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Abstract. In this paper we give necessary design principles to be used, 
when constructing secure Feistel ciphers. We introduce a new concept, 
practical security against linear and differential attacks on Feistel ci- 
phers. We give examples of such Feistel ciphers (practically) resistant to 
differential attacks, linear attacks and other attacks. 

1 Introduction 

In this paper  we consider Feistet ciphers, often called DES-like i terated ciphers. 
Feistel ciphers are block ciphers, where the ciphertext is calculated by recursively 
applying a round function to the plaintext. Consider an r-round Feistel cipher 
with block size 2m bits. The round function is defined as follows: 

Roundi : (Li, Ri) ~ (Ri-1, F(Ki, Ri-1) |  

for i = 1, ..., r, where Li and Ri are of length m and Ki are round keys derived 
from a (master) key using a key schedule algorithm. F is a flmction with two 
arguments  producing an m bit value. L0 and Ro are the left and right halves of 
the plaintext and typically the two halves L and R are swapped after the last 
round, i.e. the ciphertext is defined as (Rr IILr). 

The paper  is organized as follows. In section 2 we give some necessary prop- 
erties of secure Feistcl ciphers. In section 3 we give simple ideas of how to obtain 
these properties.  We define and construct so-called strong key schedule algo- 
rithms. We define practical security against differential and linear at tacks 
and show a simple method which can be used to obtain lower bounds of the 
complexities of practical linear and differential at tacks in accordance with the 
definition of practical security. Examples of (insecure) ciphers with all the prop- 
erties of section 2 arc given. Thus wc also illustrate the danger of focusing solely 
on a limited set of design criteria. We expect the reader to be familiar with the 
concepts of differential cryptanalysis and refer to [1, 13] for further details. 

2 Necessary design principles 

In this section we give necessary design principles for securc Feistel ciphers. First 
we define 

** This paper was written while the author was visiting the ETH, Ziirich, Switzerland. 
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D e f i n i t i o n  1 Let E be a block cipher, s.t. EK(.) denotes the eneryption func- 
tion using the key K and let f ,  gl, g2 be 'simple' functions, such that the total 
complexity of one evaluation of each of f ,  gl, g2 is smaller than one evaluation 
of E (one encryption). Then if 

EK(P) = C ~ Ef(K)(gl(P,K)) = g2(C,g) (1) 

E is said to contain a s i m p l e  r e l a t i o n  between the eneryption functions EK(') 
and El(K) ('). 

This definition is different from the definition of linear structures given in [7]. A 
set of necessary properties for a secure Feistel cipher E is given in Table 1. 

- There are no simple relations 
- All keys are equally good 
- Resistance against differential attacks 
- Resistance against linear attacks 

Table  1. Necessary properties for a secure Feistel cipher 

In the following we explain the necessity of those properties. Later  we illustrate 
tha t  the properties are insufficient to guarantee a secure cipher. 

2.1 S i m p l e  r e l a t i o n s  

Simple relations for which (1) holds for all plaintexts and all keys can be exploited 
in a chosen plaintext a t tack as follows 

1. Denote by P K  the set of all potential  keys. 
2. Choose a random plaintext P .  
3. Get  the encryption C = EK (P) where K is the secret key. 
4. Choose a key K' E P K  

(a) Calculate C '  = EK, (P). If C' = C output  K '  and stop 
(b) Get  the encryption C* = EK(gl (P, K')). 

If g2(C', K') = C* output  f ( g ' )  and stop 
5. Remove K ~ and f ( K  ~) from P K  and go to 4 

Note tha t  in step 4b we get E / ( K , ) ( . q l ( P ~ K ' ) )  = g 2 ( C ' , K ' )  = C*. Tha t  is, in 
general one can check two keys using one chosen plaintext and doing one encryp- 
tion and one evaluation of f and the gi's. The restriction to 'easy'  evaluations 
of f and the gi's is now obvious and the efficiency of this a t tack depends on the 
complexity of the evaluations of the simple functions. Furthermore if the gi's 
are independent on the keys a further improvement of the a t tack is possible as 
we will illustrate now. For the DES and LOKI '91 there is a well-known simple 
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relation known as the complementation property, where f ( K )  = K (the com- 
plemented value of K)  and g~(X, K )  = X . In this case we need only ask for the 
chosen plaintext once in step 4b of the above attacks. 

In [11, 2] a chosen plaintext attack on LOKI'91 was presented, in [2] called a 
'related key' attack, where f is a linear function and the gi's are functions each 
corresponding to two rounds of encryptions of (16-round) LOKI'91. The attack 
reduces an exhaustive search of all keys by about a factor of four using about 
233 chosen plaintexts [11]. 

