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G. Chechelashvili∗, G. Jorjadze∗, N. Kiknadze†PRACTICAL SCHEME OF REDUCTIONTO GAUGE-INVARIANT VARIABLESFor systems with �rst-class constraints, the reduction scheme to gauge-invariantvariables is considered. The method is based on an analysis of restricted 1-forms ingauge-invariant variables. This scheme is applied to the models of electrodynamics andYang{Mills theory. For the �nite-dimensionalmodel with theSU(2) gauge group of symÄmetry, the possible mechanism of con�nement is obtained.1. INTRODUCTIONMost of the interesting physical models and theories are described by gauge-invariantLagrangians, which are singular, and in the Hamiltonian formulation, lead to constrainedsystems [1{5]. For constrained Hamiltonian systems, there are in principle two ways1) ofquantization [1{6]:1) �rst quantize and then reduce,2) �rst reduce and then quantize.In the present paper, we deal mostly with the latter type of reduction procedure. Forgauge theories, this procedure is a restriction to the constraint surfaceM with subsequentreduction to the physical phase space M̃ = M=G, i.e., to the space of gauge orbits.If the action of the gaugegroup (G) on the constraint surface (M) is regular, themanifoldof orbits (M̃ = M=G) is well de�ned, and it possesses a symplectic structure. Coordinateson M̃ are gauge-invariant true physical degrees of freedom.Quite often, in practical applications, this theoretical scheme of reduction encounterstechnical problems related to the explicit construction of M̃ supplied with the symplecticstructure: apart from the mathematical diÆculties, the physical content of the true degreesof freedom may well be unpredictable.A commonly used reduction scheme is a gauge �xing procedure related to some conÄstraints �(p; q) = 0 [1{5, 7]. In simple cases, the explicit form of the true physical variables1)In this paper, we do not consider the path integral approach.
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PRACTICAL SCHEME OF REDUCTION TO GAUGE-INVARIANT VARIABLES 91is obvious and this reduction scheme works perfectly well. But in general, as it was shownin [8], (namely, for the Yang{Mills theory), the space of gauge orbits (M=G) cannot be obÄtained by \simple" gauge �xing. Obviously, the problem of gauge �xing is related to theabove-mentioned possible nontrivial structure of the physical phase space [1{5, 9, 10].Another reduction scheme can be based on the gauge-invariant variables (GIV's) [1{6].As a rule, the GIV's are based on the structure of gauge transformations. If one can �nd thecomplete set ofGIV's, then it allows one to describe the physical phase spaceM=G endowedwith the symplectic structure. This paper deals with such a gauge-invariant approach interms of restricted 1-forms. We also consider situations when only a part of the GIV's isknown. Analysis of the structure of restricted 1-forms helps one �nd the remaining part ofthe GIV's.Note that the reduction scheme with 1-forms for an arbitrary constrained system wasproposed in [11]. In these papers, the elimination of extra variables was based on the DarÄboux theorem. But sometimes, the Darboux theorem is not e�ective in some applications,and the choice of GIV's is just a practical way of realizing this reduction program in gaugetheories.Our paper is organized as follows: in Sec. 2, the reduction scheme for the GIV's is inÄtroduced and, as an illustration, simple examples are considered. An additional exampleof (2 + 1)-dimensional massive photodynamics is given in the Appendix. In Sec. 3, thisscheme is applied to the �nite-dimensional system with the SU(2) gauge group of symmeÄtry. This system can be considered as a toy model for the Yang{Mills theory with fermions.It is shown that there is an essential di�erence between the SU(2) and the correspondingU(1)model. The structure of GIV's in theSU(2) case can be interpreted as the con�nementphenomenon. In Sec. 4, we study the in�nite-dimensional model with a semisimple gaugegroup. The GIV's are constructed and the complete reduction is accomplished. It is shownthat the model is equivalent to the Yang{Mills theory with some boundary conditions. Thelast section contains remarks and conclusions.2. REDUCTION SCHEME IN GAUGE-INVARIANT VARIABLESStarting from the gauge-invariant Lagrangian L = L(qk; _qk) (k = 1; : : : ; N) and usingthe Dirac procedure [1] or the �rst order formalism [11], we arrive at the extended phasespace � with coordinates (pk; qk) and the actionS = ∫ pk dqk − [H(p; q) + �a�a(p; q)] dt;k = 1; : : : ; N ; a = 1; : : : ;M (N > M); (2.1)where �a(p; q) are constraints, H(p; q) is a canonical Hamiltonian, and �a are Lagrangemultipliers. The constraint surfaceM is de�ned by�a(p; q) = 0; (2.2)



