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Abstract
Dams significantly impact river hydrology by changing the timing, size, and frequency of low and high flows, resulting in 
a hydrologic regime that differs significantly from the natural flow regime before the impoundment. For precise planning 
and judicious use of available water resources for agricultural operations and aquatic habitats, it is critical to assess the dam 
water’s temperature accurately. The building of dams, particularly several dams in rivers, can significantly impact down-
stream water. In this study, we predict the daily water temperature of the Yangtze River at Cuntan. Thus, this work reveals 
the potential of machine learning models, namely, M5 Pruned (M5P), Random Forest (RF), Random Subspace (RSS), and 
Reduced Error Pruning Tree (REPTree). The best and effective input variables combinations were determined based on 
the correlation coefficient. The outputs of the various machine learning algorithm models were compared with recorded 
daily water temperature data using goodness-of-fit criteria and graphical analysis to arrive at a final comparison. Based on a 
number of criteria, numerical comparison between the models revealed that M5P model performed superior (R2 = 0.9920, 
0.9708; PCC = 0.9960, 0.9853; MAE = 0.2387, 0.4285; RMSE = 0.3449, 0.4285; RAE = 6.2573, 11.5439; RRSE = 8.0288, 
13.8282) in pre-impact and post-impact spam, respectively. These findings suggest that a huge wave of dam construction in 
the previous century altered the hydrologic regimes of large and minor rivers. This study will be helpful for the ecologists 
and river experts in planning new reservoirs to maintain the flows and minimize the water temperature concerning spillway 
operation. Finally, our findings revealed that these algorithms could reliably estimate water temperature using a day lag time 
input in water level. They are cost-effective techniques for forecasting purposes.
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Introduction

Building dam reservoirs are one of the other oldest branches 
of engineering. Historically, human civilization developed 
on rivers. As humanity expanded and advanced worldwide, 
the number of constructed dams has increased, especially in 
nearly every water body region (Olden and Naiman 2010; 
Rheinheimer et al. 2015). Among the common and signifi-
cant roles that dams play are water storage, water volume 
control, and flood protection which have not yet fully under-
stood the ecologies of the global riverine system. Reservoirs 

and dams and their operation can affect riverine ecology, 
including changing riverine thermal regimes and water tem-
perature fluctuation alongside the rivers (Olden and Naiman 
2010; Rheinheimer et al. 2015). Water temperatures can 
affect aquatic species’ health, distribution, and functions 
(Jiang et al. 2018); therefore, as the number of constructed 
dams increases, the understanding of water temperature 
variation of fluctuation has become a priority for ecologi-
cal researchers (Murchie et al. 2008; Olden and Naiman 
2010). Indeed, it was shown that the dam’s water release 
mechanism is the major and critical factor controlling the 
water temperature downstream of the dams (Tao et al. 2020). 
Generally, a high volume of cold water was passed down 
through “deep portals” beneath the thermocline, especially 
the hypolimnetic layer (Olden and Naiman 2010; Kushwaha 
and Bhardwaj 2016). Although this is a rare occurrence, 
water was passed down above the thermocline specifically 
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the hypolimnetic layer, causing an increase in the down-
stream water temperatures (Cheng et al. 2020).

Reservoirs impact the seasonal and annual thermal pat-
terns of downstream water temperature. Indeed, it was dem-
onstrated that, during the spring and summer seasons, water 
temperature fluctuation in large reservoirs was moved toward 
a decreased direction compared to the winter season, for 
which negligible fluctuation has been experienced. Com-
pared to the well-informed natural rivers, a significant delay 
for the maxima values was exhibited (Olden and Naiman 
2010). For comparison, it was shown that many dams con-
structed worldwide had encountered similar phenomena, 
among them are Hills Creek Dam in the USA (Angilletta Jr 
et al. 2008), the controlled dam in Scotland (Jackson et al. 
2007), and the Burrendong Dams in Australia (Ryan et al. 
2001; Preece 2004).

The impounded reservoirs behind the dams significantly 
influence the temperature regimes alongside the dam’s river. 
Water is released through the dam at the upstream reservoir 
channels (Ali et al. 2019b). Temperature gradients observed 
over a long period are generally used as an alternative to 
assess a free-flowing river’s natural thermodynamics within 
impounded water. They significantly affect the marine life 
upstream and downstream of the diversion of impoundment. 
Consequently, overall marine aquatic life is highly vulner-
able to temperature fluctuation. All these marine organisms 
must adapt, relocate, or perish in response to the impacts of 
thermal regime modification.

The greatest production of power electricity in the world 
is guaranteed by the Three Gorges Dam (TGD). Also, it 
possesses the biggest stored water volume (Wu et al. 2012). 
Regarding its high hydraulic, hydrological, and ecological 
importance, a large number of investigations have been con-
ducted over the TGD, i.e., hydrological alteration (Gao et al. 
2012; Yu et al. 2017b; Wang et al. 2017), investigating the 
streamflow variation conducted by Gao et al. (2012), high-
lighting that the TGD has significantly contributed to the 
decreasing in the calculated downstream flow section. It has 
helped reduce the peak flows (Ali et al. 2019c).

Over the past two decades, artificial intelligence (AI) and 
machine learning techniques have been successfully developed 
and widely used for estimating and predicting (Citakoglu and 
Coşkun 2022), in particular, modeling non-linear hydrologic 
systems and agriculture field (Shukla et al. 2021), meteorologi-
cal droughts and standardized precipitation index (SPI) (Malik 
et al. 2021; Xu et al. 2022), lake water level (Zhu et al. 2020), 
rainfall forecasting (Luk et al. 2001; Olsson et al. 2004; Abbot 
and Marohasy 2012; Lee et al. 2018; Mirabbasi et al. 2019; 
Adnan et al. 2020; Armin et al. 2021; Khosravi et al. 2022), 
streamflow forecasting (Yaseen et al. 2016; Shukla et al. 2021; 
Khodakhah et al. 2022), hydrological drought (Shamshirband 
et al. 2020; Aghelpour et al. 2021; Muhammad et al. 2021; 
Almikaeel et al. 2022), pan evaporation forecasting (Shiri 

