
B
R

IC
S

R
S

-0
3

-5
2

P
.

D
.

M
o

sses:
P

ra
g

m
a

tics
o

f
M

o
d

u
la

r
S

O
S

BRICS
Basic Research in Computer Science

Pragmatics of Modular SOS

Peter D. Mosses

BRICS Report Series RS-03-52

ISSN 0909-0878 December 2003

Copyright c© 2003, Peter D. Mosses.

BRICS, Department of Computer Science

University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

See back inner page for a list of recent BRICS Report Series publications.

Copies may be obtained by contacting:

BRICS

Department of Computer Science

University of Aarhus

Ny Munkegade, building 540

DK–8000 Aarhus C

Denmark

Telephone: +45 8942 3360

Telefax: +45 8942 3255

Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide

Web and anonymous FTP through these URLs:

http://www.brics.dk

ftp://ftp.brics.dk

This document in subdirectory RS/03/52/

Pragmatics of Modular SOS ⋆

Peter D. Mosses

BRICS⋆⋆ and Department of Computer Science, University of Aarhus
Ny Munkegade bldg. 540, DK-8000 Aarhus C, Denmark

pdmosses@brics.dk, WWW home page: http://www.brics.dk/~pdm

Abstract. Modular SOS is a recently-developed variant of Plotkin’s
Structural Operational Semantics (SOS) framework. It has several prag-
matic advantages over the original framework—the most significant being
that rules specifying the semantics of individual language constructs can
be given definitively, once and for all.
Modular SOS is being used for teaching operational semantics at the un-
dergraduate level. For this purpose, the meta-notation for modular SOS
rules has been made more user-friendly, and derivation of computations
according to the rules is simulated using Prolog.
After giving an overview of the foundations of Modular SOS, this pa-
per gives some illustrative examples of the use of the framework, and
discusses various pragmatic aspects.

1 Introduction

Structural Operational Semantics (SOS) [21] is a well-known framework that can
be used for specifying the semantics of concurrent systems [1, 9] and program-
ming languages [10]. It has been widely taught, especially at the undergraduate
level [7, 20–23]. However, the modularity of SOS is quite poor: when extending
a pure functional language with concurrency primitives and/or references, for
instance, the SOS rules for all the functional constructs have to be completely
reformulated [2].

As the name suggests, Modular SOS (MSOS) [13, 14] is a variant of SOS
that ensures a high degree of modularity: the rules specifying the MSOS of
individual language constructs can be given definitively, once and for all, since
their formulation is completely independent of the presence or absence of other
constructs in the described language. When extending a pure functional language
with concurrency primitives and/or references, the MSOS rules for the functional
constructs don’t need even the slightest reformulation [17].

In denotational semantics, the problem of obtaining good modularity has
received much attention, and has to a large extent been solved by introducing so-
called monad transformers [11]. MSOS provides an analogous (but significantly
simpler) solution for the structural approach to operational semantics.

⋆ Invited paper, published in Proc. AMAST 2002, LNCS Vol. 2422, pages 21–40.
c© Springer, 2002.

⋆⋆ Basic Research in Computer Science (http://www.brics.dk), funded by the Danish
National Research Foundation

The crucial feature of MSOS is to insist that states are merely abstract syntax
and computed values, omitting the usual auxiliary information (such as environ-
ments and stores) that they include in SOS. The only place left for auxiliary infor-
mation is in the labels on transitions. This seemingly minor notational change—
coupled with the use of symbolic indices to access the auxiliary information—is
surprisingly beneficial. MSOS rules for many language constructs can be speci-
fied independently of whatever components labels might have; rules that require
particular components can access and set those components without mentioning
other components at all. For instance, the MSOS rules for if-expressions do not
require labels to have any particular components, and their formulation remains
valid regardless of whether expressions are purely functional, have side-effects,
raise exceptions, or interact with concurrent processes. Rules specifying the se-
mantics of all individual language constructs can be given definitively in MSOS,
once and for all.

MSOS is being used by the author for teaching operational semantics at the
undergraduate level (5th semester) [19]. The original, rather abstract notation
used for accessing and setting components of labels in MSOS rules [13, 14] has
been made more user-friendly, to increase perspicuity. Experimentally, derivation
of computations according to MSOS rules is being simulated using Prolog, so that
students can trace how the rules shown in examples actually work, and check
whether their own rules for further language constructs provide the intended
semantics.

Section 2 gives an overview of the foundations of MSOS, recalling the basic
notions of transition systems and introducing meta-notation. Section 3 provides
illustrative examples of MSOS rules for some constructs taken from Standard
ML. Section 4 discusses various pragmatic aspects of MSOS, including tool sup-
port and the issue of how to choose between the small-step and big-step (“natural
semantics”) styles. Section 5 concludes by indicating some topics left for future
work.

2 Foundations

This section gives an overview of the foundations of MSOS. It explains the differ-
ences between conventional SOS and MSOS, and introduces the meta-notation
that will be used for the illustrative examples in Sect. 3. A previous paper on
MSOS [13] gives a more formal presentation, focussing on points of theoretical
interest.

SOS and MSOS are both based on transition systems. As the name suggests,
a transition system has a set of states Q and a set of transitions between states;
the existence of a transition from Q1 to Q2 is written1 Q1 −→ Q2. A labelled

transition system has moreover a set of labels X , allowing different transitions

1 For economy of notation, let us exploit names of sets such as Q also as meta-variables
ranging over those sets, distinguishing different meta-variables over the same set by
subscripts and/or primes.

