the value g' being sent from the prover. The simulator

has a 50-50 chance of answering the verifier's question each time simply by revealing

r. If it canot answer, it will backtrack the verifier to the point of choosing r and try

another one. The simulation is obviously expected polynomial time. Both the prover

and the simulator choose h to be a random element of the subgroup generated by

g. If s is even the simulator generates r"s with the same distribution as the prover.

The interesting case is when s is odd (because otherwise g is a quadratic residue)

and then the distributions of r"s in step 5 are somewhat different depending on

whether you have the true prover or the simulator.

The true prover never gives r' in the interval

I P } 2 + 1 , +

if s is odd, but the simulator might. But since s is large, these distributions are

statistically close. Let us look at one of the independent repetitions of the above

protocol. Let P(x) denote the probability that the true prover reveals x in step 5,

and let S(x) denote the probability that the simulator produces x in step 5. For any

subset X of {1 p - 1},] ~ x ~ x P (x) - ~xExS(x)[< 1Is. Hence for the whole

protocol the distributions differ by at most (log2 p)/s. Thus this protocol is statistical

zero-knowledge for the languages which are subsets of S of the form

Sz = {(p, g)lp prime, ~t < p - l, gt =- l (mod p) and P - l > f(log p)}
t

where f is any superpolynomial function (i.e., which grows faster than any poly-

nomial).

The communication cost of this protocol is CC(N)= O(N2), where N =

2 [log2 p] is size of the input. The above discussion gives

Theorem 3.

{(P, g)lP is a prime, 3t < p -- 1, g' = 1 (mod p)}

and it is statistical zero-knowledge on

SI = ~(p, g)lp is a prime, 3t < p - 1, gt ~ 1 (mod p) and
1 P

(t

There is a prover-practical interactive proof system for

_> f(log2 p)},

where f is superpolynomial. This protocol has communication cost CC(N) = O(N2),

where N = 2 I-log 2 p] is the size of the input. The prover's auxiliary input tape
contains t.

This restriction to subsets S I of S is unfortunate. If the prover only proves things

from these smaller sets, she gives away some information, i.e., that s > f(log2 p).

This does not appear to be much information since if s is small the verifier could

himself have found s. But since there is a grey area between superpolynomially large

and any fixed polynomial, we cannot find a uniform simulator that works for all

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 197

possible magnitudes for s. One solution to this problem is to consider an alternative

definition of zero-knowledge. In the GMR-definition we have a simulator which

can fool every probabilistic polynomial-time distinguisher with probability greater

than 1 - 1/N ~ for every c for N sufficiently large, where N is the input size. In our

definition we give c to the simulator, which then runs in an expected time which is

polynomial in Nfi Hence the simulator is expected polynomial time for fixed c. Other

than allowing the simulator's running time to vary depending on c, this definition

is identical to Oren's [25], and we are using similar notation.

D e f i n i t i o n 8. Let (P, V) be a interactive proof system for L. Then (P, V) is weak

zero-knowledge if, for every probabilistic polynomial-time machine V*, there exists

an algorithm Mv.(c, x, y) which runs in expected polynomial time for fixed c, such

that, for every probabilistic polynomial-time machine D,

Vc, 3N, Vx �9 L, Vy,

Ixl > N =~ IPr[D(<P(x), V*(x, y)>) = 03 - Pr[D(Mv.(c, x, y)) = fill -< ixl-~.

It is weak statistical zero-knowledge if, for every probabilistic polynomial-time

machine V*, there exists an algorithm Mr.(c, x, y) which runs in expected polyno-

mial time for fixed c, such that, for any subset T of transcripts,

Vc, 3N, V x � 9 Vy,

Ixl > a =~ IPr[D((P(x), V*(x,y)) �9 T] - Pr [Mv . (c , x , y)) � 9 T]I < - -
1

Ixl c"

We believe that this definition captures the intuition of zero-knowledge.

With this definition we can easily construct a simulator for the nongenerator

protocol. It behaves exactly as the old one after testing that s > log c+2 p. If it finds

s and hence t, it proceeds as the real prover would; otherwise it proceeds as the old

simulator would. Using our new definition we get:

T h e o r e m 4. There is a prover-practical weak statistical zero-knowledge interactive

proof system for

{(P, g)lP is a prime, 3t < p - 1, gt _= 1 (mod p)}

with communication cost CC(N) = O(N2), where N = 2 Flog 2 p] is the size of the

input, The prover's auxiliary input tape contains t.