and Özgur 2011; Mohammad et al. 2019; Malik et al. 2020; 
Al-Mukhtar 2021; Kushwaha et al. 2021), evapotranspiration 
(Granata 2019; Wu et al. 2019; Tikhamarine et al. 2019, 2020; 
Chen et al. 2020; Chia et al. 2020; Ferreira and da Cunha 2020; 
Elbeltagi et al. 2022b), water level forecasting (Daliakopoulos 
et al. 2005; Nayak et al. 2006; Ali Ghorbani et al. 2010; Kisi 
et al. 2012; Buyukyildiz et al. 2014; Seo et al. 2015, 2017), 
velocity predictions in compound channels with vegetated 
floodplains (Harris et al. 2003), suspended sediment load pre-
diction (Melesse et al. 2011; Rajaee et al. 2011; Azamathulla 
et al. 2013; Kakaei Lafdani et al. 2013; Gupta et al. 2021), soil 
temperature (Yang and Wang 2008; Bilgili 2010; Singh et al. 
2018; Penghui et al. 2020), water quality (Singh et al. 2021b), 
groundwater quality variables (Esmaeilbeiki et al. 2020; Che 
Nordin et al. 2021; El Bilali et al. 2021; Singha et al. 2021; 
Shiri et al. 2021; Singh et al. 2022), soil permeability (Singh 
et al. 2020, 2021a; Özçoban et al. 2022), soil hydraulic con-
ductivity (Allah et al. 2014; Sihag et al. 2019a; Singh et al. 
2019; Araya and Ghezzehei 2019), runoff and suspended sedi-
ment simulation (Sharma et al. 2015; Kumar et al. 2019), soil 
infiltration (Kashi et al. 2014; Sihag et al. 2019b; Panahi et al. 
2021; Sayari et al. 2021; Angelaki et al. 2021), global solar 
radiation (Hassan et al. 2017; Voyant et al. 2017; Cornejo-
Bueno et al. 2019; Feng et al. 2019; Ağbulut et al. 2021), dew 
point temperature (Naganna et al. 2019; Qasem et al. 2019; 
Alizamir et al. 2020), chezy resistance coefficient in corru-
gated channels (Giustolisi 2004), manning’s roughness coef-
ficient in flows, (Bahramifar et al. 2013; Pradhan and Khatua 
2017; Mohanta et al. 2018), and drought- and stress-tolerance 
(Kumar et al. 2022).

The main aim of this work is to provide an experimental 
evaluation of the effect of dams on river water temperature 
fluctuation. The study considered river water temperature 
over many years before and after selecting reservoirs (Kuriqi 
et al. 2020). The study findings are expected to allow users 
to establish a direct effect of the TDG on the river’s ther-
mal regime. The findings of this study provide an insight 
into future development projects; for instance, it can pre-
sent valuable information and a priori view to support the 
engineers and practitioners to implement the structures to 
be constructed to cope with the floods and droughts when 
looking at prevailing climatic events. The finding of the 
study can be beneficial in planning and management of water 
resources at Yangtze River.

Materials and methods

Study area and climate characterization

China is blessed with an abundant number of rivers flowing 
from north to south, including the Yangtze River, among 
others. The Yangtze River is one of the longest rivers around 
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the world, which collects water from several catchments. 
This paper uses the Yangtze River located in China with in 
the Coordinates latitude 29.7204° N, longitude 112.6501° E 
as a case study. It flows from Qinghai’s southwest corner to 
Shanghai’s north end. The river basin is approximately 1.8 
million  km2 in size. It provides approximately 892  km3 of 
water calculated as a river discharge for the period ranging 
from 1950 to 2010 (Yang and Lu 2012; Liu et al. 2018). 
The monsoon is a dominant component in this region. It is 
designed for the transportation of moist air, starting from 
the East and ending in the south China Sea, according to 
spatiotemporal data of rainfall alongside the river basin (Li 
et al. 2014; Wu et al. 2018), and there are numerous pre-
cipitation patterns over time (Zhao and Shepherd 2012). 
Summers receive a large amount of precipitation, leading 
to floods (Wu et al. 2012; Zhao and Shepherd 2012). The 
river is about 6400 km long and is Asia’s longest river (Vez-
zoli et al. 2016; Ali et al. 2019b). Due to the river’s length, 
nearly 50,000 reservoirs of various sizes have been built. 
The sources of nitrogen and phosphorus were highly influ-
enced by the spatiotemporal fluctuation of the Yangtze River 
(Liu et al. 2018; Ali et al. 2019a). From year to year, it was 
shown from several conducted investigations that the natural 
aquatic habitat was significantly affected by the TGD pro-
ject, whether at the upstream or the downstream locations of 

the dam (Yu et al. 2017a). As a result, three stations on the 
dam’s upstream sides were chosen for investigation in this 
study (Fig. 1) to depict the stations’ positions. All stations 
were chosen according to their geographical situation and 
the availability of high-quality data. The Hydrologic Data 
Centre of China’s Ministry of Water Resources provided the 
mean daily river  stations and the Yangtze River afterdata.

Mann‑Kendall trend analysis

The Mann-Kendall statistical test for trend is used to assess 
whether a set of data values is increasing over time or 
decreasing over time and whether the trend in either direc-
tion is statistically significant. The Mann-Kendall test does 
not assess the magnitude of change. There are several trend 
assessments approaches available in the literature. How-
ever, the Mann-Kendall test is the most widely used test for 
assessing the trends in hydro-climatic studies. The Mann-
Kendall test (Ahmed et al. 2017; Ali et al. 2019c), which is 
recommended by the World Meteorological Organization 
(WMO) often used as because it has several advantages: it 
does consider the data distribution, and it can cope with the 
outliers (Ali et al. 2019c). For a time-series data points Y = 
{x1,  x2,  x3,  x4,  x5…..  xn} with n > 10. The Mann-Kendall test 

Fig. 1  Locations of the hydrologic stations and the Yangtze River
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statistic, S is calculated as (Haktanir and Citakoglu 2014; 
Tefaruk and Hatice 2015; Citakoglu and Minarecioglu 2021)

where n is the number of data points and sgn(xj -  xk) is 
calculated as

If we assume that selected data points are independent 
and randomly ordered, the mean of S = 0 and the variance 
of M.K. statistics [Var(S)] is given by

where q is the number of groups of tied rank, each with 
 tp tied observation. A tied group is a set of the same values 
in a selected dataset. The standard normal test statistic (Z) 
is calculated as

The Sen’s slope (S.S.) is represented by calculating the 
slope as a change in measurement per unit change in time:

where wj and wi have represented the values of informa-
tion at the time i and j, respectively, for all i < j.

Based on the Mann-Kendall test, the M-K significance 
of monthly, yearly, and seasonal dam temperature trends is 
assessed and tabulated in Table 1. Table 1 indicates that, 
during the January, February, April, June, October, Novem-
ber, and December months, the increasing temperature 
trend and the rest of the month were found to decrease but 
were statistically not significant in both cases. In Fig. 2, 
we depicted water temperature fluctuation at three differ-
ent trends: monthly, yearly, and seasonal. Indeed, it is clear 
that the statistical test (Table 1) confirmed that a statistically 
positive trend could be highlighted. In addition, yearly and 
monthly fluctuation of water temperatures follows a rap-
idly ascending curve during the period of record, which is 
statistically significant after the dam project’s realization. 
Taking into account the water temperature anomalies, it is 
clear that fitting the mean yearly fluctuation of the water 
temperature using a linear fit led to detect a non-significant 
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and high trend of approximately ≈0.072°C for each year 
for the average water temperature and the seasonal water 
temperature was increased by approximately 0.082°C during 
the period ranging from 2010 to 2015. During the autumn 
(September to October) and winters (November to March) 
seasons, positive trends were detected by 0.165 and 0.206 
0.082°C, respectively, and spring (April to May) and sum-
mer (June to August) seasons were detected negatively by 
−0.030, −0.015°C, respectively.