2

Q1 −X→ Q2 (usually written Q1

X
−→ Q2) between Q1 and Q2. Labels on

transitions are optional in SOS, but obligatory in MSOS.
A computation in a transition system is a finite or infinite sequence of com-

posable transitions Qi −→ Qi+1. With labelled transitions Qi −Xi→ Qi+1, the
trace of the computation is the sequence of the labels Xi. In an initial transition
system, computations are required to start from initial states I. In a final tran-
sition system, (finite) computations have to end in final states F , from which
there can be no further transitions. Non-final states with no transitions are called
stuck.

States in SOS and MSOS generally involve both abstract syntax (trees) and
computed values. The abstract syntax of an entire program is used to form the
initial state of a computation. Initial states involving parts of programs (dec-
larations, expressions, statements, etc.) are required too, due to the structural
nature of SOS and MSOS, whereby the transitions for a compound construct
generally depend on transitions for its components. Final states for programs
and their parts give computed values: declarations compute binding maps (i.e.
environments), expressions compute the expected values, whereas statements
compute only a fixed null value.

With the so-called big-step (or “natural semantics” [8]) style of SOS and
MSOS, computations always go directly from initial states to final states in a
single transition. The original small-step style favoured by Plotkin[21] requires
computations to proceed gradually through intermediate states. Since initial
states involve abstract syntax and final states involve computed values, it is
unsurprising that intermediate states involve a mixture of these, in the form
of abstract syntax trees where some nodes may have been replaced by their
computed values. We refer to such mixed trees as value-added (abstract) syntax
trees; they include pure syntax trees and computed values.

So much for the main features that SOS and MSOS have in common. Let
us now consider their differences, which concern restrictions on the structure of
states and labels, and whether labels affect the composability of transitions or
not:

– In MSOS, states are restricted to value-added abstract syntax trees. Initial
states are therefore pure abstract syntax, and final states are simply com-
puted values. SOS, in contrast, allows states to include auxiliary components
such as stores and environments.

– MSOS requires labels to be records (i.e. total maps on finite sets of indices,
also known as indexed products). The components of these records are un-
restricted, and usually include the auxiliary entities that would occur as
components of states in SOS. Labels are often omitted altogether in SOS
descriptions of sequential languages.

– In MSOS, transitions are composable only when their labels are composable,
as described below. In SOS, composability of transitions is independent of
their labels, and depends only on the states involved.

Each component of labels in MSOS has to be classified as inherited, variable, or
observable. The classification affects composability of labels, as follows:

3

– When a component is classified as inherited, two labels are composable only
when the value of this component is the same in both labels.

– A component classified as variable has both an initial and a final value in
each label, and two labels X1, X2 are composable only when the final value
of the component in X1 is the same as its initial value in X2. When the
index for the initial value of the component is i, the index for the final value
is written i′.

– The possible values of a component classified as observable form a monoid
(e.g. lists under concatenation). Its actual values do not affect composability.

When two labels X1, X2 are composable, their composition is determined in the
obvious way, and written X1;X2.

A further significant difference between SOS and MSOS is that MSOS pro-
vides a built-in notion of unobservable transition, characterized simply by the
components of the label: each variable component must remain constant, and
each observable component must be the unit of the corresponding monoid (e.g.
the empty list). The distinction between arbitrary labels X and labels U for
unobservable transitions is crucial when formulating specifications in MSOS; it
may also be used to define so-called observational equivalence.

Readers who are familiar with Category Theory may like to know that labels
in MSOS are indeed the morphisms of a category, with the unobservable labels
as identity morphisms (corresponding to the objects of the category, which are
not referred to directly). Simple functors called basic label transformers can be
used for adding new components to labels [13, 14]. Surprisingly, it appears that
this straightforward use of categories of labels had not previously been exploited
in work on transition systems.

One of the most distinctive features of SOS is the way that axioms and
inference rules (together referred to simply as rules) are used to specify transition
systems that represent the semantics of programming languages. The premises
and conclusions of the rules are assertions of transitions t1 −t→ t2 or t1 −→
t2, where t, t1, t2 are terms that may involve constructor operations, auxiliary
operations, and meta-variables. Rules may also have side-conditions, which are
often equations or applications of auxiliary predicates. It is common practice to
write the side-conditions together with the premises of rules, and one may also
use rules to defined auxiliary operations and predicates, so the general form of
a rule is:

c1, . . . , cn

c
(1)

where each of c, c1, . . . , cn(n ≥ 0) may be a transition t1 −t→ t2 or t1 −→ t2,
an equation t1 = t2, or an application p(t1, . . . , tk) of a predicate p. Provided
that the rules do not involve negations of assertions in the premises, they can
be interpreted straightforwardly as inductive definitions of relations, so that
assertions are satisfied in models if and only if they follow from the rules by
ordinary logical inference. (The situation when negative premises are allowed is
quite complicated [1], and not considered further here.)

4

Rules in MSOS have the same general form as in SOS. The rules speci-
fying transitions for a programming construct are typically structural, having
conclusions of the form c(m1, . . . , mk) −m→ t where c is a constructor and
m, m1, . . . , mk are simply meta-variables, and with premises involving one or
more assertions of the form mi −m′→ t′; but note that being structural is not
essential for a set of rules to specify a well-defined transition system.