With this new definition of zero-knowledge we can also remove the assumption,

in the protocol in [30] for the same problem, that one generator is publicly known.

We can let the prover give the verifier a random generator. This is prover-practical

weak zero-knowledge because the simulator can find a generator with probability

1 - log -c n in time polynomial in log c n, as shown in Appendix B.

The proof system presented above can be extended to work for many other cyclic

groups with known order. In particular, when working with the multiplicative group

modulo q, a power of an odd prime p, all that is necessary is to substitute ~p(q) =

pn-l(p _ 1) in place o fp - 1 throughout this exposition.

198 J. Boyar, K. Friedl, and C. Lund

Fur thermore , the pro tocol can be parallelized using techniques similar to those

of [4]. Let k = [log p].

Protocol 6

1. The prover chooses r andomly and uniformly x ~ Z*_I, computes f =

g x (mod p), and sends f to the verifier.

2. The verifier chooses r andomly and uniformly all his challenges (ill ilk) and

commits to them by choosing a r a n d o m s i e Z*_~ for each t i . If fli = 0, he lets

t i - g s' (mod p); otherwise ti - f ~ ' (mod p). He sends (tt, t 2 , tk) to the

prover.

3. Fo r 1 < i < k, the prover chooses a r a n d o m ri uniformly f rom the range [1, t].

4. The prover sends the verifier (h 1 hk), where h i = g" (mod p).

5. The verifier reveals his challenges by sending (ill ilk) and (s 1, s2, . . . , sk).

6. The prover checks that (g~"')', = q for 1 < i < k.

7. If ili = 0, the p rover chooses a r a n d o m zi uniformly f rom [0, ls/2J - 1]. If

ill = 1, the prover chooses a r a n d o m zi uniformly f rom [I-s/2], s - 1].

8. The prover sends (r~ r~), where r[= rl + z i t .

9. The verifier checks that h i = g r~ (mod p) and that r i ~ [1, (p - 1)/2] if i l i= 0,

or that r" ~ [(p - 1)/2 + 1, p - 1] otherwise. Fur thermore , he checks that

f = g ~ .

C o m p l e t e n e s s . The completeness is obvious f rom the completeness of the non-

parallel version of the protocol .

S o u n d n e s s . To see that this soundness is preserved, observe that the two different

commi tmen t s come f rom the same distr ibution since x ~ Z*_ 1 . Thus receiving these

commi tmen t s earlier is of no help to Peggy.

Z e r o - K n o w l e d g e . The s imula tor is constructed as follows. It does the same as

Peggy until Vic reveals all his challenges. Then it back t racks to the point where Vic

has just made his commitments . N o w the s imula tor forms new hi's so that it can

answer Vic's questions. (This is the set of his that it will ou tput as par t of the

transcript.) If Vic reveals the same old questions, then the s imulator can answer

them. Otherwise the s imulator learns s, s ' such that g s = fs ' . This gives

92 = gxs" ~ gS-X~, = 1.

I t is easy to see that, since the s imulator chooses x randomly, s - x s ' (rood p - 1)

is a r a n d o m mult iple a t of t, the order of g. N o w the s imulator will repeat the above

procedure until it succeeds in getting ano ther r a n d o m mult iple a ' t or until it has

run the procedure 2 k times, in which case it will find t by brute force. We know from

[24] that Pr [gcd(a t , a ' t) = t] = 6/n 2. Hence, it can be shown, by techniques similar

to those in Appendix A, that this s imulator runs in expected polynomia l time.

If the modu lus has more than one pr ime factor or is a large power (> 3) of two,

no elements would be generators. We could, however, still ask the question: Does

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 199

the subgroup generated by the element g have fewer than m elements (for a prime

modulus m can be p - 1)? Then if the prover knows t such that gt = 1 (mod n), and

s = [m/tJ is sufficiently large, we could give a zero-knowledge proof that g only

generates a small subgroup.

3.4. Does n H a v e a Square Factor?

Recall that in Section 3.1 (Corollary 1) we constructed a protocol for proving that

an element is a generator for Z*, where p is a prime and p - 1 is square-free. When

p - 1 is not square-free, that protocol shows that an element is a quasi-generator,

though it may not be a generator. It is possible, however, to use this deficiency in

the proof system for primitivity to show that p - 1 is not square-free.

