Pragmatic approach to the little hierarchy problem
 - the case for Dark Matter and neutrino physics -

Bohdan GRZADKOWSKI
University of Warsaw

- The little hierarchy problem
- The model and the little hierarchy problem
- Dark Matter
- Neutrino physics
- Summary and comments
B.G., J. Wudka, "Pragmatic approach to the little hierarchy problem: the case for Dark Matter and neutrino physics", arXiv:0902.0628

The little hierarchy problem

Figure 1: Red is the 90% CL allowed range, from PDG 2008. $m_{h}<161 \mathrm{GeV}$ at the $95 \% \mathrm{CL}$.

The little hierarchy problem:

$$
\begin{gathered}
m_{h}^{2}=m_{h}^{(B) 2}+\delta^{(S M)} m_{h}^{2}+\cdots \\
\delta^{(S M)} m_{h}^{2}=\frac{\Lambda^{2}}{\pi^{2} v^{2}}\left[\frac{3}{2} m_{t}^{2}-\frac{1}{8}\left(6 m_{W}^{2}+3 m_{Z}^{2}\right)-\frac{3}{8} m_{h}^{2}\right] \\
m_{h}=130 \mathrm{GeV} \Rightarrow \delta^{(S M)} m_{h}^{2} \simeq m_{h}^{2} \quad \text { for } \quad \Lambda \simeq 580 \mathrm{GeV}
\end{gathered}
$$

- For $\Lambda \gtrsim 580 \mathrm{GeV}$ there must be a cancellation between the tree-level Higgs mass ${ }^{2}$ $m_{h}^{(B) 2}$ and the 1-loop leading correction $\delta^{(S M)} m_{h}^{2}$:

$$
\begin{gathered}
m_{h}^{(B) 2} \sim \delta^{(S M)} m_{h}^{2}>m_{h}^{2} \\
\Downarrow
\end{gathered}
$$

the perturbative expansion is breaking down.

- The SM cutoff is very low!

Solutions to the little hierarchy problem:

- Suppression of corrections growing with Λ at the 1-loop level:
\Rightarrow The Veltman condition, no Λ^{2} terms at the 1-loop level:

$$
\frac{3}{2} m_{t}^{2}-\frac{1}{8}\left(6 m_{W}^{2}+3 m_{Z}^{2}\right)-\frac{3}{8} m_{h}^{2}=0 \quad \Longrightarrow \quad m_{h} \simeq 310 \mathrm{GeV}
$$

In general

$$
m_{h}^{2}=m_{h}^{(B) 2}+2 \Lambda^{2} \sum_{n=0}^{\infty} f_{n}(\lambda, \ldots) \ln ^{n}\left(\frac{\Lambda}{\mu}\right)
$$

where

$$
(n+1) f_{n+1}=\mu \frac{\partial}{\partial \mu} f_{n}=\beta_{i} \frac{\partial}{\partial \lambda_{i}} f_{n}
$$

with

$$
f_{0}=\frac{1}{\pi^{2} v^{2}}\left[\frac{3}{2} m_{t}^{2}-\frac{1}{8}\left(6 m_{W}^{2}+3 m_{Z}^{2}\right)-\frac{3}{8} m_{h}^{2}\right]
$$

and

$$
f_{n} \propto \frac{1}{\left(16 \pi^{2}\right)^{n+1}}
$$

Figure 2: Contour plots of D_{t} corresponding to $D_{t}=10(10 \%)$ and $100(1 \%)$ for $n \leq 2$, from Kolda \& Murayama hep-ph/0003170.

$$
D_{t} \equiv \frac{\delta^{(S M)} m_{h}^{2}}{m_{h}^{2}}=\frac{2 \Lambda^{2}}{m_{h}^{2}} \sum_{n=0}^{\infty} f_{n}(\lambda, \ldots) \ln ^{n}\left(\frac{\Lambda}{\mu}\right)
$$

To understand the region allowed by $D_{t} \leq 10,100$ in the SM :

- Assume m_{h} is such that the Veltman condition is satisfied:

$$
\frac{3}{2} m_{t}^{2}-\frac{1}{8}\left(6 m_{W}^{2}+3 m_{Z}^{2}\right)-\frac{3}{8} m_{h}^{2}=0,
$$