MSOS provides some operations for records, finite maps, and lists; the nota-
tion corresponds closely to that used in SML and (for lists) in Prolog:

– A record with components t1, . . . , tn(n ≥ 0) indexed respectively by i1, . . . , in
is written {i1=t1, . . . , in=tn}; the value is independent of the order in which
the components are written, and the indices must be distinct. When t′ eval-
uates to a record not having the index i, the term {i=t|t′} evaluates to
that record extended with the value of t indexed by i (this notation is by
analogy with Prolog notation for lists, and should not be confused with set
comprehension). When i is a particular index, and t and t′ are simply meta-
variables, the equation t′′ = {i=t|t′} can be used to extract the value of
the component indexed i from the record given by t′′, with t′ being the rest
of the record—without mentioning what other indices might be used in the
record. A special dummy meta-variable written ‘...’ may be used in place of
t′ when the rest of the rule does not refer to t′; an alternative is to use t′′.i
to select the component indexed i from t′′.

– The above notation for records may also be used for constructing finite
(partial) maps between sets, and for selecting values and the remaining maps.
Two further operations are provided: t/t′ is the map with t overriding t′; and
dom(t) gives the domain of the map t (i.e. a set).

– A list with components t1, . . . , tn(n ≥ 0) is written [t1, . . . , tn].

One final point concerning rules: they can only be instantiated when all terms
occurring in them have defined values. (Some of the operations used in terms may
be partial, giving rise to the possibility of their applications having undefined
values.) Note that applications of operations are never defined, and applications
of predicates never hold, when any argument term has an undefined value.

3 Illustrative Examples

The combination of the rules given in this section provides an MSOS for a simple
sub-language of Standard ML (SML). The concrete syntax of the described lan-
guage is indicated by the grammar in Table 1 for declarations D, expressions E,
operators O, and identifiers I. The example constructs have been chosen so as
to illustrate various features of MSOS. The MSOS rules are formulated in terms
of abstract syntax constructor operations whose correspondence to the concrete
constructs is rather obvious.

A set of rules specifying the MSOS of a particular construct generally makes
requirements on the components of labels and on various sets of values. For
instance, it might be required for some construct that labels have a component

5

Table 1. Concrete syntax for the examples

D ::= val I = E | rec D
E ::= if E then E else E | (E,E) |

E O E | true | false | [0− 9]+ |
I | let D in E end | fn I => E | E E |
ref E | E := E | ! E | E;E | while E do E |
raise E | E handle x=>x

O ::= + | - | * | = | >
I ::= [a− z]+

referred to as bindings, giving a map B from identifiers to values V , and that the
set of values includes abstractions (representing functions). Such requirements
are indicated informally below, in the interests of focussing attention on the rules
themselves; the collected requirements imposed by all the constructs are listed
at the end of the section.

All the rules given here are in the so-called small-step style. In fact MSOS
does support the use of the big-step “natural semantics” style, as well as mixtures
of the two styles. The general use of the small-step style will be motivated in
Sect. 4.

3.1 Simple Expressions

The rules for the operational semantics of if-expressions in Table 2 require that
expression values V include the truth-values true and false. The use of the

Table 2. If-expressions: if E then E else E

E ::= if (E, E, E)

E1 −X→ E′

1

if (E1, E2, E3) −X→ if (E′

1, E2, E3)
(2)

if (true , E2, E3) −U→ E2 (3)

if (false, E2, E3) −U→ E3 (4)

variable X ranging over arbitrary labels in rule (2) reflects the fact that what-
ever information is processed by any step of E1, it is exactly the same as that
processed by the corresponding step of if (E1, E2, E3). In contrast, the variable
U in rule (3) and rule (4) ranges only over labels on unobservable steps, which
are merely internal changes to configurations without any accompanying infor-
mation processing. We henceforth suppress such single occurrences of U in rules,
writing . . . −→ . . . instead of . . . −U→

6

Clearly, rule (2) allows the computation of if (E1, E2, E3) to start with a
computation of E1, and a computation of E2 or E3 can start only when that of
E1 terminates with computed value true, respectively false.

The rules in Table 3 require that the expressible values V are closed under
formation of pairs (V1, V2). Rule (6) allows the computation of E2 to start only

Table 3. Pair-expressions: (E,E)

E ::= pair(E, E)

E1 −X→ E′

1

pair(E1, E2) −X→ pair(E′

1, E2)
(5)

E2 −X→ E′

2

pair(V1, E2) −X→ pair(V1, E
′

2)
(6)

pair(V1, V2) −→ (V1, V2) (7)

after E1 has computed a value V1, thus reflecting sequential evaluation of the
pair of expressions (following SML); replacing V1 in that rule by E1 would allow
arbitrary interleaving of the steps of the computations of E1 and E2.

The rules for binary operations shown in Table 4 make use of operate, which
is defined in Table 5. For the latter, it is required that the expressible values V
include both (integer) numbers N and the truth-values.

Table 4. Binary operation expressions: E O E

E ::= binary(O, E, E)

E1 −X→ E′

1

binary(O, E1, E2) −X→ binary(O, E′

1, E2)
(8)

E2 −X→ E′

2

binary(O, V1, E2) −X→ binary(O, V1, E
′

2)
(9)

operate(O,N1, N2) = V

binary(O, N1, N2) −→ V
(10)

Table 6 is concerned with the evaluation of literal truth-values and num-
bers. Since the details of how to evaluate a sequence of (decimal) digits to
the corresponding natural number are of no interest, let us assume that this is
done already during the passage from concrete to abstract syntax, so that N is
actually an integer.