First, if 4[p - 1, p - 1 clearly has a square factor and this is easily seen by the

verifier, so we can assume that 4)fp - 1. Therefore if p - 1 is not square-free, then

the prover can find an element h that is a quasi-generator but not a generator. Now

she can prove to the verifier that h is a quasi-generator using Protocol 2 and that

h is not a generator using Protocol 5. At this point the verifier is convinced that

p - 1 has a square factor.

This idea can be extended to give a general protocol for integers which have a

square factor. To show that an integer n has a square factor, the prover first finds

a prime p such that nip - 1. Then the prover shows that p - 1 has a square factor,

which is also a square factor of n.

The set we are concerned with is

S = {n[n = q2m, q prime}.

The integer n is available to both the prover and the verifier; the complete

factorization of n is initially on the prover's private auxiliary input tape; and the

prover is attempting to convince the verifier that n has a nontrivial square factor,

q2, where q is prime.

Protocol 7

1. The verifier accepts if 4In.

2. The prover finds a prime p < n 3 such that p = an + 1. She sends p and the

complete factorization of a to the verifier.

3. The verifier accepts if s21 n for some prime factor s of a.

4. The prover finds a generator g in Z* and sends h = g q to the verifier.

5. The prover proves that h is a quasi-generator, using Protocol 2.

6. The prover proves that h is not a generator, using Protocol 5.

7. The verifier checks that h ~p-l)/s # 1 for all prime factors s of a.

Completeness . Assuming the Extended Riemann Hypothesis, we can try random

a's which are less than n 2 and expect to find p in O(log n) attempts. To see this,

consider the following (from pp. 129 and 136 of [13]). Assuming the Extended

Riemann Hypothesis,

li x
I{plp prime, p < x, p = 1 (mod n)}l = ~) + O (x I/z log x),

200 J. Boyar, K. Friedl, and C. Lund

where

= + o (1) . li x = ~ dt log x log 2 + dt > ~g x

Hence the probability that a random m, chosen so that m = 1 (mod n) and m < x,

is prime is

x/(q~(n) log x) + O(1)/q~(n) + O(x m log x)

L (x - 1)/nJ

We have from [28] that ~0(n) > C(n/log log n); hence if x = n 3 the above is greater

than

log C' log n
- - q - O(n -1/2 log n).

log n

Note that x = n T M is sufficient ife > 0.

To find p, we can use Bach's method [3] to produce an appropriate a randomly,

along with the complete factorization of a.

Another way to find an appropriate p is by trying n + 1, 2n + 1, 3n + 1 until

we find a prime. Wagstaff [31] has given a heuristic argument which says that we

would usually only have to try up to O(log 2 n) numbers. Observe that we can factor

a since it is so small.

Because of step 3, we can assume that q(a, so the prover will succeed in showing

both that h is a quasi-generator and that it is not a generator.

Soundness. Assume that n is square-free. As observed before, ifp - 1 is square-free

there will be no quasi-generators which are not generators. So it is very unlikely

that the verifier will accept the prover 's proofs in step 5 and step 6 unless p - 1 has

a factor s such that s21(p - 1) and h (p-~)/s = 1. This factor must be a factor of a, so

the verifier will reject in step 7.

Zero-Knowledge. This protocol is obviously zero-knowledge if factoring is easy.

In that case the simulator could factor n and then follow the prover's algorithm.

Hence we assume that factoring is intractable. In this case the protocol is obviously

not perfect zero-knowledge, or even statistical zero-knowledge unless there is some

way for the simulator to produce an h of the required form. Since the simulator does

not know q, it seems unlikely that it could produce such an h. We make the intrac-

tability assumption that finding the factor q of n is random polynomial-time equiva-

lent to distinguishing between random generators and random quasi-generators

corresponding to q. This seems reasonable because the known algorithms for testing

for primitivity involve factoring p - 1.

We will be using the definition of weak zero-knowledge given in Definition 8, and

the constant c in the following comes from that definition. In place of a quasi-

generator, the simulator will produce a random element of Z* which it cannot

tell is not a generator (i.e., if r is a factor of a or a small factor of n, where small

means less than 1og~ +2 p, then neither h" nor h (v-l)/" is the identity). With prob-

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 201

ability 1 - log2 c p, this element is a generator of Z* (see Appendix B). Thus, under

the above intractability assumption, this protocol is computational weak zero-

knowledge if finding q is infeasible. Assuming that factoring is hard in general, there

exists an infinite subset K of S on which the protocol will be computational weak

zero-knowledge. A candidate for a subset of this K is

M~ = {n e SlYprimes pin 3primes q~lP - 1, q21P -Jr 1, ql, q2 > n~}

since no known factorization algorithm can factor numbers from M~ in expected

polynomial time.