Factory sites around the city, a rise in human activity, and 
a lack of green spaces and parks all contribute to the city’s 
warming. Furthermore, the mountains surrounding the city 
act as natural windshields, impeding smooth air circulation 
and contributing to the city’s heat. It satisfies the accuracy 
requirement that the temperature simulation in the reservoirs 
essentially agrees with the recorded data, allowing the devel-
oped model to accurately simulate the trends and evolution 
of water temperature structure over space and time at the 
Xiangjiaba and Xiluodu reservoirs.

Seasonal variation exists in the stratification of water tem-
perature in the Xiangjiaba Reservoir. It was almost visible 
from April to August and then vanished in other months. 
The surface water temperature rises increasingly rapidly 
in spring, and the stratification steadily intensifies. Due to 
the reservoir’s flood, the bottom water temperature rose 

Table 1  Statistic and change percentage (2010–2015)

− values indicate statistical not significance as per the Mann-Kendall 
test (+ for increasing and − for decreasing trend).

Temperature trend (2010–2015)

Time series Mann-Kendall 
trend Test S 
value

Significance Sen’s slope

January 7 - 0.429
February 5 - 0.148
March −1 - −0.029
April 7 - 0.262
May −5 - −0.238
June 5 - 0.063
July −1 - −0.019
August −5 - −0.294
September −5 - −0.083
October 7 - 0.354
November 9 - 0.323
December 9 - 0.335
Annual 5 - 0.072
Annual 5 - 0.072
Spring (April to May) −1 - −0.030
Summer (June to 

August)
−1 - −0.015

Autumn (Sep to Oct) 5 - 0.165
Winters (Nov to Mar) 5 - 0.206
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rapidly in the summer. The thickness of the isothermal layer 
increased, and the treatment decreased due to the strong ver-
tical turbulent diffusion. The storage leads to conclude that 
the stratification dissolved in the autumn. The study found 
that the water temperature distribution in Xiangjiaba Res-
ervoir is affected by the inflow temperature, meteorological 
elements, and intake elevation. The inflow temperature only 
affects the size of the water temperature in the Xiangjiaba 
Reservoir. However, the influence of the elevation and dis-
charge ways on the vertical water structure in front of the 
dam was more notable. Meteorological elements control the 
surface water temperature within 10 m.

The lagging heating process was visible in spring after the 
impoundment of Xiluodu Reservoir. The water temperature 

lowering process was relatively smooth in the fall and win-
ter. The daily variable amplitude of the water temperature 
was reduced daily. The inflow temperature is nearly identical 
to the water temperature in front of the dam. The veloc-
ity in the Xiluodu Reservoir has grown greatly due to the 
increased inflow. The seasonal stratification of vertical water 
temperature in the Xiluodu Reservoir was noticeable. It 
could be divided into epilimnion, thermocline, and hypolim-
nion. The epilimnion depth increased, the thermocline thick-
ness reduced, and the water temperature stratification struc-
ture strengthened as input and water temperature increased 
in spring. Due to the deep hole spillway, the thermocline 
moves slowly down during the flood season. The hypolim-
nion range shrank gradually, while the water temperature 

Fig. 2  Fluctuation and trend of monthly, yearly, and seasonally temperature at Yangtze River in China (2010–2015)
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remained stable at 14–15°. The inflow temperature had little 
influence on the vertical water structure in the front of the 
dam; the intake elevation significantly affected the thermo-
cline depth in the Xiluodu Reservoir.

In Xiangjiaba Reservoir, located at the end of the cascade 
reservoirs in the Jinsha River, affected by the impoundment 
of Xiluodu Reservoir, the water temperature change pro-
cess was lagged, and heating and cooling processes were 
smoother. The congestion time and the accumulative effect 
of water temperature on space were more significant. The 
impact of cascade reservoirs on downstream river water tem-
perature processes can be summarized in two ways: the first 
is the homogenization effect, which refers to the amplitude 
of annual variation in water temperature decrease, and the 
second is the lagging effect, which refers to the apparent 
delay in water temperature change.

According to the cumulative impacts of the water tem-
perature in the Xiangjiaba Reservoir and Xiluodu Reservoir, 
the temperature of the discharged water in the Xiangjiaba 
Reservoir was below the lower limit of demand from March 
to May. The control measures are as follows: in Xiangjiaba 
Reservoir, the left power station will be tested to operate 
from March to May. The right power station will be tested 
to operate from August to February. In Xiluodu Reservoir, 
the stop-log gate will be enabled in March. Then, the level 
deterioration should be started from January, as far as pos-
sible, down to 540 m before May 1.

Dataset

In the present study, we examine the variation of water tem-
perature in the upper and middle streams of the Yangtze 
River at Cuntan from 2010 to 2015. However, two scenarios 
were deeply analyzed: the pre-impact and post-impact. The 
period of 2010–2012 was considered pre-impact, while 
2013–2015 was considered post-impact for Cuntan station. 
The descriptive statistics of the data selected for the two 

scenarios are reported in Table 2. The statistical summary 
for the two scenarios during the training and testing period 
is given in Table 2, and the inter-co-relation among input 
variables is shown in Tables 3 and 4, respectively.

Machine learning models

Random Subspace (RSS)

The RSS generates several representations that can create 
a wide diversity of decision agents (Li et al. 2011; Pham 
et al. 2018). RSS, like bagging, modifies the training set; 
more precisely, the change is made for the future and not, 
for example, space. For a given p-dimensional vector (Zj) 
from the calibration dataset, i.e., (zj1, zj2... zjp), a (P) features 
were randomly chosen. Hence, a Random Subspace of the 
first p-dimensional vector is presented due to this subspace 
selection. A new calibration dataset is designated as (Z =  z1, 
 z2,  z3,…,  zn) of the initially p-dimensional training instances. 
Consequently, first base-level classifiers are constructed, and 
a voting mechanism is used to get a final prediction.

This technique is adopted to boost the accuracy achieved 
using poor classifiers performance (Plumpton et al. 2012). 
Following that, the RSS introduces randomness into the 
issue formulation by selecting certain variables to be sub-
stituted at random (Li et al. 2011). The RSS algorithm is a 
robust ensemble with several different classifiers (Plumpton 
et al. 2012). Integrating these weak classifiers becomes a 
robust model (Al-rimy et al. 2019).

Furthermore, stochastic discrimination theory is similar 
to the bagging method in that randomly selecting for the pre-
sented calibration dataset was adopted (Garca-Pedrajas and 
Ortiz-Boyer 2008); nevertheless, the RSS is selected using 
the fixed method calibration subset of attributes (Hong et al. 
2017). M patterns were randomly chosen when building an 
RSS model to several aggregate classifiers for cataloging. 