7

Table 5. Binary operations: + | - | * | = | >

O ::= plus | minus | times | equals | greater

operate(plus, N1, N2) = N1 + N2 (11)

operate(minus, N1, N2) = N1 − N2 (12)

operate(times , N1, N2) = N1 ∗ N2 (13)

operate(equals , N1, N2) = true when N1 = N2 else false (14)

operate(greater , N1, N2) = true when N1 > N2 else false (15)

Table 6. Literal truth-values and numbers: true|false|[0−9]+

E ::= lit(true)|lit(false)|num(N)

lit(true) −→ true (16)

lit(false) −→ false (17)

num(N) −→ N (18)

3.2 Bindings

So far, none of the rules have referred to any particular components of labels: the
set of labels has been left completely open, and could even be just a singleton.
Rule (19) in Table 7, however, requires that the labels have at least a component
referred to as bindings . Let this component be “inherited”, and let its values be
maps B from identifiers I to values V . (We do not bother here to make the usual
notational distinction between the set of bindable—also known as denotable—
values and the set V of expressible values, since for our illustrative constructs
they happen to coincide.)

Table 7. Value-identifiers: I

E ::= ide(I)

B = U.bindings , V = B.I

ide(I) −U→ V
(19)

Rule (19) specifies that an identifier I evaluates to the value V to which it
is bound by the bindings map B provided by the label U . Notice that if I is
not in dom(B), the rule simply cannot be applied, since one of its conditions
isn’t satisfied. (Equations such as B = U.bindings should be regarded formally
as side-conditions, but it is notationally convenient to list them together with
whatever premises the rule might have.)

8

This next illustration is particularly important. The rules in Table 8 show
how block structure and nested scopes of declarations are specified in MSOS.
Just as expressions E compute values V , a declaration D computes a binding
map B, mapping the identifiers declared by D to values V .

Table 8. Let-expressions: let D in E end

E ::= let(D, E)

D −X→ D′

let(D, E) −X→ let(D′, E)
(20)

X = {bindings=B1|X
′}, B2 = B/B1,

X ′′ = {bindings=B2|X
′}, E −X ′′→ E′

let(B, E) −X→ let(B, E′)
(21)

let(B, V) −→ V (22)

The computation of let(B, E) continues with that of E. The equations given
as conditions in rule (21) ensure that the label X on a step for let(B, E) has
exactly the same components as the label X ′′ on a step for E, except of course
for the bindings component, which is B1 in X but B/B1 (B overriding B1) in
X ′′. Recall that an equation such as X = {bindings=B1|X

′} both identifies the
bindings component as B1 and the record consisting of all the other fields of X
as X ′.

If the computation of E finally computes a value V , that is also the value
computed by the let-expression, as specified by rule (22).

Table 9. Value-declarations: val I = E

D ::= value(I, E)

E −X→ E′

value(I,E) −X→ value(I, E′)
(23)

value(I, V) −→ {I=V } (24)

The rules for (non-recursive) value declarations are given in Table 9, and
are completely straightforward. Closely related to value declarations are value
abstractions and (call by value) applications, which are specified in Tables 10
and 11.

The value computed by an abstraction is a so-called closure, which is conve-
niently represented by using a let-expression to attach the current bindings B to
the abstraction itself. If we didn’t already have the constructor for let-expressions

9

Table 10. Value-abstractions: fn I => E

E ::= abstraction(I,E)

U = {bindings=B| . . .}

abstraction (I,E) −U→ abs(let(B,abstraction (I,E)))
(25)

available, we would have to define it as auxiliary notation (or provide some other
operation allowing bindings to be attached to abstractions). The auxiliary oper-
ation abs(E) constructs a value from an arbitrary expression E—we cannot use
the expression E itself as a value, since values should always be final states for
computations.

Table 11. Abstraction-applications: E E

E ::= application(E, E)

E1 −X→ E′

1

application(E1, E2) −X→ application(E′

1, E2)
(26)

E2 −X→ E′

2

application(V1, E2) −X→ application(V1, E
′

2)
(27)

V1 = abs(let(B, abstraction(I, E)))

application(V1, V2) −→ let(B, let({I=V2}, E))
(28)

Once E1 has been evaluated to an abstraction value V1, and E2 to an ar-
gument value V2, rule (28) replaces application(V1, V2) by the appropriate ex-
pression, and the computation may continue. Assuming that all the identifiers
free in E are bound by B, the application-time bindings provided by U are not
used (directly) in that computation: the rules have provided static scopes for
bindings.

The constructs that we have specified so far allow the declaration of (call by
value) functions, using a combination of value-declarations and value-abstractions,
but they do not (directly) support recursive function declarations. The construct
recursive(D) specified in Table 12 has the effect of making ordinary function
declarations D recursive (it could easily be extended to mutually-recursive dec-
larations).

The auxiliary operation unfold(D, B) is defined by the (equational) rule (31).
It returns a binding map where D has been inserted at the appropriate place in
the closure, using a further level of let-expression. (It isn’t intended for use on
bindings of non-function values such as numbers and pairs, but for completeness,
rule (32) specifies that it would have no effect on them.) Rule (33) specifies the
result of an application when the abstraction incorporates a recursive declaration

10

Table 12. Recursive declarations: rec D

D ::= recursive(D)

D −X→ D′

recursive(D) −X→ recursive(D′)
(29)

B′ = unfold(recursive(B), B)

recursive(B) −→ B′
(30)

V = abs(let(B, E)), V ′ = abs(let(B, let(recursive(B1), E)))

unfold(recursive(B1), {I=V }) = {I=V ′}
(31)

V 6= abs(. . .)

unfold(recursive(B1), {I=V }) = {I=V }
(32)

V1 = abs(let(B, let(recursive(B1), abstraction(I,E)))

application(V1, V2) −→ let(B, let(recursive(B1), let({I=V2}, E)))
(33)

recursive(B1); the actual unfolding of the recursive declaration is left to the (first
step of) the subsequent computation.