The above discussion gives

Theorem 5. Assuming the Extended Riemann Hypothesis, then there is a prover-

practical, bounded round, interactive proof system for

S = {nln = q2m, q prime},

with CC(N) = O(N3), where N = [log2 n] is the size of the input. The prover's

auxiliary input tape contains the complete factorization of n.

Let K be a subset of S. For each n E K, we define the distributions G n and Q~ as

follows. We choose p randomly and uniformly such that IPl < Inl 3, p is a prime and

nbp - 1. Then choose g at random and uniformly from the set of generators of Z*.

Now look at the two distributions

G~ = {(g,p)} and Q~ = {(gq, p)}.

If, for any probabilistic polynomial-time machine D,

Vc, 3N, Vn ~ K,

1
m , n > N =*- I P r [D (G n) = l q - P r [D (Q n) = l] l ~ l o g r

then the protocol is weak zero-knowledge on K.

Notice that the above protocol does not involve any encryption. All previous

"natural" zero-knowledge proofs which are neither perfect nor statistical zero-

knowledge, such as the zero-knowledge proof in [19] that a graph is 3-colorable,

have used some encryption.

4. Open Problems

We would like to find efficient prover-practical zero-knowledge proofs for other

problems. In particular, we began working on these problems after David Chaum

mentioned the problem of finding an efficient prover-practical zero-knowledge

proof that an element g generates a large subgroup modulo a composite number n.

That problem is still open. We would also like to eliminate the assumption that

p - 1 is square-free in the primitivity protocol.

202 J. Boyar, K. Friedl, and C. Lund

The protocol given here to show that a number is not square-free is zero-

knowledge under a reasonable assumption, but not statistical zero-knowledge. A

practical statistical or perfect zero-knowledge proof system for this problem would

be interesting.

We would also like to find an efficient prover-practical zero-knowledge proof that

a number n is square-free.

Acknowledgments

We are very grateful to David Chaum for suggesting the problem mentioned in the

last section, to Ren6 Peralta for pointing out that proving knowledge of the discrete

logarithm is sufficient for step 3 of the primitivity protocol, and to Eric Bach and

Kevin McCurley for answering numerous questions on factoring algorithms and

the distributions of primes. We would also like to thank Ernie Brickell, Faith Fich,

Mark Krentel, Stuart Kurtz, Jeff Shallit, and Janos Simon for helpful discussions.

In addition, we would like to thank the anonymous referees for improving the

exposition.

Appendix A

In this appendix we give the details of the simulation of the primitivity protocol.

This simulation uses ideas from [20]. We describe the situation in which the whole

protocol is done in parallel. The last subscript on each variable indicates which of

the [log 2 p] =/1 repetitions of the sequential protocol it comes from. The simulator

excutes the following algorithm when simulating the interaction between the true

prover and a fixed verifier V*.

Run V* until it has sent 2n +/12 numbers (h t, h 2 h,, Xl, x2, . . . , X,n,

hi,x, h2,1 hn, 1, h i , 2 , . . . , hn,,).
Copy the configuration C of V* at this point.

Choose randomly and uniformly (ill,l, fl2,1,-.., fin, l, fl1,2, .-., fin,.)
{0, 1} n.

Run V* from configuration C with input fl1,1, fl2,1 fin, l, ill,2 fin,.

until he has sent/12 numbers (81,1, 82,1 8.,1, 81,2 8n,n).

if 3i, j: hl,j v ~ O~i'i/h] ''J then

Make a transcript of the communication up to this point and stop.

else (* the simulator has to find the discrete logarithms (rl, r 2 rn) of

h i , hE hn.*)
for j := 1 to/1 do

m ; = 1

while rj is undefined do

Choose randomly and uniformly (71,1, ~2,1 7., 1, ~1,2 7n,n)
n2

Run V* from configuration C with input ~1,1, ~2,1, -.-, ~'n, 1, ~1,2,

. . . . ~n,. until he has sent/12 numbers (rl. 1, r2.1 r.. 1, r1,2 rn.n)"

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 203

i f 3i: hi, j = 9~',J/h] ''J and fli, j # ?;,j t h e n rj := (- 1)v'a(#i,~ - ri,j)

i f m > 2" then find rj by brute force from hi.

m : = m + 1

Make a transcript of the hi's, xj's, h~.j s, fl~,j s, #~,j s, and the rj's.