- then at the 1-loop level Λ could be arbitrarily large, however
- higher loops limit Λ since the Veltman condition implies no Λ^{2} only at the 1-loop level, while higher loops grow with Λ^{2}.
\Rightarrow SUSY

$$
\delta^{(\text {SUSY })} m_{h}^{2} \sim m_{\tilde{t}}^{2} \frac{3 \lambda_{t}^{2}}{8 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{m_{\tilde{t}}^{2}}\right)
$$

then for $\Lambda \sim 10^{16-18} \mathrm{GeV}$ one gets $m_{\tilde{t}}^{2} \approx 1 \mathrm{TeV}$ in order to have $\delta^{(S U S Y)} m_{h}^{2} \sim m_{h}^{2}$. A Increase of the allowed value of m_{h} : the inert Higgs model by Barbieri, Hall, Rychkov, arXiv:hep-ph/0603188, (see also Ma) $\quad \Rightarrow \quad m_{h} \sim 400-600 \mathrm{GeV}$, $\left(m_{h}^{2}\right.$ terms in T parameter canceled by $m_{H^{ \pm}}, m_{A}, m_{S}$ contributions).

Our goal: to lift the cutoff to multi TeV range preserving $\delta^{(S M)} m_{h}^{2} \leq m_{h}^{2}$.

- Extra gauge singlet φ with $\langle\varphi\rangle=0$ (to prevent $H \leftrightarrow \varphi$ mixing from $\varphi^{2}|H|^{2}$).
- Symmetry $\mathbb{Z}_{2}: \varphi \rightarrow-\varphi$ (to eliminate $|H|^{2} \varphi$ couplings).
- Gauge singlet neutrinos: $\nu_{R i}$ for $i=1,2,3$.

$$
V(H, \varphi)=-\mu_{H}^{2}|H|^{2}+\lambda_{H}|H|^{4}+\mu_{\varphi}^{2} \varphi^{2}+\frac{1}{24} \lambda_{\varphi} \varphi^{4}+\lambda_{x}|H|^{2} \varphi^{2}
$$

with

$$
\langle H\rangle=\frac{v}{\sqrt{2}}, \quad\langle\varphi\rangle=0 \quad \text { for } \quad \mu_{\varphi}^{2}>0
$$

then

$$
m_{h}^{2}=2 \mu_{H}^{2} \quad \text { and } \quad m^{2}=2 \mu_{\varphi}^{2}+\lambda_{x} v^{2}
$$

- Positivity (stability) in the limit $h, \varphi \rightarrow \infty: \quad \lambda_{H} \lambda_{\varphi}>6 \lambda_{x}^{2}$
- Unitarity in the limit $s \gg m_{h}^{2}, m^{2}: \lambda_{H} \leq \frac{4 \pi}{3}$ (the SM requirement) and $\lambda_{\varphi} \leq 8 \pi$, $\lambda_{x}<4 \pi$

$$
\begin{gathered}
\delta^{(\varphi)} m_{h}^{2}=-\frac{\lambda_{x}}{8 \pi^{2}}\left[\Lambda^{2}-m^{2} \log \left(c+\frac{\Lambda^{2}}{m^{2}}\right)\right] \\
\left|\delta m_{h}^{2}\right|=\left|\delta^{(S M)} m_{h}^{2}+\delta^{(\varphi)} m_{h}^{2}\right|=D_{t} m_{h}^{2} \\
\Downarrow \\
\lambda_{x}=\lambda_{x}\left(m, m_{h}, D_{t}, \Lambda\right)
\end{gathered}
$$

Figure 3: Plot of λ_{x} corresponding to $\delta m_{h}^{2}>0$ as a function of m for $D_{t}=1, \Lambda=56 \mathrm{TeV}$ (left panel) and λ_{x} as a function of Λ for $D_{t}=1, m=20 \mathrm{TeV}$ (right panel). The various curves correspond to $m_{h}=130,150,170,190,210,230 \mathrm{GeV}$ (starting with the uppermost curve). The solid (dashed) lines correspond to $c=+1(c=-1)$. Note that $\lambda_{x}<4 \pi$.