In [12] it is shown that  there are other simple relations for the DES. It is 
unclear however how to exploit those relations since (1) holds only for subsets 
of all plaintexts and all keys. 

2.2 Al l  keys  a re  e q u a l l y  g o o d  

For the DES and the LOKI ciphers there are a small number of keys, called 
weak and pairs of semi-weak keys, which should not be used for encryption. A 
weak key K is a key for which encryption is the same function as decryption. 
A pair ef semi-weak keys, K and K*, are keys for which encryption with K is 
the same function as decryption with K* and vice versa. The keys used in a 
block cipher should be chosen at random. If the number of weak and pairs of 
semi-weak keys are small they are of no importance for the security of a block 
cipher, however since block ciphers are often used in hash modes where the key 
input can be chosen by the attacker in at tempts to find collisions, one should 
design key schedules without any weak or semi-weak keys. 

2.3 R e s i s t a n c e  against differential attacks 

The differential attacks on DES [1] exploit the property that  the xor of two in- 
puts to the F-function of the DES leads to a non-uniform distribution of the xor 
of the corresponding outputs. The concept of c h a r a c t e r i s t i c  was introduced, 
a list of (the most) likely xors in the inputs and outputs of each round in two 
encryptions of the block cipher. In [13, 14] the notion of d i f f e r en t i a l  was intro- 
duced, where the xors of inputs and outputs of the intermediate rounds are not 
fixed. In general, an r-round Feistel cipher is vulnerable to a differential attack 
if there exist (r - 1)-round characteristics with high probabilities. In [13, 14] a 
definition of s e c u r i t y  against a differential attack was given, in short terms, an 
r-round cipher is secure against differential attacks, if there exists no (r - 1)- 
round differential with a probability higher than 1 ~---~,  where 2m is the block 
size of the cipher. 

In general the probability of a differential will be higher than the probability 
of a corresponding characteristic. However for the Feistel ciphers DES, LOKI'89 
and LOKI'91 it seems extremely difficult to find useful s-round differentials, 
where s > 4 for which the probability of the differential is higher than for a 
corresponding characteristic [9, 10]. 

In [17] it was shown that  in an r-round iterative DES-like cipher with inde- 
pendent round keys, the probability of any s-round differential is upper bounded 
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by 2 x (pmax) 2, where s = 4, ..., r and Pma~ is the maximum probability of a non- 
trivial one-round characteristic. This fact was used to upper bound the probabil- 
ity of the best differentials, thereby achieving so-called provable security. Since 
the round keys have to be independent a large key is required and the practical 
applications are limited. The following practical definition is useful. 

D e f i n i t i o n  2 A block c~gher with dependent round keys is p r a c t i c a l l y  s e c u r e  
against a differential attack, if there exists no characteristic with a probability 
high enough to enable a successful attack under the assumption of independent 
round keys. 

The term 'high enough' can be replaced by a formal definition depending on 
the security required. The complexity of a differential attack is approximately 
the reciprocal value of the probability of the characteristic used in the attack 
[1, 13, 14]. As an example, for a 64-bit block cipher we may say, that  if every 
characteristic has a probability lower than 2 -32, the cipher is practically secure 
against a differential attack, since in this case the attack would require 232 chosen 
plaintexts, which is an unrealistic attack. 

In [1] it is shown how to 'pass' the first round in a characteristic by using so- 
called meta-structures. This means, that  in general for an r-round Feistel cipher 
the existence of an (r - 2)-round differential with a sufficiently high probability 
may enable a successful differential attack. 

2.4 Linear cryptanalysis 

Linear cryptanalysis [15] is a known plaintext attack in which the attacker ex- 
ploits linear approximations of some bits of the plaintext, ciphertext and key. In 
the attack on DES (or on DES-like iterated ciphers) the linear approximations 
are obtained by combining approximations for each round under the assumption 
of independent round keys. The attacker hopes in this way to find an expression 
[15] 

P i ~ @ P i 2 |  .... | 1 7 4 1 7 4  .... | 1 7 4  .... e K k ~  (2) 

1 over all keys, such that  IPL -- }1 is maximal. which holds with probability PL ~ 
The complexity of a successful attack can be approximated by [15] 

1 2 
Np ~ lpL -- ~ l -  

As in differential cryptanalysis we can define characteristics to be used in linear 
cryptanalysis, see [3, 15, 16]. 

