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Abstract—Machine learning (ML) applications are increasingly
prevalent. Protecting the confidentiality of ML models becomes
paramount for two reasons: (a) a model can be a business advan-
tage to its owner, and (b) an adversary may use a stolen model to
find transferable adversarial examples that can evade classification
by the original model. Access to the model can be restricted to
be only via well-defined prediction APIs. Nevertheless, prediction
APIs still provide enough information to allow an adversary to
mount model extraction attacks by sending repeated queries via
the prediction API.

In this paper, we describe new model extraction attacks using
novel approaches for generating synthetic queries, and optimizing
training hyperparameters. Our attacks outperform state-of-the-
art model extraction in terms of transferability of both targeted
and non-targeted adversarial examples (up to +29-44 percentage
points, pp), and prediction accuracy (up to +46 pp) on two
datasets. We provide take-aways on how to perform effective
model extraction attacks.

We then propose PRADA, the first step towards generic and
effective detection of DNN model extraction attacks. It analyzes
the distribution of consecutive API queries and raises an alarm
when this distribution deviates from benign behavior. We show
that PRADA can detect all prior model extraction attacks with
no false positives.

I. INTRODUCTION

Recent advances in deep neural networks (DNN) have dras-

tically improved the performance and reliability of machine

learning (ML)-based decision making. New business models

like Machine-Learning-as-a-Service (MLaaS) have emerged

where the model itself is hosted in a secure cloud service,

allowing clients to query the model via a cloud-based predic-

tion API. ML models are also increasingly deployed on end-

user devices, and can similarly be deployed behind APIs using

hardware security mechanisms. Model owners can monetize

their models by, e.g., having clients pay to use the prediction

API. In these settings, the ML model represents business value

underscoring the need to keep it confidential.

Increasing adoption of ML in various applications is also

accompanied by an increase in attacks targeting ML-based

systems a.k.a. adversarial machine learning [39]. One such

attack is forging adversarial examples, which are samples

specifically crafted to deceive a target ML model [16]. To

date, there are no effective defenses protecting against all

such attacks [4] but one partial mitigation is to protect the

confidentiality of the ML model.

However, prediction APIs necessarily leak information. This

leakage of information is exploited by model extraction at-

tacks [38], [55] where the adversary only has access to the

prediction API of a target model which it can use as an

oracle for returning predictions for the samples it submits. The

adversary queries the target model iteratively using samples

that are specifically crafted to maximize the extraction of

information about the model internals via predictions returned

by the model. The adversary uses this information to gradually

train a substitute model. The substitute model itself may be

used in constructing future queries whose responses are used

to further refine the substitute model. The goal of the adversary

is to use the substitute model to (a) obtain predictions in

the future, bypassing the original model, and thus depriving

its owner of their business advantage, and/or (b) construct

transferable adversarial examples [49] that it can later use to

deceive the original model into making incorrect predictions.

The success of the adversary can thus be measured in terms of

(a) prediction accuracy of the substitute model, and (b) trans-

ferability of adversarial samples obtained from the substitute

model.

Prior extraction attacks are either narrowly scoped [38]

(targeting transferability of a specific type of adversarial exam-

ples), or have been demonstrated only on simple models [55].

We are not aware of any prior work describing effective

generic techniques to detect/prevent DNN model extraction.

Goal and contributions. Our goal is twofold. (1) demon-

strate the feasibility of model extraction attack on DNN models

by proposing new, more effective attacks, and (2) develop an

effective generic defense to model extraction. By “generic”, we

mean applicability to models with any type of input data and

any learning algorithm. We claim the following contributions:

• novel model extraction attacks (Sect. III), which, unlike

previous proposals, leverage the optimization of training

hyperparameters and generalize synthetic data generation

approaches. They outperform prior attacks in transfer-

ability of targeted and non-targeted adversarial examples

(+29-44 pp) and prediction accuracy (up to +46 pp)

(Sect. IV-E).

• new insights on model extraction success factors show-

ing that (a) cross-validated hyperparameter search outper-

forms selection of training hyperparameters (Sect. IV-B),

(b) prediction probabilities help improve transferability

of adversarial examples, while class labels are sufficient

for high prediction accuracy for the substitute model

(Sect. IV-C – IV-E), and (c) using the same architecture

for the substitute model results in better transferablity

while a more complex architecture can increase prediction
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accuracy (Sect. IV-F).

• a new technique, PRADA, to detect model extraction

which analyses the distribution of successive queries

from a client and identifies deviations from a normal

(Gaussian) distribution (Sect. V-A). We show that it is

effective: 100% detection rate and no false positives on

all prior model extraction attacks (Sect. V-B). To the best

of our knowledge PRADA is the first generic technique

for detecting model extraction.

We share the source code for our attacks on request for

research use. Our defense is available as open source1.

II. BACKGROUND

A. Deep Neural Network (DNN)

A deep neural network (DNN) is a function F (x) producing

output y ∈ R
m on input x ∈ R

n, where F (x) is a hierarchical

composition of k parametric functions fi (i ∈ {1, k}), each of

which is a layer of neurons that apply activation functions to

the weighted output of the previous layer fi−1. Each layer is

parametrized by a weight matrix θi, a bias bi and an activation

function σi: fi(x) = σi(θi ·x+bi) . Consequently a DNN can

be formulated as follows:

F (x) = fk ◦ fk−1 ◦ · · · ◦ f2 ◦ f1 ◦ x (1)

F (x) = σk(θk ·σk−1(θk−1 · · ·σ1(θ1 ·x+ b1) · · ·+ bk−1)+ bk)
(2)

In this paper we focus on predictive DNNs used as m-class

classifiers. The output of F (x) is an m-dimensional vector

containing the probabilities pj that x belongs to each class cj
for j ∈ {1,m}. The last activation function σk is typically

softmax. A final prediction class2 F̂ is obtained by applying

the argmax function: F̂ (x) = argmax(F (x)) = c.

B. Adversary Description

The adversary’s objective is to “steal” a target machine

learning model F by making a series of prediction requests

U = {x1, . . . , xn} to F . Responses Y = {F̂ (x1), . . . , F̂ (xn)}
along with U , are used by adversary to train its substitute

model F ′. Model extraction attacks [38], [55] operate in a

black-box setting. The adversary does not have access to all

target model internals, but has access to a prediction API.

Model extraction to date operates in settings where the

adversary does not have a large set of “natural” samples. These

attacks require crafting and querying of synthetic samples to

extract information from F . This attack pattern is increasingly

more realistic given the emergence of the MLaaS paradigm,

where one party (model provider) uses a private training

set, domain expertise and computational power to train a

model. The model is then made available to other parties

(clients) via a prediction API on cloud-based platforms, e.g.,

AmazonML [1] and AzureML [32]. The models are monetized

by charging fees from clients for each prediction made by the

1https://github.com/SSGAalto/prada-protecting-against-dnn-model-
stealing-attacks

2We use the hat notation ˆ to denote predictions

models. The model provider may alternatively deploy models

on client devices (e.g. smartphones or cameras), and rely on

platform security mechanisms on these devices, to protect

model confidentiality. What is common to both scenarios

is that while the models may be secured against physical

theft, the prediction APIs will remain open, enabling model

extraction attacks relying on predictions.

C. Goals

Adversaries are incentivized to extract models for (Sect. I):

• Reproduction of predictive behavior. The purpose of

the substitute model F ′ is to reproduce as faithfully as

possible the prediction of F for a known subspace S of

the whole input space Rn, i.e. ∀x ∈ S ⊂ R
n. It may be:

– The whole space of input values S = Rn, in which

case all predictions made by F ′ will match the pre-

dictions of F . This Random Uniform Agreement is

measured by randomly sampling the input space.

– A relevant subset of the whole input space, e.g. all

images x that are in the subset “digits” when attacking

a digit classifier. Agreement is measured by sampling a

held-out test set that neither classifier has seen before.

• Transfer of adversarial examples. Forging adversarial

examples consists of finding minimal modifications ǫ for

an input x of class c such that x′ = x+ ǫ is classified as

c′ �= c by a model F . Adversarial examples are either:

– Targeted, where x+ ǫ is created to change the classi-

fication of x from c to a specific class c′.
– Non-targeted, where x + ǫ is created to change the

classification of x from c to any other class c′.

Secondarily, adversaries want to minimize the number of

prediction queries to F in order to (1) avoid detection and

prevention of the attack, (2) limit the amount of money spent

for predictions, in the case of MLaaS prediction APIs, and to

(3) minimize the number of natural samples required to query

the model.

D. Adversary Model

Attack surface. We consider any scenario where the target

model is isolated from clients by some means. This can be

a remote isolation where the model is hosted on a server or

local isolation on a personal device (e.g. smartphone) or an

autonomous system (e.g., self-driving car, autonomous drone).