Comments:

- When $m \ll \Lambda$, the λ_{x} needed for the amelioration of the hierarchy problem is insensitive to m, D_{t} or Λ :

$$
\lambda_{x}=\left\{4.8-3\left(\frac{m_{h}}{v}\right)^{2}+2 D_{t}\left[\frac{2 \pi}{(\Lambda / \mathrm{TeV})}\right]^{2}\right\}\left[1-\frac{m^{2}}{\Lambda^{2}} \ln \left(\frac{m^{2}}{\Lambda^{2}}\right)\right]+\mathcal{O}\left(\frac{m^{4}}{\Lambda^{4}}\right) .
$$

- Since we consider $\lambda_{x}>1$ higher order corrections could be important. In general

$$
\left|\delta^{(S M)} m_{h}^{2}+\delta^{(\varphi)} m_{h}^{2}+\Lambda^{2} \sum_{n=1} f_{n}\left(\lambda_{x}, \ldots\right)\left[\ln \left(\frac{\Lambda}{m_{h}}\right)\right]^{n}\right|=D_{t} m_{h}^{2},
$$

where the coefficients $f_{n}\left(\lambda_{x}, \ldots\right)$ can be determined recursively (see Einhorn \& Jones):

$$
f_{n}\left(\lambda_{x}, \ldots\right) \sim\left[\frac{\lambda_{x}}{\left(16 \pi^{2}\right)}\right]^{n+1}
$$

If $\Lambda=100 \mathrm{TeV}, m_{h}=120-250 \mathrm{GeV}$ and $m=10-30 \mathrm{TeV}$ the relative next order correction remains in the range $4-12 \%$.

model	δm_{h}^{2}	Λ
SM	$\underbrace{\Lambda^{2}\left(\frac{3 \lambda_{t}^{2}}{4 \pi^{2}}+\cdots\right)}_{1-\text { loop } S M}+\underbrace{\Lambda^{2} f_{1}^{(S M)} \ln \left(\frac{\Lambda}{\mu}\right)}_{2-\text { loop } S M}$	see plots
SUSY	$m_{\tilde{t}}^{2} \frac{3 \lambda_{t}^{2}}{8 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{m_{\tilde{t}}^{2}}\right)$	$\begin{gathered} m_{\tilde{t}} \lesssim 1 \mathrm{TeV} \\ \text { for } \Lambda \sim 10^{16-18} \mathrm{GeV} \end{gathered}$
$\mathrm{SM}+\varphi$	$\begin{gathered} \underbrace{\Lambda^{2}\left(\frac{3 \lambda_{t}^{2}}{4 \pi^{2}}+\cdots\right)}_{1-\text { loop } S M} \underbrace{-\frac{\lambda_{x}}{8 \pi^{2}}\left[\Lambda^{2}-m^{2} \ln \left(c+\frac{\Lambda^{2}}{m^{2}}\right)\right]}_{1-\operatorname{loop} \varphi} \\ +\underbrace{\left(f_{1}^{(S M)}+f_{1}^{(\varphi)}\right)}_{2-\text { loop }} \ln \left(\frac{\Lambda}{\mu}\right) \end{gathered}$	For $D_{t}=1$ $\Lambda \sim 60 \mathrm{TeV}, m \sim 20 \mathrm{TeV}$

For $D_{t}=1$ (no fine-tuning) and $m_{h}=130 \mathrm{GeV}$:

- $\mathrm{SM}: \Lambda \simeq 1 \mathrm{TeV}$, while
- $\mathrm{SM}+\varphi: \Lambda \simeq 60 \mathrm{TeV}$ for $\lambda_{x}=\lambda_{x}(m)$ (fine tuning!) with $m=20 \mathrm{TeV}$,
- The range of $\left(m_{h}, \Lambda\right)$ space corresponding to a given D_{t} is expected to be larger when φ is added to the SM, if $\lambda_{x}=\lambda_{x}\left(m, m_{h}, D_{t}, \Lambda\right)$.