D e f i n i t i o n  3 A one-round linear characteristic is a list of input, key and output 
bits of one round of the block cipher and a probability p, s.t. the boolean value 
obtained by adding (modulo 2) the input and key bits equals the boolean value 
obtained by adding (modulo 2) the output bits with probability p. An r-round 
l i nea r  c h a r a c t e r i s t i c  is the concatenation of r one-round linear characteristics. 
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In some rounds of a linear characteristic linear approximations are not needed. 
We call these rounds t r i v i a l  one-round linear characteristics. Certainly, more 
work has to be done in the area of linear cryptanalysis. For instance, is there a 
similar useful definition of differentials versus characteristics as for differential 
cryptanalysis? Or can we conclude that  a cipher is resistant to linear cryptanal- 
ysis if no linear expressions can be found by combining expressions from each 
round? These questions are left open. In [3] it is mentioned that  the collection of 
characteristics which form a differential might cancel the effect of each other. As 
in differential cryptanalysis, to be able to build an r-round linear characteristic 
from one-round characteristics in a block cipher with dependent round keys we 
have to assume independent round keys. We are led to the following definition. 

D e f i n i t i o n  4 A block cipher with dependent round keys is p r a c t i c a l l y  s e c u r e  
against a linear attack, if there exists no linear characteristic with a probability 
high enough to enable a successful attack under the assumption of independent 
round keys. 

In [16] the DES is attacked in a linear attack using a 14 round linear character- 
istic. This is possible by counting on all key bits affecting the linear expressions 
in the first and in the last rounds, see [15, 16] for further details. This means, 
tha t  in general for an r-round Feistel cipher the existence of a highly probable 
(r - 2)-round linear characteristic may enable a successful linear attack. Notice 
the resemblance between differential and linear attacks. 

3 M e a s u r e s  

In this section we show how to obtain the properties of the previous section by 
means of 

- Strong key schedules 
- Highly nonlinear and differentially uniform round functions 

The strong key schedules give the first two properties of Table 1 and complicate 
differential and linear attacks. The resistance to those attacks can be further 
improved using highly nonlinear and differentially uniform round functions. 

3.1 S t r o n g  k e y  s c he du l e s  

In [20] ideas of how to improve the resistance of DES to an exhaustive key search 
at tack were given. The ideas given in this section are inspired by [20]. In [1] it is 
shown that  DES with independent round keys, i.e. a 768 bit key, is not essentially 
stronger than DES with a 56 bit key. An attack using 259 pairs of encryptions 
is presented, which finds the secret 768 bit key in time about 261 encryptions. 
The improved attack on DES [1, Sect. 5] exploits the dependencies in the round 
keys and is not directly applicable to DES with independent round keys. The 
complexity of an improved differential attack on DES with independent round 
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keys is not known to us. It seems, however, to require more than the 247 chosen 
plaintexts used to attack the DES with dependent round keys as in [1]. 

In [15, 16] a linear attack on the full 16-round DES is outlined. It finds 26 
bits of the 56-bit key using 24~ known plaintexts. It is suggested to find the 
remaining 30 bits by exhaustive search. [15, 16] contain no estimates of linear 
attacks on DES with indepeIldent round keys. It is obvious that  the existence of a 
linear attack finding the full round key of the last round would enable a possible 
attack on DES with independent round keys~ since the ciphertexts can then be 
decrypted one round with the obtained round key and a linear attack on DES 
with 15 rounds can be performed. It seems though, that  a linear attack on the 
round key in the last round of DES will require many linear expressions [15, 16], 
including expressions with a probability that  requires many known plaintexts 
for the key to be uniquely determined. 

The above speaks in favor of independent round keys in DES-like i terated 
ciphers. However, as an example, a 768 bit key for DES is of no practical interest. 
The security gained seems, after all, to be small compared to the big increase in 
the key size. We introduce new properties of a key schedule in a Feistel cipher. 

D e f i n i t i o n  5 Consider an r-round iterated 2m-bit block cipher with r round 
keys, each of length n bits. A s t r o n g  k ey  s c h e d u l e  has the following properties 

1. Given any s bits of the r round keys, derived from an unknown master key, 
where s < rn, it is 'hard'  to find any of the remaining rn - s key bits from 
the s known bits. 

2. Given some relation between two master keys it is 'difficult' to predict the 
relations between any of the round keys derived by the two master keys. 

The terms 'hard'  and 'difficult' can be replaced by more precise definitions de- 
pending on the applications. Of course 'hard' cannot be harder than performing 
the key schedule for all keys, and 'difficult' cannot more difficult than performing 
the key schedule for the two master keys. 
The above properties will complicate differential and linear attacks and thwart  
the attacks based on simple relations discussed earlier. 