Rules for declarations analogous to those illustrated here could be given in
conventional SOS, using transitions of the form B ⊢ E −→ E′ (after defining a
suitable notion of composition for such transitions). The main pragmatic advan-
tages of our MSOS rules will become apparent only in the next sections, where
we shall allow expressions to have side-effects and to raise exceptions, without
any reformulation of the rules given so far.

3.3 Stores

The imperative constructs described in this section are taken almost unchanged
from SML, and involve so-called references to values. References correspond to
simple variables, and can be created, updated, and dereferenced. The set of
created references, together with the values to which they refer, is represented
by a store S mapping locations L to values V . A location is itself a value, and
can be stored, as well as bound to identifiers.

Some of the rules given here require that labels X have not only a store

component, giving the store at the beginning of a transition labelled X , but
also a store ′ component, giving the (possibly different) store at the end of the
transition. When a transition labelled X1 is followed immediately by a transition
labelled X2 in a computation, the store′ component of X1 has to be the same
as the store component of X2. Moreover, the store and store′ components of an
unobservable transition labelled U have to be the same as well.

Table 13 gives the rules for reference creation, which is combined with ini-
tialization. L in rule (35) can be any location that is not already in use in S.
Notice the use of the variable U , which ensures that the extension of S by the
association of L with V is the only observable effect of the transition labelled X .

11

Table 13. Reference-expressions: ref E

E ::= reference(E)

E −X→ E′

reference(E) −X→ reference(E′)
(34)

X = {store=S, store ′=S′|U}, L 6∈ dom(S), S′ = {L=V |S}

reference(V) −X→ L
(35)

Table 14. Assignment-expressions: E := E

E ::= assignment(E, E)

assignment(E1, E2) −X→ assignment(E′

1, E2)

E1 −X→ E′

1

(36)

assignment (L1, E2) −X→ assignment(L1, E
′

2)

E2 −X→ E′

2

(37)

X = {store=S, store ′=S′|U}, L1 ∈ dom(S), S′ = {L1=V2|S}

assignment(L1, V2) −X→ ()
(38)

The rules for assignment given in Table 14 correspond closely to those in
Table 13, except that the assignment computes the null value (). Table 15 gives
the rules for (explicit) dereferencing; and Table 16 describes expression sequenc-
ing, where the value of the first expression is simply discarded. The rule for
while-expressions in Table 17 is standard in (small-step) SOS, involving both an
if-expression and a sequence-expression (a direct description not involving other
constructs seems to be elusive).

Table 15. Dereferencing-expressions: ! E

E ::= dereference(E)

E −X→ E′

dereference(E) −X→ dereference(E′)
(39)

U = {store=S| . . .}, S = {L=V | . . .}

dereference(L) −U→ V
(40)

Despite the fact that the illustrated imperative programming constructs allow
expressions to have (side-)effects, no reformulation at all is required for the
rules given in the preceding section: they remain well-formed and continue to
describe the intended semantics. This is in marked contrast with conventional

12

Table 16. Sequence-expressions: E;E

E ::= sequence(E, E)

E1 −X→ E′

1

sequence(E1, E2) −X→ sequence(E′

1, E2)
(41)

sequence(V1, E2) −→ E2 (42)

Table 17. While-expressions: while E do E

E ::= while(E1, E2)

while(E1, E2) −→
if (E1, sequence(E2, while(E1, E2)), ())

(43)

SOS, where stores would be added explicitly to configurations, requiring all
transitions B ⊢ E −→ E′ to be reformulated as something like B ⊢ (E, S) −→
(E′, S′). Actually, the “store convention” adopted in the Definition of SML [10]
would avoid the need for such a reformulation, but it has a rather informal
character; the incorporation of stores as components of labels in MSOS achieves
a similar result, completely formally.

3.4 Exceptions

The description of exception raising and handling in conventional SOS usually
involves giving further rules for all the other constructs in the language being
described, allowing exceptions raised in any component to be “propagated” up-
wards until an exception handler is reached. Such rules are quite tedious, and
undermine modularity. The “exception convention” adopted in the Definition
of SML [10] allows the exception propagation rules to be left implicit, but has
the disadvantage that the set of presented rules has to be expanded consider-
ably to make the propagation rules explicit before they can be used for deriving
computations, etc.

Fortunately, a technique recently proposed by Klin (a PhD student at BRICS
in Aarhus) avoids the need for exception propagation rules altogether, and gives
excellent modularity. The key idea is illustrated in Table 18 and Table 19: labels
on transitions are required to have a further component that simply indicates
whether an exception is being raised by the transition or not, and if so, gives the
value associated with the raised exception. An exception handler monitors the
label of every step of the computation of its body, checking the extra component.

To focus attention on the main features of the new technique, and for brevity,
only a simplified indiscriminate exception handler is described here; it is however
straightforward to describe SML’s exception handlers, which involve pattern-
matching.

13

Table 18. Exception-raising: raise E

E ::= raise(E)

E −X→ E′

raise(E) −X→ raise(E′)
(44)

X = {raising=[V]|U}

raise(V) −X→ ()
(45)

Table 19. Exception-handling: E handle x=>x

E ::= handle(E)

E −X1→ E′, X1 = {raising=[V]|X ′}, X = {raising=[]|X ′}

handle(E) −X→ V
(46)

E −X→ E′, X = {raising=[]| . . .}

handle(E) −X→ handle(E′)
(47)

handle(V) −→ V (48)

Let us use a list [V] with the single component V to indicate the raising of
an exception with value V , and the empty list [] to indicate the absence of an
exception. Transitions that raise exceptions are always observable.