92 G. CHECHELASHVILI, G. JORJADZE, N. KIKNADZEand the following relations are ful�lled:
{H;�a}� = d ba�b; {�a; �b}� = fcab�c: (2.3)Index � on the left hand side of the equations indicates that the Poisson brackets are calcuÄlated in the extended phase space.A function � = �(p; q) is called GIV [1{5] if �|M 6= 0 and

{�; �a}� = d̃ ba�b; (2.4)where |M denotes the restriction toM and the functions d̃ ba (as well as d ba and fcab in (2.3))are assumed to be regular in the neighborhood ofM.Each GIV � possesses the class {�} of equivalent GIV's on � [1{5]. A gauge-invariantfunction �̃ is equivalent to � if �̃|M= �|M. On the other hand, the function �|M is a constantalong the gauge orbit (onM) and it de�nes the function �� in the physical spaceM̃ = M=G.Thus, {�}, �|M and �� denote the GIV � in di�erent contexts. If there is no ambiguity, wewill use the notation � for all of them.Themaximumnumber ofGIV's (2.4) that are functionally independent on the constraintsurfaceM is 2(N −M) [2]. Assume that {�� : � = 1; : : : ; 2(N −M)} is such a completeset of GIV's. Then, one can prove [11] that1) pk dqk|M = �1 + �2; witha) d�1 = 0;b) �2 = ��(�) d��; (2.5)c) det!�� 6= 0; where !��(�) = @��� − @���;2) H(p; q)|M = h(�):The main statement of (2.5) is that after restriction to the constraint surface M, the deÄpendence on extra (nonphysical) variables is presented only in the term �1, which is a \totalderivative".Since d�1 = 0, it gives no contribution to the variation of a restricted action. We canneglect it, and for the reduced system we obtain,S|M ≡ S̃ = ∫ ��(�) d�� − h(�) dt: (2.6)Thus, the dynamics for the GIV's are described by the Hamilton equations_�� = !��(�)@�h(�); (2.7)where !��(�) is the inverse of the symplectic matrix !�� = @��� − @���; it de�nes thePoisson brackets for the reduced system
{��; ��}fM = !��(�): (2.8)



PRACTICAL SCHEME OF REDUCTION TO GAUGE-INVARIANT VARIABLES 93So the reduced system (2.6){(2.8) is an ordinary (nonconstrained)Hamiltonian system thatcan be quantized.It should be noticed that, in the general case, any 2(N−M) number ofGIV's play the roleof local coordinates in the physical phase space M̃ and, respectively, (2.5){(2.8) are de�nedlocally. Global description can be achieved by the set of GIV's, which de�nes the globalstructure of the physical phase space M̃. The number of such GIV's is greater than 2(N −M), but on the constraint surface, there are relations among them. They are the relationsthat de�ne the geometry of M̃. For illustration, let us consider the following example of(2.1){(2.3) [12]: S = ∫ ~p · d~q − [�1�1 + �2�2] dt: (2.9)Here, ~p and ~q are vectors inR3, the canonical Hamiltonian is zero,�1 = ~p · ~q; �2 = ~p 2~q 2 − (~p · ~q)2 − r2;and r is a parameter. These constraints are Abelian ({�1; �2} = 0) and the second conÄstraint �2 can be written in the form �2 = ~J 2 − r2;where ~J = ~q × ~p is the angular momentum.It is clear that the physical phase space is two-dimensional and the components of angularmomentum ~J are the GIV's (they commute with constraints, since constraints are O(3)scalars). On the constraint surface, these three components are related by ~J · ~J = r2.Therefore, the physical phase space M̃ is a two-dimensional sphere. So any two coordinates(as well as the 1-forms �1 and �2) are only de�ned locally (on the phase space geometry ofconstrained systems, see [9]).The reduction scheme described (2.5){(2.8) can be used if all 2(N−M)GIV's are known.For practical application of the scheme, one can introduce arbitrary variables �1; : : : ; �M ,which are complementary to the GIV's, in order to complete the coordinate system
(�1; : : : ; �2(N−M); �1; : : : ; �M)on M. Calculating the restricted 1-form pkdqk|M in these coordinates and taking its difÄferential, we can �nd the symplectic form ! = !��(�) d�� ∧ d�� . Note that in actual calÄculations it is possible to select the 1-form �2 = ��(�) d�� and arrive at (2.6).Application of this procedure to model (2.9) gives �2 = z d', where z and ' are thecylindric coordinates on the sphere:J1 = √r2 − z2 cos'; J2 = √r2 − z2 sin'; J3 = z:It is clear that although z d' is not a global 1-form, its di�erential can be continued to thewell-de�ned symplectic form on the sphere [13]