Obviously the transcripts produced have the same distribution as would occur

with the true prover. The only question is the running time.

L e m m a 1. The above simulator runs in expected polynomial time.

Proof. It is clear that if the expected number of iterations for the while loop is

polynomial, then the running time is expected polynomial time. Note that the

brute-force step is only undertaken if the algorithm has already used exponential

time. First define

p = Pr Vi, j: hi, j = h],,~j.

With probability p we get to the while loop. Then we fix fl1.1, ~2,1, ..-, ~,,.,

define qj to be the probability of finding rj in the only one iteration of the while

loop

I - O~"-J 1 qj = Pr 3i: hi, j - hi ''j and fli,~ # Yi,j �9

We observe that p cannot be much bigger than qj:

qi_> Pr rVi, j: hi.~ = 9r and 3i: f l i , j# ?i,jl
L h~ i,j d

0r J]
= p - Pr Vi, j: hi, ~ - hi ''J and u fli,j 7i,j

_> p -- Pr[Vi: fli,j =)'i,j]

= p - 2-".

If Xj is the number of iterations of the while loop in the j th iteration of the for loop,

we get

E(xj) -- p i(1 - @'-% + 2"(1 - @2.

1 - - (1 - - qj)2"
- p

~b

< p < q j - 2 - " 2-"
- - < 1 + - - _ < 2 if qj_>2-".

qj qj qj

204 J. Boyar, K. Friedl, and C. Lund

If qj < 2 -~, then by using that Xj < 2" we get that

e(X~) <_ p2 ~ <__ (r + 2-~)2 ~ <_ 2.

Hence the expected number of iterations of the while loop is < 2n. []

Appendix B

Let Cn be a cyclic group of order n. Let c > 1 be a constant. Consider the following

procedure d :

Construct the set S = {PIP prime, p < log c+2 n and pin}

repeat

Choose g randomly and uniformly from C~.

until Vp ~ S: gn/p :/: 1

output g

Lemma 2. ~r runs in expected polynomial time in logCn and d outputs a non-

generator o f C~ with probability O(I/log ~ n).

Proof. Let G := {g ~ Cnlg is a generator}. Now [GI = ~o(n) > t~(n/(log log n)) [28].

So the expected number of g's picked is O(log log n) since every generator passes

the test. The construction of S and the test clearly take only polynomial time.

Suppose n = PiP2 "'" Pt, where, for some k, we have that if i < k, then Pi <

log ~§ n, and i f / > k, then Pi > log ~+2 n. Now let T : = {gi r l can output g} =

{gtg "/p' v ~ 1, i ~ [1, k]}.

We know that g is a generator if and only if, for all i ~ [1, l], g"/P' # 1. This shows

that
l

T - G c U {xl x"/' ' = l } .
i = k + l

Now the cardinality of each term is estimated by

n n
I{xlx n/~' = 1}1 p i - l o f f § n

So we get

i n)<__ r T - - G I < I og ~ 2 n - log c+l n"

Now the probability that d outputs a nongenerator is

I T - G [I T - G I

[TI [GI

which is O(1/log c n). This proves the lemma. []

References

Eli Adleman, L., and M.-D. Huang, Recognizing primes in random polynomial time, Proc. 19th ACM
Symp. on Theory of Computing, 1987, pp. 462-469.

Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies 205

[2] Adleman, L., K. Manders, and G. Miller, On taking roots in finite fields, Proc. 18th IEEE Symp.

on Foundations of Computer Science, 1977, pp. 175-178.

[3] Bach, E., How to generate factored random numbers, SIAM Journal on Computing, vol. 17, no. 2,

April 1988, pp. 179-193.

[4] Bellare, M., S. Micali, and R. Ostrovsky, Perfect zero-knowledge in constant rounds, Proc. 22nd

ACM Syrup. on Theory of Computing, 1990, pp. 482-493.

[5] Benaloh, J., Cryptographic capsules: a disjunctive primitive for interactive protocols, Advances in

Cryptology--Crypto '86 Proceedings, 1987, pp. 213-222.

[6] Berlekamp, E. Factoring polynomials over large finite fields, Mathematics of Computations,

vol. 24, 1970, pp. 713-735.

[7] Boppana, R., J. Hastad, and S. Zachos, Does co-NP have short interactive proofs?, Information

Processing Letters, vol. 25, 1987, pp. 127-132.