Table 2  Statistics of measured 
daily water temperature at study 
stations

Statistics parameters Pre-impact Post-impact

Training period Testing period Training period Testing period

Mean 18.10 20.02 18.38 20.93
Standard error 0.19 0.23 0.178 0.20
Median 18.00 21.30 19.00 22.00
Mode 11.50 23.10 11.90 23.20
Standard deviation 5.44 3.85 5.01 3.45
Sample variance 29.58 14.82 25.05 11.91
Kurtosis −1.44 −0.87 −1.43 −0.80
Skewness −0.03 −0.55 −0.06 −0.56
Minimum 9.10 11.50 10.10 13.10
Maximum 28.00 26.20 27.10 26.30
Count 800 297 800 297
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They had L size without the need for any replacement. Each 
candidate example combines several single subsets repre-
senting an R subspace. Subsequently, a classifier is then 
calibrated using a sole subset of the all training set (Pham 
et al. 2018). The parameters selected for modeling pre- and 
post-impact in the RSS algorithm are presented in Table 5.

Reduced Error Pruning Tree (REPTree)

The REPTree is one of the ensembles learning algo-
rithms. It is used for building a decision tree (DT) model 
using an ensemble of dataset by decreasing the variance. 

The information can be obtained using a splitting cri-
terion, and decreasing the error pruning is the critical 
goal of the training process. Based on the division of the 
available instance, the REPTree can successfully han-
dle missing data. For building a REPTree model, four 
pieces of information are necessary to be provided: (i) for 
each leaf of the threes, the minimum number of instances 
should be provided, (ii) the maximal value of the tree 
depth, (iii) for the split, the minimum ratio of the training 
set, and (iv) how many numbers of folds should be pro-
vided for better pruning (Srinivasan and Mekala 2014; 
Witten et al. 2016).

Table 3  Correlation matrix and multicollinearity statistics analysis result from pre-impact intercomparison input combination (variables) charac-
teristics

Correlation matrix
X(t-1) X(t-2) X(t-3) X(t-4) X(t-5) X(t-6) X(t-7) X(t-8) Pre-Impact

X(t-1) 1 0.997 0.994 0.990 0.986 0.982 0.978 0.973 0.997
X(t-2) 0.997 1 0.997 0.994 0.990 0.986 0.982 0.978 0.994
X(t-3) 0.994 0.997 1 0.997 0.994 0.990 0.986 0.982 0.990
X(t-4) 0.990 0.994 0.997 1 0.997 0.994 0.990 0.986 0.986
X(t-5) 0.986 0.990 0.994 0.997 1 0.997 0.994 0.990 0.982
X(t-6) 0.982 0.986 0.990 0.994 0.997 1 0.997 0.994 0.978
X(t-7) 0.978 0.982 0.986 0.990 0.994 0.997 1 0.997 0.973
X(t-8) 0.973 0.978 0.982 0.986 0.990 0.994 0.997 1 0.968
Pre-
Impact

0.997 0.994 0.990 0.986 0.982 0.978 0.973 0.968 1

Table 4  Correlation matrix and multicollinearity statistics analysis result from post-impact intercomparison input combination (variables) char-
acteristics

Correlation matrix
X(t-1) X(t-2) X(t-3) X(t-4) X(t-5) X(t-6) X(t-7) X(t-8) Post-Impact

X(t-1) 1 0.996 0.992 0.989 0.985 0.982 0.978 0.974 0.996
X(t-2) 0.996 1 0.996 0.992 0.989 0.985 0.982 0.978 0.992
X(t-3) 0.992 0.996 1 0.996 0.992 0.989 0.985 0.982 0.989
X(t-4) 0.989 0.992 0.996 1 0.996 0.992 0.989 0.985 0.985
X(t-5) 0.985 0.989 0.992 0.996 1 0.996 0.992 0.989 0.982
X(t-6) 0.982 0.985 0.989 0.992 0.996 1 0.996 0.992 0.978
X(t-7) 0.978 0.982 0.985 0.989 0.992 0.996 1 0.996 0.974
X(t-8) 0.974 0.978 0.982 0.985 0.989 0.992 0.996 1 0.971
Post-
Impact

0.996 0.992 0.989 0.985 0.982 0.978 0.974 0.971 1

Table 5  The machine learning algorithm parameters are used for pre- and post-dam construction water temperature modeling

Model name Description of parameters

Random Subspace (RSS) Batch size = 100, classifier = REPTree, random seed = 1, subspace size = 0. 5, numbers of executions slots = 1, 
number of iterations = 10

Reduced Error Pruning Tree
(REPTree)

Batch size = 100, initial count = 0, number of folds = 3, random seed = 1, minimum proportion of the variance 
= 0.001, minimum number = 2, max depth = 1

Random Forest (RF) Batch size = 100, bag size percent = 100, max depth = 0, numbers of executions slots = 1, number of iterations 
= 100, random seed = 1

M5 Pruned (M5P) Batch size = 100, minimum number of instances = 4
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It employs regression tree logic to generate iteratively 
after that successfully; it only chooses one which is consid-
ered the best (Rajesh and Karthikeyan 2017). Several authors 
used the REPTree model to predict air pollution concentra-
tion (Oprea et al. 2016; Vitkar 2017). Furthermore, the REP-
Tree employs the validation dataset to accurately anticipate 
generalization errors (Nhu et al. 2020; Pham et al. 2021). 
From a computational point of view, backward overfitting 
is the first and sole responsibility of the pruning process 
achieved using the REPTree model. The essential benefit of 
the REPT technique is that it reduces the model complexi-
ties, escapes the over-fitting during the learning phase, and 
maintains accuracy (Khosravi et al. 2018). The parameters 
selected for modeling pre- and post-impact in the REPTree 
algorithm are presented in Table 5.

Random Forest (RF)

Random Forest (RF) is a strong artificial intelligence tech-
nique developed by Breiman (2001) for measuring the 
considerable level of predictive parameters and producing 
accurate results without any of the overfitting fitting issues 
(Devasena 2014). It is a classifier composed of a collection 
of classification trees mainly related to the variables. Every 
tree produces a unique class, and all classes are then aggre-
gated. The overwhelming vote predicts the outcomes (Pavey 
et al. 2017). It is used in classification and regression situa-
tions. The algorithm can be used for learning a complicated 
large dataset.

In contrast, a forest grows from numerous regression 
trees, putting them together and building an ensemble (Brei-
man 2001). Equal bias values characterize all trees; however, 
variances minimization can be achieved by lowering the link 
between the coefficients (Hastie et al. 2009). The results are 
numerical values, and the training sample is expected to be 
statistically independent.

The main advantages of the RF technique can be summa-
rized as follows: (i) high generalization capacity, (ii) slightly 
sensitive to the attribute values, and (iii) can be easily cali-
brated using cross-validation. The ability of the R.F. meth-
odology in simulating long-term monthly air temperature 
was studied, and its accuracy was examined by Mohsen-
zadeh Karimi et al. (2020); application examples showed 
advantageous characteristics of the R.F., which has higher 
accuracy. Several other researchers favor RF model machine 
learning techniques to judge relevance, namely, for clima-
tological, hydrological, and environmental studies (Rahman 
and Islam 2019; Salam et al. 2021; Saha et al. 2020). Islam 
et al. (2020) employed the RF model to investigate whether 
variables impact COVID-19 mortality in Bangladesh cit-
ies. The architecture and parameters selected for modeling 
pre- and post-impact in the RF algorithm are presented in 
Table 5.