We assume local and remote isolation provide same confi-

dentiality guarantees and physical access does not help the

adversary to overcome the isolation. Such guarantees can be

typically enforced by hardware assisted TEEs [13]. Increasing

availability of lightweight hardware enhanced for DNNs [22]

and the rise of federated learning will push machine learning

computation to the edge [24], [46]. Local isolation will become

increasingly adopted to protect these models.

Capabilities. The adversary has black-box access to the iso-

lated target model. It knows the shape of the input (n) and

output (m) layers of the model. It knows the model architec-

ture: intermediate layer shapes and activation function types.
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It can query samples x to be processed by the model and gets

the output predictions. Predictions may be labels only F̂ (x), or

full set of probabilities F (x) which is a m-dimensional vector

containing the probabilities pi that x belongs to each class ci
for i ∈ {1,m}. Classes ci are meaningful to the adversary,

e.g., they correspond to digits, vehicles types, prescription

drugs, etc. Thus, the adversary can assume what the input to

the model looks like even though it may not know the exact

distribution of the data used to train the target model3.

E. General Model Extraction Process

We present a general process for extracting neural network

models through prediction APIs. Assuming a target model F ,

we want to learn a substitute model F ′ to mimic behavior of

F (Section II-C). The maximum number of queries may be

limited to a query budget b. We detail this model extraction

process in Algorithm 1 and discuss some of the steps next:

Initial data collection. The adversary composes an initial

set U of unlabeled samples (seed samples, row 6). The

source of these samples is determined by the adversary’s

capabilities. Typically knowledge of input shape is as-

sumed. All samples are queried from F , and responses

are collected into dataset L = {U, F̂ (U)} (row 7).

Architecture and hyperparameters. The adversary se-

lects a neural network architecture (row 8) and hyperpa-

rameters (row 9) for F ′. F ′ is trained with L. After this,

ρ duplication rounds (iterative steps) are run.

Duplication rounds. The adversary increases coverage

of the input space by generating synthetic samples. This

generation typically leverages knowledge of F acquired

until then: labeled training samples L and current F ′.

This synthetic data is allocated to a new set U (row 13).

All, or part, of the unlabeled synthetic samples x ∈ U
are queried from F , to get predictions F̂ (x). These new

labeled samples are added to L (row 14). Labeled samples

L are used for training F ′ (row 15).

Duplication rounds are repeated until the prediction query

budget b is consumed or termination occurs otherwise. The

outcome is a substitute model F ′ that mimics behavior of F .

F. Prior Model Extraction Attacks

We present two main techniques that have been introduced

to date for model extraction. These are used as a baseline to

improve model extraction attacks and compare performance

(Sect. IV) and to evaluate our detection approach (Sect. V).

1) TRAMER attack [55]: Tramer et al. introduced several

attacks to extract simple ML models including the one-layer

logistic regression model with an equation solving attack and

decision trees with a path finding attack. Both have high

efficiency and require a few prediction queries but are limited

to the simple models mentioned. These attacks are specifically

3This is similar to [16] but differ from [55] which assumes that the
adversary has no information about the purpose of classification, i.e, no
intuition about what the input x must look like. We consider that classes
must be meaningful to provide utility to a client and that the adversary has
access to a few natural samples for each class.

Algorithm 1 Model extraction process with the goal of

extracting classifier F , given initial unlabeled seed samples

X and a substitute model F ′ (initially random).

1: procedure LABEL({x1, . . . , xn}, F )

2: return {F̂ (x1), . . . , F̂ (xn)} ⊲ Return predictions

3: end procedure

4:

5: procedure EXTRACTMODEL(F )

6: U ← Initial data collection

7: L ← {U, LABEL(U,F )}
8: F ′ ← Select architecture

9: H ← Resolve hyperparameters ⊲ cf. Sec. III-A

10: F ′ ← INITIALIZE(F ′) ⊲ Set random weights

11: F ′ ← TRAIN(F ′ | L,H)
12: for i ← 1, ρ do ⊲ ρ duplication rounds

13: U ← Create synthetic samples ⊲ cf. Sec. III-C

14: L ← { L ∪ {U, LABEL(U,F )} }
15: F ′ ← TRAIN(F ′ | L,H)
16: end for

17: return F ′

18: end procedure

designed to reach very high Random Uniform Agreement

(Sect. II-C). The authors also introduce an extraction method

targeting shallow neural networks that we present below

according to our process (Sect. II-E).

Initial data consists of a set U of uniformly selected random

points of the input space (row 6). No natural samples are

used. The attack assumes knowledge of the model architecture,

hyperparameters and training strategy used for F (rows 7–8).

The main contribution for extracting neural networks lies

in the prediction queries (row 13), where they introduce three

strategies for querying additional data points from F . The

first selects these samples randomly. The second called line-

search retraining selects new points closest to the decision

boundary of the current F ′ using a line search technique. The

last is adaptive retraining which has same intuition of query-

ing samples close to the decision boundary, but it employs

active learning techniques [9]. The first two techniques are

implemented4, and we evaluate the strictly stronger line-search

retraining technique as TRAMER in this work. This technique

initially queries 25% of the budget with random data (row 6),

and then constructs line-search queries with 75% of remaining

budget in one duplication round (row 13).

2) PAPERNOT attack [38]: Papernot et al. introduced a

model extraction attack that is specifically designed at forging

transferable non-targeted adversarial examples (Sect. II-C).

We present this technique according to our process.

Initial data consists of a small set of natural samples (row

6). These are disjoint samples but distributed similarly as

the target model’s training data. Seed samples are balanced

(same number of samples per class) and their required number

increases with the model input dimensionality. The attack

4https://github.com/ftramer/Steal-ML
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does not assume knowledge of F , hyperparameters or training

strategy, however expert knowledge is used to select a model

architecture “appropriate” for the classification task of F (row

8). Two strategies are proposed to query F (row 14), one

queries the whole set U while the other called reservoir

sampling queries a random subset of X% samples from U .

Unselected samples are thrown away. PAPERNOT is defined

with a fixed training strategy: Stochastic Gradient Descent [34]

with learning rate 0.01, and momentum 0.9. F ′ is trained for

a very short time (10 epochs) at each duplication round, to

save time and to avoid overfitting L.

They introduce the Jacobian-based Dataset Augmentation

(JbDA) technique for generating synthetic samples (row 13).

It relies on computing the Jacobian matrices with the current

F ′ evaluated on the already labeled samples in L. Each

element x ∈ L is modified by adding the sign of the

Jacobian matrix ∇xL(F
′(x, ci)) dimension corresponding to

the label assigned to x by F , evaluated with regards to

the classification loss L. Thus, the set U is extended with

{x + λ · sign(∇xL(F
′(x, ci)))}, ∀x ∈ L. U has the same

size as L, which means that the number of generated synthetic

samples doubles at each iteration. λ is fixed to 25.5/255 in

their evaluation. Thus, the creation of synthetic samples is

identical to calculation of adversarial examples using the Fast

Gradient Sign Method (FGSM) [16] on F ′, and augmenting

the attacker’s set L with their classification labels F̂ (x). The

duplication rounds are repeated for a predefined number of ρ
iterations, which they call substitute training epochs.

III. DNN MODEL EXTRACTION FRAMEWORK

Techniques proposed to date [55], [38] are narrowly scoped

and explored solutions for only some of the required steps

(Sect. II-C). We investigate several strategies for two crucial

steps of the model extraction process: selecting hyperparam-

eters (Algorithm 1, row 9) and synthetic sample generation

(row 13), and investigate what advantage probabilities (rather

than label responses) give to the adversary (rows 7 and 14).

In addition, in Sect. IV-C we explore the impact of natural

sample availability during initial data collection (row 6), and

in Sect. IV-F what impact mismatch in model architectures

have on attack performance (row 8).

A. Hyperparameters

Predictive performance of neural networks is highly de-

pendent on hyperparameters used for training. These include

the learning rate, and the number of training epochs. Too

low a learning rate may preclude finding the optimal solution

before termination whereas too high a rate can overshoot

optimal solutions. There are essentially three ways of choosing

hyperparameters in model extraction attacks:

• Rule-of-thumb. Use some heuristic. E.g. PAPERNOT [38]

uses a fixed learning rate and small number of epochs.

• SAME. Copy from the target model. This may be ob-

tained via insider knowledge, or through state-of-the-art

attacks [36].

Algorithm 2 Five-fold cross-validation (CV) search using

bayesian optimization, given labeled dataset L, and closed lin-

ear span of H (hyperparameters range: [learning rate] × [train

epochs]). The procedure searches for the best hyperparameter

combination Hi∗ that maximizes 5-fold CV accuracy.