In Table 18, rule (45) merely sets the raising component of X to the list
[V]. When the raised exception occurs during the computation of handle(E),
rule (46) detects the exception and abandons the computation of E, giving V
as the computed value. The raising component of the label X is set to the
empty list, to reflect that the exception has now been handled at this level. The
complementary rule (47) deals with a normal step of the computation of E where
no exception is raised.

Suppose however that an exception is raised with no enclosing handler. Then
the step indicated in rule (45) is completed, and the computation continues nor-
mally, as if the raise-expression had merely computed the null value (), although
the raising of the exception is observable from the label of that step. To get the
intended effect that an unhandled exception should stop the entire program, the
entire program should always be enclosed in an extra handle.

The technique illustrated here is not restricted to MSOS: it could be used
in conventional (small-step) SOS as well. However, in a conventional SOS of
a programming language, transitions are usually unlabelled, and the amount
of reformulation that would be required to add labels may be a considerable
disincentive to exploiting the new technique. In MSOS, transitions are always
labelled, and adding a new component to labels doesn’t require any reformulation
of rules.

14

3.5 Interaction

Lack of space precludes illustration here of the MSOS of constructs for interac-
tive input and output, process spawning, message passing, and synchronization.
An MSOS for the core of Concurrent ML has been given (using a more abstract
notation) in a previous paper [17]: the rules are quite similar in style to the con-
ventional SOS rules for concurrent processes, where configurations are generally
syntactic, and transitions are labelled, just as in MSOS. What is remarkable
with the MSOS rules is that allowing expressions to spawn processes and com-
municate with other processes requires no reformulation at all of rules given for
purely functional expressions.

3.6 Summary of Requirements

The requirements made by the rules given in this section are summarized in
Table 20.

Table 20. Summary of Requirements

Values:
V ::= true | false | N | (V, V) | abs(E) | L | ()
B ::= Map(I, V)
S ::= Map(L, V)

Labels:
X ::= { inherited bindings : B;

variable store , store ′ : S;
observable raising : List(V)}

4 Pragmatic Aspects

The illustrative examples given in the preceding section should have given a
reasonable impression of how MSOS works. Let us now consider some important
pragmatic aspects of MSOS, concerning modularity, tool support, and the choice
between big-step and small-step rules.

4.1 Modularity

The main pragmatic advantage of MSOS over conventional SOS is that the rules
describing the intended semantics for each programming construct can be given
definitively, once and for all. When gradually building up a language, it is never
necessary to go back and reformulate previously-given rules to accommodate
the addition of new constructs. Moreover, when different languages include the

15

same constructs (e.g. SML and Java both have if-expressions), the MSOS rules
describing the semantics of the common constructs may be reused verbatim.

Such features justify the use of the word “modular” in connection with the
MSOS framework. The benefits of this kind of modularity are especially apparent
when using MSOS to teach operational semantics, and one may hope that they
might even encourage language designers to use formal semantics to record their
decisions during a design process.

4.2 Tool Support

Another pragmatic aspect that is particularly important for applications of for-
mal semantics in teaching and language design is tool support [6]. This is needed
both for developing and browsing (large) semantic descriptions, as well as for
validating descriptions by running programs according to their specified seman-
tics. Some tool support for MSOS has already been developed by Braga et al. [3,
4] using the Maude system for Rewriting Logic, but much remains to be done.

In fact it is quite easy to write MSOS rules directly in Prolog. Some examples
are given in Table 21, and a Prolog program implementing all the MSOS rules
given in this paper is available at http://www.brics.dk/~pdm/AMAST-02/.2

Both records and finite maps are conveniently represented in Prolog as lists
of equations, and the Prolog predicates member(M,L) and select(M,L1,L2)

are used to implement conditions concerning labels, bindings, stores, etc. Unary
predicates are used to check that variables range only over the intended sets, e.g.,
unobs(U) ensures that U is indeed an unobservable label, and val(V) checks that
V is a computed values.

A definite clause grammar for the described language allows programs to be
written in concrete syntax, and mapped directly to the abstract syntax construc-
tors used in the rules. The user may determine some of the components of the
label on the first transition, and select which components are to be shown at
the end of the computation. When the rules are non-deterministic (e.g. describ-
ing interleaving or concurrency) the user may investigate successive solutions.
The efficiency of modern Prolog implementations (the author uses SWI-Prolog,
which is freely available from http://www.swi-prolog.org/ for most popular
platforms) is such that running small test programs using the clauses corre-
sponding to their MSOS rules takes only a few seconds on a typical lap-top.

The Prolog clauses have just as good modularity as the MSOS rules. Tracers
and debuggers (SWI-Prolog provides one with an efficient graphical user inter-
face) allow the user to follow changes to configurations at the top level, as well
as in-depth derivations of individual steps.

At the time of writing this paper, it remains to be seen whether students
will find the Prolog implementation useful for getting a good operational under-
standing of the MSOS rules, and whether they will find it easy to extend it with
implementations of their own rules.

2 The author has had little experience of programming in Prolog, and would appreci-
ates suggestions for improvements to the code.

16

Table 21. Examples of MSOS rules in Prolog

pair(E1,E2) ---X---> pair(E1_,E2) :-

E1 ---X---> E1_.

pair(EV1,E2) ---X---> pair(EV1,E2_) :-

val(EV1),

E2 ---X---> E2_.

pair(EV1,EV2) ---U---> (EV1,EV2) :-

val(EV1), val(EV2), unobs(U).

assignment(E1,E2) ---X---> assignment(E1_,E2) :-

E1 ---X---> E1_.

assignment(L1,E2) ---X---> assignment(L1,E2_) :-

val(L1), E2 ---X---> E2_.

assignment(L1,V2) ---X---> null :-

val(L1), val(V2),

select(store=S,X,X_), select(L1=_,S,S_),

select(store_=[L1=V2|S_],X_,U), unobs(U).