94 G. CHECHELASHVILI, G. JORJADZE, N. KIKNADZE! = −J1(dJ2 ∧ dJ3) + J2(dJ3 ∧ dJ1) + J3(dJ1 ∧ dJ2)r2 :After this, the systemcanbe quantizedbymeans of geometric quantization [14] (see also [12,15, 16]). A consistent quantum theory exists only for discrete values of the parameter r.Generalization of the scheme to the in�nite-dimensional case is straightforward (in theAppendix, we present the example of massive photodynamics in (2 + 1) dimensions). If weuse the Dirac observables [17]  in = ei�−1(~∇ ~A) (2.10)in ordinary QED, we will easily obtain the photons in the Coulomb gauge and the\four-fermion interaction" for the \dressed fermions" (compare with the example in Sec. 3and see [11, 18]).Note that the commutation relations of the complete set of GIV's (2.8) can be also deÄrived by calculation of the Poisson brackets on the extended phase space [1{5]. This, morestandard procedure is based on the fact that the Poisson bracket of any two GIV's is againa GIV. This procedure and the scheme described in this paper (2.5){(2.8) are almost equivÄalent. Sometimes, however, the calculation of di�erential forms is more reliable (especially,when the canonical quantization is not applicable [14]).In general, from the structure of gauge transformations, one can easily �nd only part ofthe GIV's, while the construction of the complete set (2.5) is troublesome. In many cases,our approach with di�erential forms can be e�ectively used for the solution of this problem,as well.Let us consider the situation where we know the set of GIV's {�� : � = 1; : : : ;K}, whereN −M ≤ k ≤ 2(N −M). We can add arbitrary variables �1; : : : ; �2N−M−K in order tocomplete the coordinate system on M and calculate the restricted 1-form pk dqk|M. AsÄsume that we can release the \total derivatives" and the di�erentials d�� from the formpk dqk|M = dF (�; �) + ��(�; �) d��: (2.11)Then, using (2.5), we can easily conclude that ��(�; �) will be the GIV's. Note that passingto the GIV's �� is helpful for obtaining the form (2.11). To illustrate this method, we applyit to a relativistic particle [3], where the 1-form � = ~p d~q−p0 dq0, and the constraint surface
M: p2−m2 = 0 (p0 > 0). The momenta ~p are gauge invariant, and after restriction onM,we have �|M = ~p d~q − √~p 2 +m2 dq0:One can easily rewrite it in the following form:�|M = d(~p · ~q − √~p 2 +m2q0) −

(~q − ~p√~p 2 +m2 q0) d~p:



PRACTICAL SCHEME OF REDUCTION TO GAUGE-INVARIANT VARIABLES 95Evidently, the coeÆcients of the di�erentials −d~p are GIV's. They are canonically conjuÄgate to ~p: ~Q = ~q − ~p√~p 2 +m2 q0:The gauge invariance of ~Q can also be established from the relation~L = √~p 2 +m2~Q; (2.12)where ~L are the generators of Lorentz transformations. Since all generators of the Poincar�egroup (P�;M��) are GIV's, the same property holds for the coordinates ~Q. On the conÄstraint surface p2 −m2 = 0 (p0 > 0), all of these coordinates are the functions only of thereduced variables ~p and ~Q.The reduced system can be easily quantized in themomentum representation: ~̂p = ~p and~̂Q = i~~∇. An operator ordering problem arises only for the generators (2.12). Therefore,the standard Lorentz covariant measure of a scalar product,
〈	2|	1〉 = ∫ d3~p√~p 2 +m2 	2(~p)	1(~p)corresponds to the ordering ~̂L = i~√~p 2 +m2 ~∇.3. FINITE-DIMENSIONALMODELSWITHU(1) AND SU(2)GAUGE SYMMETRIESIn this section we consider the �nite-dimensional model with the SU(2) gauge group ofsymmetry. It is diÆcult to �nd all the GIV's at the beginning, and therefore, we use themethod described at the end of Sec. 2. The obtained structure of the GIV's is quite unexÄpected. For comparison, we also present the corresponding U(1) model. These U(1) andSU(2) models can be considered as the toy models of electrodynamics and the Yang{Millstheory (with matter), respectively. In the classical description, all \�elds" are assumed tobe c-numbers.A. The model with U(1) symmetry. Let us consider the actionS = ∫ dt [ i2( � _ − _�  )−m �  +A0( �  − kE) +E _A− 12E2]; (3.1)where all \�elds" ( � ,  , A0, A, E) are functions only of time t;m and k (k 6= 0) are paramÄeters. The similarity to electrodynamics is apparent from the notations. At the same time,(3.1) has the form (2.1), where A0 ≡ �(t) is a Lagrange multiplier, and � ≡ �  − kE is aconstraint (we use the time derivatives instead of di�erential form where it is convenient).The nonzero Poisson brackets are