1: procedure SAMPLE(Ltrain, Lval, H) ⊲ Calc. CV-accuracy

2: F ′ ← INITIALIZE(F ′) ⊲ Set random weights

3: F ′ ← TRAIN(F ′ | Ltrain, H)
4: accuracy ← EVALUATE(F ′, Lval)
5: return accuracy

6: end procedure

7:

8: procedure 5-FOLDSAMPLE(H) ⊲ Average over 5 folds

9: for i ← 1, 5 do

10: acci ← SAMPLE(Li
train, L

i
val, H)

11: end for

12: return MEAN(acc1, . . . , acc5)
13: end procedure

14:

15: procedure CV-SEARCH(F ′, L,H)

16: (L1
train, L

1
val), . . . , (L

5
train, L

5
val) ← KFOLDS(L, 5)

17: for i ← 1, 4 do ⊲ Sample each corner of H
18: Hi ← GetVertex(H, i)
19: yi ← 5-FOLDSAMPLE(Hi)
20: end for

21: for i ← 5, 15 do ⊲ Sample randomly inside H
22: Hi ← UniformRandom(H)
23: yi ← 5-FOLDSAMPLE(Hi)
24: end for

25: for i ← 16, 30 do ⊲ Sample with Gauss. Process GP

26: GP ← INITIALIZE() ⊲ Set random weights

27: GP ← Train GP to predict y1,...,i−1 from H1,...,i−1

28: Hi ← Find next value that GP perceives maximizes

“expected value + standard deviation”

29: yi ← 5-FOLDSAMPLE(Hi)
30: end for

31: i∗ ← argmax(yi)
32: return Hi∗

33: end procedure

• CV-SEARCH. Do a cross-validation search on the initial

seed samples (row 6).

In this paper, we conduct CV-SEARCH by five-fold cross-

validation. Five-fold cross-validation proceeds as follows. For

each hyperparameter combination we want to test out, the

initial labeled dataset L (row 7) is divided into 5 non-

overlapping sets. The average accuracy is aggregated over the

sets, is saved, and next hyperparameter combination is tested

out. The process is repeated 5 times, each with a different

validation set. The hyperparameter combination that produces

the best accuracy on validation sets is selected for the rest of

the attack.

Given a finite time, not all parameter combinations can be

tested out. While strategies like grid search and random search
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[15] are popular, Bayesian hyperparameter optimization [47]

is more efficient: after first querying some initial samples,

it estimates what validation accuracy certain hyperparameter

combinations might have, along with the uncertainty of these

estimates. Then the next test hyperparameter combinations are

chosen as the ones that have either high expected value or high

uncertainty5. CV-SEARCH is done with dropout training [34].

We detail our CV-SEARCH procedure using Bayesian Opti-

mization in Algorithm 2. Learning rate is searched between

10−4 and 10−2, and training epochs between 10 and 320. Both

are searched in log-scale.

B. Adversarial Example Crafting

Adversarial examples are crafted by modifying samples x ∈
Rn with the Jacobian matrix for a given DNN F with C
classes, which in turn tells what the impact of each feature is

on the overall classification loss L [34].

The Jacobian is used for finding out how to modify the

features of a sample x such that the sample is classified as

something different from its genuine class ci. To modify x into

a targeted adversarial example of class cj �= ci, the Jacobian

component on column j is used, such that x is modified in

the negative gradient direction x′ ← x − f(∇xL(F (x, cj)))
with some function f .

To create a non-targeted adversarial example, the ith column

of the Jacobian is used. The sample x is modified in the general

positive gradient direction, to decrease the likelihood of clas-

sifying it as a member of class ci: x
′ ← x+f(∇xL(F (x, ci)))

For brevity we only discuss the non-targeted variant here.

The form of f determines the adversarial example crafting

algorithm. Popular choices are Fast Gradient Sign Method

FGSM [16], and its iterative variants I-FGSM [26] and MI-

FGSM [12]. The overall modification for each of these algo-

rithms is bounded to remain within an L∞ distance of ǫ.

a) FGSM: A sample x of class c is modified by the

sign-function of the gradient and multiplied by a small ǫ,

x′ ← x+ ǫ · sign(∇xL(F (x, ci))) (3)

FGSM is called a “one-step method”, and until recently, it

was thought that these methods are most effective at producing

transferable adversarial examples [12].

b) I-FGSM: Iterative FGSM subdivides modifications

into k steps, such that every iterative modification is done

with FGSM with step size ǫ
k

.

c) MI-FGSM: Momentum Iterative FGSM was recently

shown to be the strongest method of creating transferable

adversarial examples when attacking DNN models [12]. MI-

FGSM includes a momentum term that accumulates previous

gradient directions [12]. MI-FGSM won both the targeted

and non-targeted adversarial example challenge at NIPS 2017

Adversarial Attack competition.

5https://github.com/fmfn/BayesianOptimization

−1 1

−1

1

N FGSM

(a) Non-targeted FGSM

−1 1

−1

1

T-RND I-FGSM

(b) T-RND I-FGSM

Fig. 1: Synthetic sample generation against a multi-layer

perceptron. We show six sequential steps. Left: the non-

targeted FGSM [38] does not generate novel data points after

the first step. Right: T-RND I-FGSM avoids this by varying

the contribution of features, and targeting random classes.

C. Synthetic Sample Generation

Synthetic samples in model extraction attacks can be con-

structed either using the partially trained substitute model F ′,

or independently of it. We call these strategies Jacobian-based

Synthetic Sample Generation and Random Synthetic Sample

Generation respectively.

We create new synthetic samples with regards to all pre-

viously labeled data: the number of new samples increases

exponentially with the number of duplication rounds ρ (Al-

gorithm 1, row 12). We call the rate at which the number of

synthetic samples grows the expansion factor k.

1) Jacobian-based Synthetic Sample Generation:

These variants use adversarial example crafting algorithms

(Sect. III-B) to produce new synthetic samples. Previous

work [38] considered using non-targeted FGSM. We consider

several choices, particularly targeted variants. All variants

produce synthetic samples that step closer and closer to the

perceived classification boundaries over the course of several

duplication rounds (Algorithm 1, row 12).

We illustrate the intuition for the effect different algorithms

have in Fig. 1. For this, we trained a multi-layer perceptron

(MLP) [34] over two-dimensional toy data with three classes.

We show six steps, which corresponds to six duplication

rounds in [38]. We first demonstrate the synthetic sample craft-

ing method of using Non-targeted FGSM [38]. Non-targeted

variants try to greedily move towards the closest other class.

If the classifier is not updated sufficiently between runs, the

algorithm behaves like in Fig. 1a, where synthetic samples start

to overlap, and do not contribute with new information about

the target model F . The overlapping behavior can be avoided

to a certain degree by stepping in a targeted randomly chosen

direction (T-RND), as in Figure 1b. Importantly, overlap can be

further avoided by using iterative FGSM methods (I-FGSM)

that can vary the contribution of different feature components.

For non-targeted methods, the expansion factor is always

k = 2. However, for targeted variants, k can be as high as the

number of classes C. We set k = 4 for the targeted variants
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in our tests.

2) Random Synthetic Sample Generation: In addition to

these, we consider a generic synthetic sample generation

method: randomly perturbing color channels (COLOR). For

grayscale images, COLOR randomly increases or decreases

luminosity by a step size λ. For colored images, COLOR

randomly perturbs the color channel of each pixel by the same

amount for a given color channel. Random synthetic sample

generation methods can have arbitrary expansion factors, but

we set k = 4 in this paper.

IV. DNN MODEL EXTRACTION: EVALUATION

In this section, we replicate prior techniques for model

extraction [55], [38], to explore the effect of different param-

eter choices and develop new, more effective model extraction

attacks.

A. Experiment Setup

a) Datasets and target model description: We evaluate

two datasets: MNIST [28] for digit recognition and GT-

SRB [50] for traffic sign recognition. We chose these datasets

because they had been evaluated in previous studies [38], and

we wish to validate their observations under our adversary

model (Sect. II-C – II-D). MNIST contains 70,000 images of

28×28 grayscale digits (10 classes). Its training set contains

60,000 and the rest are in the test set. GTSRB contains 39,209

images in the training set, and 12,630 images in the test set

(43 classes). Images in GTSRB have different shapes (15×15

to 215×215); we normalize them to 32×32. We additionally

scale feature values for both datasets to the range [-1, 1].

MNIST GTSRB

conv2-32 conv2-64

maxpool2 maxpool2

conv2-64 conv2-64

maxpool2 maxpool2

FC-200 FC-200

FC-10 FC-100

FC-43

TABLE I: Target models ar-

chitecture (ReLU activation

between blocks).

We use the model architec-

tures depicted in Tab. I for

training our target models. At

a high level, we separate three

disjoint sets of data for our

experiments: test set, target

model training set, and pre-

attacker set. We call the set

of initial seed samples in the

model extraction process (Al-

gorithm 1, row 6) the at-

tacker set, and it is a subset

of pre-attacker set. We vary

its size systematically to under-

stand the dependence of model extraction performance metrics

on initial seed samples (Sect. IV-C for details).

In MNIST we train 10 target models. The target model

training sets and pre-attacker set are obtained by first sep-

arating the “training” set of MNIST with stratified 10-fold

cross-validation, giving approximately a 6,000:54,000 split.

The larger of these sets is used for target model training.