M5 Pruned (M5P)

The model trees were developed by Quinlan (1992). The 
M5P is the most well-known reported algorithm for regres-
sion problems among the developed model’s trees. Linear 
functions are used instead of discrete class labels at the 
leaves; M5P predicts that functional reliance is not constant 
across the domain but could be considered in smaller sub-
domains (Demir 2022). M5P is an upgraded model of the 
M5 technique. Its major feature is efficiently handling large 
datasets with high dimensionality. If the training set is lim-
ited, the classification error rate may be large compared to the 
number of classes. The M5P method does not require param-
eter configuration. As a result, this algorithm does not require 
knowledge discovery. The M5P model can also be used in 
hydrology to model the stage-discharge connection (Ajmera 
and Goyal 2012), long-term streamflow forecasting (Yaseen 
et al. 2016), lake level forecasting (Demir 2022) and simulate 
the rainfall-runoff process (Solomatine and Xue 2004).

It is quick, straightforward, and accurate throughout the 
procedure. M5P uses a multivariate linear regression model 
to generate classification and regression trees. As a result, it 
can reduce variation within a specific subspace. These model 
trees are reminiscent of piecewise linear functions. The M5P 
algorithm is named the robust algorithm when dealing with 
missing data. The parameters selected for modeling pre- and 
post-impact in the M5P algorithm are presented in Table 5.

Statistical performance assessment

There are numerous applications for performance evalua-
tion in the real world. When a consumer wants to buy a 
computer, for example, he must compare costs, CPU speed, 
RAM, pre-installed software, and other factors among sev-
eral options before deciding which one to purchase. We 
may ask which search engine will return the most relevant 
information for the given searches when retrieving informa-
tion on the Internet. In performance evaluation, hypotheses 
are selected or ranked based on performance comparison of 
hypotheses on sample data (Leighton and Srivastava 1999). 
Hypotheses’ performance measurements are numerical num-
bers that must be derived from sample data and may contain 
noise. Furthermore, in real-world applications, evaluating 
all hypotheses is typically impractical or impossible due to 
time and resource restrictions. As a result, statistical meas-
ures are utilized to efficiently evaluate the performance of 
hypotheses using a small quantity of sample data. There are 
a variety of statistical metrics available, and their conclu-
sions are dependent on a number of criteria, including the 
size of the sample data and the distribution of hypotheses 
performance measurements. It’s difficult to choose the best 
acceptable statistical measurements.
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Models evaluation and comparison of actual and fore-
casted data of water temperature were achieved based on 
several performances metrics, namely, (i) Pearson correla-
tion coefficient (PCC), (ii) the mean absolute error (MAE), 
(iii) the root mean square error (RMSE), (iv) the relative 
absolute error (RAE), (v) the coefficient of determination 
R2, and (vi) the root-relative square error (RRSE), calculated 
as follows (Shukla et al. 2021; Vishwakarma et al. 2022):
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average of the estimated/predicted values, and N is the 
total number of observations. The values of RMSE range 
from 0 to ∞, PCC −1 to 1,  R2 0 to 1, MAE 0 to ∞, and 
RAE and RRSE 0 to 1. Good forecasting accuracy cor-
responds to a value of PCC and R2 nearly equal to 1, 
while for the other metrics, their values should be close 
to zero (Yaseen et al. 2016, 2018; Ayele et al. 2017; 
Shukla et al. 2021; Demir 2022; Pham et al. 2022; Vish-
wakarma et  al. 2022). Each one of these measures’ 
descriptive performances is as follows:

• The lower the value of MAE and RMSE and near to zero 
MBE, the better the model performance (Vishwakarma 
et al. 2022).

• For R2:
  Very good (0.7 < R2 ≤ 1); good (0.6 < R2 ≤ 0.7); sat-

isfactory (0.5 < R2 ≤ 0.6); and unsatisfactory (R2 ≤ 0.5) 
(Ayele et al. 2017).

In RAE, total absolute error is normalized by divid-
ing it by the total absolute error of the basic indica-
tor in the RAE, whereas in RRSE, the total squared 
error is normalized by dividing it by the total squared 
error of the basic indicator in the RSE. The error is 
reduced to the same dimensions as the quantity being 
predicted by taking the square root of the relative 
squared error. Taylor diagrams, radar charts, and box 
plots were also investigated to visually compare model 
performance (Taylor 2001; Citakoglu 2021; Başakın 
et al. 2022; Görkemli et al. 2022). More details about 
models evaluation and comparison can be found in 
Kushwaha et al. (2021), Elbeltagi et al. (2022a), and 
Vishwakarma et al. (2022).

Table 6  The summary of best subset regression variables in (pre-impact)

The best model for the selected selection criterion is displayed in bold.

S. No. Number of variables and their combination MSE R2 Adjusted R2 Mallows’ Cp Akaike’s IC Schwarz’s BC Amemiya’s PC

1 X(t-1) 0.148 0.994 0.994 22.181 −2093.580 −2083.582 0.006
2 X(t-1)/X(t-3) 0.145 0.994 0.994 4.307 −2111.307 −2096.309 0.006
3 X(t-1)/X(t-3)/X(t-7) 0.145 0.994 0.994 4.311 −2111.308 −2091.310 0.006
4 X(t-1)/X(t-3)/X(t-6)/X(t-7) 0.145 0.995 0.994 1.764 −2113.880 −2088.883 0.006
5 X(t-1)/X(t-3)/X(t-4)/X(t-6)/X(t-7) 0.145 0.995 0.994 3.251 −2112.397 −2082.400 0.006
6 X(t-1)/X(t-2)/X(t-3)/X(t-4)/X(t-6)/X(t-7) 0.145 0.995 0.994 5.157 −2110.491 −2075.495 0.006
7 X(t-1)/X(t-2)/X(t-3)/X(t-4)/X(t-5)/X(t-6)/X(t-7) 0.145 0.995 0.994 7.070 −2108.579 −2068.584 0.006
8 X(t-1)/X(t-2)/X(t-3)/X(t-4)/X(t-5)/X(t-6)/X(t-7)/X(t-8) 0.145 0.995 0.994 9.000 −2106.650 −2061.655 0.006
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Result and discussion

Temperature is one of the most significant parameters 
for evaluating the water environment since water tem-
perature fluctuation mainly governs several freshwater 

processes. The reservoir impoundment is responsible for 
water temperature fluctuation and distribution, as is the 
annual water temperature change in the downstream river. 
At the same time, because the reservoir space architecture 
is relatively dense in the cascade development mode, a 
single reservoir’s influence on water temperature is bound 

Table 7  The summary of best subset regression variables in (post-impact)

The best model for the selected selection criterion is displayed in bold.