4.3 Why Not Big Steps?

All the MSOS rules illustrated in Sect. 3 are small-step rules: each step that a
construct can take depends on at most one of its components taking a corre-
sponding step. However, MSOS does allow big-step rules as well, where a step
represents an entire sub-computation, going straight to a final state—often de-
pending on all its components taking corresponding steps.

For example, consider the big-step rule for pair-expressions given in Table 22.
Label composition, written X1;X2, has to be used explicitly in big-step rules
(recall that in small-step MSOS, computations require adjacent labels to be
composable, but composition is not needed in the rules themselves). The specified
order of composition of labels indicates that the corresponding computation steps
may be taken in the same order.

Table 22. Big-step pair-expressions: (E,E)

E ::= pair(E, E)

E1 −X1→ V1, E2 −X2→ V2

pair(E1, E2) −X1;X2→ (V1, V2)
(49)

Given that MSOS supports both small-step and big-step rules, which should
one prefer? Changing from the one style of rule to the other requires major
reformulation, so it is important to make a good choice and stick to it.

17

In his Aarhus lecture notes on SOS [21], Plotkin generally used small-step
rules—although by employing the transitive closure of the transition relation in
the conditions of some rules, he obtained the effect of mixing the two styles of
rules (e.g. a single small step for a statement depended on complete sequences
of small steps for its component expressions). Moreover, much of the work on
semantics of concurrent processes (CCS, CSP, etc.) is based on small-step rules.

On the other hand, Kahn [8] has advocated exclusive use of big-step rules,
and this style was adopted by Milner et al. for the Definition of SML [10]. The
pure big-step style has also been widely used in specifying type systems and
static semantics.

This author’s view is that big-step rules should be used only for constructs
whose computations always terminate normally: no divergence, no raising of ex-
ceptions. This includes literal constants and types, but excludes almost all other
programming constructs. (As usual, we are focussing here on dynamic semantics;
for static semantics, the recommendation would be to use big-step rules for all
constructs.) The reason for the restriction to terminating computations is that
big-step semantics is usually based on finite derivations, and non-terminating
computations get completely ignored. Regarding exceptions, big-step rules ap-
pear to be inherently non-modular: adding exceptions to the described language
requires adding rules specifying propagation of exceptions. (The novel technique
illustrated in Sect. 3.4 works only for small-step rules.)

It seems to be a widely-held belief that the description of interleaving con-
structs actually requires small-step rules. Suppose however that one makes a
slight generalization to MSOS, allowing not only single records X but also arbi-
trary (finite) sequences of records X1 . . . Xn as labels on transitions. It turns out
that big-step rules for interleaving can then be given quite straightforwardly, by
allowing the sequences in the labels to be arbitrarily interleaved (i.e., “shuffled”),
and restricting the labels on transitions for the entire program to be composable
sequences. This technique appears to depend entirely on the use of MSOS: in
SOS, the inclusion of auxiliary entities in states makes it awkward (if not impos-
sible) to give an analogous treatment of interleaving. In view of the arguments
given above in favour of small-step rules, however, the development of techniques
for use in big-step rules is not so interesting from a pragmatical point of view.

5 Conclusion

This paper has given an overview of the foundations of MSOS, and has illustrated
the use of MSOS to describe some simple functional and imperative programming
constructs. It has also presented a novel technique for the modular description of
exception-handling. Finally, it has discussed particular pragmatic aspects such
as modularity, tool support, and the choice between small- and big-step rules.

The development of MSOS was originally stimulated by the author’s dissat-
isfaction with the lack of modularity in his own SOS for Action Notation, the
semantic notation used in Action Semantics [12]. An MSOS for Action Notation
has been given [15] using CASL, the Common Algebraic Specification Language,

18

for meta-notation. The modularity of this MSOS description was particularly
useful during the redesign of Action Notation [18]. An MSOS of ML concur-
rency primitives has been provided [15] to facilitate a comparison of MSOS with
SOS and evaluation-context (reduction) semantics for the same language. MSOS
has not so far been used for giving a complete description of a major program-
ming language, and it remains to be seen whether any pragmatic problems would
arise when scaling up.

The continuing development of MSOS is motivated by the aim of optimizing
the pragmatic aspects of the structural approach to operational semantics, partly
for use when teaching semantics [19]. Several topics are in need of further work:

– For truly definitive descriptions of individual language constructs, a universal
language-independent abstract syntax has to be established.

– A library of MSOS modules (with accompanying Prolog implementations)
should be made available.

– Existing systems supporting animation and validation of SOS [5] might be
adapted to support MSOS.

– A type-checker for MSOS should be provided.
– The study of bisimulation and other equivalences for MSOS, initiated in [13,

14], should be continued.

Readers who might be interested in contributing to the development of MSOS
by working on these or other topics are requested to let the author know.

Acknowledgements The author is grateful to the organizers of AMAST 2002 for
the invitation to talk on the topic of Modular SOS. Olivier Danvy and Jørgen
Iversen suggested improvements to drafts of this paper; remaining infelicities are
the sole responsibility of the author. Bartek Klin suggested the novel technique
for dealing with exceptions. Leonardo de Moura suggested implementing MSOS
directly in Prolog.

References

1. L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
chapter 1: Basic Theory, pages 197–292. Elsevier, 2001.

2. D. Berry, R. Milner, and D. N. Turner. A semantics for ML concurrency primitives.
In Proc. 17th Annual ACM Symposium on Principles of Programming Languages,
pages 119–129. ACM, 1992.