In GTSRB, we separated 36,629 images for target model

training and 2,580 for pre-attacker set. GTSRB consists of

up to 30 non-iid sequential samples of same physical objects

photographed at different distances and angles. We ensured

that same physical objects were only present in one of the

datasets. We reserve the 12,630 test images for test set. We

trained all target models for 100 epochs using Adam [15] with

learning rate 0.001. The learning rate was halved when the

cost plateaud. The models reached on average 98% accuracy

on MNIST test set, and 95% on GTSRB test set.

b) Technicalities: We measure the reproduction of pre-

dictive behavior with the agreement metrics. It represents

the accuracy of the substitute model predictions when taking

the target model prediction as ground truth, i.e., a count of

F̂ ′(x) = F̂ (x) occurrences. We compute Test-agreement for

a relevant subset of the input space as a macro-averaged

F-score using MNIST and GTSRB test sets. This metric

faithfully reports the effectiveness of an attack even in the

case that classes are imbalanced. We compute the random

uniform agreement RU-agreement as an accuracy score on

4,000 samples chosen uniformly at random in the input space.

We measure transferability of adversarial examples over all

seed samples in the attacker set. We measured both Targeted

and Non-targeted transferability. We use the maximum pertur-

bation ǫ = 64/255 in our attack. For Targeted , we create 9

variants x′ of the initial sample x with F̂ (x) = c, targeting 9

different classes c′ �= c.
Adversarial examples can be crafted with a variety of

maximum perturbations ǫ. Larger values increase transfer-

ability, while impacting the visual perception of images to

humans [45]. The end-goal of our paper is not to discuss

how these choices impact human perception. Creation of

transferable adversarial examples simply serves as a way to

evaluate the success of model extraction attacks. For this

reason, we choose the middle-range value of ǫ = 64/255
throughout our paper. This value was the middlemost value

evaluated in Papernot et al. [38].

Our settings differ from prior works as follows: Tramer et

al. [55] did not evaluate model extraction attacks on DNNs;

their largest neural network had 2, 225 parameters, while

our smallest network (MNIST) has 486, 011 parameters. The

datasets they evaluated were smaller than the ones we use; our

datasets are the same as in Papernot et al [38]. Papernot et al.

evaluated their attack up until 6, 400 queries, while we increase

the total number of queries to 102, 400. Test-agreement in

both earlier works is estimated with accuracy, while we use

macro-averaged F-score to faithfully report agreement for the

underrepresented classes in the datasets, which is important

in GTSRB. Finally, for GTSRB we ensured that the test set

contained different physical images compared to the attacker

set, whereas Papernot et al. did not.

B. Evaluation of prior attacks and hyperparameters

We first evaluate PAPERNOT and TRAMER (Sect. II-F). For

brevity, we only report results on MNIST although the results

for GTSRB showed similar results. We report results for

PAPERNOT and TRAMER on GTSRB further up in Sect. IV-E.

For PAPERNOT, we use 10 natural seed samples per class

(100 samples), and end after 10 duplication rounds (210 ·
100 = 102, 400 samples in total). TRAMER initially queries

random samples, followed by a line-search to find synthetic
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Fig. 2: Model extraction performance vs. duplication rounds for four attack setups (Sect. IV-B) on MNIST. Mean results over

10 independent attacker sets. Transferability is significantly improved by using CV-SEARCH strategy both without synthetic

data augmentation (duplication round 0), and after using 102,300 synthetic samples (duplication round 10).
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Fig. 3: Effect of number of seed samples on model extraction performance on MNIST and GTSRB. No synthetic samples are

queried at this phase. The substitute model is trained with the CV-SEARCH strategy.

samples lying between existing ones, for a total of 102, 400
synthetic queries. We report the stronger TRAMER, which uses

probability outputs. Notably, TRAMER uses 100% synthetic

samples, whereas PAPERNOT use 0.1% natural samples and

99.9% synthetic samples. In addition to these, we test two new

variants of PAPERNOT with new hyperparameters (Sect. III-A).

At this state, we only vary the hyperparameter setup. We

show the evolution of agreement and transferability as the

number of duplication rounds increases in Fig. 2. TRAMER

only uses one duplication round, so we show it as a straight

line for clarity. Transferability is computed using MI-FGSM

with step size ǫ = 64/255. There are several interesting

observations: 1) TRAMER produces the best RU-agreement ,

but the performance translates neither to good Test-agreement ,

nor to good transferability. 2) both initial agreement and trans-

ferability are highest for models trained with CV-SEARCH,

even higher than on SAME. 3) Test-agreement on MNIST is

ultimately dominated by the high volume of synthetic samples

in the attacker set: all training setups converge to the same

Test-agreement . 4) RU-agreement is initially random (Fig. 2)

– the accuracy of these is approximately 1
C

= 10%, where C is

the number of classes. The more synthetic queries are sampled,

the higher the RU-agreement rises. However, the increase

stagnates at the sixth duplication round (at 6400 samples),

and does not rise further for any method. We suspect that this

is due to the limitations of FGSM (recall discussion regarding

Fig. 1 in Sect. III-C). 5) CV-SEARCH is the only method where

transferability starts improving exponentially after the seventh

duplication epoch. We verified that this effect is due to dropout

training. Other models may not improve due to overfitting

model parameters on the substantial attacker set data, and

dropout may help in avoiding this phenomena. 6) PAPERNOT is

the fastest attack among these: querying and training (without

network latency) took on average 4.5 minutes, while it took 26

min and 18 min respectively for the CV-SEARCH and SAME

attacks.

We report detailed transferability for PAPERNOT in Tab. II

after the last duplication round, calculated with different

adversarial example crafting algorithms (Sect. III-B), including

the FGSM evaluated in [38]. The iterative algorithms are run

with 11 steps each. We also show a random perturbation of

the same size for comparison. To be brief, we only report

transferability for PAPERNOT, although the results for the

different attacks showed the same pattern. The actual num-

bers for transferability differs from [38], as the target model

architecture they attacked is not disclosed.

Evasion method Non-targeted (%) Targeted (%) L2 norm

random 7.5± 2.7 1.0± 0.4 10.3± 0.01

FGSM 24.4± 5.9 8.3± 2.0 9.2± 0.04

I-FGSM 57.4± 7.1 12.2± 2.3 9.3± 0.04

MI-FGSM 40.6± 8.4 17.0± 4.3 8.5± 0.05

TABLE II: MNIST. Transferability of PAPERNOT after 10

duplication rounds, evaluated with different evasion attacks.

We use L∞ bound ǫ = 64/255 for transferability calculation.

L2 norm is shown for Non-targeted , for all generated samples.

Mean and standard deviations shown.

We find that although PAPERNOT uses FGSM to craft
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synthetic samples, transferability is better when crafting adver-

sarial examples using the iterative variants of the algorithm:

I-FGSM and MI-FGSM. We can see that iterative variants of

the attack are stronger in our scenario. After synthetic queries

had been queries, we observed that Non-targeted is 2×, and

Targeted up to 3× higher for iterative variants of the attack.

For this reason, transferability will only be evaluated using

iterative variants of the attack in the rest of this paper.

C. Impact of seed samples

Next, we explore the connection between the number of

seed samples and model extraction efficiency, to understand

the impact that these have on overall attack efficiency. We

use the CV-SEARCH training strategy, which we demonstrated

worked the best, and do not query synthetic data at this

stage. We also investigate whether more detailed information

from the target models – the full list of classification prob-

abilities rather than the top-1 labels-only – can aid in the

model extraction. These may be considered the highest and

respectively lowest levels of granularity that any prediction

API may provide.

Figure 3 shows Test-agreement , and Targeted for MNIST

and GTSRB, as the number of training samples (natural

seed samples) increases. Transferability is calculated with MI-

FGSM. Overall Test-agreement trends are similar on both

datasets, but Test-agreement is smaller on GTSRB than on

MNIST. We believe this is due to higher dissimilarity between

samples in attacker set, and target model training set.

Test-agreement does not improve significantly with prob-

abilities; we observe increases between 0 and 3 percentage

points (pp). This is in contrast with findings on shallow

architectures in [55], where probabilities increased model

extraction efficiency significantly. Increasing the number of

training samples to 10-fold (from 5 samples per class to 50

samples per class) increases Test-agreement by 23 pp on

MNIST and 29 pp on GTSRB, reaching 93% and 47% Test-

agreement respectively.

Targeted improves with probabilities. The effect is more

pronounced, when the adversary has access to more seed

samples. For MNIST, Targeted starts at 5% when there are

only 5 seed samples per class, and reaches 16% with 50 seed

samples per class with labels-only, and 20% with probabilities.

Perhaps surprisingly, Targeted on GTSRB is higher than on

MNIST. Targeted stagnates in GTSRB after 20 – 30 seed

samples per class. We believe that the stagnation occurs due to

correlated samples in the seed sample set, due to the structure

of GTSRB dataset. When 50 samples per class have been

queried, Targeted reaches 25% with labels-only, and 35% with

probabilities.