S. No. Number of variables and their combination MSE R2 Adjusted R2 Mallows’ Cp Akaike’s IC Schwarz’s BC Amemiya’s PC

1 X(t-1) 0.193 0.992 0.992 4.975 −1803.824 −1793.825 0.008
2 X(t-1)/X(t-2) 0.191 0.992 0.992 -0.941 −1809.761 −1794.763 0.008
3 X(t-1)/X(t-2)/X(t-4) 0.191 0.992 0.992 0.648 −1808.175 −1788.177 0.008
4 X(t-1)/X(t-2)/X(t-4)/X(t-6) 0.191 0.992 0.992 1.162 −1807.672 −1782.675 0.008
5 X(t-1)/X(t-2)/X(t-3)/X(t-4)/X(t-6) 0.191 0.992 0.992 3.032 −1805.803 −1775.807 0.008
6 X(t-1)/X(t-2)/X(t-3)/X(t-4)/X(t-6)/X(t-7) 0.192 0.992 0.992 5.027 −1803.808 −1768.812 0.008
7 X(t-1)/X(t-2)/X(t-3)/X(t-4)/X(t-6)/X(t-7)/X(t-8) 0.192 0.992 0.992 7.002 −1801.833 −1761.838 0.008
8 X(t-1)/X(t-2)/X(t-3)/X(t-4)/X(t-5)/X(t-6)/X(t-7)/X(t-8) 0.192 0.992 0.992 9.000 −1799.835 −1754.841 0.008

Table 8  Standardized 
coefficients and sensitivity 
analysis of linear regression of 
different input combinations in 
pre-impact

Standardized coefficients Sensitivity analysis

Source Value Standard error t Pr > |t| Lower bound 
(95%)

Upper 
bound 
(95%)

X(t-1) 1.084 0.020 53.012 <0.0001 1.044 1.124
X(t-2) 0.000 0.000 - - - -
X(t-3) −0.068 0.026 −2.658 0.008 −0.119 −0.018
X(t-4) 0.000 0.000 - - - -
X(t-5) 0.000 0.000 - - - -
X(t-6) 0.000 0.000 - - - -
X(t-7) −0.019 0.013 −1.413 0.158 −0.046 0.007
X(t-8) 0.000 0.000 - - - -

Table 9  Standardized 
coefficients and sensitivity 
analysis of linear regression of 
different input combinations 
post-impact

Standardized coefficients Sensitivity analysis

Source Value Standard error t Pr > |t| Lower bound 
(95%)

Upper 
bound 
(95%)

X(t-1) 0.911 0.030 30.054 < 0.0001 0.851 0.970
X(t-2) 0.080 0.041 1.959 0.050 0.000 0.161
X(t-3) −0.015 0.041 −0.357 0.721 −0.095 0.066
X(t-4) 0.047 0.037 1.285 0.199 −0.025 0.119
X(t-5) 0.000 0.000 - - - -
X(t-6) −0.025 0.037 −0.695 0.487 −0.097 0.046
X(t-7) −0.006 0.041 −0.157 0.875 −0.087 0.074
X(t-8) 0.005 0.030 0.156 0.876 −0.055 0.064
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to be in some form, resulting in a cumulative effect on 
water temperature. In this paper, two two-dimensional 
models modeled on two-dimensional averages were lat-
erally averaged for Xiangjiaba Reservoir and Xiluodu 
Reservoir downstream of Jinsha River to simulate the 
water temperature. The model parameters were calibrated 
using 2014 temperature data and then confirmed using 

2015 data. These models are capable and most suited to 
simulating the two libraries’ hydrodynamic processes and 
geographical water temperature distributions.

Using simulation findings, the present research exam-
ined water temperature fluctuation over space and time in 
Xiangjiaba and Xiluodu reservoirs.

Fig. 3  The standardized coef-
ficients of input variable for 
sensitivity analysis (pre-impact)
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Fig. 4  The standardized coeffi-
cients of input variable for sen-
sitivity analysis (post-impact) X (t-1)
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Table 10  Statistical 
measurements of the proposed 
methods to forecast water 
temperature in pre-impact spam

Scenario Model Performance indicators

R2 PCC MAE RMSE RAE (%) RRSE (%)

Training Random Subspace 0.9952 0.9976 0.2683 0.3748 5.5112 6.8969
REPTree 0.9952 0.9976 0.2648 0.3754 5.4393 6.9076
Random Forest 0.9988 0.9994 0.1444 0.1862 2.9654 3.4253
M5P 0.9952 0.9974 0.2566 0.3928 5.2701 7.2283

Testing Random Subspace 0.9862 0.9931 0.3398 0.455 8.9076 10.592
REPTree 0.9872 0.9936 0.3232 0.4365 8.4729 10.163
Random Forest 0.9872 0.9936 0.3206 0.4356 8.404 10.1421
M5P 0.9920 0.9960 0.2387 0.3449 6.2573 8.0288
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Furthermore, a cumulative effect evaluation method 
was built. The characteristics of cumulative effects of 
water temperature over space and time in the Xiangjiaba 
and Xiluodu reservoirs were evaluated. As a result, the 
downstream control approach for cumulative effects was 
developed.

Input variables selection for modeling of pre‑ 
and post‑impact on water temperature

The success of machine learning models is mainly governed 
by a good selection of the best predictors, i.e., the best input 
variables (Malik et al. 2019; Shukla et al. 2021; Kushwaha 
et al. 2021; Elbeltagi et al. 2022b, a; Kumar et al. 2022). 
From a general point of view, based on the available input 
variables, we believe that testing several input combinations 
is the more suitable procedure for obtaining the best final 
model; in addition, testing several input combinations can 
help provide a multitude of alternatives with different struc-
tures. As reported in Tables 6 (for pre-impact) and 7 (for 
post-impact), eight scenarios were analyzed in the present 
study having different input variables. The best input combi-
nations are reported in bold. However, all combinations were 
selected based on several indices, namely, Amemiya’s PC 
(A-PC), Schwarz’s BC, Akaike’s IC, the MSE, and Mallows’ 
Cp (M-Cp), the R2, and the adjusted R2 (A-R2). According 
to Table 6, for the pre-impact scenario, it is clear that the 
best model corresponds to the third input combination using 
the first, second, and seventh lag times, i.e., (t-1), (t-2), and 
(t-7), respectively, and exhibiting the most significant sta-
tistical indices with MSE, R2, A-R2, M-Cp, AIC, SBC, and 
APC values of approximately 0.145, 0.994, 0.994, 4.311, 
−2111.308, −2091.310, and 0.006, respectively. Similarly, 
for the post-impact, as reported in Table 7, the best model 
was obtained when the input variables were selected as the 
first eight successive lag times, excluding the fifth lag time, 
i.e., (t-1) to (t-4) in addition to (t-6-) to (t-8), for which the 
statistical MSE, R2, A-R2, M-Cp, AIC, SBC, and APC values 
were approximately 0.192, 0.992, 0.992, 7.002, −1801.833, 
−1761.838, and 0.008, respectively.