Dark Matter

1. V. Silveira and A. Zee, Phys. Lett. B 157, 191 (1985)
2. J. McDonald, Phys. Rev. D 50, 3637 (1994)
3. C. P. Burgess, M. Pospelov and T. ter Veldhuis, Nucl. Phys. B 619, 709 (2001)
4. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, Phys. Lett. B 609, 117 (2005)
5. J. J. van der Bij, Phys. Lett. B 636, 56 (2006)
6. S. Andreas, T. Hambye and M. H. G. Tytgat, JCAP 0810, 034 (2008)

$$
\frac{\text { It is possible to find parameters } \Lambda, \lambda_{x} \text { and } m \text { such that }}{\text { both the hierarchy is ameliorated to the prescribed level and }} \text { such that } \Omega_{\varphi} h^{2} \text { is consistent with } \Omega_{D M} h^{2} .
$$

$$
\varphi \varphi \rightarrow h h, W_{L}^{+} W_{L}^{-}, Z_{L} Z_{L} \quad \Rightarrow \quad\langle\sigma v\rangle=\frac{1}{8 \pi} \frac{\lambda_{x}^{2}}{m^{2}}
$$

The Boltzmann equation $\Rightarrow x_{f}\left(\equiv \frac{m}{T_{f}}\right) \simeq \ln \left[0.038 \frac{m_{P l} m\langle\sigma v\rangle}{g_{\star}^{1 / 2} x_{f}^{1 / 2}}\right]$

$$
\Omega_{\varphi} h^{2} \simeq 1.06 \cdot 10^{9} \frac{x_{f}}{g_{\star}^{1 / 2} m_{P l}\langle\sigma v\rangle \mathrm{GeV}}
$$

$$
\begin{gathered}
x_{f} \simeq 30 \Rightarrow m \geq x_{f} T_{c} \simeq 8 \mathrm{TeV} \\
\Omega_{\varphi}=\Omega_{D M} \quad \Rightarrow \quad \lambda_{x} \sim \frac{1}{4} \frac{m}{\mathrm{TeV}} \\
\Downarrow \Downarrow \\
\left|\delta m_{h}^{2}\right|=D_{t} m_{h}^{2} \quad \Rightarrow \quad m=m(\Lambda)
\end{gathered}
$$

Figure 4: Plot of m as a function of the cutoff Λ when $D_{t}=1$ and $\Omega_{\varphi}=\Omega_{D M}$ at the 1σ level: $\Omega_{\varphi} h^{2}=0.114$ (left panel) and $\Omega_{\varphi} h^{2}=0.098$ (right panel); for $m_{h}=130,150,170,190,210,230 \mathrm{GeV}$ (starting with the uppermost curve) and for $c=+1$ solid curves and $c=-1$ (dashed curves).

$$
\begin{aligned}
& \mathcal{L}_{Y}=-\bar{L} Y_{l} H l_{R}-\bar{L} Y_{\nu} \tilde{H} \nu_{R}-\frac{1}{2} \overline{\left(\nu_{R}\right)^{c}} M \nu_{R}-\varphi \overline{\left(\nu_{R}\right)^{c}} Y_{\varphi} \nu_{R}+\text { H.c. } \\
& \mathbb{Z}_{2}: \quad H \rightarrow H, \varphi \rightarrow-\varphi, L \rightarrow S_{L} L, l_{R} \rightarrow S_{l_{R}} l_{R}, \nu_{R} \rightarrow S_{\nu_{R}} \nu_{R}
\end{aligned}
$$

The symmetry conditions ($S_{i} S_{i}^{\dagger}=S_{i}^{\dagger} S_{i}=\mathbb{1}$):

$$
S_{L}^{\dagger} Y_{l} S_{l_{R}}=Y_{l}, \quad S_{L}^{\dagger} Y_{\nu} S_{\nu_{R}}=Y_{\nu}, \quad S_{\nu_{R}}^{T} M S_{\nu_{R}}=+M, \quad S_{\nu_{R}}^{T} Y_{\varphi} S_{\nu_{R}}=-Y_{\varphi}
$$

The implications of the symmetry:

$$
S_{\nu_{R}}^{T} M S_{\nu_{R}}=+M \Rightarrow S_{\nu_{R}}= \pm \mathbb{1}, \quad S_{\nu_{R}}= \pm \operatorname{diag}(1,1,-1)
$$

$$
\begin{gathered}
S_{\nu_{R}}= \pm \mathbb{1} \Rightarrow Y_{\varphi}=0 \text { or } S_{\nu_{R}}= \pm \operatorname{diag}(1,1,-1) \Rightarrow Y_{\varphi}=\left(\begin{array}{ccc}
0 & 0 & b_{1} \\
0 & 0 & b_{2} \\
b_{1} & b_{2} & 0
\end{array}\right) \\
S_{L}^{\dagger} Y_{l} S_{l_{R}}=Y_{l} \Rightarrow S_{L}=S_{l_{R}}=\operatorname{diag}\left(s_{1}, s_{2}, s_{3}\right), \quad\left|s_{i}\right|=1 \\
S_{L}^{\dagger} Y_{\nu} S_{\nu_{R}}=Y_{\nu} \quad \Rightarrow \quad 10 \text { Dirac neutrino mass textures }
\end{gathered}
$$