Non-targeted (not shown) is behaving similarly on MNIST:

training with either labels-only or probabilities yields 20%

transferability with 5 seed samples per class. When 50 sam-

ples per class have been queried, Non-targeted reaches 48%

with labels-only, and 65% with probabilities. Non-targeted on

GTSRB already starts at 91% with labels-only, and can reach

98% with 50 seed samples per class. Non-targeted is already

very high, and probabilities yields at most 4 pp improvements

over labels-only.

Having demonstrated the overall trend of increasing seed

sample numbers and impact of probabilities, we will investi-

gate the settings with 10 seed samples per class in more detail

in the following sections.

D. Synthetic sample generation

We explore the impact that different synthetic sample craft-

ing settings have on model extraction efficiency. As in the

previous tests, we use CV-SEARCH, trained with 10 seed

samples per class. At this phase, we only evaluate the scenario

where the adversary has access to labels. We run model

extraction attacks against MNIST and GTSRB using several

synthetic sample crafting techniques (Section III-C). T-RND

and COLOR techniques are used with expansion factor k = 4.

Step size λ is set to 25.5/255, and adversarial examples are

crafted with I-FGSM.

Synthetic crafter Test-agreement Targeted Non-targeted

N FGSM 0.960 0.283 0.770

N I-FGSM -0.001 -0.006 -0.086
T-RND FGSM +0.008 +0.046 0.008

T-RND I-FGSM +0.007 0.043 +0.056

COLOR -0.071 -0.219 -0.500

TABLE III: Impact of synthetic sample crafting strategy on

model extraction performance. MNIST, 102,400 queries.

We first discuss the results for model extraction attacks on

MNIST, shown in Tab. III. Non-targeted FGSM is kept as the

baseline, and other methods are compared against this setup.

Unsurprisingly, Targeted is most increased by using targeted

synthetic sample crafting methods (T-RND), on average by

4.5 pp. Non-targeted also increases by 5.6 pp using T-RND I-

FGSM. COLOR decreases Test-agreement and transferability

over the baseline. Test-agreement results are already quite high

for the baseline method, but targeted methods provide nearly

one pp improvement over the baseline.

Synthetic crafter Test-agreement Targeted Non-targeted

N FGSM 0.396 0.593 1.000

N I-FGSM +0.056 -0.075 0.000
T-RND FGSM -0.135 +0.002 0.000

T-RND I-FGSM +0.112 +0.170 0.000
COLOR +0.243 -0.498 -0.016

TABLE IV: Impact of synthetic sample crafting strategy on

model extraction performance. GTSRB, 110,800 queries.

Results for the attack on GTSRB are shown in Tab. IV.

Non-targeted is already 100% on the baseline, and none

of the Jacobian-based Synthetic Sample Generation methods

decrease it. We observe that creating synthetic samples us-

ing targeted methods increases Test-agreement and Targeted

over baseline, with T-RND I-FGSM contributing the largest

increase in Targeted . The largest impact of Test-agreement

comes from the domain-specific method COLOR. We hypoth-

esize that this is due to images occasionally having very large
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MNIST
No synthetic queries 102,400 total queries

Strategy Test-agree. Targeted Test-agree. Targeted

TRAMER - - 6.3% 1.1%
PAPERNOT 40.0% 1.2% 95.1% 10.6%

Our T-RND-64 82.9% 6.5% 97.9% 39.3%

GTSRB
No synthetic queries 110,880 total queries

TRAMER - - 0.2% 2.1%
PAPERNOT 4.8% 2.4% 16.9% 41.1%

Our T-RND-64 32.0% 16.9% 47.6% 84.8%
Our COLOR-25 32.0% 16.9% 62.5% 27.5%

TABLE V: Comparative evaluation of model extraction attacks

on our two datasets. Our techniques achieve significantly

improved performance on both Test-agreement and Targeted .

differences in contrast in attacker set samples, and randomly

changing colors may help in bridging the gap between attacker

set images and target model training set.

We further found that large values for λ were beneficial in

MNIST, both in terms of Test-agreement and transferability.

On GTSRB, larger λ improved transferability as well, but

decreased Test-agreement . In the next section, we evaluate

these two goals separately: doing model stealing with large λ
for transferability, and smaller λ for Test-agreement .

E. Comparative evaluation to prior work

We summarize the performance of existing model extraction

techniques, and our techniques in Tab. V. We show Test-

agreement and Transferability for our two datasets in two

scenarios: using no synthetic queries and using approximately

100,000 synthetic queries. We set the number of natural seed

samples to 10 per class. Transferability is evaluated with I-

FGSM.

For MNIST, we find that our CV-SEARCH technique yields

comparable Targeted as PAPERNOT even before synthetic sam-

ples are queried. With a budget of 102,400 queries, PAPERNOT

reaches average Test-agreement 95.1%, while T-RND I-FGSM

with step size λ = 64/255 reaches 97.9%, while Targeted

and Non-targeted (not shown), increase to 39.9% and 87.7%

compared to 10.6% and 56.2% respectively in PAPERNOT. Our

techniques improve Targeted and Non-targeted on MNIST by

+29.3 pp and +31.5 pp.

We see that the CV-SEARCH technique we employ is crucial

for Test-agreement on GTSRB: PAPERNOT with 110,800

queries does not reach the same Test-agreement as our tech-

niques reaches without synthetic samples. T-RND with step

size λ = 64/255 further increases Test-agreement to 47.6%,

while Targeted increases to 84.8%, compared to 41.1% in

PAPERNOT. Non-targeted (not shown) is 100.0% in both

cases. COLOR increases Test-agreement to 62.5%, while

decreasing Targeted to 14.9%, highlighting that achieving high

Test-agreement may be entirely complimentary to achieving

transferability in model extraction attacks. TRAMER performs

poorly on both datasets. This is because a large part of the

random space belongs to only one class; this information

is unhelpful towards building a good substitute model. Our

Fig. 4: Effect of architecture mismatch on Test-agreement

(cf. Tab. VI). Columns represent increasing complexity of

the substitute model (left to right). Rows represent increasing

complexity of the target model (top to bottom). Substitute

models with lower complexity than the target model (lower

triangle, pale red) have significantly lower Test-agreement ,

compared to the baseline of matching architectures (diagonal).

techniques improve Test-agreement and Targeted on GTSRB

by +46 pp and +44 pp, respectively.

F. Architecture mismatch between target and substitute models

Having seen the effect that various training strategies and

synthetic sample crafting techniques have, we may ask what

happens if the attacker does not know the target model

architecture and instead, uses a simpler or more complex

substitute model architecture than the target architecture.

We trained target models of 5 different complexities on

MNIST, using architectures detailed in Tab. VI. The archi-

tectures are chosen for simplicity of evaluating increased

(nonlinear) complexity. We trained each substitute model

with the SAME method, and used the non-targeted FGSM for

crafting synthetic samples with 7 duplication rounds. We ran

the attack ten times for each of the different complexities.

We show our average results for Test-agreement in Fig. 4.

Columns denote increasing substitute model complexity as we

move rightwards, and rows denote increasing target model

complexity as we move downwards. The baseline is the

diagonal, where model complexities match. We hilight row-

wise positive change over the baseline with solid green, and

negative change with pale red.

We see a clear pattern: To increase Test-agreement , match-

ing or having higher model complexity than the target model
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Architecture
1 layer 2 layers 3 layers 4 layers 5 layers

conv2-32
maxpool2

conv2-32 conv2-64
maxpool2 maxpool2

conv2-32 conv2-64 conv2-128
maxpool2 maxpool2 maxpool2

FC-200 FC-200 FC-200 FC-200

FC-10 FC-10 FC-10 FC-10 FC-10

Parameters

7,851 159,011 1,090,171 486,011 488,571

TABLE VI: Different model architectures for analysing ar-

chitecture mismatch in target and substitute models. ReLU

activations are used between blocks of layers. The number of

parameters in the networks in reported at the bottom.

Baseline Non-targeted (%)

99.4 64.6 78.4 36.3 15.5

Relative Improvement (%)
1 2 3 4 5

1 layer 0.0 -0.7 -34.8 -46.7 -38.4
2 layers -70.0 0.0 -73.5 -75.5 -61.0
3 layers -85.2 -84.9 0.0 -49.4 -52.9
4 layers -72.2 -58.1 -24.8 0.0 -0.3
5 layers -67.7 -67.1 -29.7 +8.4 0.0

TABLE VII: Effect of architecture mismatch on improvement

on Non-targeted transferability. Columns represent increasing

complexity of the substitute model (left to right). Rows repre-

sent increasing complexity of the target model (top to bottom).

Matching architectures (diagonal) improves transferability.

is almost always beneficial for the adversary. Similarly, using

a lower complexity is detrimental to the attacker, and can

cause a breakdown of the attack, where Test-agreement drops

lower than initially. This phenomena may be explained via

statistical learning theory, which provides an impossibility

result of perfectly reproducing a high-complexity classifier

with a classifier of too low complexity, i.e. too low Vapnik-

Chervonenkis (VC) dimension [34].