{ ; � } = i; {E;A} = 1;



96 G. CHECHELASHVILI, G. JORJADZE, N. KIKNADZEand we have the gauge transformations (t) −→ e+i�(t) (t); � (t) −→ e−i�(t) � (t);A(t) −→ A(t) + k�(t); E(t) −→ E(t): (3.2)Then, A0(t) −→ A0(t) + _�(t)leaves action (3.1) invariant.The reduced system is two-dimensional, and two GIV's can be chosen as follows:	inv = e−ik A ; 	inv = e ikA � (3.3)(compare with (2.10)). Here the reduction procedure (2.5) is trivial and we �ndS̃ = ∫ dt [ i2(	inv _	inv − _	inv	inv)−m	inv	inv − 1k2 (	inv	inv)2]: (3.4)Thus, the \gauge �eld"A vanishes and the only physical excitations are the \dressed �elds"	inv (with \four-fermion interactions").This model has a simple generalization in the case of a multi-component gauge �eld ~Awith the gauge transformations ~A −→ ~A+ ~k�;where ~k are parameters (~k 2 6= 0). The GIV 	inv is constructed similar to (3.3) (or, to(2.10)). Then, after reduction, the \longitudinal" (to the ~k) component of the gauge �eld ~Avanishes and the only physical variables are the \transverse" ones, together with the conÄstructed \dressed �eld" 	inv. So, for these Abelian models, the structure of the GIV's isvery similar to the physical observables in electrodynamics [11, 18].B. The model with SU(2) symmetry. For the model with SU(2) gauge group ofsymmetry, we consider the actionS = ∫ dt [ i2( � � _ � − _� � �)−m � � � + ~A0(~j + ~J) + ~E _~A− 12 ~E2] : (3.5)Here  � are the 2-component spinors (� = 1; 2), m is a parameter, ~A and ~E arethree-dimensional vectors, ~A0 are the Lagrange multipliers, and the angular momenta ~jand ~J are given by ~j = � ~�2 ; ~J = ~A× ~E; (3.6)where ~� are the standard Pauli matrices.The connection with the Yang{Mills theory is obvious.



PRACTICAL SCHEME OF REDUCTION TO GAUGE-INVARIANT VARIABLES 97The nonzero Poisson brackets are
{ �; � �} = iÆ��; {Em; An} = Æmn (m;n) = 1; 2; 3; (3.7)and the constraints ~� = ~j − ~J generate the gauge transformations: → ! ; � → � !−1; A→ !A!−1; E→ !E!−1;where !(t) ∈ SU(2) and A ≡ 12 ~A~�; E ≡ 12 ~E~�: (3.8)Then, forA0 ≡ 12 ~A0~�, we getA0 → !A0!−1 − i _!!−1.Any scalar product of the vectors ~A, ~E, ~J ,~j will be a GIV. But on the constraint surface(~j+ ~J = 0), only three of themare functionally independent. If we choose these independentGIV's as: l0 = 14( ~A 2 + ~E 2); l1 = 12( ~E ~A); l2 = 14( ~A 2 − ~E 2); (3.9)then from (3.7), we obtain the SL(2;R) algebra:

{l�; l�} = ����g��l�; where g�� = diag(+;−;−; ): (3.10)Since there are three constraints, the physical phase space is four-dimensional. To conÄstruct the fourth GIV and �nd the complete symplectic structure, we use the method ofSec. 2 (see (2.11)).For parameterization of the constraint surface,we introduce the newvariables (j;�;h; �):j = 12(h1 + h2); h = 12(h1 − h2);� = '1 + '2; ' = '1 − '2; (3.11)where  � = √h�e−i'�; � � = √h�ei'� (� = 1; 2):Then, for the 1-form, we havei2( � � d � −  � d � �) = j d�+ h d': (3.12)The vector~j (3.6) in these new coordinates takes the form~j = 


√j2 − h2 cos'√j2 − h2 sin';h 
4 �¥®à¥â¨ç¥áª ï ¨ ¬ â¥¬ â¨ç¥áª ï ä¨§¨ª , â. 109, ò 1, 1996 £.



98 G. CHECHELASHVILI, G. JORJADZE, N. KIKNADZEand ~j 2 = j2. Note that on the constraint surface, we have (see (3.9)) l�l� = j2=4, andfor �xed j, the commutation relations (3.10) de�ne the well-known symplectic structure onthis hyperboloid (see, e.g., [19]).If we introduce the orthonormal basis (~ei · ~ek = Æik, ~ei × ~ej = �ijk~ek):~e1 = 


− sin'cos'0 
 ; ~e2 = −hj 


cos'sin'

−
√j2−h2h 

 ; ~e3 = ~jj ;then ~A and ~E can be parameterized as follows:~A = ~e1q1 + ~e2q2; ~E = ~e1p1 + ~e2p2;where p1q2 − p2q1 = j: (3.13)Calculating the restricted 1-form ~E d ~A|M in these new coordinates and using (3.13), weobtain ~E d ~A|M = p1 dq1 + p2 dq2 − h d': (3.14)Comparing (3.12) and (3.14), we see that there is a cancellation of the 1-form h d'. Thismeans that the corresponding degrees of freedom vanish.Now, it is convenient to introduce the polar coordinates for the two-vectors (q1; q2) and(p1; p2): q1 = r cos�; p1 = � cos ;q2 = r sin�; p2 = � sin :Then, three of them (r; � and (� − )) are connected by the GIV's (3.9):r2 = 2(l0 + l2) ≡ l+; �2 = 2(l0 − l2) ≡ l−; r� cos(� − ) = 2l1:Using these relations, we �nally get the reduced 1-form�|M = jd#+ l1 dl+l+ ; where # = �− �: (3.15)So the coordinate# = �−� is the fourthGIV. Respectively, the reducedHamiltonian takesthe form H |M = 2mj + j2 + 4l21l+ ; (3.16)and this is the complete reduction.



PRACTICAL SCHEME OF REDUCTION TO GAUGE-INVARIANT VARIABLES 99Note that the second part of the reduced 1-form, l1 d(ln l+), de�nes the above-mentionedsymplectic structure on the hyperboloid l�l� = 14j2 [19].We see that the physical picture of this reduced system di�ers from the correspondingAbelian case. Here, after reduction, part of the degrees of freedom of the \gauge �eld"(A), as well as part of the \matter �eld" ( ) degrees of freedom have vanished. Below, weshall see that in quantum theory, the vanishing of \matter �eld" degrees of freedom can beinterpreted as the con�nement phenomenon.Geometric quantization [14] is a natural way of constructing the quantum theory of thereduced systems (3.15){(3.16),but, in principle, one can use canonical quantization,aswell.For this purpose, it is convenient to introduce (global) \creation" and \annihilation" variÄables a+ = √jei#; a = √je−i#; (3.17)and in quantum theory, we get the discrete eigenvalues for j = a+a. Then, quantizationof the system with the canonical 1-form l1 d(ln l+) and the Hamiltonian (3.16) (for the obÄtained discrete eigenvalues of j), gives the irreducible representations of SL(2;R) group(see, e.g., [19]).Next, from (3.11), we have the relation N ≡ � � � = 2j. It is natural to interpret thecorresponding operator (N̂ ≡ 2̂j) as the  particle number operator. In quantum theory,we have [N̂; â+] = 2â+where â+ is a physical creation operator (3.17). So among the physical excitations (creatÄed by the operator â+) there are states with only even numbers of \fermions". This factcan also be seen from the structure of the variable a+ (see (3.17) and (3.11)). It has thephase factor ei('1+'2). Thus, in the quantum case, it creates (see [20]) pairs of \dressed" -particles.Note that for similar �nite-dimensional constrained systems, such \con�nement"-likephenomenon has been derived by the \�rst quantize and then reduce" method (see [21]).In that approach, the reduction of the extended \Hilbert" space by the conditions�̂a|	phys〉 = 0 forbids states with certain quantum numbers.4. FIELD THEORYMODELSWITH NON-ABELIANGAUGE GROUP OF SYMMETRIESFor the �nite-dimensional models of the previous section, the gauge groupG acts on thecon�guration space of \gauge �eld" (A) and on the phase space of \matter �eld" ( ). Thisis the standard situation for the Yang{Mills theories.Using the notations of (3.8), we have~E d ~A = 〈E; dA〉; (4.1)where 〈 ; 〉 is a scalar product in the corresponding Lie algebraA. Thus, the Lie algebraAcan be interpreted as the con�guration space of a \gauge �eld" ~A and a trivial cotangentbundle as the phase space. 4∗