Sensitivity analysis

From the input variables selection reported above, it is clear 
that the variables’ contribution varies from one to another, 
and the best input selection highly influenced the model’s 
performance. Tables 8 and 9 and Figs. 3 and 4 depict the 
obtained standard coefficients of the linear regression (SC-
LR). According to Table 8, for the pre-impact scenario, the 
input variables corresponding to the three lags times, i.e., 
(t-1), (t-2), and (t-7), exhibited the highest absolute stand-
ard coefficients, i.e., 1.084, 0.068, and −0.019, respectively, 
Similarly, for the post-impact simulation, the values of the 
SC-LR were 0.911, 0.080, 0.015, 0.047, 0.025, 0.006 and 
0.005, respectively (Table 9).

Modeling of pre‑ and post‑impact on water 
temperature

The hybrid models, i.e., RS, REPTree, RF, and M5P, were 
calibrated according to the best input variables selected 
based on the finding reported in Tables 6 and 7. Selection 
models were calibrated beyond the input variables using 
75% of daily observed data and validated using the remain-
ing 25%. Both goodness-of-fit measurements and graphical 
presentations were used to assess the models’ performance. 
Tables 10 and 11 describe the overall performance of all AI-
based models throughout the calibration and testing stages 
for the estimate of daily observed water temperature at all 
stations using five statistical indicators. In Figs. 5 and 6, the 
statistical measures are also shown using a radar chart.

Evaluation developed models in pre‑impact water 
temperature forecasting

Using various assessment criteria, we examined the robust-
ness of the proposed models during the calibration and test-
ing stages (Table 10). In addition, all soft computing mod-
els use identical statistical techniques to train and evaluate 
datasets. It can be seen that overfitting does not occur in any 
of the models. The M5P model has the highest accuracy 

Table 11  Statistical 
measurements of the proposed 
methods to forecast water 
temperature in post-impact 
spam

Scenario Model Performance indicators

R2 PCC MAE RMSE RAE (%) RRSE (%)

Training Random Subspace 0.9956 0.9978 0.2482 0.3350 5.5173 6.6966
REPTree 0.9950 0.9975 0.2612 5.8081 5.8081 7.0346
Random Forest 0.9988 0.9994 0.1327 0.1675 2.9498 3.3496
M5P 0.9946 0.9973 0.2589 0.3662 5.7572 7.3211

Testing Random Subspace 0.9704 0.9851 0.4212 0.5969 11.3469 13.9353
REPTree 0.9661 0.9829 0.464 0.6442 12.5022 15.0396
Random Forest 0.9704 0.9851 0.439 0.6006 11.8284 14.0229
M5P 0.9708 0.9853 0.4285 0.4285 11.5439 13.8282
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during the calibration and testing stages of training com-
pared to the other suggested models, as shown in Table 10. 
Based on examining the numerical performances reported 
in Table 10, extremely strong prediction performance (R2 > 
0.9) was achieved using all models. Our R2 result revealed 
highly reasonable model performances. However, the highest 
numerical performances were obtained using the M5P when 
performance measurements were taken into account, exhib-
iting the largest R2 value (0.9920); the RF (0.9872) came 

second, REPTree (0.9872) came third, and RS (0.9862) 
was ranked fourth in the list of models during the validation 
stage. By referencing the RMSE values, it is clear that the 
M5P model obtained the poorest RMSE values correspond-
ing to the highest predictive accuracy (RMSE≈0.3349); the 
RF (0.4356) came second, REPTree (0.4365) came third, 
and RS (0.455) was ranked fourth in the list of models dur-
ing the validation stage. Similarly, based on the MAE crite-
ria, the M5P model (RMSE≈0.2384) worked best, the RF 

Fig. 5  Radar charts display the 
goodness-of-fit measures of 
Random Subspace, REPTree, 
Random Forest, and M5P 
models during a training and 
b testing period in pre-impact 
water temperature
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(0.3206) came second, REPTree (0.3232) came third, and 
RS (0.9938) was ranked fourth during the validation stage.

The M5P model produced the lowest MAE criteria 
(0.2384), followed by the Random Forest (0.3206), REPTree 
(0.3232), and Random Subspace (0.9938) model, using the 
RAE and RRSE statistical evaluation criteria which were 
least in M5P (6.2573 and 8.0288, respectively) and fol-
lowed by the RF (8.404 and 10.1421, respectively), REP-
Tree (8.4729 and 10.163, respectively), and RSS (8.9076 
and 10.592, respectively) models. Statistical metrics are 
also presented using the radar graph in Fig. 5. All four 

hybrid models performed excellently, but the M5P model 
worked largely better than the other models in estimating 
daily water temperature in all the six statistics at all study 
locations during pre-impact spam. The relative performance 
indicated that they performed similarly. The performance 
lines of all five models overlap on the radar map, showing 
that the models perform similarly to one another. However, a 
closer examination of the data indicated that the M5P largely 
exceeds the remaining models.

The scatterplot of the measured and estimated 
data of daily water temperature in the calibration and 

Fig. 6  Radar charts display the 
goodness-of-fit measures of 
Random Subspace, REPTree, 
Random Forest, and M5P 
models during a training and 
b testing period in post-impact 
water temperature
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testing stages for all proposed models are depicted in 
Figs. 7 and 8, showing a good match during the two 
stages. All models with excellent levels guaranteed 
high predictive accuracy. At the same time, only M5P 
could perfectly predict the f luctuation of the water 
temperature of training and testing of pre-impact 
spam (Figs. 9 and 10).

We also further analyzed model efficiency using 
the Box and Whisker Plot of the models (Fig. 11a) and 

Taylor diagrams (Fig. 12). The box and whisker plots 
for predicting the maximum and minimum data point 
using the M5P were approximately equal to the meas-
ured data. In contrast, RSS, REPTree, and RF slightly 
underestimated water temperature. The quartile, median, 
mean, and standard deviation of all models could closely 
predict water temperature values to the measured data 
having a significant predictive degree. Indeed, the M5P 
showed better accuracy.

Fig. 7  Comparison of the 
results between the measured/
actual and predicted water 
temperature for the training 
and testing dataset in using 
a–b Random Subspace; c–d 
REPTree; e–f Random Forest; 
and g–h M5P for pre-impact 
time series
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The better performance shown in Taylor diagrams 
(Fig. 12), the closer each produced model’s point is to the 
observed position. The models had a strong predictive 
capacity in this case. However, the M5P approach provided 
the greatest R and poorest RMSE values. The SD of the M5P 
model was close to the actual SD-based values; however, 
the SD of the RS and RF models was lower, followed by the 
REPTree models.