Non-targeted and Targeted transferability are also affected

by model mismatch, but in a different way. We show the

results for Non-targeted in Tab. VII, similarly evaluated on

duplication round 7 using I-FGSM with step size ǫ = 64/255.

We see that nearly all (19 out of 20) deviations from the target

model architecture cause significant decrease in the ability to

produce transferable adversarial examples.

G. Takeaways

We conducted systematic, empirical tests to understand

model extraction attacks on DNNs in the previous sections.

We present our main observations as follows:

Hyperparameters: It is not necessary to use the same learning

rate and number of training epochs as the target model was

trained with. Doing CV-SEARCH can yield similar or better

results for both agreement and transferability.

Seed samples: Natural seed samples are necessary to extract

a substitute model that reaches high Test-agreement .

Synthetic sample generation: A relevant synthetic sam-

ple generation method improves transferability of adversarial

examples significantly. Synthetic samples also significantly

improve agreement, while remaining less efficient than using

natural samples. Exploring several directions (T-RND) yields

better agreement and transferability.

Training strategy: The use of probabilities rather than labels-

only improves transferability for any setup, but has nearly no

effect on agreement.

Mismatch between target model and substitute model:

Using a higher or similar complexity substitute model as the

target model architecture yields high predictive performance.

Matching the architectures yields higher transferability.

Generalizability: Our dataset choices facilitated comparisons

with existing methods, where they had poor Test-agreement :

[38] on GTSRB and [55] on both. In these adversary models,

adversary is not assumed to have access to pre-trained models:

both the target and the substitute model DNNs are trained

from scratch. Since the time of this writing, stealing DNNs for

more complicated datasets like CIFAR-106, have been done by

assuming both the target model and attacker models are fine-

tuned from pre-trained ImageNet classifiers [37], [40]. These

attacks benefit from correlations between different [40] or

same [37] pre-trained models. In contrast, our paper analyzes

attacks where no such correlation is present.

V. DETECTING MODEL EXTRACTION

We present PRADA (Protecting against DNN Model Steal-

ing Attacks), a generic approach to detect model extraction

attacks. Unlike prior work on adversarial machine learning

defenses, e.g., for detecting adversarial examples [17], [31],

our goal is not to decide whether individual queries are

malicious but rather detect attacks that span several queries.

Thus, we do not rely on modeling what queries (benign or

otherwise) look like but rather on how successive queries

relate to each other. PRADA is generic in that it makes no

assumptions about the model or its training data.

A. Detection approach

We start by observing that (1) model extraction requires

making several queries to the target model and (2) queried

samples are specifically generated and/or selected to extract

maximal information. Samples submitted by an adversary are

expected to have a characteristic distribution that differs from

the distribution of samples submitted in benign queries.

The distance between two randomly selected points from

a totally bounded space (e.g., a cube) almost fits a normal

(Gaussian) distribution [41], [48]. Inputs to a machine learning

model are typically defined in a totally bounded input space,

i.e., input features are defined over a certain range of values.

We expect benign queries from a given client to be distributed

in a natural and consistent manner. Consequently, we expect

6cf. http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
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the distance between queried samples to fit a (close to) normal

distribution, as observed for random points. On the other hand,

adversarial queries made to extract a model combine natural

and synthetic samples coming from different distributions.

Moreover, the distance between successive synthetic queries

is artificially controlled by the adversary to optimally probe

the input space and extract maximal information [38], [55].

Therefore, we expect the distance between adversarial queries

to highly deviate from a normal distribution.

Thus, PRADA’s detection method is based on detecting

deviations from a normal distribution in the distance between

samples queried by a given client.

(a) Benign queries (MNIST) (b) PAPERNOT attack (MNIST)

(c) Benign queries (GTSRB) (d) COLOR attack (GTSRB)

Fig. 5: Distribution of distances for benign queries and ad-

versarial queries. Top: 200 queries against MNIST model,

benign queries from MNIST test set (left) and PAPERNOT

attack (right). Bottom: 600 queries against GTSRB model,

benign queries from BTS dataset (left) and COLOR attack

(right). Benign queries have a distribution close to normal

while adversarial queries do not.

Consider the stream S of samples x queried by a single

client from the target model F . We calculate the minimum

distance dmin(xi) between a new queried sample xi and any

previous sample x0,..,i−1 of the same class c. All dmin(xi)
are stored in a set D. By doing so, we want to model the

distribution of distances between queried samples and identify

samples abnormally close to or far from any previously queried

sample. For efficiency, we do not keep track of all past queries

in S but incrementally build a growing set Gc for each class c.
Gc consists only of samples whose distance dmin is above a

threshold value Tc. We define Tc as the mean minus standard

deviation of the minimum distance dmin between any two

elements already in Gc. The distance dmin(xi) is computed

only w.r.t. elements in Gc for F (xi) = c.
Our attack detection criterion is based on quantifying how

closely distances in D fit a normal (Gaussian) distribution. We

Algorithm 3 PRADA’s detection of model extraction

1: Let F denote the target model, S a stream of samples

queried by a given client, D the set of minimum distances

dmin for samples in S, Gc the growing set for class c, DGc

the set of minimum distances dmin for samples in Gc, Tc

the threshold value for class c, δ the detection threshold.

2: D ← ∅, Gc ← ∅, DGc ← ∅, attack ← false
3: for x : x ∈ S do

4: c ← F (x)
5: if Gc == ∅ then # sets and threshold initialization

6: Gc ∪ {x}, DGc ∪ {0}, Tc ← 0
7: else

8: d ← ∅
9: for all y : y ∈ Gc do # pairwise distance

10: d ∪ {dist(y, x)}
11: end for

12: dmin ← min(d) # distance to closest element

13: D ∪ {dmin} # add distance to D
14: if dmin > Tc then # sets and threshold update

15: Gc ∪ {x}
16: DGc ∪ {dmin}
17: Tc ← max(Tc, DGc − std(DGc))
18: end if

19: end if

20: if |D| > 100 then # analyze distribution for D
21: D′ ← {z ∈ D, z ∈

〈

D ± 3× std(D)
〉

}
22: if W (D′) < δ then # attack detection test

23: attack ← True
24: else

25: attack ← False
26: end if

27: end if

28: end for

flag an attack if the distribution of these distances deviates

too much from a normal distribution. Figure 5 illustrates the

intuition why our approach can effectively detect model ex-

traction. It depicts the difference in the distribution of distances

(values in D) between benign and adversarial queries. We

see that benign queries to the MNIST and GTSRB models

fit a distribution that is close to normal. However, adversarial

queries produce spikes on several values resulting in skewed

distributions. These correspond to synthetic samples for which

the distance to previous samples is artificially controlled by the

adversary. Other distances occur more seldom and correspond

mostly to natural seed samples queried at the beginning of the

attacks. Such trends are typical for all known attacks.

Several metrics exist to quantify this phenomenon and eval-

uate if a set of values fits a normal distribution, i.e., to perform

a normality test. We considered and tested three, namely the

Anderson-Darling test [2], the Shapiro-Wilk test [44] and

the K-squared test [11]. The Shapiro-Wilk test was selected

because the values of its test statistic W produced the largest

difference when computed on benign and adversarial queries.

A prior study also concluded that the Shapiro-Wilk test has
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the most predictive power to assess whether a set of values

fits a normal distribution [43]. The test statistic W used in the

Shapiro-Wilk test is given in Eq. 4, where x(i) is the ith order

statistic in the sample D, x is the sample mean, and ai are

constants related to the expected values of the order statistics.

More details are provided in [44]. W is defined on [0, 1] and

a low value highlight deviation from a normal distribution.

W (D) =

(
∑n

i=1 aix(i)

)2

∑n

i=1(xi − x)2
, for D = {x1, . . . , xn} (4)

Algorithm 3 describes PRADA’s detection technique in

detail. The detection process starts when a client queries at

least 100 samples (|D| > 100) because a sufficient number of

values is necessary to compute a relevant W . We first remove

outliers from D, i.e., values being more than 3 standard

deviations away from the mean of values in D. According to

the 68-95-99.7 empirical rule, 99.7% of values coming from

a normal distribution belong to this interval. We compute the

Shapiro-Wilk test statistic W on the resulting set deprived

from outliers D′. Next, if W (D′) is below a threshold δ,

PRADA detects an extraction attack.

PRADA requires the defender to set one parameter: the

detection threshold δ. It also needs a domain-specific distance

metric dist() to compute distances between inputs. We use L2

(Euclidean) norm for image samples in our experiments.

B. Evaluation

We evaluate PRADA in terms of success and speed. Speed

refers to the number of samples queried by an adversary

until we detect the attack. It correlates with the amount

of information extracted and must be minimized. We also

evaluate the false positive rate (FPR): the ratio of false alarms

raised by our detection method to all query sequences from

benign clients.