[8] Brassard, G., and C. Cr6peau, Non-transitive transfer of confidence: a perfect zero-knowledge

interactive protocol for SAT and beyond, Proc. 27th IEEE Syrup. on Foundations of Computer

Science, 1986, pp. 188-195.

[9] Brassard, G., C. Cr6peau, and J. M. Robert, All-or-nothing disclosure of secrets, Advances in

Cryptology--Crypto "86 Proceedings, 1987, pp. 234-238.

[10] Chaum, D., Demonstrating that a public predicate can be satisfied without revealing any informa-

tion about how, Advances in Cryptology-- Crypto '86 Proceedings, 1987, pp. 195-199.

[1 I] Chaum, D., J.-H. Evertse, J. van de Graaf, An improved protocol for demonstrating possession of

discrete logarithms and some generalizations, Advances in Cryptology-- Eurocrypt '87 Proceedings,

1988, pp. 127-141.

[12] Chaum, D., J.-H. Evertse, J. van de Graaf, and R. Peralta, Demonstrating possession of a discrete

logarithm without revealing it, Advances in Cryptology--Crypto '86 Proceedings, 1987, pp. 200-

212.

[13] Davenport, H., Multiplicative Number Theory, Markham, Chicago, 1967.

[14] Even, S., A. L. Selman, and Y. Yacobi, The complexity of promise problems with applications to

public-key cryptography, Information and Control, vol. 61, 1984, pp. 159-173.

[15] Feige, U., A. Fiat, and A. Shamir, Zero-knowledge proofs of identity, Journal of Cryptology,

vol. 1, no. 2, 1988, pp. 77-94.

[16] Feige, U., and A. Shamir, Zero knowledge proofs of knowledge in two rounds, Advances in

Cryptology--Crypto '89 Proceedings, 1990, pp. 526-544.

[17] Fortnow, L., The complexity of perfect zero-knowledge, Proc. 19th ACM Syrup. on Theory of

Computing, 1987, pp. 204-209.

[18] Goldreich, O., and E. Kushilevitz, A perfect zero-knowledge proof for a problem equivalent to

discrete logarithm, Advances in Cryptology--Crypto '88 Proceedings, 1990, pp. 57-70.

[19] Goldreich, O. S. Micali, and A. Wigderson, Proofs that yield nothing but their validity and a

methodology ofcryptographic protocol design, Proc. 27th I EEE Syrup. on Foundations of Computer

Science, 1986, pp. 174--187.

[20] Goldreich, O., S. Micali, and A. Wigderson, Proofs that yield nothing but their validity and a

methodology of cryptographic protocol design, to appear.

[21] Goldwasser, S., and S. Micali, Probabilistic encryption, Journal of Computer and System Sciences,

vol. 28, 1984, pp. 270-299.

[22] Goldwasser, S., S. Micali, and C. Rackoff, The knowledge complexity of interactive proof systems,

SIAM Journal on Computing, vol. 18, 1989, pp. 186-208.

[23] Van de Graaf, J., and R. Peralta, A simple and secure way to show the validity of your public key,

Advances in Cryptology--Crypto '87 Proceedings, 1988, pp. 128-134.

[24] Knuth, D. E., The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading, MA, 1969.

[25] Oren, Y., On the cunning power of cheating verifiers: some observations about zero knowledge

proofs, Proc. 28th IEEE Syrup. on Foundations of Computer Science, 1987, pp. 462-471.

[26] Rabin, M. O., Digitalized Signatures and Public-Key Functions as Intractable as Factorization,

Technical Report MIT/LCS/TR-212, M.I.T., January 1979.

[27] Rabin, M. O., Probabilistic algorithms in finite fields, SIAM Journal on Computing, vol. 9, 1980,

pp. 273-280.

[28] Rosser, J. B., and Schoenfeld, L., Approximate formulas for some functions of prime numbers,

Illinois Journal of Mathematics, vol. 6, 1962, pp. 64-94.

206 J. Boyar, K. Friedl, and C. Lund

[29] S•hwarz•W.•Representati•n•fsquare-freeintegers•AmericanMathematicalM•nthly•v•l.73• 1966,

pp. 426-427.

[30] Tompa, M., and H. Woll, Random self-reducibility and zero knowledge interactive proofs of

possession of information, Proc. 28th IEEE Syrup. on Foundations of Computer Science, 1987,

pp. 472-482.

1-31] Wagstaff, S. S., Greatest of the least primes in arithmetic progressions having a given modulus,

Mathematics of Computation, vol. 33 no. 147, July 1979, pp. 1073-1080.