Evaluation developed models in post‑impact water 
temperature forecasting

The model’s performance during post-impact is summarized 
in Table 11 in terms of six statistical metrics. All four hybrid 
models performed significantly better in predicting water 
temperature in all six statistics in the post-impact phase 
than the baseline model. The comparison of the relative 

Fig. 8  Scatter plots of observed 
vs. predicted water temperature 
in the training and test-
ing phase: a–b Random Sub-
space; c–d REPTree; e–f Ran-
dom Forest; and g–h M5P 
during the preimpact time
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performances of the hybrid models found that they were 
quite close to the observed values. Our findings (Table 11) 
revealed that these models are acceptable and provide good 
results based on testing data. However, considering the R2 
and PCC, the M5P was the most accurate and exhibited a 
value of approximately 0.9708 and 0.9853, followed by the 
RSS and RF, which are equal (R2 = 9704, PCC = 0.9851) 
and REPTree (0.9661 and 0.9829). The MAE, RMSE, RAE, 
and RRSE were obtained as 0.4212, 0.5969, 11.3469, and 

13.9353, respectively, for RSS; 0.439, 0.6006, 11.8284, and 
14.0229 for RF; and 0.464, 0.6442, 12.5022, and 15.0396 
for REPTree, respectively. The low MAE, RMSE, RAE, and 
RRSE and higher value or near-ideal R2 and PCC values des-
ignate a better model predictive performance. As indicated 
in Table 11, there is an excellent concert of the M5P model 
in estimating daily water temperature for post-impact.

As seen in Fig. 6, the statistical measures are also pro-
vided using a radar map. Excellent accuracies were achieved 

Fig. 9  Comparison of the 
results between the measured/
actual and predicted water 
temperature for the training 
and testing dataset in using: 
a–b Random Subspace; c–d 
REPTree; e–f Random Forest; 
and g–h M5P for post-impact 
time series
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using the four proposed models. However, the superiority of 
the M5P model compared to the other models in projecting 
daily water temperature according to the six statistics met-
rics at all study sites during the pre-impact spam period is 
more obvious. The radar map demonstrates that the perfor-
mance lines of all five models overlap, suggesting that the 
models perform similarly to one another in terms of overall 
performance. However, an in-depth examination of the data 
indicated slight superiority of the M5P model compared to 
the other.

Figures 9 and 10 indicate that the suggested soft com-
puting algorithms predicted and observed values and scat-
ter plots are consistent. This graph demonstrates that the 
proposed models can accurately predict water temperature. 
When employing the M5P model, the data points projected 
as measured versus predicted values were close, one on top 
of the other, indicating high fitting capabilities. We examine 
model efficiency using box and whisker plots (Fig. 11b) and 
Taylor diagrams (Fig. 13). Figure 11b shows the model’s box 
and whisker plot results. Like the M5P model, the M5P box 

Fig. 10  Scatter plots of 
observed vs. predicted water 
temperature in the training and 
testing phase: a–b Random 
Subspace; c–d REPTree; e–f 
Random Forest; and g–h M5P 
during the post-impact time
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and whisker plot predicted maximum and minimum values 
very close to the actual values. However, Random Subspace, 
REPTree, and Random Forest slightly underestimated the 
water temperature. The M5P model outperformed the other 
quartile, median, mean, and standard deviation.

Figure 13 shows that, according to Taylor diagrams, the 
model should be considered better if it is near the observed 
point’s position. Hence, it is clear that the M5P algorithm 
was the strong model in terms of forecasting capabilities and 
performances, which is reflected by its high PCC and lowest 

Fig. 11  Box and Whisker plot 
of the models: a pre-impact and 
b post-impact
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RMSE. In addition, from the Taylor diagrams, the M5P was 
also the sole model having an SD relatively equal to the 
measured data. However, the RT and RF models exhibited a 
small SD, while the REPTree model also had a small stand-
ard deviation.

Discussion

Obtained results in the present study are very encourag-
ing and promising. While the performances of all models 
for the pre-impact spam were more accurate compared 
to those of post-impact spam, in overall, numerical 
performances revealed the suitability of the proposed 
machine learning models as a robust tool for water tem-
perature prediction. According to the obtained results 
and to what is discussed above, the mean PCC, RMSE, 
and MAE values were 0.994, 0.306°C, and 0.418°C for 
pre-impact spam and 0.985, 0.438, and 0.568 for post-
impact spam, which are superior to the values reported 
by Heddam et al. (2020), i.e., 0.980, 1.413 °C and 1.085 

°C, respectively, and it is clear that the superiority of the 
M5P, RSS, RF, and REPTree models was more obvious 
taking into account the error metrics, i.e., the RMSE 
and MAE values. In a recently published paper, Hed-
dam et al. (2022) reported that river water temperature 
can be predicted with sufficient accuracy by hybrid 
machine learning combined with signal decomposition, 
and it was found that the high values of the PCC, RMSE, 
and MAE were 0.980, 1.304°C, and 1.018°C, respec-
tively, which were significantly less than the obtained 
values in our present study. In another study, Yousefi 
and Toffolon (2022) compared between long short-term 
memory (LSTM), RF, ERT, K-nearest neighbor (KNN), 
decision tree (DT), adaptive neuro fuzzy inference sys-
tem (ANFIS), multi-layer perceptron neural network 
(MLPNN), and support vector regression (SVR) for 
predicting river water temperature, and they reported 
that none of the reported models was able to reduce 
the RMSE below the level of 1.400°C, therefore high-
lighting the extent and the importance of the modelling 
framework reported in the present study.

Fig. 12  Taylor diagram of the 
models during pre-impact spam. 
a Pre-impact training. b Pre-
impact testing

Fig. 13  Taylor diagram of the 
models during post-impact 
spam. a Post-impact training. b 
Post-impact testing
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Conclusions

According to the numerical results obtained in this study, we 
can conclude that dam reservoirs contributed significantly to 
the alteration of the thermal water regimes. Especially, they 
are responsible for the continuous and progressive water 
heating in the downstream river environment. Consequently, 
building models for simulating dam’s reservoir behaviors, 
continuous monitoring, and control of water temperature 
need to be continuously observed. Accurate forecasting of 
the water temperature variation in dams and lakes may help 
in the building and managing dams and lake’s water utiliza-
tion. To predict daily water temperature fluctuation of the 
Yangtze River in Cuntan, China, we tested and developed 
several artificial intelligence models, namely RSS, REPTree, 
RF, and M5P, according to several input variable combina-
tions. The best input combination was found to be water 
temperature measured at three lags times, i.e., (t-1), (t-3), 
and (t-7) for pre-impact and (t-1) to (t-8) with the exclusion 
of (t-5) for post-impact. Our findings indicated that M5P 
outperformed all models exhibiting high performances and 
the best forecasting accuracy with the lowest MAE, RMSE, 
RAE, RRSE, and the greatest R2 and PCC. Furthermore, 
model validation based on graphical analysis revealed that 
plotting the data points using histograms and scatterplot 
demonstrate the superiority of the M5P for which data were 
less scattered than the other models indicating that it has 
potential for broader use in water temperature prediction.
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