To evaluate success, we assess its detection of attacks

against the two target models previously trained in Sect. IV-A

for MNIST and GTSRB datasets. We subject these models

to four different attacks: TRAMER, PAPERNOT and our new

IFGSM T-RND-64 (noted T-RND here) and COLOR-25 attack

(noted COLOR here). We use the samples generated while

evaluating the performance of these attacks in Sect. IV and

query the prediction model with them one by one (in the

order they were generated). PRADA’s detection algorithm is

computed for each new queried sample. When an attack is

detected, we record the number of samples queried until then

by the adversary to evaluate the speed of detection.

To evaluate the false positive rate, we use natural data from

MNIST and GTSRB datasets. To demonstrate that PRADA

is independent of a specific data distribution, we also use

randomly generated samples (images with uniformly random

pixel values), the U.S. Postal Service (USPS) [27] and Belgian

traffic signs (BTS) [52] datasets. USPS and BTS datasets

contain similar data as MNIST and GTSRB respectively but

from different distributions. We reshaped the samples to fit

the input size of MNIST and GTSRB models. We simulate

a benign client by randomly picking 6,000 samples from a

given dataset and successively querying the appropriate model:

MNIST/USPS/random → MNIST model, GTSRB/BTS/random

→ GTSRB model. We simulate five benign clients per dataset

(30 clients). To evaluate FPR, we split this sequence of queries

into 120 chunks of 50 queries each and count a false positive

if at least one alert is triggered by PRADA in a chunk.

Successive benign queries can also be related to each other. In

a self-driving car scenario, successive pictures of the same road

sign are taken and submitted to the model while getting closer

to it. We simulated this scenario using the GTSRB validation

set that contains 207 sequences composed of 30 pictures each

of a single road sign taken from a decreasing distance (6,210

samples). We ran five tests, randomly shuffling the order of

sequences and submitting them to the GTSRB model while

computing the FPR.

(a) MNIST model (b) GTSRB model

Fig. 6: FPR for PRADA vs. detection threshold δ.

Figure 6 depicts the increase in FPR according to the

detection threshold value δ. A high δ value of 0.96 results in no

false positives for MNIST model while GTSRB model requires

δ = 0.87 to reach the same result. It is worth noting that

different simulated benign users generate queries with different

distributions in the GTSRB experiment (Fig. 6b). While the

BTS and random queries are distributed close to normal (high δ
values result in no false positives), GTSRB queries are further

away from a normal distribution (lower δ values required for

no false positives). In the GTSRB sequence queries, images

in a sequence have a relatively small distance to each other

while images from different sequences have higher distances

between them. This explains a more scattered distribution of

distances that deviates from a normal distribution. This shows

that δ is a domain specific parameter that needs to be set with

respect to the model to protect and its use case scenario.

Table VIII presents detailed speed of detection for a few

selected δ values. Most attacks are detected shortly after

they have a change in their query strategy. From natural to

synthetic samples for PAPERNOT, T-RND and COLOR attack

(after 100 queries for MNIST and 430 queries for GTSRB).

From random samples to line search strategy for TRAMER

attack (after 5,000 queries). While the detection is slower

for the TRAMER this is not a concern since it is itself slow

in extracting DNNs. An estimate for the performance of the

substitute model at the time of detection can be found in Tab. V

(no synthetic queries). The T-RND attack is the only one that
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TABLE VIII: Adversarial queries made until detection respect

to δ value. FPR is averaged over all simulated benign query

scenarios (* = GTSRB sequence was discarded). COLOR attack

is only performed against the GTSRB model so no results are

reported for MNIST.

Model (δ value) FPR
Queries made until detection

TRAMER PAP. T-RND COLOR

MNIST (0.95) 0.0% 5,560 120 140 -
MNIST (0.96) 0.0% 5,560 120 130 -
GTSRB (0.87) 0.0% 5,020 430 missed 550
GTSRB (0.90) 0.6% 5,020 430 missed 480
GTSRB (0.94) 0.1%* 5,020 430 440 440

remains undetected against the GSTRB model if δ is too low.

This is because the it uses a large step size λ = 64 which

produces synthetic samples with a large distance between each

other. This distance happens to fit the normal distribution of

natural samples for the GTSRB model. By increasing δ to 0.94,

PRADA effectively detects the T-RND attack while producing

a few false positives (0.1%). This δ value cannot be applied

to all scenarios though, e.g., it triggers a large number of false

positives with GTSRB sequence queries (cf. Fig. 6b).

For most of our tests, this demonstrates that PRADA is

effective at protecting against most model extraction attacks

developed to date. Using an appropriate δ threshold, it de-

tects quickly TRAMER, PAPERNOT and COLOR attacks while

avoiding false positives for benign queries across the tested

datasets: MNIST, USPS, GTSRB (+ sequence), BTS and

random queries. A more careful selection of δ is necessary

to detect the T-RND attack against GTSRB, and it may not

apply to any model deployment scenario (e.g., high FPR in

sequence scenario), meaning that PRADA perhaps cannot be

reliably deployed in all scenarios, as it may limit the usability.

To estimate the overhead of PRADA, we computed the

memory required to store the growing set G. Note that G
represents a subset of all queries S. Samples for MNIST and

GTSRB models have an average size of 561B and 9.3kB

respectively. The average memory required before detecting

PAPERNOT and T-RND attack for MNIST is around 55kB

(561B × 98 samples) and 3.2MB for GTSRB (9.3kB × 343
samples). Benign clients generate a larger G since its growth

is not stopped by a detection. However, this growth naturally

slows down as a client makes more queries. As an estimate,

we used 1.9MB (MNIST test: 561B × 3, 374 samples) and

1.0MB (USPS: 561B × 1, 804 samples) for storing G of

a MNIST model client submitting 6,000 queries. We used

28.1MB (GTSRB test: 9.3kB × 3, 025 samples) and 30.2MB

(BTS: 9.3kB × 3, 254 samples) for storing G of a GTSRB

model client submitting 6,000 queries.

C. Discussion

Evasion of Detection: We observed that PRADA can be

evaded by PAPERNOT and T-RND type of attacks by carefully

selecting a step size λ that would simulate a normal distribu-

tion of samples (cf. Sect. V-B T-RND attack against GTSRB).

We also concluded that λ is a important factor impacting the

(a) MNIST model (b) GTSRB model

Fig. 7: Example of controlling the distribution of D under

PAPERNOT attack. Left: 1,600 attack queries (blue) against

MNIST model. 14,274 dummy queries (orange) are required

to avoid detection. Right: 6,680 attack queries against GTSRB

model, 41,160 dummy queries are required to avoid detection.

TABLE IX: Increased query cost to circumvent PRADA

(GTSRB T-RND * with δ = 0.94).

Model MNIST (δ = 0.96)
Attack PAPERNOT T-RND TRAMER

Original queries 1,600 1,600 10,000
Additional queries 14,274 4,764 79,980
Overhead +890% +300% +800%

Model GTSRB (δ = 0.90)
Attack PAPERNOT T-RND * TRAMER COLOR

Original queries 6,680 6,680 10,000 6,680
Additional queries 41,160 19,986 99,990 39,972
Overhead +620% +300% +1000% +600%

success of a model stealing attack (cf. Sect IV-D). Evading

PRADA by modifying the step size λ optimal for model

stealing purposes may degrade the performance of the stolen

model.

Alternatively, an adversary can attempt to evade detection

by making dummy queries that are not useful for building the

substitute model but that would maintain a normal distribution

of distances between queries. To evaluate the additional query

cost of this evasion attack, we simulated an adaptive adversary.

Following Kerckhoffs’s Principle, it has full knowledge of the

detection algorithm, including the detection threshold value δ
that is supposed to be secret.

In order to control the query distribution, a dummy query

needs to satisfy two conditions: (1) it must be compared to a

selected subset Gc of the growing set (targeted classification)

and (2) its minimum distance dmin (cf. Alg. 3) must help to

avoid detection, i.e., increase W (D) to satisfy W (D) ≥ δ.

Dummy queries must complement D to fit a normal dis-

tribution as shown in Fig. 7. Table IX presents the query

overhead required to circumvent PRADA. It ranges from +3×
to +10× more queries depending on the target model and

attack considered.

In our evaluation, we controlled the distribution of D using

selected dmin values and without generating queries. Thus our

evaluation provides an estimated lower bound on the number

of queries required to circumvent PRADA. We experimented
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with several strategies concluding that creation of such queries

is not trivial. Notably, the following strategies did not fool our

detection algorithm:

1) random noise drawn from normal/uniform distribution

2) natural samples of desired class perturbed with random

noise

3) like (1) and (2) but constraining dmin to be in range
〈

D ± std(D)
〉

or
〈

D ± 2× std(D)
〉

4) like (1) and (2) but submitting the sample only if it

satisfies the W (D) ≥ δ.

In case of strategies (1) and (2) we observed that dummy

queries and useful queries formed two spaced out peaks in

the distribution. For (3) the underlying seed samples impacted

dmin too much unless the noise was large enough to be

equivalent to (1) or (2). Finally, in (4), after several samples

(≈ 50) the search for individual images became too time

consuming (thousands of samples) to find a single valid query.