For instance the solution corresponding to $s_{1,2,3}= \pm 1$:

$$
Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
g & h^{\prime} & 0
\end{array}\right)
$$

$$
\mathcal{L}_{m}=-\left(\bar{n} M_{n} n+\bar{N} M_{N} N\right)
$$

with the see-saw mechanism explaining $M_{n} \ll M_{N}$:

$$
M_{N} \sim M \quad \text { and } \quad M_{n} \sim\left(v Y_{\nu}\right) \frac{1}{M}\left(v Y_{\nu}\right)^{T}
$$

where

$$
\begin{gathered}
\nu_{L}=n_{L}+M_{D} \frac{1}{M} N_{L} \quad \text { and } \quad \nu_{R}=N_{R}-\frac{1}{M} M_{D}^{T} n_{R} \\
Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
g & h^{\prime} & 0
\end{array}\right) \quad \Rightarrow \quad M_{D}=Y_{\nu} \frac{v}{\sqrt{2}} \Rightarrow M_{n}
\end{gathered}
$$

To compare our results with the data, we use the following approximate lepton mixing matrix (tri-bimaximal lepton mixing) that corresponds to $\theta_{13}=0, \theta_{23}=\pi / 4$ and $\theta_{12}=\arcsin (1 / \sqrt{3})$:

$$
U=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}
\end{array}\right)
$$

Writing the diagonal light neutrino mass matrix as

$$
m_{\mathrm{light}}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)
$$

we find

$$
\begin{gathered}
M_{n}=U m_{\text {light }} U^{T} \\
\Downarrow \\
Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
-\frac{a}{2} & b & 0 \\
-\frac{a}{2} & b & 0
\end{array}\right) \begin{array}{l}
m_{1}=-3 a^{2} \frac{v^{2}}{M_{1}} \\
m_{2}=-6 b^{2} \frac{v^{2}}{M_{2}} \\
m_{3}=0
\end{array} \text { and } Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
a & -\frac{b}{2} & 0 \\
a & -\frac{b}{2} & 0
\end{array}\right) \begin{array}{l}
m_{1}=-3 b^{2} \frac{v^{2}}{M_{2}} \\
m_{2}=-6 a^{2} \frac{v^{2}}{M_{1}} \\
m_{3}=0
\end{array}
\end{gathered}
$$

Does $Y_{\varphi} \neq 0$ imply $\varphi \rightarrow n_{i} n_{j}$ decays?

$$
Y_{\nu}=\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
g & h^{\prime} & 0
\end{array}\right), Y_{\varphi}=\left(\begin{array}{ccc}
0 & 0 & b_{1} \\
0 & 0 & b_{2} \\
b_{1} & b_{2} & 0
\end{array}\right) \Rightarrow \varphi \rightarrow N_{1,2}^{\star} N_{3} \rightarrow \underbrace{n_{1,2,3} h}_{N_{1,2}^{\star}} N_{3}
$$

that can be kinematically forbidden by requiring $M_{3}>m$.

Does φ explain the PAMELA data?

Figure 5: Combined fit of different DM annihilation channels to the PAMELA positron and PAMELA anti-proton data, from Cirelli, Kadastik, Raidal and Strumia, arXiv:0809.2409.

Summary and comments

- The addition of a real scalar singlet φ to the SM may ameliorate the little hierarchy problem (by lifting the cutoff Λ to $50-100 \mathrm{TeV}$ range). Fine tuning remains.
- It also provides a realistic candidate for DM if $m_{\varphi} \simeq 10-30 \mathrm{TeV}$.
- Since $m \gtrsim 10 \mathrm{TeV}$ therefore φ can properly describe the PAMELA results both for e^{+}and \bar{p}.
- The \mathbb{Z}_{2} symmetry implies a realistic texture for light-neutrino mass matrix.
- φ cannot be assumed to be responsible neither for inflation nor for dark energy.