3. C. de O. Braga. Rewriting Logic as a Semantic Framework for Modular Structural
Operational Semantics. PhD thesis, Pontif́ıcia Universidade Católica do Rio de
Janeiro, Rua Marquês de São Vicente 255, Gávea, Rio de Janeiro, RJ, Brazil,
September 2001. http://www.inf.puc-rio.br/~cbraga.

4. C. de O. Braga, E. H. Haeusler, J. Meseguer, and P. D. Mosses. Maude action
tool: Using reflection to map action semantics to rewriting logic. In AMAST 2000,
volume 1816 of LNCS, pages 407–421. Springer-Verlag, 2000.

5. P. H. Hartel. LETOS - a lightweight execution tool for operational semantics.
Software – Practice and Experience, 29(15):1379–1416, Sept. 1999.

19

6. J. Heering and P. Klint. Semantics of programming languages: A tool-oriented
approach. ACM SIGPLAN Notices, Mar. 2000.

7. M. Hennessy. The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. Wiley, New York, 1990.

8. G. Kahn. Natural semantics. In STACS’87, Proc. Symp. on Theoretical Aspects
of Computer Science, volume 247 of LNCS, pages 22–39. Springer-Verlag, 1987.

9. R. Milner. Operational and algebraic semantics of concurrent processes. In J. van
Leeuwen, A. Meyer, M. Nivat, M. Paterson, and D. Perrin, editors, Handbook of
Theoretical Computer Science, volume B, chapter 19. Elsevier Science Publishers,
Amsterdam; and MIT Press, 1990.

10. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). The MIT Press, 1997.

11. E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, Computer Science Dept., University of Edinburgh, 1990.

12. P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

13. P. D. Mosses. Foundations of modular SOS. Research Series RS-99-54, BRICS,
Dept. of Computer Science, Univ. of Aarhus, 1999. http://www.brics.dk/RS/99/
54; full version of [14].

14. P. D. Mosses. Foundations of Modular SOS (extended abstract). In MFCS’99,
volume 1672 of LNCS, pages 70–80. Springer-Verlag, 1999. Full version available
at http://www.brics.dk/RS/99/54/.

15. P. D. Mosses. A modular SOS for Action Notation. Research Series RS-99-56,
BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999. http://www.brics.

dk/RS/99/56. Full version of [16].
16. P. D. Mosses. A modular SOS for Action Notation (extended abstract). In AS’99,

number NS-99-3 in Notes Series, pages 131–142, BRICS, Dept. of Computer Sci-
ence, Univ. of Aarhus, 1999. Full version available at http://www.brics.dk/RS/

99/56/.
17. P. D. Mosses. A modular SOS for ML concurrency primitives. Research Series

RS-99-57, BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999. http://

www.brics.dk/RS/99/57/.
18. P. D. Mosses. AN-2: Revised action notation—syntax and semantics. Available at

http://www.brics.dk/~pdm/papers/Mosses-AN-2-Semantics/, Oct. 2000.
19. P. D. Mosses. Fundamental concepts and formal semantics of programming lan-

guages. Lecture Notes. Version 0.2, available from http://www.brics.dk/~pdm/,
Sept. 2002.

20. H. R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction.
Wiley, Chichester, UK, 1992.

21. G. D. Plotkin. A structural approach to operational semantics. Lecture Notes
DAIMI FN–19, Dept. of Computer Science, Univ. of Aarhus, 1981.

22. K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach. Addison-Wesley, 1995.

23. G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
MIT Press, 1993.

20

Recent BRICS Report Series Publications

RS-03-52 Peter D. Mosses. Pragmatics of Modular SOS. December 2003.

22 pp. Invited paper, published in Kirchner and Ringeissen, ed-

itors, Algebraic Methodology and Software Technology: 9th In-

ternational Conference, AMAST ’02 Proceedings, LNCS 2422,

2002, pages 21–40.

RS-03-51 Ulrich Kohlenbach and Branimir Lambov. Bounds on Itera-

tions of Asymptotically Quasi-Nonexpansive Mappings. Decem-

ber 2003. 24 pp.

RS-03-50 Branimir Lambov. A Two-Layer Approach to the Computability

and Complexity of Real Numbers. December 2003. 16 pp.

RS-03-49 Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. On-

line On-the-Fly Testing of Real-time Systems. December 2003.

14 pp.

RS-03-48 Kim G. Larsen, Ulrik Larsen, Brian Nielsen, Arne Skou, and

Andrzej Wasowski. Danfoss EKC Trial Project Deliverables.

December 2003. 53 pp.

RS-03-47 Hans Hüttel and Jiřı́ Srba. Recursive Ping-Pong Protocols. De-

cember 2003. To appear in the proceedings of 2004 IFIP WG

1.7, ACM SIGPLAN and GI FoMSESS Workshop on Issues in

the Theory of Security (WITS’04).

RS-03-46 Philipp Gerhardy. The Role of Quantifier Alternations in Cut

Elimination. December 2003. 10 pp. Extends paper appear-

ing in Baaz and Makowsky, editors, European Association for

Computer Science Logic: 17th International Workshop, CSL ’03

Proceedings, LNCS 2803, 2003, pages 212-225.

RS-03-45 Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo We-

gener. On converting CNF to DNF. December 2003. 11 pp.

A preliminary version appeared in Rovan and Vojtás, editors,

Mathematical Foundations of Computer Science: 28th Interna-

tional Symposium, MFCS ’03 Proceedings, LNCS 2747, 2003,

pages 612–621.