A s i m p l e  d e s i g n  o f  a s t r o n g  key  schedu le  

Let EK(.)  be an r-round Feistel cipher using master key K with block length 
2m bits and where the r round keys are of length n bits each and n < 2m. 

1. Define an initial key schedule, which on input a master key K outputs r 
dependent round keys {Ki} -- K1, ..., Kr,  s.t. 
(a) E{gl}  (') is secure against a known plaintext attack using encryptions of 

at most r known plaintexts. 
(b) E{gl}(-) contains no simple relations as defined in Definition 1, where 

gl (P, K)  = P �9 c~, a a constant. 
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2. Define the round keys {RKI} = RK1, ..., RKr  used for encryption as 

RKI = nMSB(E{K~} ( IV  @ l)), 

where I V  is a fixed value and n M S B ( X )  denotes the n most significant bits 
of X.  

At a first glance it may seem strange and difficult to construct an initial key 
schedule yielding a cipher secure against a known plaintext attack and with no 
simple relations. However for a 16 round cipher, as an example, it does not seem 
difficult to prove or at least be strongly convinced that  the obtained cipher is 
secure against an at tack using only 16 encryptions of known plaintexts and the 
condition on the simple relations is weak. For a 16 round cipher the relation in 
lb  will be gl (P) = P O  h, h a hex digit, so this relation would not even hold for a 
cipher with the complementation property, the most well-known simple relation. 
As an example of such an initial key schedule, see the key schedules of the DES 
[6] and the LOKI ciphers [4, 5]. We can prove 

T h e o r e m  1 The key schedule just defined is a strong key schedule, where 'hard' 
means as hard as a brute force attack on E{K~}(') and 'difficult' means as dif- 
ficult as one encryption of E{K~}(.). Furthermore the absence of weak keys is 
guaranteed and pairs of semi-weak keys are very unlikely to occur. 

Proof: By contradiction. Assume that  property 1 of Definition 5 can be compro- 
raised faster than exhaustive search for all keys of E{K,}(-). This means, that  
given s bits of the set {RKl},-which are ciphertext bits corresponding to less than 
r encryptions E{K~ } ( IV  | l), it is possible in time less than brute force to find 
(bits of) ciphertexts, which were not given to us. But that  yields a contradiction 
because of la. 

Assume that  property 2 of Definition 5 can be compromised faster than one 
encryption of E{K,} ('). This means, that  we can find some relation between two 
master keys, K and K*, s.t. f ( K )  = K* and some relation between two round 
keys, RKz and RK*,  s.t. g2(RKl) = R K  n, where the total complexity of f and 
g2 is less than that  of one encryption of E{K~ } (.). But that  yields a contradiction 
because of lb  and Definition 1, since then 

E{K,}(P) = C ~ Ef({K~})(P@ (1 |  = g2(C), 

where P = I V  | 1 and C = RKl.  
To prove the final statements we note that  RKI ~ RKn  for 1 ~ n, i.e. there 

are no weak keys. Furthermore it seems very unlikely that  we can find K and 
K*,  s.t. E t ( ( I V  | l) = E K . ( I V  | (r + 1 -- l)) for all 1 = 1, ...,r. [] 

The above method applied to the DES may yield a DES-version with im- 
proved immunity to differential, linear and other attacks. However, this DES- 
version is only 16 times harder to break than the DES by exhaustive search of 
all keys and in view of [21] a larger master key is needed. A possibility would be 
to define the round keys as follows: 

RKi  = 4 8 M S B ( D E S K 1 ( D E S K  I ( D E S K I ( I V  | i)))), 



218 

i.e. use two-key triple DES to calculate the new round keys. 
The above method involves encryptions in the generation of the round keys, 

but  note that  encryption with these ciphers is as fast as encryption with the 
same cipher using a conventional key schedule when the key is held constant 
(see also [20]). 

3.2 N o n l i n e a r  a n d  d i f f e r en t i a l l y  u n i f o r m  r o u n d  f u n c t i o n s  

We consider as before an r-round Feistel cipher. In [11] a method to upper bound 
the probability of characteristics in Feistel ciphers was given. The basic idea is 
to find the minimum number of trivial one-round characteristics that  one can 
have in an (r - 2)-round characteristic. Then the maximum probability of a non- 
trivial one-round characteristic gives an upper bound of the probability of the 
best possible (r - 2)-round characteristic. 