Since PRADA analyses samples queried by a single client,

an adversary can distribute its queries among several clients

to avoid detection (Sybil attack). Using a sufficient number of

clients, PRADA can be circumvented.

Countermeasures: Once PRADA detects an attack, we must

resort to effective mitigation. Blocking requests from the ad-

versary would be a straightforward prevention. This would be

effective on single-client models protected by local isolation.

The defender might also deceive the adversary with altered

predictions once an attack is detected in order to degrade

the substitute model learned by the adversary. Returning the

second or third class with the highest likelihood according to

the prediction of the target model may plausibly deceive the

adversary into thinking it has crossed a class boundary while

it has not and effectively undermine its substitute model.

Generalizability: PRADA is applicable to many types of

data and ML models without any alterations since its design

is independent from these considerations and only relies on

identifying adversarial querying behavior. The only aspect

that depends on the type of data is finding a distance metric

appropriate to compute differences between input samples of

a certain type, e.g., we chose L2 norm for image input. Alter-

natively, any Lp norm or the structural similarity metric [45]

could be used for image input. As examples for other domains,

the decibel metric (dB) can be used on audio input [7] and the

L1 norm on malware input [18].

One must also set an appropriate detection threshold δ. This

is dependent on the use case scenario for the model which

will define a ”benign” distribution of queries, as highlighted

in Sect. V-B. This value can be fixed using a training period

during which only benign queries are submitted to the system

and δ is selected as a maximum value that does not generate

any false positives as we showed in Fig. 6. Capturing this

benign distribution correctly will impact the detection efficacy

of PRADA.

Storage overhead and scalability: PRADA requires keeping

track of several client queries, substantially increasing memory

consumption. It is worth noting that we presented results for

the extreme case of image classification models, which use

high dimensional inputs. Nevertheless the amount of memory

required per client was estimated to be a few megabytes (1-

30 MB), which is reasonable. For local models being used by

single clients, the storage requirements are thus minor. Multi-

client remote models serving up to a few hundred clients

simultaneously will require a few gigabytes of memory in

total. This is reasonable for a cloud-based setup where the

model is hosted on a powerful server.

VI. RELATED WORK

A. Model Extraction Attacks

Model extraction is conceptually similar to concept learn-

ing [3], [5] in which the goal is to learn a model for a

concept using membership queries. Concept learning has been

used for adversarial machine learning and evading binary

classifiers [30], [35]. Model evasion may be considered a

theoretically simpler task than model extraction [51], and

so far, the efficiency of model extraction attacks have not

been demonstrated on DNNs. The extraction of information

from DNNs has been addressed in non-adversarial settings by

compressing DNNs to simpler representations [6], [19] or by

obtaining interpretable decisions from ML models [10], [53].

These work do not apply to adversarial settings since they

require white-box access to the target model and its training

data.

We presented the two closest prior works to ours in

Sect. II-F. Tramer et al. [55] introduced several methods for

extracting ML models exposed in online prediction APIs. They

exploit the confidence values from predictions in a systematic

equation solving approach to infer exact model parameters.

In contrast to our attacks, this method applies only to simple

models and it is ineffective at extracting DNN models (cf.

Sect. IV-D). Papernot et al. [38] introduced a method for

extracting a substitute DNN model for the specific purpose

of computing transferable non-targeted adversarial examples.

Their main contribution is the JbDA technique for generating

synthetic samples (cf. Sect. II-F).

In contrast to these works, we introduce a generic method

for extracting DNNs. It is multipurpose and has higher per-

formance in transfer of targeted adversarial examples and

reproduction of predictive behavior.

Alternative model stealing attacks assume access to large

sets of natural samples and use active learning strategies

to select the best samples to query [37]. In this paper, we

consider a different adversary model with limited access to

natural samples. A recent line of work targets the extraction

of model hyperparameters and architecture. Joon et al. [36]

train a supervised classifier taking as input n prediction values

rendered by a classifier for a fixed set of n reference samples.

Using this technique, they infer with significant confidence

the architecture, optimization method, training data split and

size, etc. of a confidential target model. Hua et al. [20] target a

model locally isolated with hardware security mechanisms (In-

tel SGX) and introduce a hardware side channel attack to infer

similar model information. Another work [56] takes a stronger

adversary model (access to training data) and introduces a
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technique for computing the value for the hyperparameter for

L2-regularization. [36] is complementary to our attack and

can be used in the first stage to select the architecture for the

substitute model.

B. Defenses against Model Extraction

A first defense to model extraction is to reduce the amount

of information given to an adversary by modifying the model

prediction. Prediction probabilities can be quantized [55] or

perturbed to deceive to the adversary [29]. We have shown

that model extraction attacks are effective even without using

prediction probabilities (Sect. IV), making this line of defenses

ineffective. A second line of defense consists in detecting

model extraction attacks by recording requests from clients

and computing the feature space explored by the aggre-

gated requests [23]. When the explored space exceeds a pre-

determined threshold, an extraction attack is detected. Quiring

et al. [42] use the same intuition and study the closeness of

queries to class boundaries to detect model stealing attacks.

These techniques have limitations since they require linearly

separated prediction classes (both are applied to decision

trees). Thus they do not apply to high dimensional input spaces

nor to DNN models, which build highly non-linear decision

boundary in this space. The false alarm rate of this technique

is not evaluated and might be high since a legitimate client

can genuinely explore large areas of the input space. On the

contrary, PRADA applies to any input data dimensionality and

any ML model. It is effective at detecting model extraction

attacks developed to date and does not degrade the prediction

service provided to benign clients.

Alternatively, methods for detecting adversarial examples

can help detecting synthetically generated samples from Pa-

pernot attack and ours. The main approaches rely on retraining

the model with adversarial samples [54], randomizing the

decision process [14] or analyzing the inputs distribution [31].

These techniques assume a specific distribution of the benign

inputs to the prediction model, i.e., the same distribution as

the training data. Consequently, they may raise a high number

of false alarms if benign clients request natural samples

distributed differently than the training data.

In contrast, PRADA has been developed in mind of avoid-

ing false positives. It does not assume any training data

distribution but only studies the evolution in distribution of

samples submitted by a given client. This explains why we

have low or no false positives even when analyzing benign data

from diverse distributions. Methods for detecting adversarial

examples may not generalize to detected the Tramer class of

attacks [55] since it does not rely on methods for crafting

adversarial examples.

VII. CONCLUSION

We have systematically explored approaches for model

extraction. We evaluated several attacks on different DNN

models and showed that hiding hyperparameters of the tar-

get model does not help protect against model extraction.

Reducing DNN outputs from classification probabilities to

labels only has nearly no impact on prediction accuracy, but

does impact transferability of adversarial examples. Keeping

model architectures confidential helps to protect against model

extraction attack and transferable adversarial examples. In

scenarios where it is possible, limiting the adversary’s access

to natural seed samples, can also limit the effectiveness of

model extraction.

Recent research has shown that ML models, especially

DNNs, suffer from various vulnerabilities. Consequently, pro-

tecting confidentiality of models is a useful mitigation. In this

black-box scenario, an attacker is forced to repeated interac-

tions with the model. We demonstrated that model extraction

can be effectively detected by collecting stateful information

of queries in ML prediction APIs. This defense has significant

advantages since it does not require any knowledge about

the ML model, nor about the data used to train it. Relying

on deviations from benign distributions, we found it can be

circumvented if the attacker mimics such distributions. We

leave robustness against such an attacker to future work. Model

confidentiality combined with a stateful defense strategy is a

promising venue for effectively protecting ML models against

a large range of adversarial machine learning attacks. One

example we are currently exploring is defending against black-

box attacks for forging adversarial examples (without resorting

to building substitute models via model stealing attacks; see

Appendix). Such attacks usually require thousands of queries

to forge one adversarial example. A stateful prediction API

like the one described in this paper with PRADA appears to

be a promising defense direction.
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APPENDIX

We defined black-box adversaries with surrogate data in our

paper. In addition, the following black-box adversarial attacks

have been examined in literature:

a) Surrogate Learner: This setting is similar to ours,

in that a substitute model is used for the adversarial attacks.

However, Munoz et al. [33] state that this threat model does

not assume knowledge on what type of target classifier is used,

but may use same training data. Adversarial examples for

ImageNet models [25] are typically shown in this setting, e.g.

Dong et al. [12] show it is possible to create highly transferable

adversarial examples.

b) Finite difference methods: It is also possible to create

targeted adversarial examples for DNNs without substitute

models [8], [21]. These attacks are very effective, but have

limitations: these attacks require thousands of queries per sam-

ple and may be therefore easily detectable, they do not extract

models and mostly require access to target model probabilities.

We calculated that attacking MNIST with Natural Evolution

Strategies [21] requires on average several 1000s queries on

MNIST, and several 100s queries on GTSRB per adversarial

example.
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