100 G. CHECHELASHVILI, G. JORJADZE, N. KIKNADZEIf one takes a manifold of a semi-simple Lie group (G) as the con�guration space, thenthere are the natural actions (left and right) of G on this manifold. One can similarly conÄstruct the gauge theory where the phase space is a cotangent bundle [22] T ∗G = {(g;R) |g ∈ G;R ∈ A}. The symplectic form on T ∗G is given by! = d� with � = 〈R; g−1 dg〉: (4.2)Generators of the left and right transformation (g −→ !g; g −→ g!) are, respectively,the left and right currents (L ≡ gRg−1; R). Choosing gauge transformations as the rightaction, we �nd that the constraints are � ≡ R = 0. Thus, the \gauge �eld" part in theaction takes the form ∫
〈R; g−1 dg〉 − (〈�; R〉+H(R; g)) dt; (4.3)where � ∈ A is a Lagrange multiplier andH is a gauge-invariant Hamiltonian.The �eld theory generalizationof (3.5) is the standardYang{Mills theory. In this section,we consider corresponding generalization of (4.3) with the actionS = ∫ dt[∫ dD−1~x(D−1∑k=1 〈Rk; g−1k _gk〉+ e〈A0; �〉) −H]; (4.4)where gk(~x; t) ∈ G and Rk(~x; t), A0(~x; t) ∈ A; H is a gauge-invariant Hamiltonian, A0are Lagrange multipliers, �(~x; t) ≡ e∑D−1k=1 Rk(~x; t) are constraints, and e is the couplingconstant (see below).The \1-form" ∑D−1k=1 〈Rk; g−1k dgk〉 de�nes the equal-time Poisson brackets (see,e.g., [22]):

{Rk;a(~x); Rl;b(~y)} = ÆklÆ(~x− ~y)fcabRk;c(~x);
{gk(~x); Rl;a(~y)} = ÆklÆ(~x− ~y)(gkTa(~x));

{gk(~x); gl(~y)} = 0; (4.5)where the set {Ta | Ta ∈ A} forms a basis in the Lie algebra, Ra ≡ 〈Ta; R〉, and the lasttwo relations are the matrix equalities [22]. Thus, for the constraints �a ≡ 〈Ta; �〉, we have
{�a(~x); �b(~y)} = Æ(~x− ~y)fcab�c(~x): (4.6)The corresponding gauge transformations aregk −→ gk!; Rk −→ !−1Rk!; (4.7)and one can easily construct the GIV's such thatgkl = gkg−1l and Lk = gkRkg−1k : (4.8)