Assume that  the only way to attack a Feistel-cipher by linear and differ- 
ential attacks, is by finding the best (linear) characteristics, i.e. that  (linear) 
differentials are too hard to find, then 

- the probability of the best non-trivial one-round (linear) characteristic and 
- the number of rounds in the characteristic 

give a lower bound on the complexities of these two attacks. This lower bound 
may be sufficient to prove resistance for all practical implementations of these 
two attacks, if the probability of the best non-trivial characteristic can be ar- 
ranged to be sufficiently small. One way of obtaining this is by constructing 
the round functions based on the differentially uniform mappings from [18]. As 
the name indicates, for these functions the probabilities of non-trivial one round 
characteristics are low. And because of their high nonlinearity they are also well- 
suited for the construction of ciphers resistant against linear attacks as we will 
illustrate in the next section. Finally it follows from the results in [19] that  round 
functions build from big random S-boxes are resistant to differential attacks. A 
similar result for linear attacks is not known to us. 

3.3 E x a m p l e s  

In this section we give two examples of iterated block ciphers practically re- 
sistant to both linear and differential attacks. The examples are based on the 
differentially uniform mappings from [18]. Consider an r-round Feistel cipher 
with block size 2m defined as in the introduction of this paper. For simplicity, 
let F(K, R) = f (R | K) ,  a function producing an rn bit value. 

E x a m p l e  1: Let r = 8 and m = 34. Divide the input X to the f-funct ion 
into two halves X1 and X2. Define the output  f (X) = fl(X1)I[ f2(X2), where 
fi(x) = x 3 in GF(217) over GF(2) .  

E x a m p l e  2: Let r = 16 and rn = 32. Divide the input X to the f-funct ion 
into four eight bit values X1, X2, X3, X4. Define the output  

f ( x )  = A(x1)II f2(x )II A(x3)II A(x4) 
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where f ~ ( x )  = x - 1  in GF(2  s) over GF(2) .  
In Table 2 we give the estimated number of known and chosen plaintexts 

needed for successful linear and differential attacks. We transformed the es- 
t imates for the complexity of the linear attacks on SP networks from [8] to 
Feistel-ciphers obtaining 

2 m - 1  - g n ( f )  
[p~ - 1/2 t < 2 "~ and IPL -- 1/21 --~ 2~-1 X [p~ -- 1/2[ ~ 

where a is the number of non-trivial one round linear characteristics needed and 
N L ( f )  is the nonlinearity for the above functions given in [18]. 

Example 1 Example 2 DES 
Rounds 8 16 16 
Block size (bits) 68 64 64 
Practical security (log2) 
- Linear attack (known pl.texts) 66 56 14 (45)[ 
- Differential attack (chosen pl.tcxts) 48 48 12 (47) 
Space (for f )  O(1) 1Kbyte table 
Speed (one encr.) 0(500 xors) 0(64 look ups) 

Table 2. Estimates of complexity 

It can be shown that  the minimum number of non-trivial one round linear 
characteristics needed for a linear characteristic of a Feistel cipher is two for 
every three rounds. By stripping off the first and last round, where we count on 
key bits, it follows that  we need at least 4 and 9 non-trivial one round linear 
characteristics for the above Feistel ciphers with 8 and 16 rounds respectively. 

Similarly it can be shown that  the number of non-trivial one-round charac- 
teristics needed for the above Feistel ciphers is two for every three rounds, since 
the round functions are permutations. By using meta-structurcs and performing 
2R attacks (see [1]) it follows that  we need at least 3 and 8 non-trivial one-round 
characteristics for example 1 and 2 respectively. 

For comparison we use these estimates to obtain lower bounds on the com- 
plexities of linear and differential attacks on DES. The numbers in parentheses 
in Table 2 are thc complexities of the best known practical attacks. 

It is easily seen that  none of the above prototypes are secure ciphers as they 
are described. Thc ciphers can be described as the concatenation of small ciphers, 
since the bits going in and out of the functions f i  are not mixed. However by 
combining the above round functions with an appropriate linear mapping L, s.t. 
F = L o f , strong ciphers may be obtained [18]. 

For the cubing function in example 1, there are possiblc trade offs between 
space and speed, one extreme is given in Table 2, the other extreme would be 
to pre-compute a table (an S-box) of 217 17 bit values, in that case the space 
for f would be about 300 Kbytes and the speed would be O(2 look ups) per 
round. We believe that some useful method in between these two extremes can be 
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found. Using the cubing function alone with linear mappings might be dangerous 
because of the low degree of the output bit functions, i.e. only quadratic terms. 
The inverse function from example 2 has degree n -  1 [18], in the above example 
the output bits would be of degree 7, however there seems to be no way of 
implementing the inverse function efficiently in GF(2 n) for large n. We believe 
that a combination of the cubing and the small inverse functions from our two 
examples together with some linear mapping will be a good choice for a round 
function of a DES-like iterated cipher resistant to both linear and differential 
cryptanalysis. 
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