PRACTICAL SCHEME OF REDUCTION TO GAUGE-INVARIANT VARIABLES 101The HamiltonianH in (4.4) is an arbitrary functional of such GIV's.SinceEq. (4.8) gives us the suÆcient number ofGIV's,we can use the scheme described inSec. 2. The �rst nontrivial case is three-dimensional space-time. If we introduce g = g1g−12as the �� variables, andR1; R2 and g2 as the � variables of the scheme (see (2.11)), then forthe \1-form" � = 〈R1; g−11 dg1〉+〈R2; g−12 dg2〉 (where integration overR2 is assumed), weimmediately get
〈R1 + R2; g−12 dg2〉+ 〈g2R1g−12 ; g−1 dg〉;and after reduction we have �|M = 〈r; g−1 dg〉; (4.9)where r = g2R1g−12 is also GIV.Thus, the structure of the 1-form is the same, with only the number of variables decreasÄing. One can verify this for other dimensions, as well.It is clear that the phase spaces of the systems with 1-forms (4.1) and (4.2) are essentiallydi�erent and they can not be transformed into each other. But in the �eld theory where anin�nite number of such spaces exists, there is a nonlocal transformation (see [23]):Ak = 1e g−1k @kgk; Ek = −eg−1k @−1k (Lk)gk; (4.10)which transforms system (4.4) into the Yang{Mills theory with the same gauge group G.Indeed, from (4.4) and (4.10), one can see that� = D−1∑k=1 @kEk + e[Ak; Ek] (Gauss law)and

〈Ek; _Ak〉 = 〈Rk; g−1k _gk〉+ (total derivatives): (4.11)To get the corresponding Hamiltonian of the Yang{Mills theory [23{25],H = 12 ∫ dD−1~x(D−1∑k=1 〈Ek; Ek〉+ 12 D−1∑k;l=1〈Fkl; Fkl〉);with Fkl = @kAl − @lAk + e[Ak; Al], one must choose, in (4.4),H = 12 ∫ dD−1 [e2〈@−1k Lk; @−1k Lk〉+ 1e2 〈@k(gkl@lglk); @k(gkl@lglk)〉]: (4.12)Thus, one can assume that system (4.4) with Hamiltonian (4.12) is equivalent to the orÄdinary Yang{Mills theory with some boundary conditions (which allows us to invert (4.10)and to neglect the total derivatives in (4.11)).



102 G. CHECHELASHVILI, G. JORJADZE, N. KIKNADZEThe boundary behavior is a subtle problem even for simple models of the �eld theory(see, e.g., the Appendix). It is too complicated for the Yang{Mills theory and we do notconsider it here.Unfortunately the complicated form of the Hamiltonian (4.12) is not simpli�ed after thereduction procedure. For example, in the three-dimensional case considered, the reducedHamiltonian acquires the formH = 12 ∫ d2x[e2〈@−11 r; @−11 r〉+ e2〈@−12 l; @−12 l〉+ 1e2 〈@1(g@2g−1); @1(g@2g−1)〉]; (4.13)where l = grg−1.Gribov's ambiguity problemhas stimulatedmany papers on the gauge-invariantdescripÄtion of the Yang{Mills theory and the reduced system. Equations (4.9), (4.13) give us one ofthe possible versions (for the literature and new results on this problem, see [5]). The mainproblem in such approaches is the complicated form of the Poincar�e generators in terms ofthe GIV's [23{25]. For example, Hamiltonian (4.13) is nonlocal in �elds and nonanalyticalin the coupling constant. So the standard perturbative quantization is not applicable here.Note that such a Hamiltonian with a corresponding symplectic formwas obtained in [23]by the Dirac bracket formalism. 5. CONCLUSIONSOf course, essential progress has been made in the study of constraint systems since thepublication of [26], but from the point of view of practical applications, there is no universalapproach, yet. The method presented in this paper is a one such possible practical steptowards the quantization of gauge theories.As mentioned in the Introduction, there is an alternate way of quantizing for thegauge-invariant systems when one \�rst quantizes and then reduces." In general, thereare two problems with this approach:a) the construction of physical states |	phys〉 as solutions of the equations �̂a|	phys〉 = 0,where �̂ are the constraint operators;b) the problem of the scalar product for the physical states.Sometimes, the �rst problem is only a technical one (for the Yang{Mills theory see [26]),but in general, both of these problems are related and need further investigation [27].In this paper we have not mentioned other important methods such as the path integralapproach [2, 7] and the BRST quantization [28] (for a review see [29]). Quantization proceÄdure is not unique even for the ordinary, nonconstrained systems [13, 30]. It depends on thechoice of canonical variables (if they exist globally), the operator ordering, etc. Therefore,it is not surprising that di�erent quantization procedures of constraint systems, generallyspeaking, lead to the nonequivalent quantum systems [7, 31].As mentioned in Sec. 2, there are no global canonical coordinates for a reduced classicalsystemand, therefore, the standard canonical quantization is not applicable. This, togetherwith technical problems of classical reduction, was the main obstacle in the general formuÄlation of the \�rst reduce and then quantize" approach.



PRACTICAL SCHEME OF REDUCTION TO GAUGE-INVARIANT VARIABLES 103Geometric quantization [14] and other \new" quantization schemes [12, 29, 32] allowone to quantize Hamiltonian systems without global canonical structures as well. At thesame time, progress has been made in the construction of classical reduction schemes [11].Therefore, for a wide class of constrained systems, the quantization method \�rst reduceand then quantize" appears to be technically preferable. Here a possible combination of thetwo quantization schemes should be mentioned: if a reduced classical system is complicatÄed, then one can construct a new extended system with simple constraints on the cotanÄgent bundle of the reduced phase space, and subsequently use the �rst method of quantiÄzation [12, 15, 29]. Of course, the question of which scheme gives the \correct" quantumdescription of a given classical system, remains open. APPENDIXThe 2 + 1-dimensional massive photodynamics is described by the Lagrangian (see,e.g., [33])
L = −14F��F�� − m4 ����F��A� : (A.1)We choose g�� = diag(+;−;−), �012 = 1 and obtain in the �rst order formalism [11]:S = ∫ dt ∫R2 d2x [(Ei − m2 �ijAj) _Ai − 12(EiEi +B2) +A0(@iEi −mB)]; (A.2)where Ei ≡ F0i ≡ _Ai − @iA0; B ≡ 12�ijFij (�ij ≡ �0ij);and we neglect the boundary term ∫R2 d2x @i[A0(m2 �ijAj − Ei)].If we use \1-forms" instead of time derivatives (see the comment following Eq. (3.1)),action (A.2) takes the form (2.1) with A0 playing the role of a Lagrange multiplier.For the reduction, we choose E1 and E2 to be the variables ��, and A1 the additionalvariable � (see (2.11)). ThenS̃ = ∫ dt ∫R2 d2x [ 1mE2 _E1 − 12[EiEi + 1m2 (@kEk)2] + ddt�] ; (A.3)where � = 12[E1A1 +E2K̂(A1 + 1mE2)]and the operator K̂ ≡ @−11 @2 is assumed to be symmetrical due to the corresponding boundÄary conditions.Neglecting the � term as the total derivative, we get the local Hamiltonian theory withthe canonical commutation relations
{E2(x); E1(y)} = mÆ(2)(x− y) (A.4)



104 G. CHECHELASHVILI, G. JORJADZE, N. KIKNADZEand the quadratic Hamiltonian12 ∫R2 d2x[EiEi + 1m2 (@kEk)2]: (A.5)The energy-momentum tensor can also be expressed in terms of E1 and E2 alone:T00 = 12[EiEi + 1m2 (@kEk)2]; T0i = 1m�ijEj(@kEk): (A.6)Let us briey discuss the boundary conditions. We can assume that the boundarybehavÄior of the physical variables (E1; E2) should provide the Poincar�e invariance of the reducedsystem (A.3){(A.6), while the boundary behavior of the �elds of the initial system (A.1)should allow the outlined reduction procedure.Generators of thePoincar�e group (constructed from the energy-momentumtensor (A.6))generate transformations of E1 and E2 according to the Poisson brackets (A.4). The spaceof functionsE1(x) andE2(x) should be invariant under these transformations. It is naturalto choose the class of smooth functions rapidly vanishing at in�nity.For diagonalization of the Hamiltonian and momentum, let us make the Fourier transÄformation: Ej(x) = i ∫ d2p e−i(p·x)2� Ẽj(p) (A.7)and introduce the longitudinal and transverse components:Ẽj(p) = pj
|p|e1(p)− �jlpl

|p| e2(p); (A.8)where |p| = √p21 + p22.Then diagonalization of the energy and momentum occurs in the variablesa(p) = !pm e1(p) + ie2(p)√2!p e−i'(p);a∗(p) = !pm e1(−p)− ie2(−p)√2!p ei'(p); (A.9)with !p = √
|p|2 +m2 and e±i'(p) = p1 ± ip2

|p| :Note that for the chosen class of E1(x) and E2(x), the longitudinal and transverse comÄponents of Ẽj(p) have a singularity at the origin (p = 0), and we need to introduce thephase factor ei'(p) to cancel it. On the other hand, one can easily check that the class ofsmooth functions a(p), a∗(p) is Poincar�e invariant. This phase factor was introduced in [33]
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